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This dissertation contains work of the author and joint work with C. Robin Graham concern-
ing the geodesic X-ray transform in the setting of asymptotically hyperbolic manifolds. It is
divided into three self contained chapters, each addressing a different question. The topic of
the first chapter is the local injectivity of the X-ray transform, extending a result proved by
Uhlmann and Vasy ([UV16]) on compact manifolds with boundary. Assuming knowledge of
the X-ray transform for geodesics contained in a small neighborhood of a boundary point we
show local injectivity for asymptotically hyperbolic metrics even modulo O(p®) in dimension
3 and higher. In the second chapter we construct examples of asymptotically hyperbolic
metrics demonstrating that in the asymptotically hyperbolic setting absence of conjugate
points does not suffice to exclude boundary conjugate points. The construction uses tech-
niques developed by Gulliver (|[Gul75|) and clarifies the definition of a simple asymptotically
hyperbolic manifold, formulated by Graham, Guillarmou, Stefanov and Uhlmann ([GGS™]).
In the third chapter we show a stability estimate for the X-ray transform on simple asymp-
totically hyperbolic manifolds, extending to this setting the work of Stefanov and Uhlmann
on simple compact manifolds with boundary ([SU04]).
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INTRODUCTION AND STATEMENT OF THE RESULTS

This thesis consists of three self contained chapters addressing questions related to the

geodesic X-ray transform, given by

If(7) = /fds, (0.0.1)

where 7 is a geodesic of a Riemannian metric g on a Riemannian manifold and ds denotes
integration with respect to g-arc length, in the setting of asymptotically hyperbolic man-
ifolds. Typically one has access to the X-ray transform of an unknown function and the
goal is to infer as much information as possible regarding f: one would wish to know, for
example, whether the transform is injective and stable, what is its range, and whether it
is possible to have an inversion formula for recovering f. As is reasonable to expect, the
geometry of the Riemannian manifold greatly influences the answers to such questions, and
so do a priori assumptions on f, such as ones regarding its regularity and growth. In the
case of the 2-dimensional Euclidean space the geodesic X-ray transform is also known as
the Radon transform. It lies in the foundation of Computed Tomography and it has been
studied extensively since the early 20th century, starting with Radon’s 1917 paper ([Rad17]);
several classical results on the Radon transform from the point of view of tomography can
be found for instance in [Nat86]. The geodesic X-ray transform in various settings has nu-
merous applications, including medical, geophysical and ultrasound imaging. It is especially
important on compact manifolds with boundary: among other things, in this setting it is
the linearization of the long standing boundary rigidity problem over a conformal class of
metrics. The boundary rigidity problem is the question of whether a Riemannian metric g
on a compact manifold with boundary can be determined by the distance function between
boundary points, up to a diffeomorphism fixing the boundary. Partly due to its relevance to

the boundary rigidity problem, there is a well developed theory for the X-ray transform on



compact manifolds with boundary.

Throughout this dissertation the geometric setting will be a class of non-compact Rie-
mannian manifolds called asymptotically hyperbolic (AH). Let M be a compact manifold
with boundary of dimension n 4+ 1 and M be its interior. A C* metric g on M is called
asymptotically hyperbolic if for some (and hence any) smooth boundary defining function
p (that is, p‘aM =0, p>0on M, dp!aM # 0) the Riemannian metric g := p?g on
M extends to a smoot metric on M, with the additional property that |dp|§ =1on
8]\4E|. The classical example of an AH manifold is the Poincaré ball model of the hyper-
bolic space of constant sectional curvature —1, the manifold being the Euclidean unit ball
Bt = {z = (2°,...,2") € R"" : |z| < 1} with the metric

n 2
R
Unlike hyperbolic space, AH manifolds need not be symmetric or homogeneous, so the tools
used to study them are primarily analytic. Interest in the study of AH manifolds has risen in
the past two decades, since the AdS/CFT conjecture, proposed in [Mal98|, related conformal
field theories with gravity theories on AH spaces.

We proceed to list a few important properties of AH manifolds. Since for any smooth
boundary defining function p and any u € C°°(M) the function pe is still a smooth boundary
defining function, g determines a conformal family of metrics on the boundary given by
[E‘TBM]' This conformal class of metrics determined by g is called the conformal infinity
of g. As shown in [Maz86|, (M,g) is a geodesically complete Riemannian manifold with
sectional curvatures approaching —(|dp|§)‘ oy = —1 as p — 0, and this justifies the name
asymptotically hyperbolic. Moreover, any geodesic ¥(t) in an AH manifold that eventually
exits every compact set approaches a boundary point as t — oo and po () = O(e™). In

|[GL91|, Graham and Lee show that for each conformal representative in the conformal infinity

of g there exists a unique boundary defining function p inducing a product decomposition

Many authors assume less regularity than C° for g.

*Note that (|dp[> is independent of the choice of boundary defining function.

Noar



[0,e) x OM of a collar neighborhood of the boundary such that the metric can be written in

the form

_ ety (0.02)
p
where h, is a 1-parameter family of smooth metrics on dM, smooth in p up to p = 0, hy
being the conformal representative. We say that an AH metric is in normal form if it is
written as in (0.0.2). Note that for p as in one has |dp|2 = 1 in a neighborhood of

oM.

Due to some of the properties discussed above, studying the geodesic X-ray transform
on an AH manifold poses some interesting challenges. For instance, completeness implies
that the integral in becomes [ f(vy) = ffooo f(y(t))dt for any unit speed geodesic ()
and it might not converge unless some conditions are imposed on the function f; it suffices
to assume, for instance, that f € |logp|*C°(M), a < —1, provided that the geodesic
eventually exits every compact set as both t — 400 (i.e. is not trapped in either the forward
or backward direction). Another issue is related to the parametrization of the space of
geodesics, which is of central importance since I f is a function on that space. On non-
trapping compact manifolds with boundary (that means by definition that all geodesics
intersect the boundary twice in finite time), one can parametrize geodesics by their incoming
velocities. In the AH setting it is not obvious how something similar can be done, since all
geodesics approach the boundary orthogonally (a parametrization of the space geodesics on
AH manifolds in a way analogous to the compact manifold with boundary case was defined

in |[GGS™]; this point will be discussed in more detail in Chapter , Section .

In Chapter [I] we address the question of local injectivity for the X-ray transform on an
asymptotically hyperbolic manifold. This means the X-ray transform of a function is known
for geodesics staying within a neighborhood of a boundary point and one asks whether it is
possible to recover the function there. The positive answer to the corresponding question
on compact manifolds with boundary in dimensions 3 and higher by Uhlmann and Vasy

([UV16]) was one of the major breakthroughs of the past decade in the study of the geodesic



X-ray transform. Given a compact manifold with strictly convex boundary of dimension
at least 3, they showed that the local geodesic X-ray transform is injective on functions
lying in weighted Sobolev spaces and supported in a neighborhood of a boundary point.
Moreover, they showed a stability estimate and global injectivity with reconstruction for the
X-ray transform, assuming in addition that the manifold can be foliated by strictly convex
hypersurfaces.

We describe the main result of Chapter [T, which is the result of a joint work with Robin
Graham. As already mentioned, we will focus on restricted to a subset of geodesics. If
(M, g) is AH and U C M (typically an open neighborhood of a point p € M or its closure),
a geodesic is said to be U-local if y(t) € U for all t € R and lim; 4, v(t) € UNOM. The
set Qy of U-local geodesics is nonempty if U is any open neighborhood of a boundary point;
this is a consequence of the existence of “short” geodesics (see section 2.2 of [GGS™]). As
we will indicate in Section [I.2] for U a small neighborhood of a boundary point, the map
f — Ifla, can be defined on p*2L?(U;dvy) with values in an appropriate L? space (here
dvg denotes the volume form with respect to the metric g on M).

To state the result we will need a hypothesis on the metric g. We say that an AH metric
g is even mod O(p"), where N is a positive odd integer, if whenever g is written in normal

form (0.0.2)) in a neighborhood of M, one has
(@,)mhp‘pzo =0 for modd, 1 <m < N. (0.0.3)

In the case when ((0.0.3)) holds for any odd N > 0 the metric g will be called even. As shown
in [Gui05, Lemma 2.1], evenness mod O(p") is a well defined property of an AH metric,
independent of the chosen conformal representative determining the normal form ((0.0.2]).

Our local injectivity result is the following:

Theorem 1. Let M be a manifold with boundary of dimension at least 3, with its interior
endowed with an asymptotically hyperbolic metric g that is even mod O(p°). Given any
neighborhood V. in M of p € OM, there exists a neighborhood U C V in M of p such that
f— ]f‘QU is injective on p*?L*(U; dvg).



Injectivity of the X-ray transform has been studied extensively on various classes of Rie-
mannian manifolds. On compact manifolds with boundary the theory is very well developed.
We mention a few important works and refer the reader to [IM] for a thorough survey: classi-
cal results can be found in [Muk75|, [Muk77], [MR78| and [Sha94]; more recently, important
works include [PSU13| on surfaces, |Guil7], and [UV16| on compact manifolds with bound-
ary of dimension at least 3, as already mentioned. For classes of manifolds that overlap with
AH ones, there is well developed theory for the X-ray transform on hyperbolic space from
the point of view of symmetric spaces (|[Helll]), also see [BC91| and [Bal05]. More recently,
the X-ray transform has been studied on Cartan-Hadamard manifolds in [Leh| and [LRS1§].
Those are by definition complete, simply connected manifolds of non-positive curvature; they
are diffeomorphic to R™. The first work showing injectivity results for the X-ray transform

specifically in the setting of AH manifolds can be found in [GGS™].

Our approach for proving Theorem (1] is motivated by the following observation. Recall
that the Klein model for hyperbolic space is another metric on B"*!, obtained from the
Poincaré metric by a change of the radial variable. Geodesics for the Klein model are straight
line segments in R™*! under suitable parametrizations. So the hyperbolic X-ray transform
can be identified with the Euclidean X-ray transform applied to a function supported in
the unit ball, modulo changing the parameter of integration on each geodesic. There is an
analogous relation for even AH metrics. An even AH metric induces what we call an even
structure on (M,0M) subordinate to its smooth structure. This is a subatlas of the atlas
defining the smooth structure, with the property that all the transition maps for the even
structure are even diffeomorphisms. One can use the even structure to define a new smooth
structure (M,,dM,) on the topological manifold with boundary underlying (M,9M) by
introducing 7 = p? as a new defining function. As outlined at the end of Section 4 of [FG12|,
when viewed relative to the smooth structure (M,, M), the metric g is projectively compact
in the sense that its Levi-Civita connection is projectively equivalent to a connection v
smooth up to the boundary, i.e. its geodesics agree up to parametrization with the geodesics

of V. The connection V need not be the Levi-Civita connection of a metric as happens on



hyperbolic space, but the Uhlmann-Vasy local injectivity result applies also to the X-ray
transform for smooth connections, so local injectivity for even AH metrics follows just by
quoting [UV16].

If the AH metric g is not even, one can still introduce an even structure and a corre-
sponding (M., dM.) by introducing r = p? as a new defining function. But in this case the
connection V is no longer smooth up to the boundary: its Christoffel symbols have expan-
sions in /r. If 8php}p:0 # 0 in , then the Christoffel symbols have r~/2 terms so v
is not even continuous up to the boundary. If aphp‘pzo =0 but (ap)shp}p:o # 0, then V has
/T terms so it is continuous but not Lipschitz. Our assumption that g is even modulo O(p®)
guarantees that V is at least a C! connection.

In principle one could try to extend directly the proof in [UV16| to the case of a C!
connection like V. But the microlocal methods do not seem very well suited to such an
analysis. Instead we argue by perturbation: Vis a perturbation of a smooth connection,
and the perturbation gets smaller the closer one gets to the boundary. For the quantitative
control needed to carry this out, we need to use not only the local injectivity result of [UV16],
but also the associated stability estimate. We briefly indicate how this goes, beginning by
describing this stability estimate.

Let V be a smooth connection on a manifold M, of dimension at least 3, with strictly
convex boundary given by r = 0, and M a closed manifold containing M.. The authors of
[UV16] constructed a one-parameter family of “artificial boundaries” near a point p € M,
given by x = —n, where x € C"O(M) satisfies z(p) = 0 and dx(p) = —dr(p) and n > 0,
and showed injectivity of the X-ray transform I of V restricted to geodesics in M, entirely
contained in U, := {z > —n}N{r > 0} (see Figure[l)). The proof is based on the construction
of a family of “microlocalized normal operators” me,a each one of which is, roughly speaking,
the conjugate by exponential weights of the average of If over the set of such geodesics
passing through a given point. Here o is the parameter in the exponential weight and y
is a cutoff function. They showed that for appropriately chosen Y, the operator Zx,n,o is

an elliptic pseudodifferential operator in Melrose’s scattering calculus which for sufficiently



Figure 1: The artificial boundary.

small 1 has trivial kernel when acting on functions supported in U,, and derived the stability

estimate

1llz2w,) < ClAxnof]

HL0(0,) (0.0.4)
where H1" denotes a scattering Sobolev space and O, is a neighborhood of U, in 777 =
{z > —n}.

If g is an AH metric even mod O(p"), its Levi-Civita connection is projectively equivalent
as described above to a connection V of the form V =V + 7¥/2"1B on M., where V and B
are smooth. If N > 5, then Vv is C', so the constructions of its X-ray transform T and the
operator EXJ,,U can be carried out just as for the smooth connection V. We show that the
norm of the perturbation operator

~ J—

Ao = Ao+ L2(Uy) = HL(O,) (0.0.5)

goes to zero as n — 0. This gives an estimate of the form for ;{XJLU for n sufficiently
small, which implies local injectivity since EXW, factors through the X-ray transform 1.
The perturbation operator is estimated as in the classical Schur criterion bounding an L?
operator norm by the supremum of the L' norms of the Schwartz kernel in each variable
separately. We lift the kernels of the operators A\x,n,o and A, ,, to a blown up space similar
to Melrose’s double stretched space (see [Mel94]), where their singularities are more easily

analyzed. Due to the fact that the connection Vv is only of class C!, some rather technical



analysis is required near each boundary face and corner of the blow up to conclude that the
kernel of A\X,n,g is sufficiently regular that the norm of the perturbation operator vanishes in
the limit as n — 0.

As is the case in [UV16], the method of the proof naturally yields reconstruction via a
Neumann series and a stability estimate for 7 acting between Sobolev spaces on M, and
on the sphere bundle S°M. of a smooth metric ¢° on M., which we use to parametrize the
geodesics of V. One could pull back this estimate and obtain one for I between function
spaces on M and on the sphere bundle for g but the spaces so obtained are not natural,
so we do not pursue this. Moreover, one could obtain a global injectivity result in exactly
the same way as in [UV16| provided the compact manifold with boundary {p > ¢} admits a
strictly convex foliation, for ¢ sufficiently small. It would be of great interest to remove the
assumption of evenness modulo O(p®) in Theorem (1} we anticipate that a different method
would be necessary for addressing this. Also, the question of local injectivity for the X-ray
transform in dimension 2 is a very interesting problem, which is open even in the setting of

compact manifolds with boundary.

Chapter[2|is concerned with a question about the geometry of AH manifolds. Simple com-
pact manifolds with boundary are a natural setting for the study the X-ray transform and,
more generally, geometric inverse problems. Recall that a compact manifold with boundary
is called simple if it is non-trapping, it has strictly convex boundary and no conjugate points.
An analogous definition of a simple AH manifold was formulated in |[GGS™| to address ques-
tions of tensor tomography and boundary rigidity. In the AH case, convexity of the boundary
is in a sense automatic: for any boundary defining function p and € > 0 small enough the
sets p > ¢ are strictly convex. The definition in [GGS™| of a simple AH manifold is that the
AH manifold be non-trapping (i.e. there exist no trapped geodesics) and without boundary
conjugate points. Here absence of boundary conjugate points means by definition that there
exists no pair of points p™, p~ € M and unit speed geodesic v with lim; 1o y(t) = p*
such that there exists a non-trivial Jacobi field Y along 7 satisfying lim; 1 |Y(¢)], = 0.

It was shown in |[GGS™| that these conditions imply that the geodesic flow is Anosov with



respect to the Sasaki metric (see [Ebe73| for the definition), which together with the main
result of [Knilg§| implies that there are no conjugate points in the usual sense (interior con-
Jugate points), i.e. there exists no non-trivial Jacobi field along any unit speed geodesic that
vanishes for two distinct finite times. A result in [Ebe73] implies if an AH manifold has no
interior conjugate points then there is no Jacobi field Y (¢) along a unit speed geodesic with

)

the property |Y(0)|; = 0 = limy_, |Y'(¢)|,, that is, no “interior-boundary” conjugate points
can occur. This raises the question of whether a non-trapping AH manifold without interior
conjugate points necessarily does not exhibit boundary conjugate points, that is, whether all
non-trapping AH manifolds without interior conjugate points are simple. The main result

of Chapter [2, which is a joint work with Robin Graham, resolves this in the negative.

Theorem 2. For any integer n > 1 there exist smooth non-trapping asymptotically hyperbolic

manifolds of dimension n+1 with boundary conjugate points but no interior conjugate points.

This result is related to work during the 1970s, when there was interest and activity
concerned with understanding the relationships between various properties on a Riemannian
manifold such as absence of conjugate points, Anosov geodesic flow, absence or presence
of focal points, and existence of open sets of strictly positive curvature (see, for instance
[Ebe73], [K1i74], [Gul75]). Our approach is inspired by techniques used in [Gul75| to construct
metrics elucidating the relationships between some of these properties. Such questions remain
of current interest; see, for example, §2.3 of [GLT]| where methods of [Gul75| are used to
construct an asymptotically conic metric on R™ which has positive curvature on an open set
but no conjugate points.

Theorem [2)is proved by constructing explicit examples of manifolds having the properties
stated. We start by constructing a non-trapping, complete, O(n + 1)-invariant C1! metric
on R™"! which compactifies to an AH metric, such that there are no nontrivial Jacobi fields
that vanish twice in the interior but along radial geodesics there are Jacobi fields that vanish
as both t — doo. Here the C1! regularity implies existence and uniqueness of geodesics;

Jacobi fields are understood in a weak sense. Our manifold has constant positive sectional
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curvature in an open geodesic ball and negative sectional curvature outside a compact set;
when n = 1, the negative sectional curvature is constant whereas when n > 2 this is not the
case. For our purposes, the size of the set of positive curvature has to be carefully chosen: if it
is too large, interior conjugate points occur, whereas if it is too small no boundary conjugate
points occur; there is a critical size for which there exist boundary conjugate points but no
interior ones. Because of this, our analysis is much more delicate than that of [Gul75|, where
the conditions are open. Somewhat surprisingly, it turns out that for our C*! metric one can
compute exact formulas for all geodesics, sectional curvatures and Jacobi fields even though
the manifold has non-constant curvature outside any compact set for n > 2. For this reason
our C*! metric may be of more general interest.

In the second half of the chapter (Section [2.2)) we show that our metric can be approxi-
mated by smooth metrics that still have all the required properties. As already hinted, these
properties are quite unstable under perturbations of the metric: small variations can result
in either presence of interior conjugate points or absence of boundary ones. The analogous
approximation step in |[Gul75| was trivial; any smooth, or even real-analytic, metric suffi-
ciently close continued to satisfy the requisite conditions. We analyze the stable Jacobi fields,
defined as those which vanish as ¢ — oo. By careful choice of parameters in our approxi-
mating metric we arrange that there is a stable Jacobi field along radial geodesics which also
vanishes as ¢ — —oo so that the corresponding metric has boundary conjugate points. We
then derive a criterion (Proposition in terms of the behavior of the stable solution for
certain second order ODE’s that rules out solutions vanishing twice. The relevant behavior
can be controlled under perturbations of the metric to rule out interior conjugate points. Our
argument requires control over third derivatives of the stable solutions (two in a parameter
and one in the time variable) as the approximating metric approaches the C1'! metric, for
which we have to carry out some rather technical analysis. The work included in Chapter

can also be found as a standalone publication ([EG]).

In Chapter [3] we remain in the global setting: we work on a simple AH manifold and
address the question of stability of the geodesic X-ray transform. Roughly speaking, this
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means that our goal is to establish that small perturbations of the X-ray transform (the
“measurement”) cannot originate from large perturbations of the unknown function f, and
find appropriate spaces to measure the “size” of a perturbation. In this chapter we make a
slight change in notation; now an AH manifold will be denoted by (M ntlg) and it will be
the interior of a smooth compact manifold with boundary M. A generic smooth boundary
defining function for M will be denoted by .

Our approach to stability is mainly inspired by two works, namely those of Stefanov-
Uhlmann |SU04| and of Berenstein-Casadio Tarabusi (|[BC91|), both of which analyze the
normal operator to the X-ray transform in different settings. On a simple compact manifold
with boundary (X, g), which is the setting of [SU04], the normal operator is given by Nj; =
I*I, where

PR = [ P@dul), FeC(sX), s X,
is the back-projection; here dug izs the measure induced on each fiber of S7.X by the Lebesgue
measure on 17 M and for f € C=(X), If is understood as a function on the unit cosphere
bundle S*X := {(2,§) € T*X : [{|; = 1} which is constant along the orbits of the geodesic
flow. For now the notation [* is formal, however I* can be interpreted as a formal adjoint for
I using suitable inner products and function spaces (this is discussed in Section for the
AH case). The authors of [SU04| showed that Nj extends to an elliptic pseudodifferential
operator of order —1 on X , Where X is an open domain slightly larger than X and of the
same dimension, such that its closure is still simple. The ellipticity of Ny then implied the
existence of a left parametrix (inverse up to compact error) that allowed them to obtain a

stability estimate of the form
lullz2cx) < ClNGull gy, w € LX), suppu C X, (0.0.6)

using injectivity of I on simple manifolds, which had already been established in the "70s.
The construction of the normal operator carries over in the same way on hyperbolic space
and it is well defined on C* functions of suitable decay at infinity; the authors of [BC91]

derived explicit inversion formulas for it using the spherical Fourier transform for radial
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distributions on hyperbolic space (see [Hel99]). Even though they did not explicitly state a
stability estimate, the estimate of Theorem [3| below for the special case of hyperbolic space
follows immediately from their work using the machinery of the 0O-calculus, which we will
discuss shortly.

In [GGS™| it was shown that simplicity of an AH manifold suffices to show that I is
injective on xC*(M) (in fact it is shown there that one can allow for trapped geodesics as
well, provided that the trapped set is hyperbolic for the geodesic flow). The method of proof
relied on showing that functions a priori in zC°° (M) that lie in the nullspace of I actually
vanish to infinite order at OM and it does not yield stability. The main result of Chapter
is a stability estimate analogous to on simple AH manifolds and a strengthened
injectivity result. The normal operator on a simple AH manifold (M ,g) is defined similarly

to the case of simple compact manifolds with boundary: one lets

Nof = IPIf(:) = / TH(E)duy (), feC>(M), ze M,

S:M
where C°°(M) denotes smooth functions vanishing to infinite order at the boundary and dpig
is the measure induced on the fibers of S*M by g, as before. In our setting N, turns out to be
a relatively well behaved object that can be studied within the framework of the 0-calculus
of pseudodifferential operators of Mazzeo and Melrose. Those were introduced in [MMS87]
and further developed in [Maz91| to study differential and pseudodifferential operators on
asymptotically hyperbolic manifolds (among other spaces in the case of [Maz91]), also see
[Lau03]. 0-pseudodifferential operators generalize the wuniformly degenerate O-differential
operators, consisting of the enveloping algebra of 0-vector fields: those are the smooth vector
fields on M that vanish on OM and are denoted by V,. They can be written locally near
OM as smooth linear combinations of {£0,,x0,1, ..., 20}, where y® restrict to coordinates
on OM. Our stability estimate will be in terms of certain weighted Sobolev spaces on which
O-pseudodifferential operators naturally act: we let dV};, be the Riemannian volume density

on M induced by g and for k € Ng = {0,1,...} we let

2 HE(M;dVy)) = {u € 2’ L*(M;dV,) : 2°Vy - - -Viu € L*(M;dV,), m < k, V; € Vo}.
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If s > 0 then H§(M;dV,) is defined by interpolation and for s < 0 by duality with respect to
the L?(M;dV,) pairing. Fixing vector fields V; € V, in coordinate patches we can make sense
of the norms || - [| s g (ar.av,)- As we will show in Section , it turns out that I and N, can
be extended to operators on x°L2(M; dV,) for 6 > —n/2, bounded into appropriate weighted
Sobolev spaces; specifically for A, we have that it is bounded 2 L*(M; dV,) — 2% H}(M; dV,)
provided ¢ < §, § > —n/2 and ¢’ < n/2. The main result of this chapter is the following:

Theorem 3. Let (]\04”“,9) be a simple AH manifold, n > 1. Then I and N, = I*I are

injective on 2’ L*(M;dV,), § > —n/2. Moreover, one has the stability estimate:
”qu‘ng(M;dVg) < C|INg UHzéHg“(M;dVg): 6 € (-n/2,n/2), s > 0.

Note that xC*°(M) C 2°L?(M;dV,) provided 6 < 1 — n/2, so Theorem 3| includes the
injectivity result of [GGS™] on simple AH manifolds as a special case. However, their result
is used in an essential way in the proof, similarly to the way the injectivity of I on simple
compact manifolds with boundary was used to derive in [SUO4].

As mentioned before, the proof of Theorem [3| uses the 0-calculus. As we show in Section
, N, is an elliptic pseudodifferential operator in W L (M) in the large O-calculus (that
is, it is a pseudodifferential operator of order —1 whose Schwartz kernel vanishes to order
n at the side faces of the O-stretched product, see Section [3.2). Its model opemtmﬂ can
be identified with N}, where h is the hyperbolic metric on the Poincaré ball; using the
explicit inversion formulas for A, derived in [BC91] and methods developed in [MMS&7]
and [Maz91] we construct a left parametrix for M;. In [MM87] and [Maz91] parametrices
were constructed for elliptic 0 and edge differential operators, whereas here we apply those
techniques to construct a parametrix for a pseudodifferential operator. The parametrix is

then used in two ways: firstly, one obtains an estimate

[l s b5 (ar:av) < C (HNgUHxéHgH(M;dvg) + HKUHxéHg(M;dVg)) , 0€(-n/2,n/2), s >0,
(0.0.7)

3The model operator is typically called the normal operator; however, we use this name to avoid confusion
with the normal operator N.
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where K : 2°H3(M;dV,) — x°Hi(M;dV,) is a compact operator. Next, using the Mellin
transform and the parametrix it can be shown that any function u € 2°L*(M;dV,) in the
nullspace of N, where 6 > —n/2, is smooth in M and has a polyhomogeneous expansion
at OM, vanishing there to order at least n. The author is indebted to Rafe Mazzeo for
showing him this argument, which is similar in spirit to the constructions of polyhomogeneous
expansions for elements in the nullspace of elliptic edge differential operators in Section 7 of
[Maz91|. In [GGS™, Proposition 3.15] it is shown that if u € xC° (M) lies in the nullspace of T
then u vanishes to infinite order on M, and one checks that the proof also works for u a priori
assumed polyhomogenecous and vanishing to order at least 1 at dM. Since the nullspace of N,
agrees with that of I, it follows that u is in the nullspace of the latter and polyhomogeneous,
hence it vanishes to infinite order at M. Once this has been established, the injectivity
argument in [GGS™| using Pestov identities applies to conclude that u = 0. Finally the
injectivity of N, together with yields Theorem [3| using a standard functional analysis

result.

