Homework Set 5

Due: Wednesday August 3rd

Turn in the following problems:

16.3

12: Find a function f such that $\mathbf{F} = \nabla f$ and use it to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve C. Here, $\mathbf{F}(x,y) = x^2 \mathbf{i} + y^2 \mathbf{j}$ and C is the arc of the parabola $y = 2x^2$ from (-1,2) to (2,8).

16.4

11: Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ (Check the orientation of the curve before applying the theorem): $\mathbf{F}(x, y) = \langle y \cos x - xy \sin x, xy + x \cos x \rangle$, C is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0). (answer: $\frac{-16}{3}$)

6: Use Green's theorem to evaluate the line integral $\int_C \cos(y) dx + x^2 \sin(y) dy$ along the given positively oriented curve, where C is the rectangle with vertices (0,0), (1,0), (1,3), (0,3). (answer: $2(1 - \cos(3)))$.

19: Use one of the formulas below to find the area under one arch of the cycloid $x(t) = t - \sin(t), y = 1 - \cos(t)$:

$$A = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C x dy - y dx.$$

(answer: 3π)

28: Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x^2 + y, 3x - y^2 \rangle$ and C is the positively oriented boundary curve of a region D that has area 6.

16.5

3: Find the curl and divergence of the vector field $\mathbf{F}(x, y, z) = 7xye^{z}\mathbf{i} + yze^{x}\mathbf{k}$.

5: Find the curl and divergence of the vector field $\mathbf{F}(x, y, z) = \frac{4}{\sqrt{x^2 + y^2 + z^2}} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}).$

12: Let **F** be a vector field and f a scalar field. For each one of the following expressions, state whether it is meaningful, and if it is, state whether it is a scalar field (i.e. scalar function) or a vector field. (you don't need to show work)

- 1. $\operatorname{curl} f$
- 2. div ${\bf F}$
- 3. $\operatorname{grad} \mathbf{F}$
- 4. $\operatorname{div}(\operatorname{grad} f)$
- 5. $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
- 6. $(\operatorname{grad} f) \times (\operatorname{div} \mathbf{F})$
- 7. grad f
- 8. $\operatorname{curl}(\operatorname{grad} f)$
- 9. grad(div \mathbf{F})
- 10. div $(\operatorname{div} \mathbf{F})$
- 11. $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$

13: Determine whether or not the vector field $\mathbf{F}(x, y, z) = 5y^2z^3\mathbf{i} + 10xyz^3\mathbf{j} + 15xy^2z^2\mathbf{k}$, and, if it is, find a scalar function f such that $\mathbf{F} = \nabla f$.