Quiz 2
Let E be the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=2$, and $f(x, y, z)$ be a continuous function on it. Set up an integral $\iiint_{E} f(x, y, z) d V$ in the order $d x d z d y$.

Eq́us:

$$
\begin{aligned}
& x=\sqrt{z-y^{2}} \\
& x=-\sqrt{z-y^{2}} \\
& z=2
\end{aligned}
$$

$$
-\sqrt{z-y^{2}} \leq z \leq \sqrt{z-y^{2}}
$$

Find projection (eliminate x)

Let E be the solid of the picture below, bounded below by the paraboloid $z=4 x^{2}+4 y^{2}$ and bounded above by the cone $z=8-4 \sqrt{x^{2}+y^{2}}$. Set up but do not evaluate an integral that computes the volume of E.

Gre cylindrical Coordinates
(\$) $\left.\begin{array}{l}z=4 r^{2} \\ z=8-4 r\end{array}\right\} \Rightarrow 4 r^{2} \leq z \leq 8-4 r$
Projection: intersect *