On compact manifolds with boundary, stability of the X-ray transform has been exten-
sively studied; we mention several related results. Many of the works below also include
stability results for the X-ray transform acting on tensor fields. On non-trapping manifolds
with strictly convex boundary (compact dissipative Riemannian manifolds) that satisfy a
curvature condition that excludes conjugate points (thus for a subclass of simple manifolds),
a non-sharp stability estimate for I is proved in [Sha94] (Theorem 4.3.3) citing earlier works
of Mukhometov and Mukhometov-Romanov in the '70s ([Muk77], [MR78]), among others.
As already mentioned, on simple compact manifolds with boundary, a stability estimate for
the normal operator similar to the one in Theorem 3| is derived in [SU04]; also see [FSUOS]
for an analogous result for weighted X-ray transforms over general families of curves without
conjugate points, defined in an appropriate sense. In [AS] a sharp stability estimate was ob-
tained for I on simple manifolds. In the presence of conjugate points, the result of Uhlmann
and Vasy ([UV16]) shows stability on compact manifolds with strictly convex boundary of

dimension at least 3 that satisfy a foliation condition by strictly convex hypersurfaces. Those
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manifolds can have conjugate points. Moreover, the results in [HU18| imply that under ge-
ometric assumptions stability holds on manifolds with conjugate points for certain Sobolev
spaces. In the non-compact setting, sharp stability estimates are known for the X-ray trans-
form in R™ (see |[Nat86], Section II.5). As we already mentioned, in the case of hyperbolic
space a stability estimate as in Theorem [3| follows immediately from the work of [BCI1];
moreover, the inversion of the hyperbolic Radon transform on the two dimensional hyper-
bolic space has been numerically implemented in a stable manner ([LP97], [FKLT00]). In
the setting of AH manifolds, as already mentioned, the proof of the main result in Chapter
can be used to derive a stability estimate in the local setting, which can be made global if
one assumes a foliation condition.

A future direction would be to use Theorem [3|to obtain a stability estimate in terms of I;
based on the case of compact manifolds with boundary we expect that it is possible to show
that an appropriately weighted L? norm of a function is estimated by a suitable Sobolev
norm of its X-ray transform with order of regularity 1/2, by showing a suitable mapping
property for I*. We plan to pursue this in the immediate future. It would also be interesting
to explore whether stability still holds in the AH setting when one relaxes the simplicity
assumption. In the compact manifold with boundary setting, presence of conjugate points in
the interior of a compact Riemannian surface causes stability to fail in dimension 2 ([SU12],
[MSU15]), and it is natural to expect an analogous behavior in the AH setting. However,
in dimension 3 and higher, additional geometric assumptions can allow for stability even if
there are conjugate points ([UV16], [HU18|) so it is likely that analogous results hold on AH
manifolds. It would be especially interesting to investigate whether stability or instability
holds in the presence of boundary conjugate points (for instance, in the setting of Chapter [2)).
It would also be interesting to study stability in the presence of trapped geodesics; as already
mentioned, in the case when the trapped set is hyperbolic for the geodesic flow, injectivity
of I on xC°°(M) is known by [GGS™] and stability can be shown on compact manifolds with

strictly convex boundary, no conjugate points and hyperbolic trapped set (see [Guil7]).
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Chapter 1

LOCAL INJECTIVITY FOR THE GEODESIC X-RAY
TRANSFORM ON ASYMPTOTICALLY HYPERBOLIC
MANIFOLDS

As already discussed in the Introduction, this chapter is concerned with local injectivity
for the X-ray transform on asymptotically hyperbolic manifolds, which is proved via projec-
tive compactification of an AH manifold (M, g). In Section[L.1|we define even structures on a
manifold with boundary and construct the new manifold with boundary (M., 9M.) obtained
by introducing r = p? as a new defining function. We show that via this construction, even
asymptotically hyperbolic metrics are the same as projectively compact metrics, only viewed
relative to different smooth structures near infinity. In Section we use this observation to
relate the X-ray transforms for g and @, and then deduce Theorem |1| for even AH metrics.
Section begins the analysis for the C* connection v arising from an AH metric even mod
O(p°). We decompose V¥ into a smooth projectively compact connection V and a nonsmooth
error term and extend both to the larger manifold M. We also prove Lemma , which
states that the exponential map for V¥ has one more degree of regularity than expected. In
Section we review scattering Sobolev spaces on a manifold with boundary, the construc-
tion of the microlocal normal operator A, ,, and the stability estimate , and show
how Theorem (1] follows from Proposition [1.4.6, which is the assertion that the norm of the
perturbation operator (0.0.5)) goes to zero as n — 0. In Section [1.5 we describe the blown-up
double space, analyze in detail the lift of the kernel of A, , , to this space, and conclude with
the proof of Proposition Throughout this chapter, lower case Latin indices ¢, j, k label
objects on M or M, and run between 0 and n in coordinates. Lower case Greek indices «,

B, v label objects on OM = M, and run between 1 and n in coordinates. So a Latin index
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corresponds to a pair i <> (0, «).
1.1 Even Asymptotically Hyperbolic = Projectively Compact

The proof of the main result of this chapter (Theorem [1)) is based on an equivalence between
even asymptotically hyperbolic metrics and projectively compact metrics, briefly outlined at
the end of Section 4 of [FG12|. Since it is of central importance, we describe this equivalence
in more detail. We begin by recalling the notions of projective equivalence and projectively
compact metrics. A reference for projective equivalence is [Poo81, §5.24].

Two torsion-free connections V and V on a smooth manifold are said to be projectively
equivalent if they have the same geodesics up to parametrization. This is equivalent to the
condition that their difference tensor V — V is of the form v(l-é;?) = 5(v;0F 4+ v;0F) for some
1-form v. If y(¢) is a geodesic for V, then v(¢(7)) is a geodesic for V, where t(7) solves the
differential equation ¢ = pu(t)(t')* with p(t) = —v,@)(¥/(t)). If v = du happens to be exact,

then this equation for the parametrization reduces to the first order equation
t' = cemu0) (1.1.1)

which can be integrated by separation of variables.

Let ¢g be a metric on the interior of a manifold with boundary (M., dM.). (The explana-
tion for the super/subscript e will be apparent shortly. For now this is just an inconsequential
notation.) We say that g is projectively compact if near dM, it has the form
_dr? k

4r2 '

e

9

where r is a defining function for OM, and k is a smooth symmetric 2-tensor on M, which
is positive definite when restricted to TOM,. It is easily checked that this class of metrics is
independent of the choice of defining function r. Elementary calculations (see below)
show that if ¢V is the Levi-Civita connection of such a metric and r a defining function, then

the connection V defined by

@:@V+D, ij :v(iéf), v=dr/r (1.1.2)
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extends smoothly up to dM,. Thus ¢V is projectively equivalent to the smooth connection
V. It turns out that projectively compact metrics are the same as even asymptotically
hyperbolic metrics upon changing the smooth structure at the boundary. We digress to
formulate the notion of an even structure on a manifold with boundary, which underlies this
equivalence.

Set R = {(p,s) : p>0,s € R"}. View R" C R’™" as the subset p = 0.

Definition 1.1.1. Let U C R be open. Let f : U — R be smooth. f is said to be even
(resp. odd) if either:

1. UNR" =0, or

2. UNR"™ # O and the Taylor expansion of f at each point of U NR™ has only even (resp.

odd) terms in p.

It is equivalent to say that f is even (resp. odd) if there is a smooth function u so that
f(p,s) =u(p? s) (resp. f(p,s) = pu(p? s)). A smooth map ¢ : U — R is said to be even

if it is of the form ¢(p, s) = (p', '), where p’ is odd and each component of s’ is even.

Definition 1.1.2. Let (M,0M) be a manifold with boundary, with atlas {Us, Pu)}aca. Let
{Ua, 0a)} e i be a subatlas of {(Ua, Pa)taca corresponding to a subset AcC A We say that
{(Ua, 0a)}oe i defines an even structure on (M,0M) subordinate to its smooth structure if
the transition map

Pas © 90;11 Qo (Uay NUey) = PayUay NU,)

1s even for all aq,aq € A. The even structure is defined to be the maximal atlas containing

{Ua, 0a) } 4 7 for which all transition maps are even.

Remark 1.1.3. Since {(Ua, Pa)} e i 5 in particular an atlas for the smooth structure deter-
mined by { Uy, o) taca, the even structure determines the smooth structure with respect to
which it is subordinate. So there is really no need to begin with the original smooth structure.

Nevertheless, we will usually have the smooth structure to start with and this language s
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appropriately suggestive. There are many different even structures subordinate to a given

smooth structure.

A diffeomorphism for some ¢ > 0 between a collar neighborhood of M in M and
[0,¢) x M induces an even structure on (M,dM). In fact, an atlas for )M induces an atlas
for [0,e) x OM whose transition maps are the identity in the p factor and independent of p
in the OM factor.

If (M,0M) is a manifold with boundary with subordinate even structure, it is invariantly
defined to say that a function f on M is even: fo ! is required to be even on @ for all
charts (U,, pa) in the even structure. Likewise for odd functions. Conversely, knowledge of
the even and odd functions on (M,dM) determines the subordinate even structure.

As an aside, we comment that if (M, M) is a manifold with boundary, there is a nat-
ural one-to-one correspondence between smooth doubles of (M,9M) and subordinate even
structures. Recall that a smooth double of (M,9M) is a choice of smooth manifold struc-
ture on the topological double 2M = (M U M)/OM such that the inclusions M — 2M
are diffeomorphisms onto their range and such that the natural reflection 2A/ — 2M is a
diffeomorphism. The even (resp. odd) functions on (M, M) are determined by the double
by the requirement that their reflection-invariant (resp. anti-invariant) extension to 2M is
smooth.

Denote by S': MT — @ the squaring map

S(p,s) = (0" 5).
Let (M, M) be a manifold with boundary and let {(Ua, ¢a)} . 1 define an even structure on

(M, M) subordinate to its smooth structure. We construct another manifold with boundary

(M.,0M.) as follows. Set M, = M as topological spaces. Define

wa:So(pr aEA

If ap, an € ./T, then

(Paz © Par)(p,s) = (palp,s),s'(p, s)),
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where a and the components of s’ are even. Now t),, 0 ;! =5 0 (@4, 0 ) 0 S71. Hence

(Yar © 93, )(r,8) =(S 0 (¢as © @0, ) (V7 8)
(VR alvF ), 8 (V. 5)
:(ra(\/F, s)?, 8 (\/r, s))

Since a and the components of s are even, it follows that 1),, o @D;ll is smooth. Hence the
charts {(Ua, ¥a)},c 1 define a manifold with boundary structure on the topological space M,
which we denote (M,,dM,). As topological spaces we have M = M,. On the interior, the
identity Z : M — M, is a diffeomorphism. Since 1, o ¢ ' = S is smooth, it follows that
Z: M — M, is smooth. But Z=' : M, — M is not smooth since in the charts 1., Doy
its first component is the function /7 on @ The process of passing from (M, M) with
its subordinate even structure to (M., dM,) could be called “introducing r = p? as a new
defining function”.

Next consider the inverse process of “introducing p = /7 as a new defining function”.
Let (N,0N) be any manifold with boundary. We construct another manifold with boundary
(M,9M) with subordinate even structure, such that (N, dN) equals (M., 9M,) as manifolds
with boundary. To do so, let {(Uys,%a)}aca be an atlas for (N,0N). Take M = N as

topological spaces. Use as charts on M the maps ¢, = S™' 0 . Now

<¢a2 o %ﬁ)(ﬂ S) - (Tb(T‘, 5)7 S,(T‘, S))

where b and s" are smooth. Calculating the compositions as above gives

(Pas 0 0a)(p:) = (VB2 5). /(0 5))

Since b(0, s) # 0, this is an even diffeomorphism. The atlas {(U,, ¢u)}aca thus defines the
desired manifold with boundary (M,dM) with subordinate even structure. In this case the
subatlas A equals A.

Suppose now that ¢ is an AH metric on the interior M of a compact manifold with

boundary (M,0M) with a subordinate even structure. In the context of this discussion it is
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natural to define g to be even relative to the chosen even structure if in coordinates (p, s) in

the even structure it has the form
9= 0" (Goodp” + 200, dpds™ + Gozds*ds”) (1.1.3)

with Gog, Jop even and gy, odd. The choice of a representative i for the conformal infinity
induces a diffeomorphism between [0, €) x M and a collar neighborhood of M with respect
to which g has the form (0.0.2)) with Ay = h. By analyzing the construction of the normal
form in [GLI1], it is not hard to see that this diffeomorphism putting ¢ into normal form
is even relative to the coordinates (p, s) and the even structure determined by the product
[0,2) x OM (see the proof of [Gui05, Lemma 2.1] for the special case when is already
in normal form relative to another representative). It follows that g is even as defined in the
introduction and that g uniquely determines the even structure with respect to which it is
even. In the other direction, an even AH metric in the sense of the introduction is clearly
even with respect to the even structure determined by any of its normal forms. Thus an
AH metric g is even in the sense of the introduction if and only if it is even relative to some
even structure subordinate to the smooth structure on (M,9M), and this even structure is
uniquely determined by g.

If g is an even AH metric, we can consider the smooth manifold with boundary (M., dM.)
obtained from the even structure determined by ¢ upon introducing r = p? as a new boundary
defining function. Since Z7' : M, — M is a diffeomorphism, ¢g := (Z~!)*g is a metric on M,.
We claim that ©g is projectively compact relative to the smooth structure on (M,,dM,). In

fact, if g has the form (0.0.2) on [0,€) x OM with h, even in p, then

dr?  k,
= 4—72+?, (1.1.4)

e

9

where k. = h s is a one-parameter family of metrics on OM , which is smooth in 7. Thus °g
is projectively compact. Conversely, a projectively compact metric relative to (M., OM.) is
an even AH metric when viewed relative to (M,9M).

In summary, the class of even asymptotically hyperbolic metrics on the interior of a

manifold with boundary (M, M) with subordinate even structure is the same as the class
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of projectively compact metrics in the interior of (M., 9M.). The distinction is just a matter
of which smooth structure one chooses to use at infinity. The smooth structures are related

by introducing r = p? as a new boundary defining function.

1.2 Local Injectivity for Even Metrics

Let (M,0M) be a manifold with boundary and g an even AH metric on M. As described
in Section , the associated metric ¢g obtained by introducing r = p? as a new boundary
defining function is projectively compact. In particular, for any defining function r for M,
the connection V defined by is smooth up to OM,. We will reduce analysis of the
local X-ray transform of g to that for v.

Lemma 1.2.1. 9M, is strictly convex with respect to v.

Proof. Recall that this means that if r is a defining function for dM, with r > 0 in M,
and if 7 is a nonconstant geodesic of V such that r(7(0)) = 0 and dr(3’(0)) = 0, then
O2(r 0%)|;=0 < 0. Write g in normal form ([0.0.2)) relative to a conformal representative h on
OM, so that ¢g has the form on M,. Letting ffj (resp. "Tfj) denote the Christoffel
symbols of v (resp. the Christoffel symbols of the Levi-Civita connection ¢V of ¢g) an easy
calculation (see below) shows that “T0 5 = 2kag = 2hes on dM.. Since D)y = 0, we

have at 7 = 0:
R(roA) = —T)7"F" = -TOAY A" = =TUAYF" = —2haA™A” < 0.
O

It will be convenient to embed M, in a smooth compact manifold without boundary M
and to extend V to a smooth connection on M , also denoted V. If 7 is a geodesic of V with
7(0) € M,, set 7+(7) := £sup{T > 0:75(t) € M, for 0 < +t < 7}. If U C M, (usually a

small neighborhood of p € OM or its closure), we define the set SA)U of U-local geodesics of
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A~

V by

Q= {7 : [ (A)] < 00, o@D+ @) >0, A(t) €U for t € [r-(3), 7(A)]}.

Here the requirement |7, (3)| + |7_ ()| > 0 excludes geodesics tangent to M.
If f € C(U), set

. T+(®) N
e = [ O (12,1

The U-local X-ray transform of f is the collection of all  f (7),7 € Q.

Recall that the parametrization of a geodesic of any connection on 7'M, is determined up
to an affine change 7 — a7 +b, a # 0. Such a reparametrization changes 1 f(®) by multiplica-
tion by a~!. In particular, whether or not 7 f(®7) = 0 is independent of the parametrization.
It suffices to restrict attention to geodesics whose parametrization satisfies a normalization
condition. For instance, in the next section we fix a background metric ¢° and require that
7' (0)]go = 1.

Next we relate I and 7. This involves relating objects on M with objects on M,. Since
Z: M — M, is the identity map, this amounts to viewing the same object in a different
smooth structure, i.e. in different coordinates near the boundary. We suppress writing
explicitly the compositions with the charts ¥, ¢,. So the expression of the identity in these
coordinates is Z(p,s) = (p?, s). Likewise, g and ©g are related in coordinates by setting
r = p?, as in . If f is a function defined on M, we can regard f as a function f, on
M., related in coordinates by f(p,s) = fe(p? s). If U C M, set U, = Z(U).

If v(t) is a U-local geodesic for g, it is also a geodesic for ¢g. Since ¢V is projectively
equivalent to V, and imply that 5(7) := ~(¢(7)) is a geodesic for V, where
dt/dr = C(T(’}/(t(T)))_l. Different choices of ¢ determine different parametrizations; imposi-
tion of a normalization condition on the parametrization as mentioned above provides one
way to specify ¢ for each geodesic. The relation between I and T follows easily:

+()

If(v) = /OO f(y(8)) dt = C/ (r= f)(y(t(7)) dr = eI (r™ £) ) (1.2.2)

-®)
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Section 3.4 of |[UV16| shows that if U, is a sufficiently small open neighborhood of
p € OM., then the U.-local X-ray transform for a smooth metric extends to a bounded op-
erator on L?(U,) with target space L? of a parametrization of the space of U,-local geodesics
with respect to a suitable measure. The same argument holds in our setting for a smooth
connection such as V. We will not make explicit the target L? space since we are only
concerned here with injectivity.

Equation shows that it is important to understand when r='f, € L?(U,). Making

the change of variable r = p? in the integral gives

/(Tlfe)zdrds = 2/(p2f)2pdpds = 2/(p3/2f)2dpd5-

Thus r—'f, € L?>(U.,drds) if and only if f € p*2L?(U,dpds). In particular, If(y) =
cI(r~£.)(7) provides a definition of If for f € p*2L3(U,dvs) consistent with its usual
definition.

The main result of [UV16] is local injectivity of the geodesic X-ray transform for a smooth
metric on a manifold with strictly convex boundary of dimension at least 3. However, the
proof applies just as well for the X-ray transform for a smooth connection such as V. In
particular, the construction in the main text of the cutoff function y for which the boundary
principal symbol is elliptic is also valid for a connection since the right-hand side of the

fj'yi’ 77" is a quadratic polynomial in 7. We do not need the

geodesic equation v*” = —T
extension of Zhou discussed in the appendix of [UV16], although that more general result

applies as well. The main result of [UV16] transferred to our setting is as follows.

Theorem 1.2.2. [UV16] Suppose that M, has dimension at least 3 and let p € OM,. Every
neighborhood of p in M, contains a neighborhood U, of p so that the U,-local X-ray transform
of V is injective on L2(U,).

Proof of Theorem[d] for g even. The relation (1.2.2) shows that f € p*/2L2(U, dvg) is in the
kernel of the U-local transform for g if and only if r=' f, € L?(U,) is in the kernel of the U.-
local transform for V. Thus for g even, Theorem [1] follows immediately from Theorem m

O
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1.3 Connections Associated to AH Metrics Even mod O(p")

If the AH metric g in is not even, then the even structure on (M,9M) determined
by a normal form for g depends on the choice of normal form. We fix one such normal form
and thus the even structure which it determines. We then construct (M., dM,) as above by
introducing r = p? as a new boundary defining function. The metric ¢g would be projectively
compact except that the corresponding one-parameter family k. = h 5 in is no longer
smooth: it has an expansion in powers of 1/r. The connection V defined by involves
first derivatives of k,. As already discussed in the Introduction, assuming that g is even mod
O(p°) suffices to guarantee that Vv is Lipschitz continuous, and, in fact, that it extends to
be C' up to M., though not necessarily C?. However, near M., V can be viewed as a
perturbation of a smooth connection V, which we proceed to describe.

Straightforward calculation from ((1.1.4]) shows that the Christoffel symbols of the con-
nection V defined by ([1.1.2)) are given by:

~ 0 0

K 0 2(]6&5 — T@Tkag)
(1.3.1)
0 2K, ks

=

ij

where I'] 5 denotes the Christoffel symbols of &, with r fixed. If g is even mod O(r") with
N odd, then k = kM + V22 with kM, k@ smooth. It follows that all f;f; have the form

Pk _ Tk N/2-1 pk
Ly, =T, +r"*7' B}

with ffj, ij smooth up to dM,.. Denote by V the smooth connection with Christoffel
symbols FZ Recall that we have chosen a closed manifold M containing M.. Choose some

smooth extension of V to a neighborhood of M., also denoted V. Then extend r by
Tk _ Tk N/2—-1 k
I =Ty, +r"*'H(r)Bf; (1.3.2)

where H(r) is the Heaviside function. The extended connection V is then CV=3)/2
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It is an important fact for our analysis that the special structure of the connection v
has as a consequence that its exponential map is more regular than one would expect. We
consider the exponential map in the form exp : TM — M x M, defined by exp(z,v) =
(z,2(1, z,v)), where t — @(t, z,v) is the geodesic with $(0,z,v) = z, $’(0,z,v) = v. Since
V is CV=3/2 and N > 5, usual ODE theory implies that exp is a C¥=3/2 diffeomorphism
from a neighborhood of the zero section onto its image. In fact, it has one more degree of
differentiability. We formulate the result in terms of the inverse exponential map since that

is how we will use it.

Lemma 1.3.1. Let V be the CN=3/2 connection defined by (11.3.2)), where N > 5 is an odd
integer. Thenexp + is CN=D/2 in g neighborhood in M x M of the diagonal in OM . x OM.,.

Proof. 1t suffices to show that TM 3 (z,v) — @(1,2z,v) € M is C¥~D/2 pear (z,0) for
z € OM,. Work in coordinates (r, s) for z with respect to which €g is in normal form (T.1.4).
Set z = (29, 2%) = (7, s%). For v use induced coordinates v = (v°,v*) with v = v°0, + v*0sa =
v'0,: and set w = (z,v). Write the flow as §(t, w) = (Z(t,w),v(t,w)). The geodesic equations
are:

Gty =k @hy = -TLEv . (1.3.3)
Observe from - that all F are CN=1/2 except for fw = fzyo. So the right-hand sides
of all equations in are CV=1/2 except for the equation for (77)". By - -,

this equation has the form

(@7) = AL (Z)5 07 — 27N H(7) By, ()0 0 7 (1.3.4)
with A}, of regularity CWN=1/2 and B, smooth. Using 7' = 70, write
—2iNE T H (F) B,y (2)0°0 7 = — N(?N/QH “))/Bgﬁ(a ol
- (PO e )
P RH) (B ()7 + B )
=~ L (PPEO B ) + TP HECET,
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where for the last equality we have used (1.3.3) for (77), so that
CHEWT! = By k(3) 007 — Bl (T (250,
Note that 7V/2H (7)C}.(Z)v 07 is CWV-1/2,
Therefore (1.3.4)) can be rewritten in the form
4 5\ 4 _ e
(7 + FRHE B(2) ) = (452 + SR ()55, (1.3.5)
Now the linear transformation o — b = L(2)7, where b7 = 07 + %~N/2H(T")Bgﬂ(2) 07, is of

class CN=1/2 in (Z,7) and is invertible for 7 small. Replacing (1.3.4) by (1.3.5) in (1.3.3)
and setting v = L‘l(ag throughout, we obtain a system of ODE of the form

(5,60,25)' = r(27°0).

where F' is CNV=U/2_ Tt follows that the map (¢,z,v) — @(t, z,v) is of class CV="Y/2 upon
setting b7 = L}(2)07. O

Lemma m (the strict convexity of M.) holds for both ¥V and V if ¢ is even mod
O(p") with N > 5 odd, with the same proof as before. We define the sets fAZU, Qu of U-
local geodesics for V and V the same way as before. It will be useful to have a common
parametrization for the sets of geodesics of V and V. For this purpose, fix a background
metric ¢° on M. Let S°M denote the unit sphere bundle of ¢°. For v € S°M, denote by J,,
(resp. 7,) the geodesic for V (resp. V) with initial vector v. We define the U-local X-ray
transforms for V and V just as in , except now we view them as functions on the

subsets of S°M corresponding to Qp, Qy:
7+ (Fv)

)= [ G

- ()

and similarly for If(v). Sometimes we will use the notation If(v) generically for If (v)
or If(v), or, for that matter, for the U-local X-ray transform for any C* connection on a
manifold with strictly convex boundary. No confusion will arise with the notation If(7)
from Section for the X-ray transform for the AH metric g, since we will not be dealing

with g again except implicitly in the isolated instance where we deduce Theorem [I]
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1.4 Stability and Perturbation Estimates

We continue to work with the connections V and V obtained from an AH metric even mod
O(p"™) with N > 5. From now on it will always be assumed that the dimension of the
manifold M is at least 3. Since V is smooth and OM, is strictly convex with respect to
it, Theorem m (local injectivity) holds also for V. As mentioned in the Introduction,
in order to deduce local injectivity for V, the stability estimate derived in [UV16] for the
microlocalized normal operator ZXW,U will be needed. This estimate is formulated in terms
of scattering Sobolev spaces. In this section we review those spaces, the construction of
the microlocalized normal operator, and the stability estimate proved in [UV16]. Then we
formulate our main perturbation estimate (Proposition and show how Theorem
follows from it. Proposition [I.4.6] will be proved in Section [I.5 In this section we work
almost entirely on M, and its extension M (with the exception of the very last proof), so
we will not be using the subscript e for its various subsets to avoid cluttering the notation.

We define polynomially weighted scattering Sobolev spaces on a compact manifold with
boundary (X,0X) with dim X = n + 1. Let = be a boundary defining function for X. The
space of scattering vector fields, denoted by Vs.(X), consists of the smooth vector fields on
X that are a product of  and a smooth vector field tangent to 9X. This means that if (z, )
are coordinates near p € 0X, any element of V,.(X) can be written as a linear combination

over C*(X) of the vector fields 220,, 0ya, a« = 1,...,n. If k € Ny and 8 € R define

HY(X) ={u € s’ L*(X): 27°Vi... Voyou € L*(X) for V; € V,. and 0 < m < k};

here L? is defined using a smooth measure on X || Note that H%(X) = 2°L?(X). For
s >0, H%?(X) can be defined by interpolation and for s < 0 by duality, though we will not
need this. Upon fixing Ny smooth vector fields Vi, ..., Vi, such that any element of V,.(X)

can be written locally as a linear combination over C*°(X) of a subset of them, one may

LOur notation slightly differs from that of [UV16] in that we use a smooth measure rather the scattering

measure x_(dim?*‘l)dxdy to define our base L? space. The spaces here and in [UV16] are the same up to
shifting the weight by (dim X + 1)/2.
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define a norm on H%?(X) by letting

el Z S et Vil ) (1.4.1)

m= O’LJE{]., 7]VQ}
If U C X is open then HEA(U) will consist of distributions of the form u{ e Where u €
H%P (X); the corresponding norm will be the same as (1.4.1)) with the exception of replacing

I W g2z by - M2y
We next review the arguments and results from [UV16] that we will need, starting with

the construction of the artificial boundary mentioned in the Introduction.

