Homework Set 6

Due: Friday August 12

This assignment contains a lot of problems of parametrizing surfaces. Once you've found a parametrization, you can use Wolfram Mathematica or other similar software to plot your equations and see if they give you the correct picture.

Turn in the following problems:

16.6

19: Find a parametrization for the plane through the origin that contains the vectors $\mathbf{i} - \mathbf{k}$ and $\mathbf{j} - \mathbf{k}$.

24: Find a parametrization for the part of the sphere $x^2 + y^2 + z^2 = 9$ that lies between the planes z = -2 and z = 2.

25: Find a parametric representation for the part of the cylinder $y^2 + z^2 = 121$ that lies between the planes x = 0 and x = 3.

29: Find parametric equations for the surface obtained by rotating the curve $y = e^{-x}$, $0 \le x \le 3$ around the *x*-axis.

37: Find an equation of the tangent plane to the given parametric surface $\mathbf{r}(u, v) = u^2 \mathbf{i} + 6u \sin v \mathbf{j} + u \cos v \mathbf{k}$ at the point u = 2, v = 0.

41: Find the area of the part of the plane x + 2y + 3z = 1 that lies inside the cylinder $x^2 + y^2 = 6$.(answer: $2\sqrt{14}\pi$)

45: Find the area of the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 9$. (answer: $\frac{2}{3}(10\sqrt{10}-1)\pi$)

16.7:

17: Evaluate the surface integral $\iint_S (x^2z + y^2z) dS$, where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$. (Answer: 16π). **Exercise:** Evaluate the surface integral $\iint_S xydS$, where S is the triangular region with vertices (1,0,0), (0,6,0), (0,0,6). (answer: $3\sqrt{19/2}$)

Exercise II: Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given vector fields \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S. For closed surfaces use the positive (outward) orientation.

- 1. $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z^4\mathbf{k}$, S is the part of the cone $z = \sqrt{x^2 + y^2}$ below the plane z = 1 with downward orientation. (answer: $\pi/3$)
- 2. $\mathbf{F}(x, y, z) = x\mathbf{i} z\mathbf{j} + y\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 36$ in the first octant, with orientation toward the origin. (answer: -36π)
- 3. $\mathbf{F}(x, y, z) = xz\mathbf{i} + x\mathbf{j} + y\mathbf{k}$, S is the hemisphere $x^2 + y^2 + z^2 = 9$, $y \ge 0$, oriented in the direction of the positive y-axis. (answer: 0)
- 4. $\mathbf{F}(x, y, z) = x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$, S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$. (answer: 48)
- 5. $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + 9\mathbf{k}$, where S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 8 (answer: 16π).