2. Set up an integral $\iiint_{E} f(x, y, z) d V$, where E is bounded above by the plane $z=3-x-y$, below by the $x y$ plane, and also bounded by the planes $x=-1, x=1, y=0$ and $y=1$ in the order $d x d z d y$.
 Find projection on ye plane
(1), (2) $\rightarrow z+y=4$
(1), (3) $\Rightarrow z+y=2$

Ques $D_{1}:-1 \leqslant x \leqslant 3-z-y$
and

$$
D_{1}=\{(y, z): \quad 2-y \leq z \leqslant 4-y, \quad 0 \leq y \leq 1\}
$$

Over $D_{2}:-1 \leq x \leq 1$
and

$$
D_{2}=\{(y, z): 0 \leq z \leq 2-y \text { and } 0 \leq y \leq 1\}
$$

$$
\iiint_{E}^{S_{0}} f d V=\int_{0}^{1} \int_{0}^{2-y} \int_{-1}^{1} f d x d z d y+\int_{0}^{1} \int_{2-y}^{4-y} \int_{-1}^{3-z-y} f d x d z d y
$$

3. Compute the volume of the bounded domain lying between the cones $z^{2}=x^{2}+y^{2}$ and

there is
Do it in spherical coords

$$
z=\sqrt{x^{2}+y^{2}} \Rightarrow
$$

$p \cos \varphi=\sqrt{p^{2} \sin ^{2} \varphi}$
$\Rightarrow \varphi=\frac{\pi}{4}$
a domain here but it's not bounded.
$z=\sqrt{3} \sqrt{x^{2}+y^{2}} \Rightarrow$

$$
p \cos \varphi=\sqrt{3} \sqrt{p^{2} \delta M^{2} \varphi}
$$

$$
\Rightarrow \varphi=\frac{\pi}{6}
$$

So $\quad \frac{\pi}{6} \leqslant \varphi \leqslant \frac{\pi}{4}$

$$
z=3 \Rightarrow p \cos \varphi=3 \Rightarrow \rho=\frac{0 \pi}{\cos \varphi}
$$

$$
\begin{aligned}
& V= \int_{0}^{S_{0}} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{\cos \varphi}} p^{2} \sin \varphi d p d \varphi d \theta \\
&=\left.\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin \varphi \frac{p^{3}}{3}\right|_{0} ^{\frac{3}{\cos \varphi}} d \varphi d \theta=\int_{\theta}^{2 n} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin \varphi \frac{9}{\cos ^{3} \varphi} d \varphi d \theta \\
&=\left.\int_{0}^{2 \pi} \frac{9}{2} \cos ^{-2} \varphi\right|_{\frac{\pi}{6}} ^{\frac{\pi}{4}} d \theta=\int_{0}^{2 \pi} \frac{9}{2}\left(\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}\right) d \theta \\
&=9 \pi\left(2-\frac{4}{3}\right)=6 \pi
\end{aligned}
$$

Done in Cylindrical coords:
3. Compute the volume of the bounded domain lying between the cones $z^{2}=x^{2}+y^{2}$ and $z^{2}=3\left(x^{2}+y^{2}\right)$, and under the plane $z=3$.
Write down equations solving for z :
(1) $z=\sqrt{x^{2}+y^{2}}$
(2) $z=\sqrt{3\left(x^{2}+y^{2}\right)}$
(3) $z=3$
z appears 3 times, so if we want z to be the innermost variable we need a sem of 2 integrals
Find projection on $x y$ plane:
(D,(2) $\Rightarrow \sqrt{x^{2}+y^{2}}=\sqrt{3} \sqrt{x^{2}+y^{2}} \Rightarrow x=y=0$ (only a point)
(1), (3) $\Rightarrow \sqrt{x^{2}+y^{2}}=3 \Rightarrow x^{2}+y^{2}=9$ (a circle)
(2) (3) $\Rightarrow \sqrt{3} \sqrt{x^{2}+y^{2}}=3 \Rightarrow x^{2}+y^{2}=3$ (circle)