Lemma 1.4.1 ([UV16], Section 3.1). Let p € OM, and V be a C* connection with respect
to which OM . is strictly convex. There exists a smooth function % in a neighborhood U of p

in M with the properties:
1. z(p) =0
2. dz(p) = —dr(p)

3. Setting x,, := T +n, for any neighborhood 9) of p in M there exists an no such that
U, :={r>0}n{z, >0} cO forn<n

4. For n near 0 (positive or negative) the set X, = {& > —n} = {x, > 0} C M has

strictly concave boundary with respect to V locally near p. H

Now let ¢° be the Riemannian metric on M chosen at the end of Section . By Property
in Lemma [1.4.1] we can assume that in &/ we have dz # 0. Hence for each sufficiently small

n (upon appropriately shrinking U if necessary) we can use the flow ¢ : R x U — M of

|g§;?idi%0 — |g%$1qu:77|7§o flowing from 90X, to identify a collar neighborhood of 4.X,, in X, with

[0,60)e, x 0X, for a small fixed . By taking 0 < 1 < Jp we can always arrange that

2Recall that this means that for any V-geodesic v(¢) with x,(v(0)) = 0 and dz,(7/(0)) = 0 one has
2
;?|t:0x77 o~(t) > 0.
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p € [0,90)z, X 0X,. Upon shrinking 0.X,, if necessary we can assume that ¢ (n,-) : 0X, —
0Xy =: Y, is a diffeomorphism for all sufficiently small . We use this diffeomorphism to
finally identify a collar neighborhood of X, in X, with [0,8),, x Y,. In terms of this
identification, for fixed n the metric ¢° takes the form F da:% + Gz, ON 77, locally near the
boundary, where F' = |0l9377|g_02 is smooth and non-vanishing and for a fixed 7, g,, is a 1-
parameter family of metrics on Y}, (thus if one lets ) vary then g,, depends on two parameters:
n fixes the manifold with boundary (X, 9X,) by determining the boundary defining function
x,, and then the value of z, at a given point determines the metric). Moreover, vectors in
SSM , 2 € 777, can be written in terms of the identification above as v = A\J,, + w, where
w € TY, (of course not necessarily of unit length, so our setup slightly differs from the one
in [UV16], see Remark below).

In order to show local injectivity of the X-ray transform, one needs a description of

geodesics that stay within a given neighborhood:

Lemma 1.4.2 ([UV16], Section 3.2). Let V be a C' connection with respect to which M,
has strictly convex boundary. There exist constants C > 0,0<d; <o, cg >0 andny >0,
and neighborhood Z, of p in Y,, such that if 0 < n < ny and if y(t) is a V-geodesic with
initial position z = (x,y) € [0, cols, X Z, C X, and velocity v = (\,w) € SOM satisfying

A

‘w‘go

<Cvr (1.4.2)

then one has x, o y(t) > 0 for |t| < 0y and x, o y(t) > co for [t| > ;.

By taking 19 << ¢y in Lemma and by Lemma [1.4.1| one can always assume that a
neighborhood of U, in X, is contained in [0, ¢y, X Z,, and we will henceforth assume that
this is the case. Now let §; and V be as in Lemma and let exp : TM —s M be the
exponential map of V. If v € SS]\A/[/ satisfies the assumptions of the lemma and f is continuous
and supported in [0, ¢p),, X Z,, we have I f(v) = fjﬁ f(exp(tv))dt, so for all such v and f one
can define the X-ray transform by integrating only over a fixed finite interval. The authors of

[UV16] consider I f only on vectors v = (A, w) € SSM satisfying a stronger condition, namely
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that for some positive constant Cy one has % < Chx with z = (z,y) € [0, cols, X Z, for n

sufficiently small, and construct a microlocalized normal operator for I. Specifically, with f

as before and x € C2°(R) with x > 0 and x(0) = 1, let

Ax,nf(z) = /SOMX <|w|)\0x) If(v)dﬁbgo, z = (x,y) S [O,Cg]xn X 7p, (1.4.3)

where dpgo is the measure induced on SOM by 9°l. 77~ Note that for any Cy, ¢y can be chosen
sufficiently small that is automatically satisfied in [0, co]s, X Z,. The constant Cy is
fixed when xy € C°(R) is chosen (see Proposition [1.4.3|below), and then ¢y, 1y can be chosen
so that the integrand in ([1.4.3]) is only supported on vectors corresponding to geodesics in
Qy,. We also mention that for such choices of constants it follows from the proof of Lemma
that if v is a geodesic with initial position z = (z,y) € [0, ¢ols, X Z,, and initial velocity
v = (A, w) such that X(W) # 0, then there exists C' > 0 such that for any [¢| < J5 and
0<n<mn

z,0(t) > 1 — C%2%. (1.4.4)

Finally for ¢ > 0 define the conjugated microlocalized normal operator:

e 2 —0/zy o/xy
Ay no = T, e Ay e )

We denote this operator in case V = V (resp. V) by Ao (Tesp. gx,n,a)- In the case of
the smooth connection V on M., for which M, is strictly convex, and in dimension > 3, it
was proved in [UV16, Proposition 3.3] that ZXW, are scattering pseudodifferential operators
(in the notation there, A, ,, € ¥ 1°(X,)). This implies that they also act on scattering
Sobolev spaces. The following Proposition contains the stability estimate we will need in

terms of such spaces. We set ¢;(-) = ¢(t,-) : U — M.

Proposition 1.4.3 ([UV16], Section 3.7). Suppose as before that n +1 > 3 and let o > 0.
There ezist xo € C(R), xo > 0, x0(0) = 1, such that for any sufficiently small neighborhood
O of p € OM, in X there exist ng > 0 and Cy > 0 with the property that for 0 < n < ny one
has U, C O, :=_,(0) C X,, and the estimate

||u||ac5L2(Un) < CO||XXO,"77UU||H31&6(O”)7 BER, (1-4-5)
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Figure 1.1: The level sets of z.

where u € 2P L*(U,) is extended by 0 outside U,. Here the Sobolev spaces on subsets of X,

are defined by pulling back by 1, the corresponding spaces on subsets of Xo.
Remark 1.4.4. The estimate stated in [UV16, Section 3.7] is of the form
“u”H:f(Yn) < C’oHzXM,UuHH::ﬂ,ﬂ(yn), s >0, suppu C U, (1.4.6)

For s = 0 the space on the left is exactly xﬂLQ(Un). On the other hand, the upper bound in
(1.4.6) can be replaced by the one in provided suppu C U, since the Schwartz kernel
of the operators ZXOJLU has been localized in both factors near U,, see for instance [(UV10,
Remark 3.2].

We also remark that the way we construct the operators A, ,, differs slightly from the setup
of [UV106], since we parametrize geodesics by their initial velocities normalized so that they
have unit length with respect to the metric ¢°, and average the transform over them using
the measure induced by g° on the fibers of SOM. In JUV16] the geodesics are parametrized
by writing their initial velocities as (\,w) € R x S"~! using coordinates, and the measure
used is d\dw, where dw is the standard measure on the unit sphere S"~'. However this
difference doesn’t affect the analysis, as already remarked there (see Remark 3.1 and the

proof of Proposition 3.3).
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Remark 1.4.5. As remarked in [UV16, Lemma 3.6/, Proposition holds for any xo
sufficiently close to a specific Gaussian in the topology of Schwartz space. In particular, xo
can be taken to be even, and from now on we assume that this is the case, since this simplifies

the notation.

Let xo be as in Proposition [1.4.3| chosen to be even. Let o > 0 be fixed. Define

~

E777J = X0,1,0 AX077770
In Section we will prove the following key proposition:

Proposition 1.4.6. Let 0 > 0. Provided O is a sufficiently small neighborhood of p € OM,
in Xo, for each & > 0 there exits ny > 0 with the property that if 0 < 1 < 1y one has
U, CC O, :=v9_,(0) and

[ Enotll 100,y < 0llullzw,)

for all w € L*(U,) extended by 0 outside U,,.

Remark 1.4.7. In Proposition one does not need to assume that n+1 > 3, however
unless this is the case Proposition does not hold and the proof of Corollary[1.4.8 below

breaks.

An immediate consequence of Proposition |1.4.6|is the following:

Corollary 1.4.8. With notations as before and assuming that dim(M,.) > 3, there exists
no > 0 such that for 0 < n < ny the transform f — ff‘ﬁu is injective on L*(U,).
n

Proof. Fix ¢ > 0 and let yo be as in Proposition [1.4.3] even. Then take O sufficiently

small, as in Propositions [1.4.3] and [1.4.6] and let Cy and 7y be according to the former,

corresponding to O. By Proposition [1.4.6] upon shrinking 7 if necessary, for 0 < n < ny we

have

1Enotll g0, < 1/(2C0)||ull 2wy
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~

for u € L*(U,) extended by 0 elsewhere. Since Zxo,mo* = Ao + Eng, if u € L*(U,) one

has, for 0 < n < ng

[ullz2@,) < OO||ZXOJLUU| L0, = Col| Axon,ot] a0, T Coll Ep,oul HLL(0y)

SCOHAXOJLUUHHSI,’;O(O,]) +1/2||lull 2w,y = lullz2@,) < QCOHAXOJ?:UUHH;;:O(OW)'

This implies injectivity of EXO,W, on L*(U,). Using the definition of EXO’W,, the local X-ray

transform f ff|§U is injective on e?/* L2(U,) D L*(Up,). O
n

Proof of Theorem[1l The proof presented in Section for the even case applies here verba-
tim, with the only difference that injectivity of the U,.-local transform for V on L?*(U,) now
follows from Corollary [I.4.8 O

1.5 Analysis of Kernels

The goal of this section is to prove Proposition [I.4.6, As mentioned in the Introduction, the
proof resembles the one for the Schur criterion stating that an operator is bounded on L2
if its Schwartz kernel is uniformly L' in each variable separately (see e.g. [Sai91, Lemma
3.7]). Hence it is necessary to understand well the properties of the kernels of ZWW and
A

vomo- The fine behavior of these kernels is perhaps best described in terms of the scattering

blow-up of the product X We begin by describing blow-ups in general and subsequently
the scattering blow-up, in Section We then analyze the kernels on it in Section [1.5.2]

1.5.1 Blown-Up Spaces

In this section we describe the scattering blow-up of the product 72, where X is a compact
manifold with boundary. A reference for blow-ups in general is [Mel]; specifically for the
scattering blow-up see [Mel94]. Let X be an n-dimensional compact manifold with corners
and Z a p-submanifold of codimension at least 2 (see [Mel, Definition 1.7.4]); this means

that Z is a submanifold of X with the property that for each p € Z there exists a coordinate
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chart (U, ) for X centered at p and integers 0 < k <n, 0 <r <k 0<s<n—k with

r 4+ s > 2 such that
_k- _
p(ZNU)={(z,y) eER. xR" "1z = =a, =y, = =y, =0}, (1.5.1)

where if 1 = 0 or s = 0 we mean that none of the x; or y; respectively vanish identically
on ¢(ZNU). In the case when r = 0 in (1.5.1) (in which case Z is called an interior p-
submanifold), blowing up Z essentially amounts to introducing polar coordinates in terms of
(y1,...,ys). Formally, one defines the spherical normal bundle of Z, SN(Z) = Z, with fiber
at p € Z given by SN,(Z) := ((T,X /T,Z)\{0}) /R*. Then, it can be shown ([Mel], Sections
5.1-5.3) that the blown up space [X;Z] := SN(Z) 1 (X\Z) admits a smooth structure as a
manifold with corners such the blow down map [ : W; Z] — X, given by ﬁ|y\ , = ldx\
and B}SN(Z) = 7, becomes smooth with rank dim(Z) + 1 on SN(Z). In the case when Z
is a boundary p-submanifold, meaning that » > 0 in , the spherical normal bundle
is replaced by its inward pointing part, with fiber STN,(Z) = (I, X /T,Z)\{0}) /RT and
the rest of the discussion follows in the same way as for interior p-submanifolds. If P is a
p-submanifold of X that intersects Z, with the property that m = P, and [ is a blow
down map, then the lift of P is defined as 5*(P) = m

Now let X be a smooth compact manifold with boundary; this implies that X is a
smooth manifold with corners. We will define a number of spaces originating from X
after blowing up successively certain p-submanifolds. Following |[Mel94], define the b-space
Yi = [72; (87)2} with blow down map S;. We denote by ff; the front face of this blow up.
If Ay = B, (A°) (where A C X7 is the diagonal, which is not a p-submanifold), we let the
scattering product be X2, := [7§, 8(Ab)} and the blow down map be 3, : Yic — 75. Set
Bse = P10 and let ff,. C Yic be the front face associated to 5,. We finally introduce a third
blown up space obtained from yzc by blowing up the scattering diagonal A := £5(A;). We
denote the new space by YQAS and the corresponding blow down map by (3; let Ba, := Bs.0/03.
This space is pictured in Figure . By a result on commutativity of blow-ups (see [Mel,
Section 5.8]), 725 is diffeomorphic to [[7:; Ap], g;(@Ab)}, where 5 : [75; Ap] — 75 is the
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blow down map. We name the various faces of X3 as follows:

Guo == B; (85 (81 (9X x X)) Gor := B (85 (B; (X x 9X)))
G == B (B3 (ffs)) Go := F5(ffsc);
finally let G3 be the front face associated with (3. Introducing some more notation, let

p € 0X and U be a neighborhood of p in X or the closure of one. Then we let by definition
0%, 02, and O4_ mean ;' (0?), B;;(0?) and ;' (O?) respectively.

Figure 1.2: The scattering product space 725.

The blown up spaces mentioned above are conveniently studied using projective coordi-
nates. Let (z,y) and (Z,%) be two copies of the same coordinate system in a neighborhood
O of a point p € X, so that (x,y,Z,7) is a coordinate system for O? C 72, and change
the dimension convention to dim (7) = n + 1. Here and for the rest of this section x (and
thus also 7) is a boundary defining function for 9X. Then the projective coordinate systems
(s1 =%/x,x,y,y) and (sy = x/Z,T,y,y) are valid in a neighborhood of Gy; and G respec-

tively and the coordinate functions are smooth away from Gy and Gy, respectively (though
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they do not form coordinate systems near G, and Gs in 725). In terms of the former coor-
dinate system, s; is a defining function for Gy; and x a defining function for G;;, whereas in
terms of the latter s, is a defining function for G;y and z is one for G;. On the other hand,
either by checking directly or by using the commutativity of the blow-up mentioned before,
one sees that a valid coordinate system in a neighborhood of any point near G;; NG, can be
obtained by appropriately choosing n of the 7 below:

(= Vo= D L), (15

T

In | - | denotes the Euclidean norm. For instance, letting ¢ > 0 be small and Us =
{(X,Y) = (6°...,0") € S" : 407 > ¢}, J = 0,...,n we can cover S” by the UF and
use 67, j # J as smooth coordinates on U{ for each choice of +. Now note that (X =
(s1 —1)/z,Y = (y — y)/x,x,y) are valid coordinates on (O3 )°, and smooth up to G; and
Gs. Thus one obtains a diffeomorphism 7 from the interior of OQAS onto an open subset of

R x [0,00) x S™ that extends smoothly up to Gs and G5 by setting

N XY —
(:U,y,R =vVX2+|Y]20=(X,Y)= %) € R x [0,00) x S™. (1.5.3)

Again we can choose coordinates on S” to obtain coordinate systems on (O3 _)°, smooth up
to G and G3. Note that 0 = (6y,...,0,) stands for the same functions in both (1.5.2)) and
(1.5.3) and that R is a defining function for G3. Moreover, we note here that that

1+ 2RX $1 N S
To1 = — = , r10=24+2xRX) " =
o 24+ csRX 1+s 0= ) I+ s9
(24 zRX)? o 02
= = 2 0
T11 1—|—R 1+0_( +T ) )
x(l + 81)2 B 5(82 + 1)2

(1.5.4)

Tot Pl yP 7+ s+ sl ol
are smooth defining functions for Gy, Gip and Gy; respectively, each non-vanishing and
smooth up to all other faces.

Via the diffeomorphism 7 the expression |dx dy dR dw| (where dw is the volume form on

S™ induced by the round metric) pulls back to a smooth global section of the density bundle
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on (O%,)°, which is smooth and non-vanishing up to Gz and G5, but not up to the other

boundary faces. We have the following:

Lemma 1.5.1. Via the diffeomorphism T defined by (1.5.3)), the expression
(R+1)"Y(2+ 2RX)"|dx dy dR dw| (1.5.5)

pulls back to a smooth non-vanishing section of the smooth density bundle on OZAS, up to all

boundary faces.

Proof. The claim can be checked via a straightforward computation in local coordinates
smooth up to the various boundary faces in different parts of OQAS. Near G5 and G5 (R +
=2+ tRX )™ is smooth and non-vanishing, so there is nothing to show there (note that
2+2RX = s+ 1and s; >0 in (0% )°). Then we compute

(24 zRX)"
1+ R

(2 + 76%)"
1+o0o
+1)"((s1 — 1) + |y — y|? _

:<81 ) ((Sl ) \yN y\) |dx dy ds; dy|  (1.5.7)

4+ /(51 =12+ [y —y[?
1 n((] — g,)2 2~ 12

_Ot s (sl ST yP) g, (158)

2 2 2 2
3T + /(1 — 52)2 + s3]y — ]

|dx dy dR dw| = |dT dy do dw| (1.5.6)

_n
2

_n
2

Then (1.5.6)) shows the claim near Gi; NGy and away from the other intersections of boundary

faces, ((1.5.7)) near Go; and ([1.5.8]) near Gy. O

We now record the form that 5ZSW, the lift of W, takes in terms of whenever
W e V,e(X) is identified with a vector field on X’ acting on the left factor. Here the lift is well
defined since f3a, : (YZS)O — X2\ A is a diffeomorphism. We work in a neighborhood O? of
a point (p,p) € 0A where we have coordinates (x,y, T, y), as before. Then Wis spanned over
C*> by 220,, x0y«. Those lift via 8; to the vector fields —xs,0s, + 220, 19, respectively,
in coordinates (z,s; = z/z,y,y). Now we lift those using Sy and find that in terms of
coordinates (z,y, X,Y) they are given respectively by (=1 — 22 X)0x — zY - dy + 2?0, and
—0y + x0ye. Now blowing up Ay corresponds to using polar coordinates about (X,Y’) = 0.
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Again consider the sets ch, J = 0,...,n, defined before, for some fixed small £: on U}—L
the functions 67, j # J, form a smooth coordinate system. Then check that for each J and
choice of + there exist smooth functions af}’ 4 and bf'L L on Ujf , such that the vector fields
X0+ R > ity a?}’i(é’)agj and Y0z + R™! D itd b‘(’}’i(H)(()gj are fs-related to dx and Oya
respectively. Thus if We {220,,20,} then in the set {(x,y, R,0) € Ox[0,00) x UF } we have
BZSW = Zj cf',’i(q:, y, R,0) W;, where W; belong to either of the two sets {2?0,, xd,,dr} or
{R0y;,j # J} and c?, . are smooth and grow at most polynomially fast as R — oo (though
note that BZSW is smooth on Yis \ G3).

1.5.2  Analysis on blow-ups

In this section we identify the form of the Schwartz kernels of the operators A, , , defined
in Section (Lemma [1.5.2) and prove two technical lemmas regarding their regularity

and dependence on the parameter 1 when lifted to the scattering stretched product space

(Lemmas |1.5.3| and [1.5.4). We then use those to analyze the kernel of the difference £, , in

Lemma [1.5.6] and finally its properties to prove Proposition [1.4.6

Recall that the operators A, ,, act on functions supported in sets varying with the
parameter 1. As in [UV16], it will be convenient to create an auxiliary 1-parameter family
of operators which all act on functions defined on the same space. We use the smooth 1-
parameter family of maps 9, (-), defined in Section , namely the flow of grad /| grad :%|30,
to map diffeomorphically 7,7 onto X (locally in U). For ¢ > 0, 7 > 0 and x as in Section
define a 1-parameter family of operators by

fz[x,n,cr = (Yy)" 0 Ay o o (V)" (1.5.9)

all acting on functions supported in X, near p. We use the notation 4, ,, and A\x,n,o for

the operators corresponding to V = V and v. Similarly, for xo determined by Proposition
[L.4.3]let

~ -~

Eyo = Ao — Ao (1.5.10)

Proposition immediately reduces to showing the following:
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Let 0 > 0. Provided O is a sufficiently small neighborhood p in Xg, for every § > 0 there
exits ng > 0 with the property that if 0 < n < ny one has [7,] = ,(U,) CC O and

HEWTU|

"L (0) < 5Hu||L2([7n)’ (1.5.11)
for allu € LQ((?”) extended by 0 outside ﬁn'

We will now use the product decomposition [0,dg)s, X Y, introduced in Section to
analyze the Schwartz kernels of and on 73. Henceforth we will write g for
the metric ¢° which was chosen in Section and was used to define A in , and SM
for its unit sphere bundle. No confusion will arise with the AH metric g, as it will not appear

again.

Lemma 1.5.2. Suppose V is a connection on TM whose exponential map exp : TM — M is
of class C* and for which OM, is strictly convex. Also let x € C=(R) be even with x(0) = 1,
X >0, and let 0 > 0. Let KA,y denote the Schwartz kernel of A, , -, viewed as a section of
the smooth density bundle on 73. Then

_ det(dzexpt)(Z —7
i = A e e e gy (P(s, 7, gy L P2 )
exp(Z )l

Ax o
dxg (expz__lﬁ(z — ﬁ))
x}dy (exp;lﬁ('zv — ﬁ)) ‘g

|dzd Z],

where P(z,z,n) = and 7 = (n,0), (1.5.12)

for (2,2) in a sufficiently small neighborhood of (p,p) written as z = (z,y), z = (Z,y) in
terms of the product decomposition [0, dg)., X Y, and with y, y identical copies of a coordinate

system on Y, centered at p. Here and in what follows \/g(z — 1) = \/det g(z — 7)) with the

determinant computed in terms of the coordinates (x,y).

Proof. First examine the kernel of A, ,, on 7,27, for fixed n > 0 small. Let f be smooth
and supported in a small neighborhood in X, of a point in U, C X,. We write 2’ = (2',y),
z' = (2',y) in terms of the product decomposition [0, dy),, x Y, on 7,27 with y, ¥ coordinates
on Y, and also v/ = N0, +w’ for vectors in T,/ X,,. Writing d), for the measure induced by

g on each fiber of T™ , compute

_ , A/ [e.e]
N ! 20/ o/x
Aynof(Z) =a'"e /SZ/Xn X <x’|uﬂ|g) /_ (e77%n f) Z’:expz/(tv')dt dpig

[e.9]
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dt dyg

:$/_2€U/x// ( — cr/mnf

S Xy |W g

:x/2e—a/x’/ ( , )
e ||

’Idy(expzl (2’)) P |e><pz/ (ZN)n

Z'=exp,/ (tv')

),

Z'=exp,/ (tv') |U/|n

Recall that by Lemma the two integrals with respect to ¢t above are in fact over finite
intervals (—dy,61) and [0,6;), respectively. Moreover, dA,(v') = +/g(z')|dv'| in terms of
induced fiber coordinates. Finally conjugation by 4, in 1' Corresponds to replacing

(2/,Z") by (2 =7,z —7) in the Schwartz kernel of A where z, Z are expressed in terms

X,1,0
of the product decomposition [0,8y)., X Y, on X,. Noting that dz, = dzy completes the

proof. O]

In the next two lemmas we use to analyze the Schwartz kernel of Zx,mo on (Xo) QAS
near ﬂ;i(p, p). Since the proof of Proposition has been reduced to showing ,
from now on the entire analysis will be on X,. We will thus drop the subscript and write
X to mean X,. We will use the product decomposition [0,00)z, X Y, near 0X introduced
in Section in each factor of X. Again we choose coordinates y* on Y, centered at p,
a=1,...,n, and write z = (2%, 2%) = (z,y%) and z = (2°,2%) = (Z,y") for points in the

left and right factor of X respectively. We will also be using the notations G, introduced

in Section |1.5.1| to describe the various boundary faces of YQAS. In what follows, whenever

we say that a function f vanishes to infinite order at a boundary face of a manifold with
corners, we will mean that if x is a defining function of this boundary face and Ny € N then
2N f € L (thus this is purely a statement regarding the growth of f without any mention

of the behavior of its derivatives near x = 0).

Lemma 1.5.3. Let the hypotheses of Lemma[1.5.9 hold and let v be a section of the smooth
density bundle on YZS. For a sufficiently small neighborhood O of p in X there exists g
depending on O, V and x such that for the Schwartz kernel KZos of AVX,W, computed in
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(1.5.12)) one has

5ZS(I{EX7,7,U) = KV(J?) v, KV<'7 ) S CO(OQAg X [07770))

Moreover, Ky € C*(((0%,)°UG3) x [0,1m0)), it vanishes to infinite order on faces Gio, Gi1

and Go1 and its restriction to Gs is independent of V.

Proof. We will lift to YZS and analyze its regularity. We always assume that we are
working in a small enough neighborhood O? and with small enough 7 that the coordinates
(x,y,2,y) are valid, expz__lﬁ('zv— 7) is a C? diffeomorphism onto its image for (z,2) € O? and
0 <1 < no, and the conclusion of Lemma holds.

Before we lift to the stretched product we analyze its various factors on X

Use Taylor’s Theorem for the function ¢ — exp_!;(z — 7+ #(Z — 2)) and write two different

expressions for expz__lﬁ(Z— 7) in terms of coordinates z = (z,y%) = (2%, 2%), a=1,...,n:
dz*(exp Ly (2 = 1)) =pj (2,2, 1)(Z = 2)’ (1.5.13)
=(Z— 2"+l Zn(E—2)'(F—2), where (1.5.14)

pf(z,z, n) = /01 05 (dzkexp;lﬁ) ’Z*ﬁ#»‘r(gfz)d’r € CH(0* x [0,m)),
pfj(z,z, n) = /01(1 — T)05i3i (dzkexpz__lﬁ) |z—ﬁ+7’(5—z)d7— e’ (02 X [O,no)),
with

pi(z,z,m) = 6% and pli(z,z,m) = 375 (z — 7).

Here T f’] denote the connection coefficients of V in coordinates (x,y). Now (1.5.13) and
(1.5.14)) can be used to show regularity of the factors of [1.5.12} We have

| det(dzexp, ;) (Z —=7)| € C'(O? x [0,m0)), |det(dzexp,’;)(z—7)] = 1. (1.5.15)
Using (1.5.13)) and the smoothness of the metric g,

|expz__15(5—ﬁ)|§ = Gy(2,%,1)(Z — 2)"(Z — 2)?, where G, € C* (02 X [0,770)),
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Gij(z,2,m) = gij(z — 1), Gy; positive definite in O* x [0, 7). (1.5.16)

To analyze P from ([1.5.12)) write, using (1.5.13)) and (|1.5.14)),

p?(z, 57 77)(5_ Z)j
w(%‘j(% z,n)(z—2)(z — Z>j)
Foa 4 (2 Zn)E —2) (E -2

P(Z7z’ 77) = 1/27

_x(@— Y2 + qie(2,2,0) (2 — 2)I(Z — 2)I(Z — 2)k)

/2’

where ¢;; = ga,epquf € CH(O? x [0,m)), giji € C°(O* x [0,mp)).

