Let S be the surface consisting of the part of the generalized cylinder $x^{2}+\frac{y^{2}}{4}=1$, between the planes $z=0$ and $z=y+3$, that also satisfies $x>0$. We give S orientation towards the positive x axis (this means that the x coordinate of the unit normal vector field has to be always positive).
(i) Compute $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}(x, y, z)=\langle y, x, z\rangle$.

$$
\begin{array}{ll}
\vec{r}(u, v)=\langle\cos u, 2 \sin u, v\rangle & -\frac{\pi}{2} \leq u \leq \frac{\pi}{2} \\
& 0 \leq v \leq 2 \sin u+3
\end{array}
$$

$$
\vec{r}_{u}=\langle-\sin u, 2 \cos u, 0\rangle
$$

$$
\overrightarrow{r_{v}}=\langle 0,0,1\rangle
$$

$$
\vec{r}_{u} \times \vec{r}_{v}=\langle 2 \cos u, \sin u, 0\rangle \quad \text { correct orientation }
$$

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \sin }<
$$

$\iint_{S} \vec{F} \cdot d \vec{S}=$

