
16.1: Vector Fields

A vector field is a function that assigns a vector to each point in R
2 or R

3. Such a function is defined
by component functions with the typical notation:

F(x, y) = P (x, y) i + Q(x, y) j for R
2, and

F(x, y, z) = P (x, y, z) i + Q(x, y, z) j + R(x, y, z)k for R
3.

1. Notational Conventions: When we are just discussing the function in general we may suppress
the input variables and write F = P i + Q j + R k.

We also sometimes prefer to identify a point (x, y, z) with it’s position vector x = 〈x, y, z〉 and
write the function in the form F(x) = P (x) i + Q(x) j + R(x)k.

We may also use the other forms for a vector interchangeably. That is, sometimes I will write,
F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉. All of these are equivalent, just a matter of conve-
nience.

2. Visualizing a Vector Field: We can ‘plot’ a vector field by choosing various sample points
(x, y), evaluation the vector function F(x, y) and drawing the vector from that point. With
enough vectors plotted, we start to get a sense of the vector fields. If the functions are sufficiently
complicated, we would need a computer to graph an accurate graph, but here are some ways we
can get a sense of the vector field:

Assume we are wish to visualize a vector field F(x, y) = 〈P (x, y), Q(x, y)〉

(a) If it’s easy, find when P (x, y) = 0. Wherever P (x, y) = 0, the vector is vertical. You might
also find when P (x, y) > 0, the vectors will point toward the right, and when P (x, y) < 0,
the vectors will point toward the left.

(b) If it’s easy, find when Q(x, y) = 0. Wherever Q(x, y) = 0, the vector is horizontal. You might
also find when Q(x, y) > 0, the vectors will point upward, and when Q(x, y) < 0, the vectors
will point downward.

(c) Plot a few sample points. I’d say it’s smart to plot at least 6-8 spread out points to get a
good idea of what is going on.

(d) Look at the formula for the length of the vectors which is |F| =
√

P (x, y)2 + Q(x, y)2. Can
you tell if the vectors are longer/shorter as you move in a particular direction.

3. Particular Examples

(a) Velocity Fields: Consider moving through a fluid (or air), at each point we could measure
the velocity of the fluid and plot this velocity as a vector. This would be a velocity field,
V(x, y, z).

(b) Force Fields: Consider the force vector acting on a particle at the point (x, y, z). If we
consider all these force vectors, this is a force field, F(x, y, z). Here are some notable force
fields from physics:

• Gravitational Fields: Newton’s law of gravitation says that if M is the mass of an object
centered at the origin, m is the mass of an object with location given by the position
vector x = 〈x, y, z〉, and G is the gravitational constant, then the magnitude of the force
between the objects is

|F| =
mMG

|x|2 .



And the direction of this force on the object of mass m is toward the origin, which would
be the direction −x (as a unit vector it would be − 1

|x|
x). Multiplying this direction by

the length from Newton’s law gives

F =
mMG

|x|3 x =

〈 −mMGx

(x2 + y2 + z2)3/2
,

−mMGy

(x2 + y2 + z2)3/2
,

−mMGz

(x2 + y2 + z2)3/2

〉

That is the gravitational field.

• Electrical Fields : Similarly for electrical charges, if Q is a charge at the origin, q is
another charge with location given by x, ε is a particular constant, then by Coulomb’s
Law the force on the the charge q is given by

F =
εqQ

|x|3 x

For like charges we have repulsion with qQ > 0, and for opposite charges we have
attraction with qQ < 0. Instead of considering the electrical force, physicists often
consider the force per unit charge E = 1

q
F = εQ

|x|3
x which is sometimes called the electric

field of Q.

• Gradient Fields: If z = f(x, y) or w = f(x, y, z) are scalar functions, then their gradients
define vectors at each point. So the gradient of a scalar function is a vector field. We say
such a field is a gradient field. Any field that is a gradient field of some scalar function,
that is F = ∇f , is said to be a conservative vector field and we call f a potential

function for F).
So in order for a vector field to be a gradient field, it must be the gradient of some
scalar function. No all vector fields are gradient fields! In fact if you randomly
selected functions P (x, y) and Q(x, y), the chances of it being a scalar field are very
small. However, many important vectors fields are gradient fields. And if we do have
a gradient field, then there are many nice properties and simplifications we can use as
will be discussed in 6.3 and 6.4 (and we will explain where the words conservative and
potential are coming from).
Note: The gravitational field is a gradient field. One potential function is
f(x, y, z) = mMG√

x2+y2+z2
, because if you compute the gradient of this function you get

∇f =

〈 −mMGx

(x2 + y2 + z2)3/2
,

−mMGy

(x2 + y2 + z2)3/2
,

−mMGz

(x2 + y2 + z2)3/2

〉

= gravitational force field

Similarly the electrical field is a gradient field. So we say these fields are conservative.



4. Bonus Discussion about Flow Lines: I think a natural question to ask is the following: If a
particle is placed in a velocity/force field at a particular point, then what path will it follow. Let’s
explore what we can say here (I’ll focus on R

2, but a similar discussion would follow in R
3):

(a) Flow Lines for Velocity Fields : Assume a velocity field is given V(x, y) = 〈P (x, y), Q(x, y)〉.
And we want to find the parametric equations for the path of a particle r(t) = 〈x(t), y(t)〉.
Then we need the velocity vectors for the particle to be equal to the velocity vectors of the
field, so we need:

dx

dt
= P (x, y) and

dy

dt
= Q(x, y)

which means we have a system of differential equations to solve.

If we just want the equation for the path, then we can try to solve the differential equation

dy

dx
=

dy/dt

dx/dt
=

Q(x, y)

P (x, y)

Here are some examples (I encourage you to look at the vector fields and convince yourself
that these paths are correct).

• If the velocity field is V(x, y) = 〈−y, x〉, then the path of a particle would satisfy dy
dx

= x
−y

.

This is separable, so we can solve to get −1

2
y2 = 1

2
x2 + C , which can be simplified to

x2 + y2 = K for some constant K. So in this force field particle follow the paths of
circles.

• If the velocity field is V(x, y) = 〈x,−y〉, then the path of a particle would satisfy dy
dx

= −y
x

.
This is separable, so we can solve to get y = K

x
for some constant K. So in this force

field particle follow the paths that look like y = 1

x
.

(b) Flow Lines for Force Fields : Assume a force field is given F(x, y) = 〈P (x, y), Q(x, y)〉. And
we want to find the parametric equations for the path of a particle r(t) = 〈x(t), y(t)〉.
By Newton’s second law, F(x, y) = ma(x, y). So the acceleration of the particle at a given
point is a(x, y) = 1

m
F(x, y).

We need the acceleration vectors for the particle to be equal to the acceleration vectors from
the field, so we need:

d2x

dt2
=

1

m
P (x, y) and

d2y

dt2
=

1

m
Q(x, y)

which means we have a system of second order differential equations to solve. This can get
messy quick and even with simple examples we may want a computer to give us approxima-
tions for the path.

Here is one very simple example:

• Assume a particle of mass 2 kg is only acted on by the force of gravity so the force field
(a 2D projection) is F(x, y) = 〈0,−2(9.8)〉 and acceleration is a(x, y) = 〈0,−9.8〉
We need to solve the second order differential equation

d2x

dt2
= 0 and

d2y

dt2
= −9.8

And you get x(t) = at + b and y = −4.9t2 + ct + d, for some constants a, b, c, and d (you
should have seen these equations before).

In any case, you can find the flow lines in either situation by solving differential equations.