We now examine the lifts of the various factors of the kernel to O . As explained in
Section , near any point in (O%)°, 2n + 2 of the functions (a:, y, R = \/m, 0 =
(X,Y) = (X, Y)/R), where X = ( — z)/2% Y = (§ — y)/z, form a smooth coordinate
system; moreover, the functions (z,y, R, ) are smooth up to G5 and G, and z is a defining

function for G, and R is a defining function for Gs. First note that since S, is smooth,

(1.5.15)) implies that

BA, (| det(dzexp; 1) (Z —7)]) € C*(O4, x [0,m0))

~

and it is identically 1 at G, and G3. Writing Z = (xX, Y) so that z — z = tRZ, (1.5.16)
yields

—n/2

BAlexp lH(Z —7)|," =2 "R™" (Gij(z, 2+ zRZ, 0)2123)

A A A A ~ o\ —1/2
—z "R (Gaﬁyayﬁ 420G XYP + x2G00X2>

and we also have
B, ldx dy dZ dy| = 2" **R"|dz dy dR dw|.
We now pull back y(P), writing it in two ways using (1.5.13)) and (T.5.14):

Uz, 2+ :ERZ, Zi
2 ) (1.5.17)

BZS(X(P)) =X R . N1/2
v (a(z 2+ 2RZ,m) 2027
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X+R prYaYﬁ + 2R ( 2p8/3)2’175 + a:pgof(2>

=X , (1.5.18)

(\V[2+ 2R g 2i 21 2+)"?
where in the pfj and g, are all evaluated at (z, z+xRZ ,7m). Some caution is required
when the denominator of the arguments approaches 0. At any point in (0% )° x [0, 7))
the expression 83 (x(P)) is C?, since any such point projects via Sa, to a pair of points
away from the diagonal. This implies that if the denominator of P vanishes the numerator
does not, and hence x(P) = 0 there. Now suppose we are given ¢ = (2/,y', R',0',7) €
G U Gs x [0,10), so either 2/ = 0 or R = 0. Since 0] = |(X,Y)| = 1, either X or ¥
are bounded away from 0. If |Y| < e for some ¢ > 0, the numerator of P is bounded
below in absolute value by /1 — &2 — CR(c + ), therefore the ¢ can be assumed to be
small enough that in a neighborhood of ¢’ the numerator is bounded below. This again
guarantees that y(P) is continuous at ¢’ in this case by the compact support of xy. On the
other hand, if [Y| > ¢ then in a neighborhood of ¢ the denominator is bounded away from
0. We conclude that 83 (x(P)) extends continuously to (O% )° U Gs UG5 x [0,70) and, in
fact, it is in C*((O4,)° UG5 x [0,7m0)) by (1.5.17). A similar analysis applies to show that
R (Jexps'a(Z — M) € C1((OR.)° UG5 U Gy x [0, ) in the support of B3, (x(P).
Finally, write S} (z2e0/2+o/T) = x*Qe_U% and combine the lifts of the factors in

(1.5.12) together with Lemma to find

B*(:‘igv ):KV'I/

SRE X ‘ det(dzexp. ) (z — 7 + xRZ)‘
=2 g(z—ﬁ)@_lJrf};(XX(P(Z,Z—FSCRZ,?])) ! — — (R+ 12 v,
2 .
(Gij(z, 2+ xRZ,n) 21 Z))"* (24 2RX)

(1.5.19)

where v is given by (1.5.5) and it is a smooth density on X independent of n and V.

Together with our analysis of the factors, we conclude that, away from Gio, G1; and Gpy,

Ky € C*'(((04X,)°UG3) x [0,10)) and continuous up to G5. Now Taylor’s theorem in terms
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of R applies for x > 0 and we find that for R > 0 small and x > 0
X .
KV - 2_n+1X (m) V g(Z - ﬁ)|Z|g_n + RAV(‘T7 Y, R7 07 7])7 (1520)
9
where Ay is continuous in all of its arguments, up to x* = 0: observe that by (1.5.17)

Ba.(x(P)) = x (I(azl(iigf:’;);lm) with a; both C' in their arguments, so by taking an R-

derivative the chain rule generates a factor of x that cancels the one in the denominator of
the argument of y. Thus Kv‘ Gs is indeed independent of V.

We will now show that Ky vanishes to infinite order on Gig, Gi1 and Go;; the arguments
here are contained in [UV16] but we repeat them for completeness. By it suffices
to show that Ky decays exponentially as R — oo, uniformly in 7, and that it vanishes for
large negative X (since zg; = 0 when X = —1). Assume first that we are in the region
where |Y| < ¢ < 1 for some constant ¢ uniform in 7, implying that | X| is bounded below
by a positive constant. If X < 0 then guarantees that x(P) vanishes identically
for sufficiently large R since in its support the variable X is bounded below by a negative
constant uniform in 7. On the other hand, when X > 0, since we are working in a small

neighborhood of p and thus z,z < ¢q for some small ¢y > 0, we have

RXx = (f — 1) = RX2? < (¢ —z) = 2RX < <—1—|—\/1+4CORX> /2.
T

—20RX/ (1+\/ 1+4CORX)

Thus eig% <e , implying that Ky decays exponentially fast, uni-

formly in 1. Now suppose that |}7| > ¢/2. This implies that pgﬁ(z, z+zRX, 7))}70‘}75 <c<0

if 1 is sufficiently small and z is sufficiently close to p, since in pgﬁ(z, z, n)f/affﬁ = Fgﬁ(z —

n)Y*Y? < 0 (this follows from the strict concavity of X with respect to V). Now the

triangle inequality yields

—plaYoYP — |RTIX + a( 200, XY + :Bpgof(z)]'
(RV2+w g 220 25))? |

P(z,z+xRX,n) > RY?

thus one can choose the R to be large and = to be small enough (by adjusting the size of the
neighborhood O) uniformly in 7 to guarantee that x(P) vanishes identically. This finishes
the proof. n
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Lemma 1.5.4. Let the hypotheses and notations of Lemmal[1.5.3 be in effect. Also let W be
the lift to 725 of a vector field in V,.(X) acting on the left factor of X and 3 be a defining
function for Gs. Then for any sufficiently small neighborhood O of p in X there exists 1y > 0
such that

3sW(Ky) = Kew(-,+) € C°(OX, x [0,m)), (1.5.21)

vanishing to infinite order at Gio, G11 and Go. Moreover, whenever x3 induces a product

decomposition Gz x [0,€)4, x [0,10), near G (in OX_) one has

wsW(Kv) = rkw(g,n) + zsrvw(q, 23, 1), (1.5.22)
where ky € C°(Gs x [0,10)) and independent of V and kyw € C°(G3 X [0,£) x [0,m0)).

Remark 1.5.5. The function Ky is well defined only up to a non-vanishing smooth multi-
ple, since there isn’t a completely natural choice of non-vanishing smooth density on 718.
However it follows from the comments at the end of Section that x3W is smooth on
725, hence by Lemmal1.5.5 and it follows that multiplying Kv by a function smooth

on 728 does not affect the result.

Proof. As discussed in Section m (see ), given a sufficiently small neighborhood
O of p € M, in X where global coordinates (z,y) are valid, we obtain an identification
of (Oa.2,)° with a subset of R} x (0,00) x S". With notation as in Section , we let
Ui = {(z,y,R,0,n) € @x [0,00) x U5 x [0,00)}: the union of those sets over J, + covers
((OX.)° UG5 UGs) x [0,m) for small 1y > 0, and in each of them we have valid coordinates
(r,y,R,07,n), j # J. Now let W be the lift of a scattering vector field acting on the left
factor of X . As shown in Section 1.5.1, on UF we have W = p Cfu:(l’, y, R,0) W, where
W; belong to either of the two sets W, = {2%0,,20,,0r} or Wy = {R™'0ps,j # J} and

chi(x,y, R,0) are smooth and growing at most polynomially as R — oo (i.e. at the faces
G0, Gi1 and Goy). Thus it suffices to show (1.5.21)) and (1.5.22) for W, € Wy, Wy € WY,
J=0,...,n.
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We will use the expression ((1.5.19)) we computed for Ky in Lemma m Fix a J and
suppose first that W7 € Wi: then W; is smooth for x > 0 and we will show continuity of
W1 Ky up to z = 0. Recall the notation Z = (zX,Y") and observe that

(R+1)

RX A
z—m)e " wrx | det(dzexp, ') (z =+ 2RZ)|———FL—
9(z =) | det(dzexp; ) (z =7 )|(2+xRX)n

= AO(Z7 R7 RH? T])?

with Ag(z, R,v,n) € C*(O % [0, 00) x R"*! x [0,79)) for some small neighborhood O of p and
small g > 0. Therefore, W1 A is continuous on the same space. Using , we see that
Wi (X (P(z, z+1RZ ))) is continuous up to G5 and Gs and, similarly to the proof of Lemma
1.5.3) Wi (Gy(z, z+zRZ, n)ZiZj)_n/z is continuous in the support of x (P) and x’(P). This

shows continuity of W Ky(-,-) away from Gjp, G11 and Gi9. Now exactly as in the proof of

o BX_ o BX . P
Lemma|1.5.3] the expressions e ~ 1++8X \/(P), e " 1+21rX y(P) vanish to infinite order at those

three faces, uniformly in 7. All other factors of Wi Ky grow at most polynomially at those
faces, thus W1 Ky € C° (OQAS x [0, 770)). This yields the claim for W; € W, with ky, =0 in
[529).

Now suppose Wy € W3 and we will again first look away from the faces Gig, Gi1 and Gyg.

If j # J we have that

R 0o =) Oum g Ops 27
m=0

is continuous up to x = 0 on Z/{j[, using the chain rule. Note that Ag(z,0,0,7n) is inde-
pendent of V. Now as already observed in the proof of Lemma [1.5.3] by (1.5.17)) one has

that 81 (x(P)) = x <x(a’:1(iz:’;}2227’7"’22;§1/2>, where a;(z,u,n,v) is C' in (z,u,n) and C™ in v.

0% (gapv®v?) — 0°gjev®
(Gapvvh)372

Moreover, 0, (a;/ CL;/Q) |u:0 -

J#J,

. Thus in Z/{jE we have, for x, R > 0 and

R0 (B3, (X(P)) =R~X/(P)(Ru(ar /ay) (z.aRZ,m, 2) - Oy 2

+ m_lav(al/aém)(z, tRZ.n,Z) - 89j2>.

Now use Taylor’s Theorem for the function R +— 8U(a1/a§/2)(z,a:RZ, 0, Z) - 0y Z (which is
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C' in the support of }/(P)) for z > 0 to find

R0 (B3, (x(P)) =R X (P) (RO (anfay*) (2, eR 2,0, 2) - 00 7
+ :c’lavm(al/aéﬂ)(z, 0,7, Z)0g; Z™ + Rbyy(z, 2 RZ, ZA)ZAkc‘?@jZAQ

=R (P)(Rou(ar /) (= 2R 2,1, 2) - O 7

«

10 (Gas(z = 7)0%) — 00gma(z — v
(9as(z — MvvP)?/2
+ Rby(z,2RZ,n, Z)ZkaejZAg); (1.5.23)

+x

RV
=7

v=

here bye(z,u,n,v) is C° in (2,u,m) and C* in v. Note that on U7 and for j # J

. xoom §m. m# J
00 2™ = ! .
—glom@ijom m =]

Therefore, evaluating at v = Z in (1.5.23))

(gap(z =Y VP09 X — X goma(z — 1) 209 Z™
(Gap(z — )Y Y B)3/2

R™0p: (A, (x(P))) = X' (P)R™ + X (P)As,

(1.5.24)

where A, € C°(U7) in the support of }/(P) (as in the proof of Lemma [1.5.3) and bounded
as R — oo. Note that upon multiplying (1.5.24) by R and evaluating at R = 0, the first
term on the right hand side is independent of V and the second one vanishes.

We similarly compute that
R0y (er(Z> z+aRZ, U)ZAkZE)_i = _Rflg’ZA‘;ni2 (291e(z — 1) Z2*00: 2°) + Ay

with Ay € CO(U7) in the support of y(P) and bounded as R — oo.
. RX _ . RX _ i
As before, the expressions x/(P)e " 1++rX and y(P)e ~1+=kX decay exponentially fast for
R — oo and in particular vanish identically for RX << —1, uniformly in n, thus on U7,

x3Ws(Ky) vanishes to infinite order at Gio, Gi1 and Gpi, uniformly in 7. By a partition

of unity subordinate to the cover {U7},;. we find that z3W,(Ky) satisfies (1.5.21]) and
(T5.22). O
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We have shown the regularity results for A under hypotheses that apply for both

X77770— )

V = 6, V. We now wish to analyze the kernel of the difference En,o‘-

Lemma 1.5.6. Let W be the lift to 725 of a scattering vector field acting on the left factor
0f72, and x3 a defining function for G, smooth and non-vanishing up to the other boundary
hypersurfaces of YZS. Then for any sufficiently small neighborhood O of p in X there exists
no > 0 such that upon writing B*AS(F;EW) = Kpg - v (where as before v is a smooth non-
vanishing density on YQAS) one has x3' K, WKg € C°(O4, x [0,m)) and vanishing to
infinite order at G, G11 and Gor. Moreover, both W Kg and xglKE vanish identically on O

forn =0.

Proof. First observe that Lemmas [1.2.1| and [1.3.1] imply that for ¢ > 0 and x, fixed in
Proposition Lemmas |1.5.2L |1.5.3| and |1.5.4| apply to both V and @, provided 7y and

O are sufficiently small: one needs O to be small enough that if supp(xo) C [—M, M] then
Max < min{é’@, éﬁ}\/f in O, where CN'§, éﬁ are the constants of Lemma corresponding
to the two connections. Now we observe that W Kp and 25" K € C°(O%_x[0,7)) and both

vanishing to infinite order on Gyg, G1; and Gy;. To see this we are using the fact that in both

(1.5.20) and (1.5.22)) the leading order coeflicient at the lifted diagonal A, does not depend

on the choice of connection and hence cancels upon taking the difference K¢ — K% (where
K¢, Kt are computed using the same density v). Finally if n = 0 we have EOJ = Lo,

acting on functions supported in a subset of X = X, C M¢. Since (V — v =0

)‘TZMXTZM
provided z ¢ M, and by construction of A\XO’O,U (resp. Ayy00), Ko(-,0) (resp. Kg(-,0)) only
depends on the connection V (resp. V) on X C M¢, we have WKg(-,0), 23 Kg(-,0) = 0
and Ey, = Ey, = 0. O

We finally have:

Proof of Proposition[1.4.0. As already mentioned, it suffices to show (.5.11)). Let O’ C X

be a small open neighborhood of p in X where the results of this section hold and O a
neighborhood of p in X with O ¢ K C O’, where K compact. For sufficiently small n > 0



20

we have U = ,(U,;) CC O. Fix § > 0. We will show that there exists an 7, such that
if 0 < n < o then for u,v € L*(0) with suppv C Um and W} € {220, 20,1,..., 20} C
Vie(X) one has

[(u, W} Eyov)| < Sllullziol0ll 2@, 5=0,---m, k=01 (1.5.25)

This will imply the claim since W span Vi.(X) on O’. Let TLA, = TLoBA,, TRA, = TROA,,
where 7, mr denote projection onto the left and right factor of X respectively. By Cauchy-

Schwartz inequality and using the notations of Lemma [1.5.6

2
2 * *
JRCTESE NN
Ag
< / (7 )P K sl / Kol |(mha,v)Pr. (15.26)
O3, OR,

Recall that the “coordinates” ([1.5.3]) and the analogous ones given by
(’f, TR=1\/X2+|V|20 = (f(,?)/fz) , where X = =2y =Y (1.5.27)
T T

identify O\ (Gio U G11 U Go1) with a subset of R x [0, 00) x S™. By interchanging the

roles of (z,y) and (7,y), Lemma [1.5.1 yields the existence of a non-vanishing o € C*° (72)
such that in terms of ([1.5.27) v = a(R + 1)"%(2 + TRO)"|d7 dj dR d&| (di is the volume

form with respect to the round metric). Thus

| s PiKel

OA,

2 + 2 Rfp)"
=/|u(:c,y)l2|KE;L(x,y, R,@,nN% dz dy dR dw|  (1.5.28)
and similarly
| el Py
OA.

~ [ 1Kea@ 5. R0 oG D) "dFdgdRdz,  (15.29)

1+R
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where Kg.1,, Kg.r express Kg in terms of and respectively and the integra-

tions on the right hand sides of and are over the appropriate subsets of

@ x [0,00) x S" corresponding to OZ  (the function & has been absorbed into Kp;g).
By (1.5.4), (2 + zRy)" and (1 + R) are of the form z;* and z1;'a74 respectively. Letting

My and Ry be large positive integers we write

2+zxzRX
/ |u<as,y>|2|KE;L<x,y,R,e,nn%u dy A du|
2+ xRX
< el sup | / Ky (. R, 6 n>y—< "\ iR dul
(z,y)€0 JSn 1+
flo 2+ 2RX
= ||u||L2 (©) Sup (/ / |\Kp.(z,y, R, 0, )|¥|d]%dw|
(z,y)€0 n 1+ R

s [ aemrn{as R Ko, R 0|2+ eRE) Y dR dw|)
" J Ry

= lullz20y sup (I(z,y,n) +11(x,y,7)).

(z,y)€0
By Lemma [1.5.6] since Kg vanishes to infinite order at Gig, G113 and Gy, there exists a
constant C' such that for all (z,y) € O and all 0 <n <

(1 + R)MO_1|KE;L('Ia Y, Ra ‘97 77)|(2 + :L‘RX)” < C.

Therefore, for given § > 0, Ry can be chosen sufficiently large that II(x,y,n) < 6/2 for
0 < n < n. On the other hand, I(x,y,n) is continuous (it is an integral over a compact
set of a function continuous jointly in (z,y, R,0,7n)) and it vanishes identically for (z,y,n) €
O x {0} C K x {0} by Lemma[L.5.6] Thus there exists 1 such that for 0 < n < 5, we have
SUp ;. yyeo 1z, y,m) < 9/2 and is bounded above by 6Hu|\%g(o)

Now can be analyzed in exactly the same way as ; the only difference is
that now (2 4+ ZR6,)" and (1 + R) are of the form zo" and 7 wy>. This however does not
change the arguments since Kz vanishes to infinite order on Gy;, G19 and Gy uniformly for
small n. We conclude that holds for k = 0.

To show for £ = 1 we observe the following: working similarly to the proof of
Lemma one sees that for a = 1,252} it is the case that a~' 83 _(|dzdz]) extends from
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(725)0 to a smooth non-vanishing density v on 725 (as before, x, stands for a boundary
defining function of G, that is smooth and non-vanishing up to the other faces). By the
analysis at the end of Section it follows that for j = 0,...,n the vector field z3W;,
where W; is the lift of Wj, is smooth on YQAS and tangent to all of its boundary hypersurfaces.
Thus (Wja)/a € xglCoo(YQAS). Writing kg, , = ke(2,Z,1)|dzdZ| so that B} (kgp)a = Kgp we
have, for u, v € L?(0) as before,

| T, R Zae@laza = | () 55, (V) ) o, ) v

:/ (7La,w) WiBA, (Fe)la(Tha,v) v
02

As

_ /O (71.a,0) (W Kp = Kp—22) (w0, 0) v

A
Then for £ = 1 follows exactly the same steps as for k& = 0 from (|1.5.26]) onwards,
with Kp replaced by W; Ky — (W, a)/a)Kg: by Lemma W; Kp — (Wja)/a)Kg €
Cc° (Ois x [0, 770)), it vanishes to infinite order on Gy, Gi1, Go1 and is identically 0 for n = 0.
This finishes the proof of the proposition. O
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Chapter 2

ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH
BOUNDARY CONJUGATE POINTS BUT NO INTERIOR
CONJUGATE POINTS"

As already discussed in more detail in the Introduction, this chapter is dedicated to the
construction of non-trapping asymptotically hyperbolic manifolds with boundary conjugate
points but no interior conjugate points. This is done by first constructing a piecewise smooth
C*! metric on R"*! that compactifies to an AH metric on the ball that satisfies all of the
required properties except smoothness. That those properties hold can be shown in this
case using explicit formulas for geodesics and Jacobi fields. As a second step, the metric
is approximated by smooth metrics while ensuring that none of the properties we need is
violated. The chapter is organized as follows. The C*! metric is constructed in Section [2.1}
in we define it and state some general properties, in we show explicit formulas
for the curvature along geodesics and in we compute formulas for Jacobi fields and
show Theorem [2in the C*! case. In Section we prove Theorem [2[ in the C'*° case. We

first reduce Theorem [2] to three propositions (2.2.1} [2.2.2] [2.2.3]) concerning stable Jacobi

fields and absence of conjugate points for the approximating metrics. Then we carry out the

analysis of the derivatives of the stable solutions, prove Proposition [2.2.18| which rules out

interior conjugate points, and conclude by proving Propositions [2.2.1], [2.2.2] [2.2.3]

IThe material in this chapter has been accepted and is soon to be published: Nikolas Eptaminitakis
and C. Robin Graham, Asymptotically hyperbolic manifolds with boundary conjugate points but no interior
conjugate points, Journal of Geometric Analysis, Springer New York.
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2.1 The C"' Metric

2.1.1 The Metric

We will construct metrics on R**1\{0} ~ (0, 00), x S" of the form
g = di + A(p)g 2.11)

in polar coordinates that extend smoothly to the origin. Here ¢ denotes the round metric on
S™ and A(p) is a positive function on (0, 00) to be chosen appropriately, with A(p) = sin(p)
for p small. Hence in a neighborhood of the origin g is smooth and is isometric to the round
metric on S"™!. Relative to the product decomposition R" ™\ {0} ~ (0, 00) x S™, the non-zero

Christoffel symbols of g are

[0 = —A(p)A'(p)das, Tlo= A" p)A(p)d], T2,=17, (2.12)

where I are the Christoffel symbols of the round metric and p is the 0-th Coordinate. The
form of the Christoffel symbols implies that for any £k = 1,...,n+1, k-dimensional Euclidean
planes passing through the origin are totally geodesic. To see this, note that the intersection
of S* ¢ R""! with any k-dimensional plane through the origin is totally geodesic for the
round metric, and that in general an embedded submanifold M* C M4 is totally geodesic if
and only if in any coordinate chart (U, ) for which o(UNM) C {(z,2') € RExR¥* : 2/ = 0},
the Christoffel symbols satisfy I'/} = 0 on M NU for ¢, j < k and all m > k+ 1. As a special
case, lines of the form (t) = tv for v € R"™! with Euclidean length 1 are totally geodesic,
and in fact they are radial unit speed geodesics for g.

The curvature tensor of warped product metrics like g can be described as follows. This

is a special case of Proposition 42, Chapter 7 in [ONe83].

Proposition 2.1.1. Let g = dp® + A*(p)b, where p € R, 0 < A € C*(R), and b is a metric
on a manifold B. If R, R, denote the Riemannian curvature tensors of g, b, respectively,

and U, V, W € X(B), then

2Throughout this chapter, Greek indices run from 1 to n and Latin indices run from 0 to n.
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(1) R(9,.V)d, = —A () A"(p)V

(2) R(V,W)d, =0

(3) R0, V)W = (V. W)y A () A" ()3

(4) ROV,W)U = Ry(V,W)U — (A(0))2A=2(0) (V. U)WV — (W, U), V),

For an O(n+1)-invariant metric on R"*!, the sectional curvature of a 2-plane IT C T,R"*!
at a point p = pw, p > 0, w € S", depends only on p and the angle o between d, and
II. We will denote any such plane by Il,.c.so) and the corresponding sectional curvature by

Sec(Hp;cos(a))H Then by Proposition We find, for 2-planes parallel to the radial direction,
Sec(Il;1) = —A(p) P A"(p) =: Kl (p). (2.1.3)

Moreover, if n > 2, for 2-planes normal to the radial direction we have
Sec(Il,0) = A7%(p) = A2 (p)(A'(p))* =: K*(p). (2.1.4)

More generally, it follows from ([2)) in Proposition and the symmetries of the curvature

tensor that R(u,w,u,d,) =0 for u, w € ﬁj, so for a € [0, /2] we have
Sec(Icos(a)) = cos(a) K (p) + sin®(a) K+ (p). (2.1.5)

It will later be convenient to use to define Sec(Il ;cos(a)) for cos(a) € [—1,0) so that
holds for all cos(a) € [—1,1] and p > 0. From and the fact that A(p) = sin(p)
for small p it follows that A solves the equation A”(p) + Sec(Il,1).A(p) = 0 with A(0) = 0
and A'(0) = 1.

The previous discussion indicates that the geometry induced by g on R™™! is entirely de-

termined by the radial curvature function K, thus our goal will be to choose it appropriately.

3We use Sec for sectional curvature, as opposed to sec which will be used for the secant of a real number.
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We let, for p > 0, r >0 and € > 0,

1 — 2p(E") e>0

£

1—-2H(p—r) e=0,

K. (p) =

where ¢ € C®(R) satisfies 0 < ¢ < 1, ¢(p) =0 for p < 0 and ¢(p) =1 for p > 1, and H is
the Heaviside function: H(p) = 0if p <0, H(p) = 1 if p > 0. In particular, K,Uﬁ(p) =1 for
p < r. Observe that Kﬁ,s is C*° if € > 0 and is piecewise C'*° if ¢ = 0. Moreover, for each 7,
Kl — KJJ,O — 0 in L'(]0,00)) as € — 0.

Define A, . to be the solution to

A"+ Kl A=0,  A0)=0, A(0) =1, (2.1.6)

where if € = 0, A, is interpreted as a weak solution. This means that it is the unique C*
function satisfying the initial conditions in (2.1.6) which in addition solves the differential
equation in the open intervals where Kﬂ,o is smooth. Observe that for all £ > 0,

Are(p) = o) e (2.1.7)

aref +a_e? p>r+e,
where a1 depend on r, e. When ¢ = 0, the values of a4 are determined by matching the
value and the derivative at p = r with those of sin(p). The case r = 7/4 is special in that
a_ =0

\/§ p—m/4

Aﬂ/4,()(p) = 76 P > 7T/4. (2.1.8)

This is fortuitous, because as we will see, r = 7/4 is precisely the value for which the
corresponding metric has boundary conjugate points but no interior conjugate points. It is
not true that a_ = 0 for other choices of r, including the degenerate case r = 0, ¢ = 0, which
corresponds to hyperbolic space.

The Sturm Comparison Theorem implies that A,. > 0 on (0,7) and comparison of
the Priifer angle (Theorem 1.2, p. 210 of [CL55]) shows that A, > 0 on (0,7/2). Since
Al. = A, on (r+¢,00), it follows that A,. > 0 and A._ > 0 on (0,00) if we require
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r+ ¢ < w/2, which we do henceforth. In particular, a; > 0 in (2.1.7). Ultimately we will
only care about r near 7/4 and ¢ near 0.

We will denote by g,. the metric given by with A replaced by A,.. So g,
restricted to the geodesic ball B,.(0) centered at the origin is isometric to the corresponding
geodesic ball in S"*! and in particular the sectional curvatures of g, . are all equal to 1 for
p < r. The sectional curvature of 2-planes parallel to the radial direction is —1 for p > r+¢,
but not for other 2-planes if n > 2. The metric g, . is asymptotically hyperbolic (but only
Cllif e = 0) if R™! is radially compactified with defining function e for the boundary at
infinity. In particular, g, . is complete.

Our goal in Section is to show that g,/ satisfies all of the properties stated in

Theorem [2| except for smoothness.

2.1.2 Geodesics and Sectional Curvature

Since g = g,. is at least C!] it determines geodesics of class at least C*!. Provided a unit
speed geodesic y(t) of g is not radial, 4(0) and +'(0) determine a unique 2-plane through
the origin denoted by X ; as mentioned earlier, >, is totally geodesic and hence « is entirely
contained in it. For radial geodesics v, we will write X, for any 2-plane containing +.

To study any unit speed geodesic v it is sufficient to work in X, with induced metric
9y, = dp* + A%*(p)d6?, where A = A, .. According to ([2.1.2)), p(t) := p(v(t)) satisfies the

equation
p'=A"(p)A(p) (1 - (¢)?)- (2.1.9)

If v is not radial, the initial conditions take the form p(0) = s > 0, p'(0) = v with |v| < 1.
It is evident from (2.1.7)) that there is @ = a,. > 0 so that A™!(p)A'(p) > a for all p > 0. A
comparison theorem (e.g. Theorem 11.XVI of [Wal98]) implies that p(t) > p(t) for all t € R,

where p is the solution of

P =a(l-(p)) (2.1.10)
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satisfying the same initial conditions. Equation ([2.1.10)) is separable for p’; the solution is
5(t) = 5+ a'log (%((1 Fo)et 4 (1— v)e_at)>. (2.1.11)

It follows in particular that p(tf) — co as t — %00 so that g,. is nontrapping. Since p” > 0,
p achieves its minimum at a unique time which we take to be ¢ = 0. The corresponding
point is the closest point on v to the origin, whose distance to the origin we write s. We
denote this solution by ps,; it is thus the solution to with A = A, . and with initial
conditions p(0) = s > 0, p/(0) = 0. For a radial geodesic the distance to the origin is s = 0
and the corresponding solution is py,.(t) = t. We denote by 7, . any unit speed geodesic
with radial coordinate function ps, ..

