Quiz 6

Let S be the surface that consists of a part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $\mathrm{z}=1$ and $\mathrm{z}=2$ and it satisfies $y \geq 0$. Find a parametrization for S and use it to compute the surface integral

$$
\iint_{S} y d S
$$

Write

$$
\vec{r}(u, v)=\left\langle u, v, \sqrt{u^{2}+v^{2}}\right\rangle, \quad \begin{aligned}
& 1 \leqslant \sqrt{u^{2}+v^{2}} \leqslant 2
\end{aligned}
$$

$$
\vec{r}_{u} \times \vec{r}_{v}=\left\langle-\frac{1}{2 \sqrt{u^{2}+v^{2}}} \cdot 2 u,-\frac{1}{2 \sqrt{u^{2}+v^{2}}} \cdot 2 v, 1\right\rangle
$$

$$
\Rightarrow\left|\vec{r}_{u} \times \vec{r}_{v}\right|=\sqrt{\frac{u^{2}}{u^{2}+v^{2}}+\frac{v^{2}}{u^{2}+v^{2}}+1}=\sqrt{2}
$$

So $\quad \iint_{S} y d S=\iint_{\substack{v \geqslant 0 \\ 1 \leq \sqrt{u^{2}+v^{2}} \leq 2}} v \sqrt{2} d A=\int_{0}^{\text {polar }} \int_{1}^{2} r \sin \theta \cdot \sqrt{2} r d r d \theta$

$$
\begin{aligned}
& =\left.\sqrt{2} \cdot 2 \cdot \frac{r^{3}}{3}\right|_{1} ^{2}= \\
& =2 \sqrt{2} \cdot \frac{7}{3}
\end{aligned}
$$

