
Polar Coordinates

Goals from this section

1. Know how to rewrite Cartesian coordinates to polar and vice versa

2. Be able to integrate in polar coordinates

3. It might be good for you to remember the value of the Gaussian integral, though you don’t
have to for this class.

Motivation: As you might already have noticed, some objects are easier to express in x, y
(Cartesian) coordinates. For example, the line y = 2 is easy to describe because the distance of
each point from the x axis is always constant. Now if we look at a circle centered at the origin,
we see that the expression is slightly more complicated: x2 + y2 = r2. The distance of its points
from any of the axes is not constant, however the distance of its points from the origin is constant.
Similarly, the half line y =

√
3x, x ≥ 0, has the property that the line segment connecting any of

its points with the origin forms a constant angle of π
3

with the positive x-axis. We will construct
a coordinate system engineered to make such objects easily described.

From Cartesian to Polar and back

We’d like to describe a point P (x, y) on the plane by two numbers (r, θ) that such that r is its
distance from the origin if r is non-negative (that is, the length of OP ), and θ is the counter-

clockwise angle between the positive x-axis and the vector ~OP , if θ ∈ [0, 2π]. A reasonable thing
to do this is to demand that

x = r cos(θ) (1)

y = r sin(θ), (2)

which makes sense if we look at the picture below, and also implies

r2 = x2 + y2 (3)

and
tan(θ) =

y

x
. (4)

Note that this allows r to be negative, and θ to be any real number. In fact, in polar coordinates,
(r, θ) = (−r, θ + π) and (r, θ) = (r, θ + 2kπ) for any integer k. Because this introduces too much
ambiguity for us to feel comfortable, we usually assume r ≥ 0 and θ ∈ [0, 2π). This allows us to
rewrite (3) as

r =
√
x2 + y2. (5)

Example 1. The circle centered at the origin with radius r0 can be written as r = r0 in polar
coordinates.

Example 2. Express the disk (y − 2)2 + x2 ≤ 4 in polar coordinates (assuming r ≥ 0).
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Solution. We have (r sin(θ) − 2)2 + r2 cos2(θ) ≤ 4 which gives, after expanding the square, r2 ≤
4r sin(θ). If r 6= 0 we find

r ≤ 4 sin(θ). (6)

The case r = 0 is not really a problem, since in our disk y = r sin(θ) ≥ 0 =⇒ sin(θ) ≥ 0 so (6)
still holds. By looking at the picture, we find that

θ ∈ [0, π],

so we may finally write
D = {(r, θ) : 0 ≤ r ≤ 4 sin(θ), 0 ≤ θ ≤ π}.

Example 3. The expression θ = θ0 represents a half ray starting at the origin and forming angle
θ0 with the positive x axis.

Example 4. In figures 1 and 2 you can see a bear under polar transformation:

Exercise 1. How would you write the line y = 2 in polar coordinates?
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Figure 1: A Cartesian Bear Figure 2: A Polar Bear

Integration in polar coordinates

Theorem 1. Suppose we want to integrate over a domain written as

D = {(r, θ) : h1(θ) ≤ r ≤ h2(θ), α ≤ θ ≤ β}.

Then, for a continuous function f(x, y) we have∫∫
D

f(x, y)dA =

∫ β

α

∫ h2(θ)

h1(θ)

f(r cos(θ), r sin(θ))rdrdθ.

Remarks:

1. Don’t forget the r inside the integral!

2. Once you set up the integral in polar coordinates, there must be only r and θ in your
expression, not x and y.

3. Polar coordinates are useful when the expression x2 + y2 appears in our function or when
the domain of integration can be described easily in polar coordinates, like disks centered at
the origin, annuli, sectors of disks etc.

Example 5. Set up the integral
∫∫

R
2x−ydA in polar coordinates, where R is enclosed by x2+y2 =

4, x = 0, y = x in the first quadrant.

Solution. The given domain can be described as R = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/4}, so∫∫
R

2x− ydA =

∫ π
4

0

∫ 2

0

(2r cos(θ)− r sin(θ))rdrdθ.

An impressive application of polar coordinates: The Gaussian Integral

We will calculate the integral
∫∞
−∞ e

−x2dx. The indefinite integral
∫
e−x

2
dx can’t be written in

terms of elementary functions, but polar coordinates can help us find
∫∞
−∞ e

−x2dx.
Recall that ∫ ∞

−∞
e−x

2

dx = lim
M→∞

∫ M

−M
e−x

2

dx.
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So let’s call I :=
∫∞
−∞ e

−x2dx and IM :=
∫M
−M e−x

2
dx so that I = limM→∞ IM .

Let’s denote by RM := {(x, y) : |x| ≤ M, |y| ≤ M} the square of side 2M (with its interior),
and since x is a dummy variable in the expression for IM , we may write

I2M =IM · IM

=(

∫ M

−M
e−x

2

dx)(

∫ M

−M
e−x

2

dx)

=(

∫ M

−M
e−x

2

dx)(

∫ M

−M
e−y

2

dy)

=

∫ M

−M

∫ M

−M
e−x

2

e−y
2

dxdy

=

∫∫
RM

e−(x
2+y2)dA

Remember that x2 + y2 is an expression that is easily described in polar coordinates, but
the integration is happening on a square, which is not that nice of a situation. So we’ll use the
Sandwich theorem from elementary calculus that says that if

• aM ≤ IM ≤ AM for all M and

• limM→∞ aM = limM→∞AM = C

then limM→∞ IM = C. We will try to find appropriate aM and AM .
Note that if DM is the disk centered at the origin with radius M and D√2M is the disk centered

at the origin with radius
√

2M then we have

DM ⊂ RM ⊂ D√2M .

Therefore, by Exercise 2 from 15.3 (lecture notes), using that e−(x
2+y2) ≥ 0 everywhere, we

find that ∫
DM

e−(x
2+y2)dA ≤

∫∫
RM

e−(x
2+y2)dA ≤

∫∫
D√

2M

e−(x
2+y2)dA. (7)

Things are starting to look good! Let’s see why: Using polar coordinates,

aM :=

∫∫
DM

e−(x
2+y2)dA

=

∫ 2π

0

∫ M

0

e−r
2

rdrdθ

=2π[
−e−r2

2
]M0

=π(1− e−M2

)

so that limM→∞ aM = π. As you can check yourself, for AM :=
∫∫

D√
2M
e−(x

2+y2)dA, we also find

limM→∞AM = π, so by (7) and the Sandwich Theorem we find that

lim
M→∞

I2M = π

which implies

I =

∫ ∞
−∞

e−x
2

dx =
√
π.
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