If s < r, then ~,,. intersects the geodesic ball B,(0) where the curvature is 1 and
A(p) = sin(p). In this case, it is easily checked by directly verifying and the initial
conditions that

Pz (t) = arccos (cos(s) cos(t)). (2.1.12)

This holds up to the time ¢ such that ps,..(t) = r. We denote this time by ¢,(s); geometrically
this is the distance between 7 ,..(0) and 0B,(0) and clearly it is given by

0.(s) = arccos <COS(T)> . (2.1.13)

cos(s)

For future reference note that

_ \V/cos?(s) — COSQ(T’>.

Pere(Lr(5)) n(r) (2.1.14)

This also has a geometric interpretation: since d, and 7 are unit vectors, pf, (.(s)) =
(7'(€.(s)),0,) = cos (a), where « is the the angle between +/(¢) and 0, when ¢ = (,(s), i.e.
where p(t) = r. The above formulas for p,.(t), ¢-(s) and pl, (¢.(s)) can also be derived
directly via the geometry of S2.

Our primary focus in Section is the case r = 7/4, e = 0. We suppress these subscripts,
so for instance subsequently we write g = gr/10, Vs = Vo,r/a.0, Ps(t) = Psxjao(t) = p(7s(t)),
((s) = €x/4(s). Note that for r = m/4, reduces to pl(¢(s)) = /cos(2s).
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When r = 7/4 and € = 0, (2.1.8) shows that (2.1.9)) for p > 7/4 reduces to (2.1.10) with
a = 1. The initial conditions for ps are ps(€(s)) = w/4, p.(£(s)) = y/cos(2s). The solution is
given by ([2.1.11)) with ¢ replaced by ¢t — £(s). It can be written in the form

pult) = m/A+log F(t,s) > ((s),
where
F(t,s) = cosh(t — {(s)) + \/cos(2s) sinh(t — £(s)). (2.1.15)

For t < —{(s) one has p4(t) = ps(—t).

Equation ([2.1.5)) expresses the sectional curvatures of g in terms of the distance p to the
origin and the angle o between 0, and the plane II. In our subsequent analysis of Jacobi fields,
the sectional curvature for g, . along a geodesic v;,.c(t) of the plane spanned by 7, . _(¢) and
a vector normal to ¥,  _ will play a fundamental role. Since pf, (t) = cos(Z(7;,..(t),0,)),

the sectional curvature of interest is

Ks,r,s(t) = SeC(Hps,r,s(t);P’s,r,a(t)>'
As usual we write K, = K /40
Lemma 2.1.2. Suppose n > 2 and 0 < s < /4. Then

1, 0 < |t < £(s)

—1+4sin®(s)F~4(|t],s), [t| > ((s)
Proof. For p > 7/4 we have Kll(p) = —1 and K*(p) = —1+2e~2="/4) Hence, for |t| > {(s)
(2.1.5) yields

Sec(p, eyp0) =(04(£))*(=1) + (1 = ((£))?) (=1 + 2e72O7/)

= — 1+ 4sin®(s)F4(|t], s). (2.1.16)
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There is a similar analysis for geodesics that do not intersect the geodesic ball By /4(0).
This time holds along the whole geodesic, and the solution of the geodesic
equation satisfying the initial conditions p(0) = s, p/(0) = 0 is ps(t) = s + log(cosh(t)).
Repeating the computation (2.1.16|) yields the following.

Lemma 2.1.3. Suppose n > 2 and s > w/4. Then

K (t) = =1 + 272+ 2sech*(t), teR.

In the analysis above we have only used formulas for the radial coordinate of geodesics.
We summarize them here and for completeness also provide the angular coordinate 6 for a

geodesic, even though it will not play a role in the rest of this chapter. With F(t,s) as in

@.1.15),

(

arccos(cos(t) cos(s)), 0<s<m/4,|t] <l(s)

ps(t) = Slog (F(|t],s)) + /4, 0<s<n/d,|t|>s)-

log(cosh(t)) + s, s>m/4,teR
Setting
arcsin sin(®) : 0<s<m/4,
/1 — cos?(s) cos?(t)
[t < £(s)
2sin(s) sinh (|t| — £(s)) , >
sgn(t +arcsin (1/1 —tan?(s)) |, 0<s<m/4,
iy = |0 (R ( ) s
[t] > £(s)
V2 tanh(t)e=s+7/4, s> /4,
teR

\

the curve (ps(t),0s(t)) on X, satisfies the geodesic equation for each s > 0. Any other

geodesic on ¥, can be obtained by translation in 6.
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2.1.8  Analysis of Jacobi Fields

In this subsection we first identify the scalar equations solved by normal Jacobi fields for
gre- Then we compute explicitly the normal Jacobi fields of the C'! metric g = g4 and
show that (R™"! g) has no interior conjugate points but has boundary conjugate points.

The following general fact can be proved using the Gauss and Codazzi equations:

Proposition 2.1.4. Let (M, gar) be a totally geodesic submanifold of a Riemannian manifold
(M, g77)- Let v be a geodesic contained in M and Y be a normal gzz-Jacobi field along .
When Y is decomposed as Y = Y, +Ys, where Y] is everywhere tangent and Y, is everywhere

normal to M, then Ys is a Jacobi field in M and Y] is a Jacobi field in both M and M.

Proposition implies that to analyze normal Jacobi fields along a geodesic v of g, ., it is
enough to analyze separately Jacobi fields tangent and normal to X,,.

Consider first a geodesic v C X, and a Jacobi field Y (¢) normal to v but tangent to X, of
the form Y (t) = Y(t)E(t), where E(t) is a parallel vector field along v and ) is real valued.
Since Y'(t) is a Jacobi field in the 2-dimensional manifold ¥, and the radial vector field is

parallel to 3., Y(t) solves the scalar Jacobi equation

V'(t) + K} (ps,re () V(1) = 0. (2.1.17)

Next consider Jacobi fields along a geodesic v that are orthogonal to the plane ¥.,. The

following lemma reduces the problem to the study of scalar equations.

Lemma 2.1.5. Let n > 2, v C X, be a unit speed geodesic for g.. and Y L X, a Jacobi
field along it. Then'Y satisfies the scalar Jacobi equation

DY (t) + K., ()Y (t) = 0.

Proof. 1t is sufficient to show that R(7/(t),Y (¢))y(t) = a(t)Y (¢), t € R, for some scalar
function a(t); then necessarily a(t) = K, .(t), since the plane determined by +/(¢) and Y'(t)

is is of the form I, (.. ). The statement is local, so we can use polar coordinates (p, 0)
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on X, to write 7/(t) = A(¢)0, + 1(t)9. This implies
R(Y,Y)y =XR(0,,Y)0, + Mu(R(D,,Y)0s + R(95,Y)0,) + > R(Jp, Y )Dp.

By Proposition[2.1.1] for the first term we have R(0,,Y (t))d, = —A"(t)/A(t)Y (t), the second

term vanishes and for the third we have
R(0p,Y (1))9p = Rsn (D9, Y (£))p — (A'(t))?/ A%(t)]06]7Y ().

Now Rgsn(0y, Y (t))0p = Y (t) since S™ has constant sectional curvature 1, so the lemma is

proved. O

So if we take Y () as in Lemma of the form Y (t) = Y(t)E(t), where E(t) is a parallel

vector field along ~, then ) solves the equation

V() + Kere()Y(t) =0 (2.1.18)

where

Kore(t) = (p,(0)* K} (pu(®) + (1= (0, (8)*) Koo (pu(®), o= (s.7,€) (2.1.19)

and K., (p) is given by with A replaced by A,.. Note that K,,. = Kl o ps.re for
s = 0. So for radial geodesics the equations and for Jacobi fields tangent
and normal to X, coincide.

We write Z/{s”,r,g(t), SH,T,g(t) for the solutions (weak solutions if ¢ = 0) of with the
initial conditions U.,c(0) = 1, Ul,./(0) = 0 and V!,..(0) = 0, V!,./(0) = 1. Likewise we
write Uy, (), Vi, (t) for the solutions of satisfying U, (0) = 1, U5, .'(0) = 0 and

Vi.2(0) =0, V;,..'(0) = 1. And once again we suppress (r,&) when (r,e) = (7/4,0).

Now we solve (2.1.17)), (2.1.18) for (r,e) = (7/4,0), beginning with (2.1.17). If s > /4
then KIl = —1, so

Ul(t) = cosh(t),  VlI(t) = sinh(¢) s > /4.
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If s < m/4 then Kl (p,(t)) has a jump discontinuity at |t| = £(s) and the solutions must be
C" across the jump. It is easily verified that

ul(t) = os(t): i < &) . (2.1.20)

cos((s)) cosh(|t| — £(s)) — sin(£(s)) sinh(|t] — €(s)), [t| > £(s)

Vi) sin(t), [t] < £(s) |
sign(t) (sin(¢(s)) cosh(|t| — £(s)) + cos({(s)) sinh([t] — £(s))), [t] > £(s)

(2.1.21)
Recall that ¢(0) = /4. So Z/l(‘)‘ (t) = \/756_(“‘_”/4) for |t| > m/4. The corresponding Jacobi

field vanishes as |t| — co. Hence g has boundary conjugate points along radial geodesics.

Lemma 2.1.6. Let v be a unit speed geodesic for a0 contained in a 2-dimensional plane
Y., through the origin. Any non-trivial Jacobi field Y (t) normal to v and tangent to ¥,

vanishes at most once.

Proof. We claim that for any s > 0, Uulis a positive solution of . This is clear when
s > m/4 where Ul (t) = cosh(t). For s < 7/4 it follows from (2.1.20) and the fact that
sin(€(s)) < v2/2 < cos(£(s)) (recall (2.1.13)). Now the usual Sturm Separation Theorem is
valid for an ODE of the form V" () + k()Y (t) = 0, where k is integrable and real valued and
the derivatives are interpreted in a weak sense (see, e.g. comment in |CL55|, p. 208). Thus

no non-trivial solution of (2.1.17)) can vanish twice. [

Recall that K(t) is identified in Lemmas and [2.1.3 We were astonished to find

that the scalar Jacobi equations
V'(t)+ K(6)Y(t) =0 (2.1.22)

can be solved explicitly. To do so, note first that for all ¢ if s > 7/4 and for |t| > ((s)
if s < 7/4, K,(t) has the form K, (t) = —1 + f~*(¢), where f”(¢t) — f(t) = 0. Observing

that for any ¢y such that f(ty) # 0 one has (S}IE?S;(ttO)))/ = f72(t), it is easy to check that
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V() = f(t)b(s}lzlzgjf(tg)) with b”(z) + b(z) = 0 is the general solution of the equation )" (t) +
(=1+ f74(1)Y(t) = 0.
For each s > 0 we identify the solutions U and Vi of (2.1.22)). For s > /4 we take

to = 0 and obtain

UL (t) = cosh(t) cos (V2 ™/ tanh(t))

(2.1.23)
V() = \/7565_“/4 cosh(t) sin (vV2e~*/* tanh(t)).

For 0 < s < 7/4 we take ty = +{(s) and obtain

UL(t) = coslt), il < &) . 0<s<m/4, (2.1.24)

L esc(s) F([t],s) cos(O(t]. 5)) [t > €(s)
where O(t, s) := 2sin(s) sinh(t — £(s))F~'(t, s) + arccos(tan(s)) and F(t,s) is as in (2.1.15).
Note here that cos(z + arccos(tan(s))) is a solution of b”(z) + b(x) = 0. Also

Vi) = sin(t), <) . 0<s<m/d (2.1.25)

sign(t) 2 F(|t], s) sin(O(|t], ) [t > £(s)
We remark that these solutions extend smoothly to s = 0 and U = Ll(|)|, Vi = V(|)|. This

is clear for V,, but for U requires evaluating the indeterminant expression appearing in

@.1.24).

Lemma 2.1.7. Let n > 2 and vy be a unit speed geodesic for grso contained in a 2-
dimensional plane ., through the origin. Any nontrivial Jacobi field Y (t) along v normal to

EW vanishes at most once.

Proof. For radial geodesics the proof of Lemma [2.1.6] applies since the equations for Jacobi
fields tangent and normal to ¥, coincide.
We claim that U;" is everywhere positive for any s > 0. For s > 7/4 this is clear from

(2.1.23) since |v2e **"/*tanh(t)| < V2 < 7/2. For 0 < s < 7/4, according to (2.1.24) it

suffices to show that 0 < ©(t,s) < 7/2 for t > {(s). It is easily verified that for 0 < s < 7/4
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one has 9;0(t,s) > 0 for t > {(s). So for each s, O(t, s) strictly increases from a minimum

of arccos(tan(s)) at ¢t = £(s) to a limit of

, 2sin(s)
O (s) := lim O(t, s) = arccos(tan(s)) + ——————. 2.1.26
()= Jim 0(15) = anccos(ton(s) + =" 22 (2:1.20)
A straightforward calculation shows that
—9gin?
0,000(s) = oo 0<s<m/d (2.1.27)

2
cos(s) (1 + cos(23)>
S0 O, () strictly decreases from a maximum of 7/2 at s = 0 to a minimum of v/2 at s = 7 /4.

Thus 0 < O(t,s) < mw/2 for 0 < s <7/4 and t > {(s).

Once again the result now follows from the Sturm Separation Theorem. O

Proof of Theorem @ CY! metric. We have already noted that g = g, /4,0 18 non-trapping and
has boundary conjugate points along radial geodesics. If Y is a normal Jacobi field along a
unit speed geodesic 7 C X, write Y = Y; + Y5 with Y} tangent to X, and Y5 normal to it,
as in Proposition 2.1.4] If Y vanishes twice, so do Y; and Y5. Lemmas 2.1.6] and 2.1.7) imply

that both Y] and Y, vanish identically, so ¢ has no interior conjugate points. O]

2.2 Smooth Perturbation

In this section we show that we can find (r, ) near (7/4,0) with € > 0 so that g, . has no inte-
rior conjugate points but has boundary conjugate points along radial geodesics, thus proving

Theorem . First we outline the argument. Our analysis will focus on the decaying (also

called stable) solutions of the Jacobi equations (2.1.17)), (2.1.18). As we argue below, since

Kl. (psre(t)) and K, .(t) are asymptotic to —1 as t — oo, there are unique solutions ;))5”7,,78(1%),

VL (1) to @L17), @21.18), resp., such that lim, e e'Vlrc(t) = 1, im0 VL () = 1.

For Kqu,e(ps,r,g(t)) this is clear since K,U,E(p) = —1 for p large. Of course for s = 0 we have
I = Voore since Kl o pore = Kore. We will show that y&na(o) # 0 for (r,e) sufficiently

0,r,e
near (w/4,0). If y(!m' (0) = 0 and E(t) is a non-zero parallel vector field along 7, then
[

0,r,e

(|t]) E(t) is a nontrivial Jacobi field which decays as t — £o00. The corresponding metric

gr . therefore has boundary conjugate points along radial geodesics. We will prove
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Proposition 2.2.1. Any neighborhood of (w/4,0) contains a point (r,e) with € > 0 so that
},..'(0) = 0.

0,r,e

It then remains to show that the corresponding metric g, . has no interior conjugate points.

We will do this via the following two propositions.

Proposition 2.2.2. There exist a neighborhood U of (7/4,0) and o > 0 such that if (r,€) €
U and 3/” '(0) =0, then g,. has no interior conjugate points along any geodesic s, . with

0,r,e

0<s<g.

Proposition 2.2.3. For every o > 0, there exists a neighborhood V' of (7/4,0) so that if

(r,e) € V, then g,. has no interior conjugate points along any geodesic s, . with s > o.
Theorem [2| reduces to these three propositions:

Proof of Theorem[J Choose U and o as in Proposition 2.2.2] Then choose V' as in Propo-
sition corresponding to this . Proposition asserts that there is (r,e) e UNV
with € > 0 so that y(')' '(0) = 0. The metric g, . then has boundary conjugate points but no

?T16

interior conjugate points, and, as before, it is non-trapping. ]

Note that by successively shrinking the neighborhoods, one obtains a sequence of metrics
9r;e; With g5 > 0 and (r;,&;) — (7/4,0) such that each g,, ., has boundary conjugate points
but no interior conjugate points. The proof actually shows that for each ¢ sufficiently small,

there is r. so that g, . has boundary conjugate points but no interior conjugate points.

Continuity as ¢ — 0 of solutions of (2.1.17)), (2.1.18)) and of various of their derivatives

in s and ¢ are essential to the proofs of Propositions [2.2.1} [2.2.2] [2.2.3] This is a singular

limit, as the functions Kﬂ,g(psm(t)) and K, .(t) develop jump singularities as ¢ — 0. We
have had to do quite a bit of work to prove the necessary continuity properties. We present
this continuity analysis next and afterwards return to the proofs of Propositions [2.2.1] [2.2.2]
We begin the analysis by formulating some general results on ODE: Propositions

2.2.8 that we will apply in our setting.
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Let F : R? — R? be a vector field. Suppose that F is continuous and piecewise C°°:
there is a smooth hypersurface S C R? locally dividing R? into two open subsets U, U_ and
two smooth vector fields F,, F_ on R? so that F = Fy on s and F, = F_ on S. Consider
the integral curves of F, which solve the ODE

Since F is Lipschitz, for each s there exists a unique solution x(s,t), and x(s,t) and z/(s,t)
are jointly continuous. We assume below that the solutions exist on all the time intervals

considered.

Proposition 2.2.4. Suppose that (so,to) has the property that x(so,0) and x(sg,ty) are on
opposite sides of S, and the curve t — x(sg,t), 0 < t < to, crosses S exactly once and
does so transversely. There is a smooth function T(s) defined for s in a neighborhood V of
so such that 0 < T'(s) < tg and x(s,T(s)) € S. The restrictions of x(s,t) to the two sets
{(5,8) : s €V, 0<t<T(s)} and {(s,t) :s €V, T(s) <t <ty} are C™.

Proof. Suppose x(sg,0) € U_ and z(sg,ty) € U.. The curve t — x(sg,t) is an integral curve
of F_ up until the time that z(so,t) € S. Since F_ is smooth, its integral curves are smooth
functions of (s,t). Since the crossing is transverse, there is a unique smooth function 7'(s)
defined for s near sy by the condition that z(s,7'(s)) € S. The map s — z(s,T(s)) is
smooth from a neighborhood of sy to S, and x(s,t) is smooth for ¢ < T'(s). For s near sg, the
curve t — x(s,t), t > T(s) is an integral curve of F, whose initial point x(s,T(s)) depends
smoothly on s. By smoothness of the integral curves of F,, it follows that z(s,t) is smooth

for t > T(s). O

Proposition 2.2.5. In the setting of Proposition x(s,t) 1s jointly C* in a neighborhood
of (s0,T(s0))-

Proof. We know that a'(s,t) is continuous, and that Osx(s,t) exists on {t # T(s)} and

extends smoothly up to {t = T'(s)} separately from each side. It suffices to show that
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the values from the two sides agree on {t = T'(s)}. Let x_ denote the restriction of x to
{(s,t) : s € V,0<t<T(s)} and x, the restriction of z to {(s,t) : s € V, T(s) <t < tp}.
Then x4 (s,T(s)) = x_(s,T(s)) for all s. Differentiation in s shows that O,z + 0,1 - 2/, =
Osv_+0,T -z whent = T(s). Since 2/, = 2’ when t = T'(s), it follows that also sz = sz
when ¢t = T'(s). O

Similar arguments apply for linear equations with piecewise smooth coefficients. In this

case we do not assume continuity across the singularity. Consider an intial value problem
(s, t) = M(s,t)x(s,t), z(s,0) = xo(s), (2.2.1)
where x(s,t) € RY, M(s,t) € R4 and the parameter s € RF. We assume that

M_(s,t) t<T(s)
M (s, t) =
M+(S,t) t> T(5)7
where T(s) > 0, s — T(s) is O, each of My is C* on R¥ x R, and xq is C*°. It is not
assumed that M_(s,T(s)) = M. (s,T(s)). We require that x(s,t) is a weak solution in the

sense that that for each s, z(s,t) is a solution for ¢t # T'(s), and z is continuous across

t = T(s). The proof of the following proposition is similar to that of Proposition [2.2.4}

Proposition 2.2.6. The problem (2.2.1)) has a unique weak solution for each s, and the
restrictions of x(s,t) to {(s,t) : t <T(s)} and {(s,t) :t > T(s)} are C*°.

Proof. There is a unique solution z_(s,t) to
x' (s, t) = M_(s,t)x_(s,t), z_(s,0) = zo(s),
and z_ is C*°. Likewise, there is a unique solution z (s,t) to
7y (s,1) = Mi(s,t)xi(s,1),  x4(s,T(s)) = 2-(s,T(s)),
and z is C*°. The function defined by
r_(s,t) t<T(s)

x(s,t) =
zry(s,t) t>T(s)
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is a weak solution of (2.2.1)), and is clearly the only weak solution. O

To analyze continuity at € = 0 we will use the following two results, which are standard
applications of Gronwall’s inequality. Let |- | denote the Euclidean norm on vectors, or the

Euclidean operator norm on matrices.

Proposition 2.2.7. Let K; : [to,t1] — R4 i = 1, 2, be bounded and measurable with
IKi(t)] < L, and let fi : [to,t1] — RY, i =1, 2, be integrable. Let x; : [tg, t1] — R4, i =1, 2,

be continuous weak solutions to
zi(t) = Ki(t)ai(t) + fi(t)
and set C' = sup,ep, 1 [72(t)|. Then
|21 (t) — w2 (t)| <|z1(t) — s (to) [~

+/t (CIK1(s) = Ka(s)| + | f1(s) — fa(s)]) e~ ds.

Proposition 2.2.8. Let F, : R — R? i = 1, 2 be Lipschitz with constant L and let

T« [to, t1] = R? be C' solutions to

Suppose also that |Fy(x) — Fy(x)| < § for x € x9([to,t1]). Then

é(eL(t—to) . 1)

|1 () — 22()| < |21(to) — za(t0) ] + 7

Our ultimate goal in this analysis will be to understand the behavior of stable solutions

to (2.1.17), (2.1.18)) as € — 0. It is clear from (2.1.19) and (2.1.4]) that first one needs to

study A, . and ps,.. Certainly A, .(p) is a C* function of (p,r,e) for € > 0. Upon reducing
to a first order system in the usual way, Proposition implies that A, ,(p) and A (p)
are continuous functions of (p,r) which restrict to be C* on each of {r > p} and {r < p}.
The same argument as in the proof of Proposition shows that 0,4, (p) is continuous
across p = r, so that A, (p) is jointly C* everywhere. Our ultimate interest is in r near 7 /4,

so fix a small n > 0 and set Z = [7/4 —n, /4 + 7).
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Proposition 2.2.9. For k = 0,1, 9 A,.(p) — 05A.0(p) uniformly on compact subsets of
(p,r) € 10,00)xT ase = 0. Fork > 2, 9A,.(p) = 0%Aro(p) uniformly on compact subsets
of ([0,00) x Z)N{p#r} ase — 0.

Proof. Reduce (2.1.6) to a first order system in the usual way: set

A 0 1
T = ’Cr,z-: =

A ~Kl. 0

0
so that (2.1.6) becomes ' = Kz, x(0) = . The first sentence follows from Proposi-
1

tion [2.2.7| since Kﬁ,g - Kl[o — 0 in L}, ([0, 00)) uniformly in 7.

loc

The convergence for £k > 2 on {p < r} is clear since A, .(p) is independent of € > 0 on
that set. Equation (2.1.7) implies that as ¢ — 0, eventually A, . has the form A, .(p) =
a e’ + a_e P on any compact subset of {p > r}. The convergence for k = 0 implies that

a+(r,e) = a+(r,0). The result for k > 2 therefore follows upon differentiation in p. O

We now turn to geodesics. To streamline the notation we will often write v = (r,¢),
vy = (7/4,0), p = (s,r,e) and uo = (0,7/4,0). For example, we write g, := ¢g,. or
Yy = Vsre- Recall that for s > 0, 7,(t) denotes a unit speed geodesic for g, whose distance
from the origin equals s, parametrized so that this minimum distance is achieved at t = 0,
and p,(t) = p(y.(t)). For s > 0, p,(t) is the solution of with A = A, and initial
conditions p(0) = s, p/(0) = 0, while py,.(t) = t solves the same equation but has initial
conditions p(0) = 0, p/(0) = 1. Throughout we restrict attention to € small and r € Z, say
(r,e) € Z x [0,eg] for fixed small positive 5. Often we consider s to be small, so we also
fix a small sp > 0 and in these situations we will assume s € [0, so]. Despite the apparent
difference in the initial conditions, shows that p,(t) is smooth (and independent of
r, €) for (t,s) € ([0,%o] x [0,50]) \ {(0,0)} for appropriately chosen t, small, and Lipschitz
continuous for (¢,s) € [0,to] x [0, sg]. The different description of the initial conditions and
the discontinuity of the first derivatives of p,(t) at (¢,s) = (0,0) are a reflection of the

singularity of polar coordinates at the origin.
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A first observation is that p,(t) — oo as t — oo uniformly for (s,r, ) € [0, 00) XZ x [0, &].
In fact, (2.1.7) together with the continuity of a4 in (r,e) established in Proposition
imply that there is @ > 0 so that A (p)/A.(p) > a for (r,e) € Z x [0,&0] and p > 0. It

follows that p,(t) > a~'log(cosh(at)) by the comparison argument in (2.1.10)), (2.1.11]).

We will analyze (2.1.9) with A = A, . by incorporating r as an initial value and rewriting
as ¥’ = F.(x) with

p )
Tz = Fo(z) = ArelP) (1 _ 2 (2.2.2)
v, B . (p)( v?) 2.
r 0
and with initial conditions
S 0

Our starting point is the following.

Lemma 2.2.10. p,(t) is a continuous function of (t,s,r,e) € [0,00) x [0,00) X Z x [0, &0].

P, (t) and pj(t) restrict to continuous functions on ([0,00) x [0,00) \ {(0,0)}) x Z x [0, ).

Proof. We have already discussed the regularity near ¢ = s = 0. It is clear that ps, -(t)
restricts to a C° function of (¢,s,7,¢) € ([0,00) x [0,00) \ {(0,0)}) x Z x (0,£0]. Now
Fo is a locally Lipschitz function of x, so dlps,.o(t) is a continuous function of (¢,s,r) €
([0, 00) x [0,00) \ {(0,0)}) x Z for 0 < < 2. Proposition implies that A;._(p)/ A (p)
converges to the corresponding function evaluated at ¢ = 0 uniformly on compact subsets
of (p,r) € (0,00) x Z. The fact that aépsmg — aépsmo uniformly on compact subsets of
(t,s,r) € ([0,00) x [0,00) \ (0,0)) x Z for I = 0, 1 follows from Proposition m The
convergence of p” as e — 0 then follows from the differential equation . m

We will need to know similar continuity properties of solutions of (2.1.17)) and ([2.1.18])

in our analysis of s-derivatives of p and in later arguments.
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Lemma 2.2.11. Let X, be any one of Z/{,U, Uy, V,U, or Vii. Then X,(t) and X)(t) are

continuous functions of (t,s,r,e) € [0,00) x [0,00) X Z x [0, &].

