
Green’s Theorem

What to know

1. Be able to state Green’s theorem

2. Be able to use Green’s theorem to compute line integrals over closed curves

3. Be able to use Green’s theorem to compute areas by computing a line integral instead

4. From the last section (marked with *) you are expected to realize that Green’s theorem
doesn’t apply if the functions P , Q involved are singular in the domain. I would strongly
recommend studying this example, but I will not ask you to repeat it in an exam.

As you saw in your first calculus courses, the Fundamental Theorem of Calculus relates the
integral of the derivative of a function on an interval with its values on the boundary. In this
section we will generalize the Fundamental Theorem of Calculus in 2 dimensions.

We’ll use a positively oriented simple closed curve in R2. What those words mean:

• Closed: it starts and ends at the same point

• Simple: It doesn’t intersect itself

• Positively oriented: (for simple closed curves) transversed in counterclockwise direction

It took mathematicians many years and many failed attempts to prove that a simple closed
curve divides the plane into exactly two sets, one bounded and one unbounded (this result is
called Jordan curve theorem). You can find some cool pictures of simple closed curves here:
http://www.dominoartwork.com/tspart.html.

1

http://www.dominoartwork.com/tspart.html


Notation: A notation frequently used (mostly in physics) for the line integral of a vector field
over a closed curve is ∮

c

~F · d~r.

I won’t be using it for the rest of the course, but you might see it in homework/other instructors’
past exams/books/other classes you might take, so be aware of the fact that it’s nothing too scary.

Theorem 1. (Green’s) Let c be a simple, closed and positively oriented piecewise smooth curve,

let D be the bounded domain enclosed by c and assume that ~F = 〈P,Q〉 is a vector field such that
P and Q are everywhere continuously differentiable on D. Then∫

c

~F · d~r =

∫
c

Pdx+Qdy =

∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA (1)

Remarks:

• Recall from an earlier section that
∫
−c
~F · d~r = −

∫
c
~F · d~r. Therefore, if c is a negatively

oriented simple, closed piecewise smooth curve,∫
c

~F · d~r = −
∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

• If ~F is conservative in a domain D, it satisfies ∂P
∂y

= ∂Q
∂x

in D, so Green’s theorem implies∫
c
~F · d~r = 0 over a simple closed curve contained in D (as expected).

So why do we care about Green’s theorem? The FTC for intervals was useful to calculate
an integral over the interval, but here things are reversed in a sense. Green’s theorem is most
useful for calculating line integrals of vector fields over closed paths and it should be
your first thought when you need to calculate one. It’s usually not that useful for double
integrals, since if you have to compute

∫∫
D
fdA you’d need to write f = ∂P

∂y
− ∂Q

∂x
. There is one

notable exception to this, when we use Green’s theorem to find the area of a domain, see below.
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Example 1. Compute
∫
c
xy2dx+ 2x2ydy, where c is the positively oriented triangle with vertices

(0, 0), (2, 2) and (2, 4).

Solution. Normally we’d write 3 line integrals, one for each edge of the triangle. However, by
Green’s theorem, ∫

c

xy2dx+ 2x2ydy =

∫∫
D

∂

∂x
(2x2y)− ∂

∂y
(xy2)dA

=

∫ 2

0

∫ 2x

x

4xy − 2xydydx

=12,

and this is quite a faster way to do this.

Fun fact: You can use Green’s theorem to show equality of mixed partials for twice contin-
uously differnetiable functions in a couple of lines! Let f be such a function, and let ~F = ∇f =
〈P,Q〉. Then, by Green’s theorem, for any small disk D,∫∫ (

∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

∂2f

∂x∂y
− ∂2f

∂y∂x
dA =

∫
c

∇f · d~r = 0,

by FTC. This shows that ∂2f
∂y∂x

= ∂2f
∂x∂y

everywhere.

Green’s theorem for calculating areas

We can use Green’s Theorem to express the area of a domain. If we set Q = x, P = 0 we find∫
c

xdy =

∫∫
D

1dA = A(D) (2)

and by setting P = −y, Q = 0, ∫
c

−ydx =

∫∫
D

1dA = A(D) (3)
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Example 2. Find the area enclosed by the ellipse

x2

a2
+
y2

b2
= 1.

Solution. This is an exercise you might have done in math 125, where you used trigonometric
substitution. Here we’ll do it using Green’s theorem. We parametrize the ellipse by

x(t) =a cos(t) (4)

y(t) =b sin(t), (5)

for t ∈ [a, b]. Then

Area =

∫∫
D

1dA

=

∫ 2π

0

x(t)y′(t)dt

=

∫ 2π

0

a cos(t)b cos(t)dt

=πab.

∗Using Green’s theorem to transfer a computation of a line integral to a line integral
over a more convenient curve

For this example, we’ll use the vector field ~F (x, y) = 〈 −y
x2+y2

, x
x2+y2

〉 = 〈P (x, y), Q(x, y)〉, defined

on R2\{(0, 0)}. Suppose we want to find its line integral over the ellipse x2

a2
+ y2

b2
= 1, positively

oriented (in fact, any simple closed curve, but let’s stick with the ellipse for now). Explicitly
calculating this is possible, but not straightforward, so we’ll see another way to do it.

You might remember from the last section that ∂P
∂y
− ∂Q

∂x
= 0 everywhere on D. Note that we

can’t use Green’s theorem, because ∂P
∂y

and ∂Q
∂x

are not continuous inside the ellipse (they blow

up at 0). Here’s what we’ll do instead. We create 2 simple closed curves where we can indeed
apply Green’s Theorem, as in the picture, by inserting a small circle of radius ε about the origin
and connecting it to the ellipse.

Note that in the picture

c = c1 ∪ c2
a1 = −a2
d1 = −d2

We may apply Green’s Theorem in D1 and D2 because ∂P
∂y

and ∂Q
∂x

are continuous there, and
∂Q
∂x
− ∂P

∂y
= 0 in both of those sets. Therefore,

0 =

∫∫
D1

∂Q

∂x
− ∂P

∂y
dA =

∫
c1

~F · d~r +

∫
a1

~F · d~r +

∫
b1

~F · d~r +

∫
d1

~F · d~r (6)
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and

0 =

∫∫
D2

∂Q

∂x
− ∂P

∂y
dA =

∫
c2

~F · d~r +

∫
a2

~F · d~r +

∫
b2

~F · d~r +

∫
d2

~F · d~r. (7)

Adding (6) and (7), we find

0 =

(∫
c1

~F · d~r +

∫
c2

~F · d~r
)

+

(∫
a1

~F · d~r +

∫
a2

~F · d~r
)

+

(∫
b1

~F · d~r +

∫
b2

~F · d~r
)

+

(∫
d1

~F · d~r +

∫
d2

~F · d~r
)
.

and this gives, using that a1 = −a2 and da = −d2,∫
c

~F · d~r =

∫
b

~F · d~r,

where b is the circle of radius ε, positively oriented.
Now we parametrize b by x(t) = ε cos(t), y(t) = ε sin(t), t ∈ [0, 2π] and find∫

c

~F · d~r =

∫ 2π

0

〈−ε sin(t)

ε2
,
ε cos(t)

ε2
〉 · 〈−ε sin(t), ε cos(t)〉dt = · · · = 2π.

(check!). It is quite remarkable in a sense that ε does not appear at the end, but also expected,
since there is no ε in the integral over the ellipse that we want to compute!
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