Quiz 3
Let R be the domain in the first quadrant, bounded by the curves $y=4-x^{2}, y=9-x^{2}, x=1$ and $y=0$. Let T be the transformation given by $x=v, y=u-v^{2}$, that is, $(x, y)=T(u, v)=\left(v, u-v^{2}\right)$, defined for all $(u, v) \in \mathbb{R}^{2}$.

1. Show that for each $(x, y) \in R$ there exists exactly one (u, v) such that $(x, y)=T(u, v)$ (in other words, show that you can solve for (u, v) if $(x, y) \in R)$. This will show that there is some set S in the $u v$-plane such that T defined on S is invertible, and its image is R.
2. Find the set $S=T^{-1}(R)$, that is, the set of points in the $u v$-plane for which $T(u, v) \in R$, or equivalently, the image of R under T^{-1}.
3. Use the transformation T and your answers to compute the integral $\iint_{R} x d A$.
4. $x=v \quad \Rightarrow \quad v=x$

$$
\begin{aligned}
& x=v \\
& y=u-v^{2}
\end{aligned} \Rightarrow \quad v=x \quad \begin{aligned}
& u=y+v^{2}=y+x^{2}
\end{aligned}
$$

So for each (x, y) the paint $(u, v)=\left(y+x^{2}, x\right)$ is such that $T(u, v)=(x, y)$, and $T^{-1}(x y)=\left(y+x^{2}, x\right)$
2.

$$
\left.\begin{array}{l}
y=4-x^{2} \Rightarrow y+x^{2}=4 \Rightarrow u=4 \\
y=y-x^{2} \Rightarrow u=9 \\
x=1 \Rightarrow v=1
\end{array}\right\}
$$

S is the set bounded by those curves

$$
y=0 \Rightarrow u=v^{2}
$$

3. T is invertible $\& C^{\prime}, T^{-1}$ is also C^{\prime}.

Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
0 & 1 \\
1 & -2 v
\end{array}\right|=-1 \neq 0
$$

$$
\iint_{A}^{\text {So }} x d A=\int_{u}^{9} \int_{1}^{\sqrt{u}} v|-1| d v d u
$$

$$
=\left.\int_{c_{6}}^{9} \frac{v^{2}}{2}\right|_{1} ^{\sqrt{u}} d u=\int_{4}^{9} \frac{u-1}{2} d u=\frac{u^{2}}{4}-\left.\frac{1}{2} u\right|_{4} ^{9}=\frac{81-16}{4}-\frac{1}{2} \cdot 5
$$