Over $D_{1}=\left\{(x, y)=3 \leq x^{2}+y^{2} \leq 9\right\}$

we have

$$
=\{(r, \theta): \sqrt{3} \leq r \leq 3, \theta \in[0,2 n]\}
$$

$$
\sqrt{x^{2}+y^{2}} \leq z \leq 3 \text { or } r \leq z \leq 3
$$

Over $D_{2}=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq 3\right\}$

$$
=\{(r, \theta): 0 \leq r \leq \sqrt{3}, \quad 0 \leq 9 \leq 2 \pi\}
$$

we have
$\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{3\left(x^{2}+y^{2}\right)}$ or $r \leq z \leq \sqrt{3 r}$

$$
V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{r}^{\sqrt{3} r} 1 \cdot r d z d r d \theta
$$

$3+\int_{0}^{2 n} \int_{\sqrt{3}}^{3} \int_{r}^{3} 1 \cdot r d z d r d \theta=6 \pi$
4. If a transformation T is written as $x=x(u, v)$ and $y=y(u, v)$ and given a point $\left(u_{0}, v_{0}\right)$ on the $u v$ plane, we can produce an affine transformation $d T$ called the differential or pushforward of T at $\left(u_{0}, v_{0}\right)$ that is the best affine approximation of T near $\left(u_{0}, v_{0}\right)$ and is given by

$$
\begin{aligned}
x & ={\left.\frac{\partial x}{\partial u}\right|_{(u, v)=\left(u_{0}, v_{0}\right)}}\left(u-u_{0}\right)+\frac{\partial x}{\partial v}_{\mid(u, v)=\left(u_{0}, v_{0}\right)}\left(v-v_{0}\right)+x\left(u_{0}, v_{0}\right) \\
y & ={\left.\frac{\partial y}{\partial u}\right|_{\mid u, v)=\left(u_{0}, v_{0}\right)}}\left(u-u_{0}\right)+\frac{\partial y}{\partial v}_{\mid(u, v)=\left(u_{0}, v_{0}\right)}\left(v-v_{0}\right)+y\left(u_{0}, v_{0}\right) .
\end{aligned}
$$

For the transformation $T(u, v)=\left(\frac{u^{2}}{v}, v^{u^{2} v}\right)$ defined on $\{(u, v): u>0, v>0\}$:
(a) Find the transformation $d T$ relative to the point $(1,1)$.
(b) Find and draw the image of the box $[1,2] \times[1,2]$ under T and $d T$.
a)

$$
\begin{array}{ll}
\frac{\partial x}{\partial u}=\frac{2 u}{v} & \frac{\partial x}{\partial v}=-\frac{u^{2}}{v^{2}} \\
\frac{\partial y}{\partial u}=z u v & \frac{\partial y}{\partial v}=u^{2}
\end{array}
$$

So $\quad d T_{(1,1)}=(2(u-1)-(v-1)+1,2(u-1)+(v-1)+1)$

$$
=(2 u-v, 2 u+v-2)
$$

or $x=2 u-v$

$$
y=w+v-2
$$

b) Solve for $u_{1} v$ in T :

$$
\begin{aligned}
& x=\frac{u^{2}}{v} \\
& y=u^{2} v
\end{aligned}\left|\Rightarrow \begin{array}{l}
x y=u^{4} \\
\frac{y}{x}=v^{2}
\end{array}\right| \Rightarrow \begin{aligned}
& u=\sqrt[4]{x y} \\
& v=\sqrt{\frac{y}{x}}
\end{aligned}
$$

So
y

$$
\begin{array}{ll}
u=1 \Rightarrow y=\frac{1}{x} & v=1 \Rightarrow y=x \\
u=2 \Rightarrow y=\frac{16}{x} & v=2 \Rightarrow v=4 x
\end{array}
$$