Proof. First note that for all (r,e) € Z x [0, g¢], X,(t) = sin(t) or cos(t) for (¢, s) near (0,0).
Rewrite (2.1.17)) as the first order system z’ = Kz where

X 0 1
K=K.t) = : (2.2.3)
X' ~K(pu(t)) 0

8
I

and likewise for (2.1.18)). The functions K (pu(t)) and K,(t) are C for (t, s,r,¢) € [0, 00) x
[0,00) X Z x (0,e0]. So X,(t) is also C*° on this same set. The functions K,U’O(psmo(t))
and K, o(t) are piecewise C* in (¢,s,r) with a jump discontinuity across t = ¢,(s). So
Proposition implies that X, o(t) is also piecewise C* with a jump discontinuity in
second derivatives across ¢ = /,(s). Recall from Lemma that ps,. and p;,  are
continuous in € at € = 0. So KJJ,E 0 Psre — KT“70 0 psr0—0, Kgpe — Kgpo— 0in L}, ([0, 00))

locally uniformly in (s, ). Thus Proposition implies that x,,.(t) = =5,0(t) uniformly

on compact subsets of [0, 00) x [0,00) x Z. O

Next we analyze continuity of higher derivatives of p,, including s-derivatives. It will
suffice for our needs to restrict attention to s small, say s € [0, sq] for so > 0 small and

fixed (as above). Set R = (]0,00) x [0, s0]) \ {(0,0)}. For e = 0, the problem (2.2.2) falls

S

into the framework of Proposition [2.2.4] with the surface S given by p = r, so T |0 | =

-
(,(s) = arccos (£22). Proposition [2.2.5 shows that p,,o(t) and g}, (t) are C* functions of

COos s

(t,s,7) € R x Z and Proposition implies that ps,o(t) restricts to a C*° function of
(t,s,7) on each of (R xZ)N{0<t</{.(s)} and (R xZ)N{t > l.(s)}.

Proposition 2.2.12. Let k.l > 0. If k+1 < 2, then as € — 0, 8%9lp,,-(t) converges to
the corresponding function evaluated at € = 0, uniformly on compact subsets of R x L. If
k+1=3and k < 3, then 0. ps,.(t) converges to the corresponding function evaluated at
e = 0 uniformly on compact subsets of (R x )\ {t = {.(s)}.
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Proof. The convergence for k =0, 0 <[ < 2 is a specialization of Lemma [2.2.10, The stated

convergence of pii follows upon differentiating (2.1.9) with respect to t.

We claim that

A (p(1)Dup(t) = sin(s)Udl (1) (2.2.4)

on R x Z x [0,g9]. To see this, one verifies directly via the chain rule and the differential
equations satisfied by A and p that A, (p,(t))0sp,(t) is a solution (weak solution if e = 0)
to (2.1.17). (For e = 0, recall that py,o(t) and g, (t) are C' functions of (¢, s,7).) Now
(2.2.4) is easily checked directly for ¢ near 0 and s € [0, so|, where we have explicit formulas
for all involved quantities. So the two sides are solutions of the same differential equation

which agree for ¢t small; hence they are equal.

We use to reduce the study of 0p,(t) to the study of L{ﬂ(t). As for the factor
A, (pu(t)), Proposition and Lemma imply that A, (p.(t)) = Aro(psro(t)) and
(A,,(p# (t)))/ — (Ar,O(ps,T,O (t)))/ uniformly on compact subsets of R xZ. So we deduce from
(2.2.4) and Lemma that 0sp,(t) — Ospsro(t) and Osp),(t) — 0spl, o(t) uniformly on
compact subsets of R x Z. The differential equation implies that U, " — MJ&O”
uniformly on compact subsets of ([0,00) x [0,s0] x Z) \ {t = £,(s)}. Since (Al,(p“(t)))” —
(Ar,o(psmo(t))>” uniformly on compact subsets of (R x Z)\ {t = £.(s)}, it follows also that
0Pl (t) — Ospt,.o(t) uniformly on compact subsets of (R x Z)\ {t = {,(s)}.

It remains to analyze 92p,(t) and 92p),(t), which we will do by differentiating with

respect to s. Begin by considering GSL{)L'. The equation for Mﬂ reduces to a first order system

as in (2.2.3) with X = U)}. Define y := 8,2 — 22Kz on (0,00) x [0, s0] X Z x [0, 6]. We claim

o

first that when € > 0, y solves the equation

vy =Ky + f(t), where f(t) = — (a;/p>,IC:c. (2.2.5)

To see this, note that the chain rule implies p'0,K = (9sp)K’. Then (2.2.5)) follows by direct
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calculation:
y =02 — 38//)) Ka — ai/plC’x — aL/'O;Cw/
P P
=0s(Kz) + f(t) — (0:K)x — %sz (2.2.6)

Ko+ f(t) %K% — Ky + (1),
If ¢ = 0, the same calculation leads to the same conclusion, but with all derivatives inter-
preted in the sense of distributions in (s,t) near ¢t = ¢,.(s). In particular, for ¢ = 0, y is a weak
solution of (2.2.5)), so is continuous across ¢ = £,(s). The value y(¢) for ¢ small is indepen-
dent of r, e. Application of Proposition therefore shows that y,,. — ys,0 uniformly on

compact subsets of (0,00) X [0, so] x Z. The first component of y is QSU,U - %“‘,El/{ﬂ’ . We know

that L{,u’ — L{!’T,O’ uniformly on compact subsets of [0, 00) x [0, so] X Z by Lemma [2.2.11 So

AUl — 8sus”,r,o uniformly on compact subsets of (0, 00) x [0, so] x Z; hence uniformly on com-
pact subsets of [0, 00) X [0, so] X Z. The second component of y is 852/1,!’4— %S,Q(KH op)Z/{,U. It fol-
lows that asu,!l' — 832/18”77470’ uniformly on compact subsets of ((0,00) x [0, so] x Z) \{t = £,(s)};
hence uniformly on compact subsets of ([0,00) x [0,s0] X Z) \ {t = £.(s)}.

Since 8, (A, (pu(t))) = AL (pu(t))9spy(t) converges uniformly on compact subsets of R x T
to the corresponding expression evaluated at ¢ = 0, applying 0s to shows that 9%p
converges uniformly on compact subsets of R x Z as claimed. Finally, one verifies easily
via the chain rule and what we have already established that 9,0;(A,(p.(t))) converges
uniformly on compact subsets of {t # ¢,(s)}. So applying 950, to shows that 92y’
does too. ]

We remark that it is easily seen from the arguments above that when £+ = 3 and k < 3,
even though 0%9!p,(t) is not uniformly convergent near {t = ¢,(s)} as ¢ — 0, it is uniformly
bounded near this set.

Next consider behavior as t — oc.
Lemma 2.2.13. Fort large, p, can be written in the form

put) =t+ F(e ' s,r¢e) (2.2.7)
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for a function F satisfying F € C*([0,1] x [0, 0] X Z x (0,&0]) and F|.—g € C*°([0, 1] x
[07 50] X I)

Proof. It must be shown that the function F' defined by has the stated regularity
properties for ¢ large. The geodesic flow ¢; : S*M — S*M of an asymptotically hyperbolic
metric g was analyzed in [GGST]. The proof of Lemma 2.7 of [GGS™| shows that if g is
smooth and non-trapping and u is a defining function for infinity, then for ¢ > 0 one can write
uw(m(pe(2))) = e PE(e™, z) for a smooth positive function E on [0, 1] x S*M. Here 7 : S*M —
M is the projection. Note that under the change of variable u = e™”, for A of the form ([2.1.7))
the metric g becomes g = ¢+*~ = u~?(du® + (a4 + a_u?)?g) in a neighborhood U of u = 0.
First let ay be fixed and set Z:{/a%af = {2 € Sjaya. M : m(pi(2)) € U for all t > 0}. It follows
that p(m(pe(2))) = —logu(m(pi(2))) = t+P(e!, z) where P = —log E € C*°([0, 1] ><Z/~Ia+7a7).
To incorporate the parameters a., let A denote the set of (a,,a_) which arise as (r, ) varies
over Z x [0,e0], set S := {(as,a_,z) : (ay,a_) € A,z € Z:{/a+7a_} C R? x T*M, and view P
as defined on [0, 1] x §. The argument of the proof of Lemma 2.7 of [GGS™| carries over to
this setting and establishes that P is smooth on [0, 1] x S.

Fix T large; for t > T we have
F(e " s,re) = P(e_(t_T), ay(r,e),a_(r,e), or(zs)) (2.2.8)

where zg is the point (independent of (r,¢)) in T*M corresponding to the initial data for
7u and ¢ denotes the geodesic flow of g,.. Now ay, a_ are C* functions of r, € for € > 0,
and are C* functions of » when € = 0. Likewise, v,(t) is C* in all variables for € > 0, and

Proposition implies that v, ,.0(t) is C* in (s, 7, t) for ¢ large. The conclusion follows. [

It is easily verified that for A = a e’ + a_e™”, one has
K(p) = —1+e%G(e ™, a,,a.) (2.2.9)

with G € C*([0,1] x A), where, as in the proof of Lemma [2.2.13] A is the set of all
(ay,a_) € R? which arise for (r,e) € Z x [0,g0]. Substituting (2.2.7), (2.2.9) into (2.1.19)
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and recalling that K ,U(pu(t)) is identically —1 for ¢ large show that for ¢ large,

Kopo(t)=—1+e"H(e ™" s,1,¢) (2.2.10)

where
H(e™, s,re) = (20,F — e '(8,F)?) e’Qp“(t)G(e’Q’)”(t),aAr, e),a_(r,e)). (2.2.11)
Here v = e~ is the first argument of F' and 9, F is evaluated at (e”*,s,7,¢). The function

H clearly satisfies the same conditions that F' satisfied in Lemma [2.2.13} H € C>([0,1] x
[0, s0] X Z x (0,0]) and Hl|.—o € C*([0,1] x [0, so] X Z).

Problem 29, p. 104 of [CL55| shows that there is a unique solution Y, (t) to for
t large for which lim; . e'Y(t) = 1. Moreover, it is not hard to show that the reasoning
in the outlined solution of the cited problem in [CL55] shows that Y, (t) has the same
regularity in the parameters as K .: ¥, € C([T,00) x [0,s0] x Z x (0,&0]) and V., o €
C>([T, 00) x [0, s9] x T) for some large T. For € > 0, Y extends to t > 0 as a solution with
YV € C%([0,00) x [0, s0] x T x (0,£0]). For € = 0 we can apply Proposition backwards
in time with initial data at ¢t = T to conclude that ys{,,
of , which is C* and piecewise C™ in (¢, s,7), with a jump in second derivatives across
t=10.(s).

Since Kﬂ(pu(t)) is identically —1 for ¢ large uniformly for (s,7,e) € [0, s0] x Z x [0, &,

o extends to ¢ > 0 as a weak solution

there is a unique solution (weak solution if ¢ = 0) Ll(t) to (2.1.17) which equals e™* for ¢

large. This solution y}l extends backwards to [0, 00) with the same regularity properties as
Vi(t).

Proposition 2.2.14. Let 0 < 1 < 1, 0 < k < 2 and let ), be either y,ﬂ or yj. As
e — 0, %0V, (t) = 0%0L Y, 0(t) uniformly on compact subsets of [0,00) x [0, sg] x Z for
0 < k+1<1, and uniformly on compact subsets of ([0,00) x [0,s0] X Z) \ {t = £,(s)} for
2<k+1<3.

Proof. First we claim that for 0 < k <2, 0 <[ < 1, and for fixed large T', 9*0' Y, ,..(t) —

OOV 0(t) as e — 0 uniformly on [T, 00) x [0, so] x Z. This is clear for V) since ,U(t) =et
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for ¢ large. For y; this follows from the same argument in [CL55] proving the existence of
yj if we establish that the function H in (2.2.10)) satisfies that for 0 < k£ <2, 0<1 <1 and
t large, 8§8§(H(6_t, s, T, 5)) is uniformly bounded and continuous in € up to ¢ = 0. Recall
that F'is given by . Since the equation for p decouples in the equations for the
geodesic flow for g, ., it is not hard to see that the argument of Lemma 2.7 of [GGST]| cited in
the proof of Lemma applies directly to the p equation so that in (2.2.8)), p7(zs) (which
amounts to (p, o', 0,0')), can be replaced by only (p,.(T), p},(T)) on the right hand side. Since

P and G are smooth, the uniform boundedness and continuity in € of 8§8§(H (e7t s, 5))

for ¢ large follow upon using (2.2.8) to express F' in terms of P in (2.2.11)), successively

differentiating (2.2.11f), applying the chain rule, and recalling Proposition [2.2.12]
Now we use the same sort of argument as in Proposition [2.2.12], but backwards in time.

We write the rest of the proof for YV, = yj; the argument for y,ﬂ is similar. Reduce ([2.1.18])

to a first order system x’ = Kx, where

0 1
T = Y Ksre(t) =

yl _KS,T,E(t) O

with K, . defined by (2.1.19)). Our previous results imply that K, . — Ko in L'([0,7]),
so Proposition applied backwards in time with initial condition at ¢t = T shows that
Tsre(t) = Ts,0(t) uniformly on [0,77] x [0, so] X Z. So the convergence also holds uniformly

on [0,00) x [0, sg] x Z. This proves the result for k =0,0 <[ < 1.

Define y := 0,z — 8;/’)le as in the proof of Proposition [2.2.12, This time the chain rule
gives
OsPier — K + k() A (2.2.12)
p, — Us Rsre 9 el
where
/ / 1" | is 00
k=2(p"0sp" = (Op)p") (Kl op—K-0p), A= L

So the calculation analogous to (2.2.6) via the chain rule shows that

y' =Ky + f(t) (2.2.13)
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with

f=- (8;/ ),ICx — kAz, (2.2.14)
and again the equation holds weakly across ¢ = £,.(s) when € = 0. Since Ks,. — K50 — 0
and fs, — fsr0 — 0in L} ((0,00)) as € — 0, Proposition implies that ys,. — Ysro0
uniformly on compact subsets of (0,00) x [0, s09] X Z. Consideration of the first component
shows that 0s)s,c(t) — 0sVs,o(t) uniformly on compact subsets of (0,00) x [0,s0] x Z
and consideration of the second component shows that 9,);, .(t) — 0,V . o(t) uniformly on
compact subsets of ((0,00) x [0, s0] x Z) \ {t = £.(s)}. Since K, (t) =1 for ¢ small uniformly
in (s,r¢), the differential equation implies that the uniform convergence extends
down to t = 0. This proves the result for k =1,0 <1 < 1.

For k = 2, set

z =05y —

/
a;/'OICy+ <8;f’> a;/p/Cer a;/p/iAm. (2.2.15)
We claim that 2’ = Kz + h(t), where h(t) = hs,..(t) is given by

h(t) = — (63/ ) ailplCQ:v— ai/mex%-lC [(85/ ) 33//)4 — (83, ) Ky
o) e p o) e p

—dy - PP - 2 (38,[’ ) Ka — (a$p> Ko — wAD
p

v v

85 / / //
=2[(0, = 2700 (0.6 — (@) (K0 p — K& p) Ax

+2 (agp) kAx + (95,/)RAx,
0

/

1
and we have set B = . Given the claim, the proof is concluded by the same sort

00
of reasoning as above. Note that our previous results imply that hy,. — hs,o uniformly

on compact subsets of ((0,00) x [0, 0] x Z) \ {t = £,(s)}, and hs.. is uniformly bounded
on compact subsets of (0,00) x [0,50] X Z. So K and h converge in L, .((0,00)). Thus
Proposition 2.2.7)shows that z,,. — 2, uniformly on compact subsets of (0, 00) x [0, so] X Z.

According to (2.2.15)), z — 0,y is the sum of three terms, each of which converges uniformly

on compact subsets of ((0,00) x [0, s0] x Z) \ {t = £,(s)}. So O,y also converges uniformly
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on compact subsets of ((0,00) x [0,s0] x Z) \ {t = £:(s)}. And O,y — 9%z = —0, <%S,QICJJ>
converges uniformly on compact subsets of ((0,00) x [0, 0] x Z) \ {t = £,(s)}, so 0z does
too. Again the differential equation implies that the uniform convergence extends
tot=0.

The proof that 2’ = Kz+h(t) is a calculation similar to ([2.2.6), but involving more
terms. Differentiate with respect to t, expand the differentiations using the Leibnitz
rule, substitute for the two occurrences of 3’ and for the two occurrences of
%IC’ on the right-hand side, and collect terms. One obtains

¢ =k (0= 2ney) ouf = (%) iy - way - 2

+ (ai”) (0,C)z +2 (ai”) KAz + K Kai”) 85,”4
p p ) p

Os 0s
+ —/pli,AZE + —/pﬁAx'.
p p

Now substitute

Oy — as/ple =z — <3slp) 8S/ple - 8s/pﬁAa7
o) op p

from ([2.2.15)) in the first term on the right-hand side, expand 0, f by differentiating (2.2.14]),

and compare terms to obtain
2 — Kz —h(t)

= (%~ o)+ 2[(0. - ZLa) ($0. ~ 0.1 (K1 = K2 0]

Finally, observe that the right-hand side vanishes. O]

It is easily checked that for po = (0,7/4,0) the decaying solution y,'lo = Vo = Yy

V2e ™t cos(t), 0<t<m/4
is given by Vo r/a0(t) = . Since Y,,(0) > 0, it follows from

et t>m/4
continuity that 3&!(0) > 0, y;(o) > 0 for all p sufficiently close to py. For such p we
define Wﬂ(t) = ,ﬂ(t)/yﬂ(O) and Wi (t) = Y (t)/Y,(0) so that W,ljl,, W are the decaying
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solutions satisfying W,(0) = 1. These W, inherit the continuity properties of ), stated in

Proposition 2.2.14]

In the sequel we will need the following lemma.

Lemma 2.2.15. There exists T > 0 so that Kﬂ(pu(t)) < 0 and K,(t) <0 for (t,s,r,e) €
[T, 00) x [0,00) x Z x [0, &p].

Proof. Since p,(t) — oo as t — oo uniformly for u = (s,r,e) € [0,00) x Z x [0,&0] and
K, (t) is a convex combination of Kﬂ(pﬂ(t)) and K- (pu(t)), it suffices to show that there
exists py independent of v = (r,e) € Z x [0,&0] so that K,U(p) < 0 and KX (p) < 0 for
p > po. For K this is clear since K,U(p) = —1 for p > r + . Equation (2.1.7) and the
continuity of a4 in (r,e) show that we can choose py independent of v € Z x [0,¢0] so that
Al (po) > 1. The differential equation for A, implies that A/ (p) > Al (po) > 1 for p > pq.
Then K (p) = A;%(p)(1 — (A (p))?) < 0 as desired. O

v

Lemma 2.2.16. Wﬂ(t) >0 and Wj(t) > 0 for allt > 0 and for all u sufficiently near py.

Proof. We suppress the superscripts |, *; the argument is the same for both. Recall the
solution V), with initial conditions V,(0) = 0, V,(0) = 1. The Wronskian W,V =W,V = 1.
We will show below that V,(t) > 0 for all ¢ > 0. Given this, it follows that W, (t) < 0 at
every t for which W, (t) = 0. The vanishing of W, (t) for any ¢ is therefore inconsistent with
the fact that W, is asymptotic to a positive multiple of e~* as t — oco.

Now we show that V,(t) > 0 for all ¢ > 0 for u sufficiently close to pg. V,, is identified in
(2.1.21) (take {(s) = m/4) and clearly is positive on (0,00). Choose T as in Lemma [2.2.15]
Continuity (from Lemma [2.2.11)) and the fact that V,(t) = sin(t) for ¢ small imply that there
is a neighborhood of yg for which V, > 0 and V), > 0 on (0,7]. The differential equation
(2.1.17) or (2.1.18)) implies that V,, > 0 on [T, 00) as desired. O

Proposition 2.2.17. Let W,(t) be either wh(t) or Wi (t). Then 8S(WL(O))‘SZO =0 and
there exist a neighborhood U of (1/4,0) and o > 0 such that if (r,e) € U and 0 < s < 0,
then 92(W,,(0)) < 0.
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Proof. For the first statement we actually show as(Wu(t))‘szo =0 for all ¢. It is clear from
that 83/)‘5:0 = sp”SZO = 0. In case W, = Wj, if € > 0 differentiation of
shows that 0,W,|s—0 is also a solution of . This holds in the weak sense when ¢ =0
by the reasoning in the proof of Proposition . Since 0;W,,|s—o vanishes as ¢t — oo, it
must be a multiple of W,. Since 9, W, (0)|s—o = 0 and W,(0) = 1, the multiple must be zero.
The same argument applies to W, = W,U upon differentiation of (2.1.17).

For the second statement, it suffices to show that 97 (W, _ 14,0(0))[s=0 < 0 by Proposi-

tion [2.2.14] Again consider first W = W' and suppress writing + on all quantities below.

For s small we can write Wy := W, /40 as a linear combination of the solutions U and V

given by (2.1.24)), (2.1.25)). By first considering the asymptotics as ¢ — oo and then the value

at t = 0, one finds that for s > 0 small
Wy = Us — csc(s) cot(Ox($)) Vs

where O is given by (2.1.26). Hence W.(0) = — csc(s) cot(Ou(s)). Evaluation of
gives O (0) = 7/2 and shows that 9,0, = —s?/2 + O(s®). Thus O (s) = m/2 —
$3/6 4+ O(s*) so that cot(O(s)) = s*/6 + O(s*). This gives I?*W/(0)|s=0 = —1/3 as desired.
For the second case W = W/ write W, as a linear combination of the solutions and
and find, also using ,

W, — U — 1-— \/COS(QS)Vm
1+ y/cos(2s)

so that W.(0) = — 12V es®) his time there are no indeterminants and one finds without
144/ cos(2s)
difficulty 9°W.(0)]s=0 = —1. O

We will use the next proposition to rule out interior conjugate points for s near 0.

Proposition 2.2.18. Let f € L'(R) be an even function and suppose W is a C' weak

solution to

W' (t) + (=14 f(t))W(t) =0 (2.2.16)
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with W(t) > 0 fort > 0 and lim;_,o W(t) = 0. There are no nontrivial solutions of (2.2.16))
vanishing at two distinct values of t if and only if W'(0) < 0.

Proof. First assume that W (0) < 0. By the Sturm Separation Theorem, all solutions of
(2.2.16) vanish at most once if there exists one solution of that never vanishes, so
it is enough to show that W(t) # 0 for all t. If W (0) = 0 then W(|t|) is a non-vanishing
C" solution of (2.2.16), so suppose W'(0) < 0 and let ¢, < 0 be such that W(to) = 0 for the
sake of contradiction. Define V : R — R by V(t) = W(t) — W(—t). Then V satisfies
by evenness of f. Since V(—ty) > 0, V(0) = 0 and V'(0) < 0, there exists 0 < t; < —t
with V(¢1) = 0. This contradicts the Sturm Separation Theorem, since YW and V are linearly
independent and W > 0 on [0, —t4].

For the converse, suppose that no solutions of vanish twice and W'(0) > 0. We
can normalize to assume W(0) = 1. Let U denote the solution of with U4(0) =1
and U’(0) = 0, which is even by evenness of f. We claim that ¢ vanishes for some positive
t, hence twice. Suppose this is not the case, i.e. Y > 0 on R. We have 0 < U(t) < W(t)
for all ¢ > 0; otherwise the function W — U would vanish at least twice on [0,00). We
conclude that lim;_,. U(t) = 0 and hence all solutions of decay as t — oo. This is
a contradiction: Problem 29 in p. 104 of [CL55] implies that there are solutions of

which grow exponentially as ¢t — oco. O]

Finally we can prove Propositions [2.2.1], [2.2.2| and [2.2.3]

Proof of Proposition|2.2.1]. It is easy to check that for g,, the decaying solution on radial
geodesics is given for ¢ > 0 by
e~ (cos(t —r) —sin(t — r)) t<r
Yoro(t) = )
et t>r
(Since y(')"m = Vi, we suppress the 1) So Y, 0(0) = e (sin(r) — cos(r)). If r; <
m/4 < 1o, then Y, ¢(0) < 0 < )y, 0(0) and we can choose r; and 7y as close to 7/4 as

we like. Continuity (from Proposition [2.2.14)) implies that if € is small enough, then also
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Vo c(0) <0< g,,(0). The mean value theorem gives the existence of r, ri < r < 1y,
with ),.(0) = 0. O

Proof of Proposition[2.2.3, Choose o and U so that the conclusion 9(W;,(0)) < 0 for (r,¢) €
U and 0 < s < o of Proposition [2.2.17] holds for both WL' and Wj The hypothesis

(‘J‘,m, (0) = 0 certainly implies that W&m’ (0) = 0, and also we have Wy,..'(0) = 0 since
W(‘J‘ = Wg,... Combining this with d,(W,,.(0)) ‘s:O = 0, it follows that W, (0) < 0 for

0 < s < o for both WL' and Wj Proposition [2.2.18| then implies that along any geodesic

1€

Yu C Xy with 0 < s < o, no nontrivial normal Jacobi field which is either tangent to X,
or normal to X, can vanish twice. Proposition m shows that no nontrivial normal Jacobi
field can vanish twice, just as in the proof for grs0. Hence g,. has no interior conjugate

points on a geodesic 7, for which 0 < s <o. O]

Proof of Proposition[2.2.3. First we claim that there exists S > 0 so that for any (r,e) €
Z x [0,&0], gr- has no interior conjugate points on any geodesic v;,. with s > S. To see
this, recall that we showed in the proof of Lemma that there is py > 0 independent
of v € T x [0,g0] so that Kﬂ(p) < 0 and KX(p) < 0 for p > po. Since for any (r,e),
s = mineg ps (), we know that if s > po, then p,(t) > po for all ¢ € R. It follows that
Kﬂ(p#(t)) < 0and K,(t) <0 fort € Rsolong as s > py and (r,e) € T x [0,50]. Since the
equation Y” = 0 has a nonvanishing solution on R, the Sturm Comparison Theorem implies
that if s > pg and (r,e) € Z x [0, &¢], then no nontrivial solution of or can
vanish twice. This gives the claim with S = py upon recalling Proposition [2.1.4]

We will now show that given any o > 0, there is a neighborhood V' of (7 /4,0) such
that L[ﬂ (t) and U (t) are positive for all t € R for (r,e) € V and ¢ < s < S, thus excluding

nontrivial solutions vanishing twice by the Sturm Separation Theorem. It suffices to consider

t > 0 since Z/{,U(t) and U (t) are even. Choose T as in Lemma [2.2.15. We showed in the

proofs of Lemmas [2.1.6/ and [2.1.7| that Z/{Jﬂr /a0(t) and U+ /a0(t) are everywhere positive for

s,

any s > 0, and that analysis also shows that these solutions grow exponentially as ¢ — oo

uniformly for s € [0, S]. Increasing T if necessary, continuity (from Lemma [2.2.11]) implies
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that there is a neighborhood V' of (7/4,0) and ¢ > 0 so that Z/I,U(t) > ¢, Uy (t) > c for
0<t<T,(re) e Vand0<s <S5, and also LI)L"(T) >0, U,/ (T) > 0 for (r,e) € V and
o < s < S. The differential equations satisfied by L{ﬂ and L{ML then imply that the solutions

stay positive for ¢t > T m
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Chapter 3

STABILITY ESTIMATES FOR THE X-RAY TRANSFORM ON
SIMPLE AH MANIFOLDS

In this chapter we show Theorem (3 a stability estimate for the normal operator of the
X-ray transform on a simple AH manifold, using the 0-pseudodifferential calculus of Mazzeo
and Melrose ([MMS87]). The chapter is organized as follows: in Section we provide
some background on the geodesic flow and the X-ray transform on AH manifolds following
[GGST|. Section contains background material on the 0-geometry and 0-calculus that
will be needed later. In Section we prove a lemma related to the exponential map on a
simple AH manifold and use it to analyze the distance function and show that the normal
operator N, is an elliptic pseudodifferential operator in the O-calculus. In Section we
identify the model operator of A, which is invertible by the work of Berenstein and Casadio
Tarabusi [BC91|. Finally, in Section we construct a parametrix for N, use it to show
boundary regularity for elements in its nullspace, and prove Theorem Throughout the
chapter we use Einstein notation, with Latin indices running from 0 to n and Greek indices

from 1 to n.

