Quiz 3

Let R be the domain in the first quadrant, bounded by the curves $y = 4 - x^2$, $y = 9 - x^2$, x = 1 and y = 0. Let T be the transformation given by x = v, $y = u - v^2$, that is, $(x, y) = T(u, v) = (v, u - v^2)$, defined for all $(u, v) \in \mathbb{R}^2$.

- 1. Show that for each $(x, y) \in R$ there exists exactly one (u, v) such that (x, y) = T(u, v) (in other words, show that you can solve for (u, v) if $(x, y) \in R$). This will show that there is some set S in the uv-plane such that T defined on S is invertible, and its image is R.
- 2. Find the set $S = T^{-1}(R)$, that is, the set of points in the *uv*-plane for which $T(u, v) \in R$, or equivalently, the image of R under T^{-1} .
- 3. Use the transformation T and your answers to compute the integral $\iint_R x dA$.