4. A fly flies in a room along the curve

$$
c(t)=(2 \sin (t), \cos (t), 2 t)
$$

The temperature at the point (x, y, z) of the room is given by the function

$$
T(x, y, z)=x^{2}+2 e^{z} y
$$

in ${ }^{\circ} \mathrm{C}$.
(a) Find the gradient of T.
(b) As the fly moves, it experiences a different temperature at each point. Find the instantaneous rate of change of the temperature that the fly experiences at time π seconds (include units).
a) $\nabla T(x, y, z)=\left\langle 2 x, 2 e^{z}, 2 e^{z} y\right\rangle$
b) Need: $\frac{d}{d t}(T \circ c)(t)$

Use chain Rule: write $c(t)=(x(t), y(t), z(t))$
Then, using that $c(\pi)=(0,-1,2 \pi)$

$$
\begin{aligned}
\frac{d}{d t}(T \circ c)(t) & =\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}+\frac{\partial T}{\partial z} \frac{d z}{d t} \\
& =\nabla T(c(\pi)) \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle_{1 \pi}= \\
& =\left\langle 0,2 e^{2 \pi}, 2 e^{2 \pi}(-1)\right\rangle \cdot\langle 2 \cos t,-\sin t, 2\rangle_{1 \pi} \\
& =\left\langle 0,2 e^{2 \pi},-2 e^{2 \pi}\right\rangle \cdot\langle-2,0,2\rangle \\
& =-4 e^{2 \pi}{ }^{\circ} c / s
\end{aligned}
$$

1. Make a change of variables to evaluate the integral

$$
\iint_{R} e^{\frac{y-x}{y+x}} d A
$$

where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$ and $(0,1)$.

set $\left.\begin{array}{l}u=y+x \\ v=y-x\end{array}\right\} \Rightarrow \begin{aligned} & x=\frac{u-v}{2} \\ & y=\frac{u+v}{2}\end{aligned}$

$$
\begin{aligned}
& y=2-x \Rightarrow \quad y+x=2 \Rightarrow u=2 \\
& y=1-x \Rightarrow \quad y+x=1 \Rightarrow u=1 \\
& x=0 \Rightarrow u=v \\
& y=0 \Rightarrow u=-v
\end{aligned}
$$

Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

$$
\begin{aligned}
\iint_{R}^{\text {So }} e^{\frac{y-x}{y+x}} d A & =\int_{1}^{2} \int_{-u}^{u} \frac{1}{2} e^{\frac{v}{u}} d v d u \\
& =\int_{1}^{2} \frac{1}{2} u e^{\frac{v}{u}} \int_{-u}^{u} d u \\
& =\int_{1}^{2} \frac{1}{2} u\left(e-e^{-1}\right) d u \\
& =\left.\frac{1}{2} \frac{u^{2}}{2}\left(e-e^{-1}\right)\right|_{1} ^{2}=\frac{3}{4}\left(e-\frac{1}{e}\right)
\end{aligned}
$$

6. *(Chain Rule, an interesting conceptual question) What's wrong with the following argument? Suppose we are given a function $w=f(x, y, z)$, where $z=g(x, y)$. Then, wishing to compute $\frac{\partial w}{\partial x}$, we draw a tree diagram and find that at each point (x, y) we have

$$
\begin{equation*}
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial x}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial x} \Longrightarrow \frac{\partial w}{\partial z} \frac{\partial z}{\partial x}=0 \tag{1}
\end{equation*}
$$

so at each point either $\frac{\partial w}{\partial z}=0$ or $\frac{\partial z}{\partial x}=0$, which can't be true: there were no assumptions on w or z !
Hint: it might help you to work out a specific example.
The expressions $\frac{\partial w}{\partial x}$ in the le $f t$ and right hand side are not the same! It may help to think of the function w as $w=f(u, v, z)$, where $u=x, v=y, z=g(x, y)$. Then, the chain nile becomes

$$
\begin{aligned}
\frac{\partial w}{\partial x} & =\frac{\partial w}{\partial u} \frac{d u}{d x}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial x} \\
\Rightarrow \frac{\partial w}{\partial x} & =\frac{\partial w}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial x}
\end{aligned}
$$

which droids nuisconceptious.
in other words, $\frac{\partial w}{\partial x}$ on the right hand side means that we're fixing y and z and taking derivative wot x, whereas on the left hand side the dependency of z on x is taking effect.