3.1 Geodesic Flow of AH Manifolds and the X-Ray Transform

As already discussed briefly in the Introduction, the behavior of the geodesic flow on an AH
manifold is more complicated compared to the case of a compact manifold with boundary.
The orbits of the geodesic flow in the cotangent bundle of a non-trapping compact manifold
with boundary X can be parametrized using the “incoming boundary”, 0_SX := {(z,¢) €
S*X 1z € 0X and £(v) < 0}, where v stands for the outward pointing normal. An analogous

way of parametrizing the geodesic flow in the AH setting was formulated in [GGS™| and we
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recall it in this section. Most of this section is based on material there.

Let (M "1 g) be a non-trapping AH manifold, with M being the interior of a compact
manifold with boundary M (note that the notation of this chapter differs from the previous
ones). Recall from the Introduction that a conformal representative h in the conformal
infinity of ¢ determines a boundary defining function x for OM, called geodesic boundary

defining function associated to h, such that z2¢g = h and |dz|,2, = 1 near OM. Then

TOM
via the flow of its gradient, x induces a product decomposition of a collar neighborhood of

OM as [0,¢), x OM, in terms of which the metric is written in normal form near M

B dz? + h,

o (3.1.1)

9

where h, is a smooth 1-parameter family of metrics on OM satisfying hy = h. Choosing

da?+(ha) o pdy®dy®
2 '

coordinates y® for M near a boundary point we can write g =

The space of geodesics on M can be parametrized by introducing an appropriate extension
of the unit cosphere bundle S*M = {(z,&) € T*M : €]y = 1} down to OM. Recall that
Melrose’s b-cotangent bundle (see [Mel93]) is a smooth bundle over M with natural projection
7, canonically isomorphic with T*M over M and trivialized locally near the boundary by
(dz/x,dy, ... dy"). Thus via the identification T*M <> (*T*M)e, S*M can be viewed as a
subset of ("I M)° given near OM by {(z,& = (% + nody”) € (*T*M)° : gt z?|nli. = 1}.
Hence the closure of S*M in *T*M is a smooth embedded non-compact submanifold of
bT*M with disconnected boundary; we denote this submanifold by S*M. Moreover, the
Hamiltonian vector field X on S*M associated with the metric Lagrangian Ly =|£]2/2 can
be written as X = 22X, where X extends to be smooth on S*M and transversal to its

boundary: in coordinates it takes the form
v _ 7 ap 2 L 2 1 2
X = (0, + xhy"na0ys — (w!n\hm + 59‘7 aﬂf’”‘hm)(% - 595824‘*’77’@8%-

The flow of X is incomplete and, since X and X are related by multiplication by a scalar
function, their integrals curves in S “M agree up to reparametrization. Orbits of the flow of

X can be parametrized by their “incoming” covector, that is, each orbit can be identified
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with its intersection with the connected component of 95* M on which X is inward pointing.
This component, often referred to as the incoming boundary, will be denoted by 0_S5*M and
it can be written as 0_S*M = {(z,& = (% +n,dy®) € *T*M : z = 0, { = 1}. The definition
of the outcoming boundary 0,5*M is analogous, except ( = —1 there. Both of those sets
are invariant subsets of *T* M ‘ on» ndependent of the choice of coordinates and of g. Given
a choice of conformal representative (which induces a geodesic boundary defining function),
0.5*M can be identified with T*0M via Fz~'dx + n%dy® < nady®.

The unit cosphere bundle S*M has a natural measure d\ called the Liouville measure,
induced by the restriction to S*M of the 2n+1 form A = aA (da)™, with « the tautological 1-
form on T*M. This measure decomposes as d\ = dVydu,, where du, is the measure induced
by ¢g on each fiber of S*M and dV, is the Riemannian volume density on M. As shown
in [GGS*] (Lemma 2.2), zd) extends from S*M to a smooth measure on S*M. Moreover,
tx A extends to a smooth 2n-form on S*M, which restricts to a volume form on 9_S*M;
the latter agrees with the canonical volume form on T*0M (induced by the symplectic form
there) under the identification described above. We will denote the corresponding measure
on 0_S*M by dAg.

Now let f € C°°(S*M) and ¢; be the flow of the Hamiltonian vector field X on S*M,

which is complete. We define the X-ray transform
1728 = [ flalz o)t e C(531) (312

where the space C(S*M) consists of smooth functions on S*M constant along the orbits
of X. Since C*°(M) can be naturally viewed as a subset of C°°(S*M) via pullback,
reduces to the usual X-ray transform on C°(M) viewed as an element of C2(S*M). Now as
we mentioned before the vector field X = 7' X extends to be smooth on S* M and transverse
to 0S*M . This implies that any u € C}?(S*]\;[) extends smoothly to S*M down to 04.5*M:
by transversality, the flow of X running forward and backward can be used to identify a
neighborhood of any point in 0+5*M respectively with a subset of [0,¢); X 0:5*M; then in

terms of this decomposition v is independent of ¢ and thus extends smoothly down to ¢ = 0.
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Therefore the restriction u‘ ousem € C*(0+5*M) is well defined; conversely, any function in
C>®(0+5*M) can be extended off of 9.S*M to be constant along the orbits of X in S*M,
and hence also those of X in S*M, thus yielding an element of C(S*M). This discussion

implies that we have an isomorphism
CL(S*M) — C=(d_S*M) (3.1.3)

and both spaces are also isomorphic to C52(S*M) = C*(5*M) N ker X. Note that due to
these facts can also be regarded as an element of C2(S*M), and of C*°(9_S*M)
upon restricting. In fact, the discussion on short geodesics in [GGS™| Section 2.2] indicates
that the range of I is smaller than C'2(S*M) whenever acting on C(S*M) (or C=(M)).
Indeed, it follows from there that given any compact set K C .S M there exists a compact set
K' C 0_S*M such that any integral curve of X starting at (2,£) € K’ does not intersect K.
Moreover, given a compact K’ C 0_S*M, the union of all integral curves of X starting at K’
forms a compact subset of $*M. This allows us to conclude that I : C°°(S* M) — CSOY(S*M),
where CZOY(S*M) = C>®(S*M) Nker(X).

The X-ray transform can be expressed using the flow @, of X. As already mentioned, 3.
is not complete and it is a reparametrization of the flow ¢; of X in S “M: for (2,€) € S*M
one has ,(2,€) = ¢i(z,€) with ¢(7, (2,€)) = [ ==2—. Moreover, for each (z,§) € S*M

0P, (2,€)

there exist finite 74.(2,§) > 0 such that ¥, (¢ (2,€) € 05"M. Thus for f € C>(S* M)
(or f € C=(M)) (3.1.2) can be rewritten as

T+(2,€) dr
1f(z6) = /0 f(@(2.6)

- 007 *M .
rop,(2,€) < CC’X(S )

One can identify a formal adjoint I* of I on appropriate function spaces using suitably

chosen inner products. By |[GGS™, Lemma 3.6], there is an analog of Santalé’s formula:
fdA :/ Ifd)g, feC(S*M). (3.1.4)
S*M d_S*M

Note that this implies that [ also extends continuously as an operator I : Ll(S*M ;dN\) —
LY (0_S*M;d\y) (where the isomorphism (3.1.3)) is used implicitly). We define an inner
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product on C’ZOY(S*M): for uy,uy € C’ZOY(S*M) let

(ur,u9)p = / uy Uy A,
O_S*M

where on the right hand side uy, us are restricted to 0_S*M; we will generally not write this
restriction explicitly. Now consider the X-ray transform viewed as an operator I : C°(M) —

C’;’%(S*M) and define the operator I* : C?Y(S*M) — C™(M) by
I'u(z) = / Cudpy,  u € CIF(STM).
Sx M '
Considering real valued functions f € C°°(M) and u € C2(S* M), we use (3.1.4) to compute

<u,]f)3:/ u]fd)\az/ I(uf)ds
d_S*M d_S*M
:/ ufd) = / (/ Cwdpg) F(2)AV(2) = (I, fpzaray. (3:15)
S*M M NJSEn
This computation implies that with the stated inner products and function spaces [* is a
formal adjoint for I.

We will later need to consider the X-ray transform and the normal operator N, = I*]
acting on functions that live in weighted L? spaces. The target space of I will also have to
be an appropriately weighted L? space and as will become apparent soon it is more natural
for this discussion to view [ f as a function on 0_S5*M. Restriction to 0_S*M induces an
isometry between C’ZOY(S*M) and C2°(0_S*M) with respect to the the inner product (-, -)g

and the L?(0_S*M;d)\y) inner product respectively, so (8.1.5]) can also be rewritten as
<U;, If>L2(875*M;d)\a) = <I*u,f>L2(M;dVg), f E CSO(M), u G ny(S*M) (316)

By |[GGS', Lemma 3.8] I extends to a bounded operator I : |logz|#L2(S*M:d\) —
L*(0_S*M;d)y) provided 8 > 1/2. This also implies that I : |logz|PL*(M;dV,) —
L*(0_S*M;d)s) is bounded. Hence by I* extends to a bounded operator I* :
L2(0_S*M;dXy) — |logx|PL*(M;dV,) for B > 1/2 (where the action of I* on a func-

tion u € L*(0_S*M;d)\y) is understood as an action on the extension of u to S*M so that
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it is constant along the orbits of X). Thus (3.1.6)) is valid for v € L?(0_S*M:;d)\y) and
f € |logz|7PL?(M;dV,). Moreover, the normal operator is bounded

N, = I'I : |logz| PL*(M; dV,) — |log z|°L*(M,dV,), £ >1/2.

Using the microlocal properties of A, that we prove in Section and Lemma below,
we will obtain extensions of I and I*I to larger spaces of functions, in Corollary [3.3.5]
The following lemma relates a weighted L? norm of functions in CZ(S*M) with a

weighted L? norm of their restriction to 9_S*M. We set (n), := /1 + |n|2.

Lemma 3.1.1. Let § < 0. Then there exists a C = Cs > 0 such that if u € CF(S*M) N
$6L2(S*M; d\) one has, using the isomorphism (3.1.3)),

1
5”““@)1;%2(3,5*1\4;4,\3) < HUHxém(S*M;dx) < CHuH@);‘SL?(a,S*M;dka) < 00.

Proof. First note that C3(S*M) N 2OL2(S*M:d)\) # 0 for § < 0: indeed, let f € C(M),
implying that u = I f € C°(S*M) C C2(S*M). Since xdX is a smooth measure on S*M,
one sees that x°C(S*M) C L7,.(S*M;d)), implying the claim. Now by (3.1.4), since
u € C¥(S*M), we have

”uHi‘SL%S*]\Z;d)\) = / ) |x5u‘2d)\:/ [(’u‘2$726)d)\8
S* M O_S*M
= / ‘(I($_25))1/2u‘2d)\6, (317)
0_S*M

The second equality is valid because |z0u|? € LY(S*M;d)\). Let (z,€) = ((0,y), % +
Nady®) € 0_S*M with ||, > Cy > 0. If Cp is sufficiently large, then [GGS'| Lemma 2.8]
implics that 7 0, (2,€) = 1l sin(a(ee (1)) + Onl;), where a(eg : [0.7,(2,)] - [0,7]
is a family of diffeomorphisms depending smoothly on (z,&) € 0_S*M, with O;a.¢)(7) =
[l +O(1), and 74 (2,€) = [n|~'7 + O(|n|;?) as [n|n — oo. So

I = [

0

T+(2,€) 195

+(Zv£) —
7 03, (2, )dr :/0 (Inly,* sin(agg (7)) +O(nl, )~ dr
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o] o\ —1-26 ds
= n|,, ' sin(s) + O(|n —_
[l sins) + 00l
"o L1y —1-20 ds
ol [ (sin(s) + Ol )"
e I TR
Since [ (sin(s) + O(\n[,:l))_l_% W = a; + O(|n];") with as > 0 for § < 0, we find
h

that I(x~%)((2,€)) = as|n|?? + O(|n|,; ™) as |n|n — co. On the other hand, if |n|, < Co,

I(z=%) is uniformly bounded above and below by positive constants depending on ¢ and Cj.

Thus (3.1.7) is comparable to H<77>2U”L2(875*M;d>\a) = HU|’<7;>;5L2(8,S*M;¢1A3)' N

3.2 The 0-Geometry and 0-Pseudodifferential Calculus

In this section we provide some of the background we will need later in the microlocal
analysis of the operator N,. As already mentioned, we will use the framework of the 0-
pseudodifferential calculus of Mazzeo and Melrose to construct a left inverse for N, up
to compact error, which together with injectivity will lead to a stability estimate. O0-
pseudodifferential operators acting on functions defined on a compact manifold with bound-
ary M have Schwartz kernels that are conveniently characterized and analyzed in the 0-
stretched product of Mazzeo and Melrose. This is a space obtained from M? by blowing
up the boundary diagonal. In this section we define the operators of interest and describe

their properties that we will need later. The main sources are [MM87] and [Maz91], also see

[EMMO1].

Half Densities, the 0-and b-Tangent and Cotangent Bundles

Since half densities will be used later in this section, we discuss them here first. Recall that
given a k-dimensional real vector space V and a € R one can form a 1-dimensional complex
vector space Q%(V) consisting of maps d, : A¥(V)\ {0} — C, called a-densities, with the
property that for A € R\ {0} and w € A¥(V) \ {0} one has d,(A\w) = |A|*d,(w). Using

the functor V' — Q%(V) one can construct a line bundle on a manifold X, possibly with
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boundary or with cornerd]|, whose fiber at z is Q%(7,X). We denote this bundle by Q%(X)
and denote its smooth sections by C*(X;Q*). We will be mostly interested in the case
a = 1/2 (half density bundles), though occasionally we will also use density bundles with
a = 1; in that case we will not write a superscript and instead write {2(X), so there will be
no confusion with the space of 1-forms, which will not be used anywhere in the text anyway.

For the rest of this discussion we fix a = 1/2. In terms of coordinates (z7), QY/2(X) is locally

trivialized by |dz! A --- A dz"|/? = |dz|'/2. Now for X a smooth manifold with corners
and an integer k let Q}g(X ) be the smooth complex line bundle over X whose smooth

/2

local sections are of the form [] i a:;k v, where x; are defining functions for the boundary

hypersurfaces of X and v € C*®(X;Q2). Note that if M is the compactification of an AH

manifold (M™, g) then Q‘l{ﬁrl}

by dV;"?. From now on we denote Qé/Z(X) = Q~1[1/12+1}

(M) is the geometric half density bundle, globally trivialized
(X), where n+1 is the dimension of the
AH manifold of interest and for X any of the manifolds with corners we will be examining.
The reason for this notation is that the fiber of Qf/*(M) at z € M is QV/2(°T, M), where °T' M
is the smooth bundle over M canonically isomorphic to T'M over M and trivialized locally
near OM by x0,,x0, ..., 20,x. Here (z,y',...,y") are coordinates with z a boundary
defining function (the smooth sections of ®T'M are spanned over C°°(M) by the 0-vector
fields V, discussed in the Introduction). The dual bundle of °T'M is denoted by °T*M and
is trivialized locally near OM by dx/x,dy"/z, ..., dy"/x. Since we will also briefly make use
of elements of the b-geometry, we collect them here: for X?¢ a manifold with corners we let

02 (X) = Q}{?(X) Note that the fiber at z € X of Q/*(M) is QY2(*T,X), where *TX
is the bundle whose local sections are smooth vector fields tangent to all boundary faces.
That is, if (x!,... 2% y!, ..., y?*) are coordinates with 27 defining functions for boundary
hypersurfaces then *7X is locally trivialized by z'0,1,...,2%0,, Oy, ..., 0pa—rk. Its dual is
bT* X, trivialized by da'/xt, ... da* /2% dy', ..., dy®" (recall that this bundle was already

introduced in the special case M = X). For x € {0),b,0} we will write C"OO(X;Qi/Z) for

'We follow Melrose’s convention of assuming that manifolds with corners have embedded boundary
hypersurfaces; a detailed treatment of analysis on such spaces can be found in [Mel].
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smooth sections of €2}/ ?(X) whose derivatives of all orders vanish on X and C~>°(X; o/ %) =

(C’OO(X; Qiﬂ))’. We will also write V, for the space of smooth sections of *T'X.

Conormal and Polyhomogeneous Conormal Distributions

It will be important later to have spaces of functions whose regularity at the boundary re-
mains steady under the action of vector fields tangent to the boundary, and more strongly,
ones that admit asymptotic expansions at the boundary. Let X be a manifold with corners,
with boundary hypersurfaces numbered as X;, 7 = 1...,J, and corresponding boundary
defining functions 7. For s = (s1,...,s5) € C’ one defines the space of conormal distribu-
tions of order s by A3(X) ={ue C~®°(X): 27 5Ly--- Lyu € L®°(X),0 >0 and L; € V(X)}
(here 25 = H;I:l( 7)%7). We will refer to functions in | J,.cr A%(X) as conormal distributions.

We will also need the stronger notion of polyhomogeneity. Let E C C x Ny be an index

set, that is, a discrete set with the additional properties

|(s4,p;)] = 00 = Re(s;) = oo and (3.2.1)

(sj,pj) € E=(s; +m,p; —0) € B, meNy={0,1,...}, ¢=0,1,...,p;. (3.2.2)

If B C CxNj satisfies (3.2.1)) we will often write E to denote the smallest index set containing
E. Now let M be a manifold with boundary and v € C~*°(M). A conormal distribution
u is said to be polyhomogeneous with index set E if it admits an asymptotic expansion in a

collar neighborhood [0, ¢), x M of the boundary of the form

pj
U~ Z szjﬂogx\kajk(y), ajr € C*(OM). (3.2.3)

(s85,p;)EE k=0

More precisely, the meaning of the expansion is that if uy denotes the partial sum on
the right hand side of restricted to (s;,p;) € E with Re(s;) < N then one has
|Li- Lo(u — up)| < Cyyx for € > 0 and L; € Vy(M). If u satisfies we write
u € Afhg. By , the property u € Afhg does not depend on the product decomposition

chosen near OM. Note that if Ey C E, then Afﬁg - Af,fg.
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Now if X is a manifold with corners with boundary hypersurfaces X;, 7 = 1,...,J, denote
by & = (E4,..., Ey) a J-tuple of of index sets. The space of polyhomogeneous distributions
AL, ,(X) is defined to be those having the form with E replaced by E; near the interior
of the boundary hypersurface X; for j = 1,...,J and which have product type expansions
at the intersections of boundary hypersurfaces. More rigorously, Af,hg(X ) can be defined by
induction on the maximum possible codimension of boundary faces but we will not provide
the details here; we refer the reader to [Maz91]. We now list a few shorthand notations
related to polyhomogeneous distributions, which will be useful later. If F is an index set we
will write £+ ¢ = {(s+¥¢,p) : (s,p) € E'}. The notation Re(£) > C will be used to denote
that Re(s) > C for all (s,p) € E. Furthermore, Re(F) > C will mean by definition that
either Re(E) > C or Re(s) > C for all (s,p) € E and EN({Rez =C} x {1,2,...}) = 0.
Therefore Re(E) > 0 suffices to guarantee that u € A% is bounded. If it is known that

phyg
E C R x Ny we will often be writing £ > C' or E > C. In the special case when u € A%, (X)

phg
is smooth down to a boundary hypersurface X; and vanishing to order k there we will be
replacing E; in £ by k: in this case £; C Ny x {0}.

We also mention distributions conormal to an interior p-submanifold of a manifold with
corners. Recall that a submanifold Y of a manifold with corners X¢ is called a p-submanifold
if for each p € Y there exists a domain U of a coordinate chart for X near p with coordinate
functions (z,y) = (%, ..., 2% y', ..., y?%) where the 27’s are defining functions of boundary
hypersurfaces of X and Y NU is given as the zero set of a subset of the z7, y*. It is called
an interior p-submanifold if none of the z7’s vanishes identically on Y (in other words, YV
is not contained in a boundary hypersurface of X). Let Y be an interior p-submanifold of
codimension s in a d-dimensional manifold with corners X, and suppose that in coordinates
(z,y) = (z,9,y") as before it is given as the zero set of v/ = (y',...,y*). A distribution u
is said to be conormal of order m € R with respect to Y (denoted u € I"™(X,Y)) if there

exists a symbol a € S™ (([0, 00)F x R¥*7F) x R®), m/ = m + d/4 — s/2, such that locally

u(x,y) = / e Cala,y €)' (3.2.4)
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Here a € 5™ (([07 00)k x RI=57F) x ]RS) means by definition that a satisfies symbol estimates
|DS DY, DYa(w,y", &) < Capq(€)™ 1, (3.2.5)

where we use the standard notations D = —id and (-) = (1+]-[*)"/2, and @ € N§, B € N&F~¢
and v € Nj are multi-indices. We remark here that the name conormal for distributions
satisfying is justified by the fact that they have stable regularity under differentiation
by vector fields tangent to Y; however the space where they and their derivatives lie is

ooH_m_d/4

loc , which is the reason why we prefer the

the somewhat cumbersome Besov space
definition given above. We refer the reader to Section 18.2 of [Hor07| for a detailed discussion.

We will also need the space A¢

ongl (X, Y), where again X 4 is a manifold with corners and

Y is an interior p-submanifold of codimension s: we say that u € A5, I"™(X,Y) if ul 5 s
conormal of order m with respect to Y and u has an asymptotic expansion at each boundary
face X; of X of the form (3.2.3) with index set E; determined by the collection £ and
coefficients aj; conormal of order m + 1/4 with respect to Y N X; (here the change in the
order of conormality follows Hérmander’s convention; note that dim(X;) =d — 1).

If F is a vector bundle over X the discussion above can be used to define boundary conor-

mal, interior conormal, polyhomogeneous, and interior conormal-boundary polyhomogeneous

sections F, written as A3(X; E), I"™(X,Y; E), Af)hg(X; E), and Aﬁhglm(X,Y; E).

The Stretched Product

Here we outline the construction of the O-stretched product, i.e. the blown up space on
which the Schwartz kernels of O-pseudodifferential operators live. For a detailed exposition
regarding the blow-up construction we refer the reader to [Mel| and specifically for the 0-
stretched product to [MMS87]. Let M"™™! be a compact manifold with boundary as before and
let = be a boundary defining function; then the 0-stretched product Mg := [M?;0Al] is by
definition the space obtained by blowing up the boundary of the diagonal A = {(z,2) : z €
M} (see Figure . More precisely, let T,f M = {v € T,M : dx(v) > 0} and let SN*TAL
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be the inward pointing spherical normal bundle, with fiber at (p,p) € 0A¢ given by
SNE AL = (T, M)/ Ty pA0) \ 0) /R, (3.2.6)

where o is the 0 section. Then as a set define M2 = (M?\ 0AL)| JSNTTOAL. There is a
natural smooth structure on M making it into a manifold with corners of codimension up
to 3, such that the blow down map Sy : Mg — M?, ,60‘(M2\8AL) = id, 50‘SN<;;>6AL = (p,p)
becomes smooth. Moreover, smooth vector fields tangent to dA. lift under the blow down
map to be smooth and tangent to the boundary faces of Mg (this is a general fact about
blow-ups, see [Mel]). The set SNTH(0AL) C MZ is called the front face and denoted by
Bii. We let Ay = S5 (Acr\ OAr), which is an interior p-submanifold of M2, transversal
to the front face. We denote by By the left face 85 '(OM x M) and by By, the right face

By (M x OM). We will occasionally refer to Byy and By, as side faces and we will also be
using the notation z.. to refer to a defining function for B.., that is, 19 will be a defining
function for Bjp and so on. Moreover, we will be writing Alfhg(l\/[g), E = (Eyo, Eo1, E11) to

denote polyhomogeneous distributions on M2 with E.. corresponding to the face B. ..

y—y
~ X
v < /BlO BOI —
ALO

Figure 3.1: The 0-stretched product.
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We now fix p € M. The subgroup G, of GL(T,M) that preserves Tp+—M and fixes
d(T,F M) pointwise induces an invariantly defined free and transitive action on T;—M. Upon
making a choice of coordinates (z,y) near p (with z again a boundary defining function)
which determine linear coordinates (u,w) on T, M induced by writing v = ©d, + w*0ya, one
sees that G, = Rt xT,0M = Rt xR"™ and the action is given by (a, b) - (v, w) = (au, w+ub).
The group multiplication in G}, is given by (a,b) - (¢’,V') = (ad,b’ + a'b). The actions of
Gi, = G)p x Id and G}, := Id x G}, on (T;“M)2 descend to the quotient and, given
linear coordinates (u,w), (w,w) on (T,M)?* chosen using two copies of the same coordinate
system on M, we can see that each of the actions is transitive and free on the interior of each
fiber éll ‘p of the front face. Moreover, each fiber of the front face has a canonically defined
singled out point e, given by 0AL0‘ op)° Therefore, one obtains diffeomorphic identifications
of én‘p with Gé ~ G; = Gy, hence én‘p has two group structures, both of which are
canonically isomorphic to GG, and can be intertwined by interchanging the order of the two
factors of (T M )2. The diffeomorphisms f[l), M éll’p — G, obtained this way are given in
terms of linear coordinates as f}([(u, w), (w, w)]) = (u/@, (w —w) /@), f7([(u, w), (@, @)]) =
(ﬂ/ u, (0 — w)/ u) Those diffeomorphisms have equivariance properties: for ¢ € G, write
q = (g,id) € Gé and ¢, = (id,q) € G}, to obtain as in [MMS87, Section 3] that for w € én‘p

one has

fola-w)=q- f(w), fla w) =q fw)
folar-w) = fow) a7 fla-w) = fy(w) a7 (3.2.7)

By a computation in coordinates one checks that each choice of inner product on the tangent
space at the identity of the Lie group G, induces a right invariant hyperbolic metric on G,,
SO implies that each such choice induces a left G (resp. Gfo)—invariant hyperbolic
metric on én‘p via fl (vesp. f7).

Given an AH metric g and p € M one obtains a canonical hyperbolic metric of curvature

—1 on T;’ M that pulls back to é11|p in two ways. If x is a boundary defining function for
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OM let h, be the metric given at v € T,7 M by

hy|, = (dz(v)) g (3.2.8)

.

where § = 22¢ and the inner product g\p on T,M is naturally identified with an inner
product on T,(7,M) for any v € T,F M. It is easy to check that does not depend on
the choice of the boundary defining function . The metric h, can be appropriately pulled
back to By ‘p in two ways (that result in isometric metrics), as we explain below. Since the
action of G, on T; M is free and transitive, given v € T, M one can define a diffeomorphism
Iy Gp = T;M by G, 2 ¢+ q-v € T;M. Thus for each v one obtains a hyperbolic
metric (f;)*h, on G, that is right invariant with respect to the group structure of G, as
one can check in coordinates. The right invariance implies that the metric (f)*h,, is in fact
independent of v: if for v,v" € T,"M and ¢ € G}, one has v = ¢- v/, then for ¢ € G, f;,"(q) =
(q9) - v = Rg(q) - v = f; o Rg(q), with Rz denoting right multiplication by g on G,. Thus
(F)"hy = R3(£)"hy = (£2)"hy Hence by @), AL = (12)"(f3)"hy and B = (£)"(f2)°h,
are hyperbolic metrics on éll }p which are independent of v € T;M , isometric to each other
by construction, and left invariant with respect to the corresponding group structure. We

remark here that d((le))_1 o f;)‘ = —id as one can check in coordinates, so on Tep(én‘p)

€p
one has hé = hy,.

