
Stokes’ Theorem

What to know:

1. Be able to state Stokes’s Theorem

2. Be able to use Stokes’s Theorem to compute line integrals.

In this section we will generalize Green’s theorem to surfaces in R3. Let’s start with a definition.

Definition 1. Suppose S is an oriented surface with unit normal vector field ~n the boundary of
which is the curve c. We say that c is positively oriented if the direction it is transversed and
~n follow the right hand rule. That is, when the four fingers of your right hand other than the
thumb are following the curve and the inside of your palm is looking towards the surface, your
thumb should be pointing in the direction of ~n. If this is not the case, we say that c is negatively
oriented.

Figure 1: Positive orienta-
tion

Figure 2: Negative orianta-
tion

Figure 3: Positive oriented
boundary curves in the ex-
istence of a hole

• If our surface lies on the xy plane and we give it the orientation determined by the the vector
field 〈0, 0, 1〉, the boundary curve being positively oriented is the same as saying that it is
oriented counterclockwise.

• Another way you could think of positive orientation is that if you’re walking on the curve
with your head towards the direction of ~n, the surface should be on your left.

• A cat explaining the right hand rule, here.

Now recall that in the previous section we saw the following example:

Example 1. Let S be the upper hemisphere of the unit sphere oriented downwards, and let
~F = 〈−y, x, 1〉. Compute the flux of curl ~F across S.

The answer we found was
∫∫

S
curl ~F · d~S = −2π. Now let’s do the following:
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http://sites.math.washington.edu/~neptamin/324Au17/Notes/16.8/righthandrule.gif


Exercise 1. Compute the line integral
∫
c
~F · d~r, where c is the clockwise parametrized unit circle

on the xy plane, that is,
c(t) = (cos(−t), sin(−t), 0) .

You should find −2π. Observe that c is the positively oriented boundary curve of the unit upper
hemisphere centered at the origin with downward orientation, as we can see from the picture 4.

Figure 4: The hemisphere with downward orientation and its boundary, viewed from below.

The fact that we find ∫∫
S

curl ~F · d~S =

∫
c

~F · d~r

is not a coincidence, and it is a consequence of the following theorem:

Theorem 1. (Stokes) Let S be an oriented parametric surface with its boundary consisting of a

curve c, that is assumed to have positive orientation, and let be and ~F be a vector field in R3 with
differentiable coefficients. Then ∫∫

S

curl ~F · d~S =

∫
c

~F · d~r.

Remarks:

1. If the orientation of c is negative, −c is positively oriented, and therefore∫∫
S

curl ~F · d~S =

∫
−c

~F · d~r = −
∫
c

~F · d~r.

2. We often denote the positively oriented boundary curve of S by ∂S, so Stokes’ theorem
becomes ∫∫

S

curl ~F · d~S =

∫
∂S

~F · d~r.

3. Why is Stokes’ Theorem useful? In our context, it becomes most useful when we have to
compute a line integral over a curve that can be conveniently written as the boundary of a
surface. In this sense, it works in a way completely analogous to Green’s Theorem, except for
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more general surfaces in R3. In Real Life, it is particularly useful for computing line integrals
over closed curves that consist of several distinct smooth segments that would require you
to write a sum of several integrals.

In general, Stokes’ theorem isn’t very useful for computing the surface integral of a vector
field ~G, unless it is already known that the vector field ~G can be written as ~G = curl ~F for
another vector field ~F . However, we already saw that this can’t happen unless div ~G ≡ 0 and
this condition is quite restrictive: Most vector fields can’t be written as the curl of another
vector field.

4. Stokes’ Theorem generalizes Green’s Theorem in the following sense: Let D be a domain in
R2, c = (x(t), y(t)) be its boundary curve with counterclockwise orientation and ~F (x, y) =
〈P (x, y), Q(x, y)〉 be a vector field in R2. We embed D to a surface S in R3 using the
parametrization

~r(u, v) = 〈u, v, 0〉, (u, v) ∈ D

band we give it upward orientation, that is given by the constant unit normal vector field
~n = 〈0, 0, 1〉. We finally extend ~F as a vector field in R3 by setting

~F (x, y, z) = 〈P (x, y), Q(x, y), 0〉.

We find

curl ~F = 〈0, 0, ∂Q
∂x
− ∂P

∂y
〉.

Now we apply Stokes’ Theorem on S and find∫
c

~F · d~r =

∫∫
S

curl ~F · d~S =

∫∫
D

〈0, 0, ∂Q
∂x
− ∂P

∂y
〉 · 〈0, 0, 1〉dA =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA,

which is Green’s Theorem.

5. “Independence of surface”: Suppose that we have two oriented surfaces S1 and S2 that share
the same positively oriented boundary c. For example, S1 could be the lower hemisphere of
the unit sphere and S2 the upper hemisphere of the unit sphere, both with upward orientation
so that their common boundary is the positively oriented unit circle on the xy plane. Then∫∫

S1

curl ~F · d~S =

∫
c

~F · d~r =

∫∫
S2

curl ~F · d~S.

Observe the analogy with the FTC, where we had independence of path for a vector field
that was the “derivative” of a scalar function. Here we have “independence of surface” for
a vector field ~G assuming it is the “derivative” of another vector field: It can be written as
~G = curl ~F . As remarked already, this can’t be the case for vector fields ~G that don’t satisfy
div ~G ≡ 0.

This also means that when we want to compute a line integral along a closed curve, then we
are free to choose any surface that has our curve as its boundary.

6. For any closed surface S,
∫∫

S
curl ~F · d~S = 0. Can you prove this using Stokes’ Theorem?
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7. What is Stokes’ Theorem saying from a physical point of view? When we defined the curl
operator, there was a comment about its relation to rotations. We mentioned that curl ~F
at a point p corresponds to the work produced by the vector field when an infinitesimally
small circulation is happening near the point, on the plane perpendicular to the direction of
curl ~F (p). Then, Stokes’ Theorem tells us that those amounts of work produced by the field
on infinitesimally small circulations on the points of a surface add up the work produced
while a large circulation is happening, on the boundary of the surface (look at picture 5).

Figure 5: “Summing up microscopic circulations leads to a macroscopic circulation”
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