One can make a choice of coordinates to express the metric h), in in a convenient
form: fix a conformal representative hy in the conformal infinity of ¢ and corresponding
geodesic boundary defining function x and complete the gradient V%’p into a g-orthonormal
frame (where as usual § = x?g). Then in terms of the linear coordinates (u,w?, ..., w")
induced on T M by this frame, takes the form h, = u™?(du® 4 |dw|?). Similarly,
we can express conveniently the induced metrics on éll‘p. First, in terms of the linear
coordinates above use v = d, = (1,0) € T,F M to construct (f)*h, on G,. Now let U’ C T,M
and U C M be neighborhoods of 0 and p respectively, and ¢ : U’ — U a diffeomorphism
satisfying ¢(0) = p, dgp‘o = Id and p(T,0M) C OM and consider coordinates (z,y) =

(u,w) o o=t near p. If (,y) is a copy of (z,y) on the right factor of M?, (z,y,t =7/z,Y =
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(y —y)/x) are smooth coordinates near By N By; and away from By with (¢,Y") coordinates
on the front face, where ¢ is used to identify points on M? and on (T,-M )? (recall the formal
definition of By ‘p). Tracing though identifications, one sees that hj = t~*(dt +|dY|?)
in coordinates (t,Y). Analogously, using coordinates (z,y,s = x/z,W = (y — y)/Z) near
Bip N By; and away from By with (s, W) coordinates on Bll|p, h, = s72(ds? 4 |dW]?).

The 0-Calculus

In this section M"™*! is a compact manifold with boundary and x a boundary defining func-
tion, as usual. Throughout this chapter we will be using the 0-calculus of pseudodifferential
operators of Mazzeo-Melrose ([MMS87]), a class of operators generalizing and containing the
approximate inverses of elliptic O-differential operators. As already mentioned, 0-differential
operators of order m € Ny, denoted by Diff§'(M), are the differential operators that can be
written as finite sums of at most m-fold products of vector fields in Vy: that is, near M one

has in coordinates as before

P=% aale,y)@d,) (@)% aa € C¥(M)

jtlalsm

where we use multi-index notation.

By the Schwartz kernel theorem, operators P : C*°(M; Qé) — C~>°(M, Qé) are in one to
one correspondence with kernels kp € C°°(M?2;Q)*) (note that W;“Qé/z(]\/[) @m0 (M) =
OF?(M?), where m,m, : M? — M denote left and right projection respectively). The
Schwartz kernels of operators in the 0-calculus are naturally described in Mg. As shown in
[MMS87], smooth sections of Q(l)/ *(M?) lift via B, to smooth sections of Q(l)/ *(M2) and hence
for any kernel we have Bikp € C~°(M¢; Qé/ ?). We begin by defining the small 0-calculus of
order m: let

U(M) > P C®(M; Q%) = C=(M; Q)

be any operator whose Schwartz kernel xp satisfies Sjrp € Aghglm(Mg,ALo;Qé“) with

E = (0,0,{(0,0)}), so kp is a section of Q(l)/Q(MOZ) conormal of order m to Aty, smooth
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down to the front face away from Aug and vanishing to infinite order at the side faces. We
set \IjaOO(M) = mmER
an oscillatory integral. This implies that unless the corresponding symbol (see (3.2.4)) is

Uit (M). Note that the kernel of an element in W['(M) is given by

integrable the kernel is not defined pointwise, however it makes sense as a distribution via
consecutive formal integrations by parts; see, for instance Theorem 1.11 in [GS94]. In our
case, by following the proof of this theorem we see that this amounts to the fact that given

an operator P € V*(M) and N € Ny we can write

M
P=>"PQ;+P, Pevy V(M) Q;eDifff)(M), Pe¥;>(M). (3.2.9)
=0
As hinted by (3.2.4)), to any operator P € Wj'(M) corresponds a principal symbol encod-

ing the leading conormal singularity on A¢y: one has

oy’ (kp) € S™(N™Awp; Qé/Q(Mg)

NeAw @ inber(N*ALO))/Sm_1§

that is, the symbol is a symbolic sectio of the bundle 93/2(M§) nen, ® Qriver (N*AL) 2
Qo(M) @ Qfiper(N*Ar). Here Qpipe,(N*Ar) is the density on the fibers of N*(A:) and it

arises from computing the invariant Fourier transform (see [Sim90]) of the kernel on the
fibers of N*Auy. Using the canonical identification of N*Auy <+ °T*M it can be shown (see
[IMMS7], |[Lau03]) that Qo(M)@Q piper (N*Ar) = Q(°T* M), which is canonically trivial, hence
of'kp) can be identified with a symbol of*(P) € St (°T*M) := S™(°T*M)/S™ !, which
we call the principal symbol. Provided there exists a symbol a € S{=™(°T*M) such that
of'(P)-a =1, P will be called elliptic.

We further define the space of operators whose kernels are smooth in (Mg)° with polyho-
mogeneous expansions at the boundary faces: P € W;™%(M) <= Birp € AL, (M3 0F?),
E = (Eho, Eo1, E11). We finally define the large 0-calculus as the operators with kernels
satisfying Birp € A5, I™(MZ, Avy; 95/2), for £ as before and m € R. We will often write

phg
oo (ArY to imply that Ey; = {(0,0)}. Note that in this case using a cutoff function

2That is, the symbolic estimates ([3.2.5)) hold with N*A¢q identified locally near By; N At with [0, 00) x
R” x R™+L,
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supported near Ay one sees that
WP EN (V) = W (M) + Wy 0 Ror (A), (3.2.10)

The rest of the shorthand notations for index sets outlined earlier will apply for \Ilgl’g; for
instance P € \Ilgl’a’Em’E“(M), a € Ny, indicates that 3j Kp is smooth near the interior of
By and vanishes at By to order a.

The definition of 0-pseudodifferential operators does not depend on the existence of a
metric; however since this is the setting in which we will use them, we fix an AH metric
g on M so that Qé/ 2(]\4 ) is canonically trivialized by ~y = dVgl/ 2, and we write kp =
Kp(2,%) - 70(2) ®70(2) for P € UJ"¢(M). To clarify the action of P in terms of coordinates
near Bj;, we choose copies (x,y), (Z,y) of the same coordinate system on the two factors of
M? near a point (p,p) € dAr as before. As already mentioned, (z,y,t = 7/z,Y = (y—vy)/z)
are smooth coordinates in a neighborhood of By; \ By and away from Bjg; in terms of them,
t is a defining function for By; and z is a defining function for By;. On the other hand,
(z,9,s = x/x,W = (y — y)/T) are valid coordinates away from By and in terms of them
s is a defining function for Byg. We use the notations 35 K%, 85 Kb for 85 Kp expressed in
terms of coordinates (z,y,t,Y) and (Z,y,s, W) respectively. Then for P € \Ilgl’S(M) and
f € C>(M) we have
P(f0)(z,y) = /ﬂé‘ Kﬁa(iy—yuﬁ s, W)f(z,y—yaﬁ (detﬁ(z,y = Ew»% dsdV] “Yo-

s s s s s s s
(3.2.11)
We interpret the action of a differential operator P € Diff§ (M) on f-vo as P(f-v0) = (Pf)0-

Operators in the large 0-calculus can be composed under compatibility assumptions. The
following proposition follows from Theorem 3.15 in [Maz91] with a change in normalizations.

In this form it can also be found in [Alb].

Proposition 3.2.1. Let P € W™ (M), P' € UI"F(M). If Re(Ey + Fio) > n then the
composition P o P’ is defined and P o P' € ‘116”+m/’W(M), where W is given by

Wi = (Fio + E11)UEw, Wy = (Eo + Fi1)UFy, Wi = (Evo + Fo1)U(E1n + Fi);



102

here the sum and extended union respectively of the index sets E, E' are given by

E+FE ={(s,p)+ (s,p): (s,p) € E, (s,p) € E'},

EUE =EUE' U{(s,p+p +1): there exist (s,p) € E,(s,p') € E'}.

We also state results regarding mapping properties on polyhomogeneous functions and on
half densities in Sobolev spaces. The following can be proved using Melrose’s Push-forward

Theorem (see Theorem below), see [Maz91] and [Alb]:

Proposition 3.2.2. Let u € Al (M; Q(l)/Q) and P € U (M), m € R. If Re(Eyy 4+ F) > n

then Pu € Af};g(M; Q(l)/Q), where F' = E1gU(Ey; + F).

The next proposition contains mapping properties for elements in the large O-calculus in
terms of weighted Sobolev half densities, denoted by x° Hg(M; Q(l)/ %). We remark here that
C>(M; Qéﬂ) (and thus also C*(M; Qé/Q)) is dense in 2° H3(M; Q(l)/Z) for s > 0 (see Lemma
3.9 in [Lee06]) and the inclusion 2% HJ" (M; Q(l]/?) — x‘SH()”(M;Qém) is compact provided
m’ > m and &' > §F| Proposition below follows from Corollary 3.23 and Theorem 3.25
in [Maz91] upon taking into account the difference in conventions regarding the definition of
0-pseudodifferential operators and the different densities on which they act; for completeness
we outline part of the proof following the exposition in [Alb], where Melrose’s Push-forward
Theorem is used. An earlier version of this result with our convention also appears in |[Maz86],
Corollary 2.53, and another appears in [Alb|, though the assumptions regarding the weights
there are stronger than they need to be. We first state the Push-forward Theorem.

Let X, Y be manifolds with corners with embedded boundary hypersurfaces X, Y;
respectively, j = 1,...,J,i=1,...,J, and let p;, r; be corresponding defining functions.
Then a smooth map f : X — Y is an interior b-map if for each ¢ f*r; = th pj(i’j),
e(i,j) € Ng where h € C*°(X) is non-vanishing. For such f the differential extends by
continuity from the interior to define the b-differential °f, : *T.X — be(z)Y, z € X. The

3Note that the subscript 0 in H¥ has to do with the 0-vector fields that generate its norm, and the spaces
HE(M;dV,) should not be confused with the Sobolev spaces H(2) for Q C R™ open (i.e. the closure of
C2°(9) in the H*(2) norm), that will not be used anywhere in this chapter.
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interior b-map f is called a b-fibration if its b-differential is everywhere surjective and in
addition for each j there exists at most one i such that e(i,j) # 0 (this means that f maps

no boundary hypersurface into a corner).

Theorem 3.2.3 (|Mel]). Let X, Y be manifolds with corners with embedded boundary hy-
persurfaces X;, Y;, and f : X — Y a b-fibration as before. Also let £ = (En,...Ey) be an
index family for X such that E; corresponds to X;. If u € Aghg(X; Q) and E; > 0 for each
J such that e(i, j) = 0 for all i (that is, for each j such that X; is not mapped into 0Y ), then

fae APy ),

phg

where f4(E) = (F1,..., Fy) is the index family defined by

F= Gj:e(i,j)yéo ((ﬁp) :(s,p) € Ej) :

where F; corresponds to Y;.

Then one has

Proposition 3.2.4. Let P € W"*(M), m € R. Provided s € R, Re(Eg) > n/2 — 9,
Re(F11) > ¢ — 6 and Re(Ey) > 0" +n/2 one has that

P: ZL‘(SHS(M; Q(l)/Q) — x‘S,HS_m(M; Qé/z)

is bounded. In particular, if m < 0, Re(Ep;) > n/2—46, Re(E11) > 0 and Re(Ey) > 6 +n/2
then P x° H3(M; Qé/Q) — 2 HS(M; 95/2) is compact.

Proof. We will show that P : 29 L2(M: Q5/%) — 2 L2(M;)?) for P € W3¢ (M) and 6, &
as in the statement, since this is the only step of the proof that differs from the presentation
in [Alb], and refer the reader there for the general statement. Let 5, = m 0 By, §; = m o By,
where 7, 7, are projections onto the right and left factors of M? respectively. The maps £,

B, are b-fibrations and we have 5z = x19z1; and BT = x¢1211 (as usual z, T are boundary

defining functions for OM x M, M x OM respectively). Recalling that vy = dVgl/ ° by [IMMZ87,
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Lemma 4.6] we have that vy := 57 ® By € C’°°(M02;Q(1]/2); set vy := (210711701)" 1 €
C>(Mg; 92/2). As before, we write kp = Kp(z,2 ) - 70(2) ® 7(2) for the Schwartz kernel of
P; recall that Kp is smooth away from dA:. For o' = u -~y € 2°L?(M; Q(l)/Q), vVV=v-7 €
oV L2(M: Q%) = (27 L2(M; Q%)) we compute, using Cauchy-Schwarz,

T

.ol < [ o) (;)M Kol 2] ()" Fu@IEe23() © 44() (3:212)
< n/2 1/2
< ( IRECRE * Kl D 3(2) ®7§(5)>

T

" (/J\/[2 [Kp(z2) (%)m 7 0u(Z) P23 (2) ®7§@>1/2

It now suffices to show

F\ "2 ,
(). ((—) K pl#e2(2) @ W)) e L°(M; Q). (3:2.13)
(7)), ((%)/ S K2 (2) ® 73(5)) e Lo(M; Q). (3.2.14)

By Theorem |3.2.3| one has
% ?’L/Q
(m)» ((—) Kple's " 23(2) @ 73@)

n/2
X % sl s sl “n
- (@), ((—) 85 Kl a5 2 (raor o) ) € A5 (M: ),
10

where F' = (Ej3 + 6 — 8 —n)U(Ey g —n —n/2 —¢§), provided Re(Ey) > —6 + n/2. Since
AL (M;€)) can be identified with Ag,;g(M; Qp), where F' = F'+n, (3.2.13]) is true provided

phg

Re(E11) > =0+ ¢ and Re(Eyg) > n/2 4+ ¢'. Similarly, provided Re(Eyo) > ' +n —n/2
x\"/2 s g
- ()" erlte (o) @ 2002 )
210 " F
= (Br)« ((95_01> |65 K playg 37° $g1($10$11$01)_nV§> € Ap,(M;$y,),

with F = (Ey 46— —n)0(Eg —n/2+8—n). As before, (3.2.14) holds if Re(Ey,) > —0+0'
and Re(Ep1) > n/2—¢. Note that the device of multiplying and dividing by (%)n/4 in (3.2.12)),
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similarly to the proof of Theorem 3.25 in [Maz91]|, allows us to extend the range of 9, ¢’ for
which the result holds. O

The Model Operator

Let p € M, where M™*! is a compact manifold with boundary. Any operator P € ¥{"* (M)
with Re(E11) > 0 determines an invariantly defined operator N,(P) : C (T, M; Q(l]/ 5 =
C'*OO(T;M; Q(l)/g), which will be called the model opemto, and which captures the leading
order behavior of the Schwartz kernel of P at the front face. Here C™>°(7."M; Q(l)/ %) =
(C’é’o(Tpﬂ\/[ ; Q(l)/ 2)),. The model operator is closely related to the group structures on the
front face discussed earlier and can be defined independently of the existence of a metric on
M. If M is endowed with an AH metric g and P is an operator depending on ¢ it often
happens that N,(P) can be identified with the corresponding operator on hyperbolic space:
for instance the model operator of the Laplacian of an AH metric is the hyperbolic Laplacian
on (T,F M, hy,) (see (3.2.8)), as shown in [Maz91]. We will show an analogous result for the
normal operator NV, in Proposition [3.4.1 Below we assume for simplicity that an AH metric
g is fixed, so that the various density bundles are canonically trivial.

Let U' C T,M and U C M be neighborhoods of 0 and p respectively, and ¢ : U’ — U
a diffeomorphism with the properties ¢(0) = p, dgp’ o = Id and p(T,0M) C OM. Also let
R, : TS M — T M, r € (0,00), be the canonical radial action and ’ygp = thlp/ ? where h, is
given by (3:2.8). Then if P € Wi (M) with Re(Ey) > 0 and [ -y” € C(T, M;Qy*) the
model operator is defined by

N,(P)(f - %") = lim Ri" P )" Ry o (f - %7)- (3.2.15)

It can be shown (see, for instance [MMS87]) that N,(P) is independent of the choice of
¢ satisfying the properties listed above. If P = 7. a;q(2,y)(20,) (20,)" € Difff (M) its

model operator has a simple expression in terms of linear coordinates (u, w) on 7T, ;r M induced

4As already mentioned, the more common name for the model operator is normal operator. Despite not
following the usual convention for its name, we maintain the traditional notation N,.
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by coordinates (x,y) on M: one has N,(P) = >_. , @;4(0,0)(ud,)’ (udy,)*, that is, Ny(P) is
given by “freezing coefficients” at p.

As we already mentioned, each fiber éu}p of the front face carries two group structures
isomorphic to the group G, C GL(T,M) and hence the front face acts on 7,7 M from the
left. So given a distribution on u € 0_00(10311 ‘p) one can define an operator on TpJr M by left

convolution; i.e. by

wx flv) = / W@)flg™ 0)dH(g), f e CX(THM),

where dH is a left invariant Haar measure on én‘p (which is determined up to scaling).
A choice of an AH metric on M determines a preferred Haar measure, since it determines
an inner product on Tep(é11|p) as discussed earlier. Recall that the kernel of an operator
in UPE(M), Re(Ey) > 0, is of the form kp = Kp(z,2) - 70(2) ® 70(2), where 5:Kp is
continuous down to the front face with values in distributions conormal to the lifted diagonal

Aug. Since A is transversal to Big

. P determines in a natural way a distribution on By, ‘p

by restriction: one has

n+1

E,(P) = fKp|,, € Ao S (B {ep)), (3.2.16)

where F1g, Eo correspond to expansions at B1gN By, and By, N By respectively and the order
of conormality follows Hormander’s convention, described earlier. By [MMS87, Proposition
5.19], for operators with smooth kernel down to the interior of the front face there exists a

short exact sequence

0 "—>\IJ(;OO’E10’E0171(M) - \Pgoo,Elo,E(n(M) 5 AEﬁ§7E01 (Bll‘*) — O, (3.2.17)

P

where Afﬁg’Em (311 ‘*) is a family distributions depending parametrically and smoothly on a

boundary point and an AH metric has been used to identify the kernels of operators with
functions.
The operator on 7T, p+M given by convolution by the kernel (3.2.16)) agrees with the model

operator of P:
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Lemma 3.2.5. Let P € UJ"*(M) with Re(Ey,) > 0, where (M, g) is AH. Then for each
p€OM and f-yi* € C (T M;QY?) one has Ny(P)(f - V0P) = (E,(P) % f) - A where the

convolution is with respect to the Haar measure determined by g.

Proof. Let (u,w) be linear coordinates on T, M ™ with u boundary defining function and let
@ : U — U be as above, so that (z,y) = (u,w) o ¢~ become coordinates on M near p with
x boundary defining function. By it follows that for f € C°(T,"M) and r small
supp R, f C U" and thus supp ((gp‘l)*R{/Tf) C U, where the coordinates (z,y) are valid.

Hence by (3.2.11]) and (3.2.15) we find (upon identifying (x,y) with (u,w))
No(P)(F ) w) =l [ B3I (% v = s 17
r—0 S
dsd detg
xf( w——u)x/dt (0,0) [ds W| eg(_ru,rw)fygp

det g(0,0)

(3.2.18)

W dsdW
/BKPOOSW)f<S —?) detg (00)|88 [y

= [ B (0.0.(5 W) F(6.) 7 (0 0) g 0,0) P ol

=(F,(P) * f)(u,w) - 7"

Here +/det g(0, 0)s~!|dsdW | is the left invariant Haar measure on By |p induced by the metric

h, as described earlier. ]

Remark 3.2.6. It follows from Lemma that if x € C(U) is identically 1 in a neigh-
borhood of p then N,(Px) = Ny(xP) = N,y(P).

Given a choice of coordinates near p such that h, = u=>(du® + |dw|*), (T,F M, h,) can be
isometrically identified with H"* = {(u,w) € R x R"}, the hyperbolic upper half space,

and the same is true for By; }p as already discussed. Using those identifications we can regard

N,(P) as an operator on H"™! and rewrite (3.2.18) as

N, (P)f(u, w) /B{;K’ ,3,” w)f(a,@)‘cfﬂdﬂ (3.2.19)

unJrl
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Note that 35 K% (0, 0,2, “’%ﬁ) = By Kp (0, 0, %, J%w) and the former is polyhomogeneous with
index set Fjo in u/u while the latter is polyhomogeneous with index set Ey; in @/u. This im-
plies that if P € UJ"¢(M) with Re(Ey;) > 0, over compact subsets of H"*! one has Kn,p) €
Ai;lg]m((W)g; Avg) with & = (Eyo, Eo1,{(0,0)}). Conjugating by the Cayley transform,
N,(P) can be interpreted as an operator on B"+1 and one has N,(P) € Wwi»"1o"0 (Bn+1),
thus the model operator also extends to appropriate weighted Sobolev spaces according to
Proposition [3.2.4]

We now prove the following proposition stating that under suitable assumptions the model
operator is a homomorphism. It is stated and proved in [MMS87] in the case P € Diff("(M).
It is also mentioned in |[Alb] and in [EMMO91] that the homomorphism property holds, though

without explicit mention of hypotheses that need to be assumed.

Proposition 3.2.7. Let P, P’ be as in Proposition |3.2.1, with the additional assumptions
Re(Ey1) > 0, Re(Fi1) > 0 and Re(Eyg + For) > 0. Then for each p € OM one has N,(P o
P') = Ny(P) o N,(F').

Remark 3.2.8. The assumptions Re(Ey1) > 0, Re(Fi1) > 0 and Re(E g+ Fy1) > 0 guarantee
that P, P" and P o P" have well defined model operators (see Proposition M)

Proof. Without loss of generality we can assume that F; = Fj; = {(0,0)}: indeed, upon
restricting S5Kp (resp. B5Kp) at By

po any term in the asymptotic expansion of 3iKp
(resp. ByKpr) at Bu‘p corresponding to (s;,p;) € Ey; (resp. Fip) with Re(s;) > 0 does not
contribute to the model operator of P (resp. P’). By Proposition and the assumption
Re(F19 + Fo1) > 0 any such coefficient does not contribute to the model operator of the
composition P o P’ either.

By [MMS87, Proposition 5.19] the claim holds if P € Diff™*(M) and P’ € W77 (M), and
it also follows very similarly if P’ € Diff™ (M) and P € U0 (M) (or if both P, P’ are
differential). Using this fact, we observe that it suffices to show the claim for m, m’ < Ny,
where Ny € Ny is sufficiently large that the Schwarz kernels of P and P’ are continuous

away from the side faces of MZ. Indeed, suppose we have done so. Then using (3.2.10)) and
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(3.2.9) with N sufficiently large we can decompose P, P’ and P o P’ into sums of products of
operators for which the homomorphism property holds, to show the proposition for general
m, m'.

So now assume that m, m’ < — N for a large positive integer Ny, implying that the kernels
By Kp and 3K p are continuous away from the side faces. We first show that N,(P(1 —
X)P’) = 0, where x is smooth, supported in a small neighborhood of p € M, and identically
1 near p. Let ¢ : U' — U be as before, (u,v) linear coordinates on 7" M with u boundary
defining function and (z,y) = (u,v) o ¢! coordinates near p. As explained earlier, we can
assume that the coordinates are chosen so that det E}p = 1. Also let (Z,7) be a copy of the
coordinate system (z,y) on the right factor of M2. Then (z,y,i = Z/z,Y = (§ — y)/z) are
a valid coordinate system in Mg away from Bjg. For f € C° (Tp+ M) and disregarding the

densities for convenience we have, for » > 0 small and u > 0

Rio"P(L=X)P'(¢™ ") Ry, f (u, w)

_ / (/Kp(r(u, w), 2)(1 = x(Z)Kp (2, 7(uf, w + uY))d%(E))f(uf,w V) |Czﬁf\
(3.2.20)

In (3.2.20) we evaluated the kernel factors Kp(z,2) and Kpi(Z,2) at z = r(u,w) and Z =
r(ut, w+ uf/), without writing explicitly the ¢. The fact that (1 — ) vanishes near p implies
that for small  the innermost integrand in is supported away from the boundary of
the triple diagonal in M?3. Thus if Y € C°°(M) is supported in the zero set of (1 — x) and is

identically 1 near p, we have
X(2)Ep(2,2)(1 = x(Z)Kp(Z,2)X( 2) € ALoFortFofor () (3.2.21)

where Eyo, Ey + Fip, Foi correspond to expansions at OM x M? M x OM x M and
M? x OM respectively. By the assumption Re(Ey; + Fig) > n, (3.2.21)) is integrable in 2, and
for small enough r the innermost integrand in (3.2.20)) can be replaced by ([3.2.21]) evaluated

at z = r(u,w), = r(ut,w + uf/), the latter has an expansion in r with the exponent of r
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in the leading order term positive, by the assumption Re(FE19 + Fp1) > 0, so the same holds
for the innermost integral, thus vanishes in the limit as r — 0.

We have established that it suffices to show that N,(PxP') = N,(P)N,(P’). We will
express the action of P, P’ in coordinates as in . Let (z,y,7,7) and (7,7, 7,7) be
copies of the same coordinate system near (p,p) € M? chosen as before. If u is supported

near p in M we have

et (s~ T YT |dzdyl|
Puay) = [ B (5.5, 5. V20 Ju@ ) S (3222
b et (22 T Y H|d:vdg!
PU(ZE,@ _/ﬂOKP’(xay7§a 7 )u(xay)w (3223)

Then with a computation as in (3.2.18) we immediately obtain that for f € C(T,F M)

x uw—y dxdy

N(P)ftuw) = [ b (0.0, ") @ )
N~ . 7l U W—Y\ , - ~|dedy|
N, (P') f(u, w) —/ﬂOKP, o 0= —= )f(x,y) et

We will now compute the model operator of the composition. First write
PxP'f(z,y)

/ﬁa‘Kp ~ "“,:,_y)/ (&, 1B KL, (m 5 g z7—§>f(% g)ldxdy| |dzdy|

xn+1 pntl '

Kr

Upon making a change of variables in each integration to rescale, we find that for small r

Ry 0" PxP' (¢~ ') Ry ), f (u, w)

= [ [t (105 5 T 0T s (50
X X

Y- |didy| |dzdy]

i-nJrl ntl '

Nsal!

| R

)F(E.9)

&
I3

(3.2.24)

Note that the integrand is L'. Indeed, by our assumption on m,m’ both kernels are
continuous away from the side faces of M and the integration in (Z,7y) is over a com-
pact subset of the open upper half plane. Moreover, since y is supported in a small

neighborhood of p, ¥ is bounded in its support and thus one only needs to be careful
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about the behavior of the integrand as = — 0. Since z/z is a defining function for By,

S KL (m: Y, %, %) = B Kb <rx Y, % Ewuy> has a polyhomogeneous expansion in u/T
with index set —FEy; as © — 0, On the other hand, 3;Kp has an expansion with in-
dex set Fyo in /7 and therefore the integrand in is integrable by the assumption
Re(Fo1 + Fip) > n. Now by dominated convergence we can take the limit as » — 0 to find

that

Nyp(PXP')(f)(u, w)

* U w =Y\ . T Y—vu\, ~ ~ |dzdy||dzdy|
//ﬁOKP O 0’~7 x )ﬁOKP/(O 0, ~’T)f(m ) =T Fntl  gnil )

Xz

which is the same expression that one finds upon composing ((3.2.22) and (3.2.23)). O

3.3 The Pseudodifferential Property

In this section show that the normal operator N, is a 0-pseudodifferential operator, namely
that N, € ¥, 1’"’"(M ), and study the distance function induced by ¢ as an intermediate
step. Once the pseudodifferential property of N has been established, we use it to extend I
to larger weighted L? spaces than those of Section .

We first state and prove a technical lemma, which is similar to Proposition 19 in |[CH16].

Lemma 3.3.1. Let (M, g) be a simple AH manifold. The map

& T M — M2
(2:6) = (2 exp.(¢7))
extends smoothly to a map 0T M — MZ, where we are using the canonical identification

of OT*M‘M = (OT*.M)O and T*M. Here # raises an index with respect to the metric g.
Moreover, the differential ofa) at (z,0) € 0T*M‘BM has full rank.

Proof. We will rewrite the map ® as a composition of maps. Consider the bundle °T*M x

0T*M =: (°T*M)? over M?. Following [CH16], we let *T*Mg := 55 ((°T*M)?); it is a bundle
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over MZ with bundle projection denoted by ®7. Define ¢ : “T*M — ®T*M¢ by

— if OT*M|
¥(z,§) = (2 =62,8), if (z,6) € s (3.3.1)

(ez, (z, —5,2,5)) , if (2,€) € OT*M|8M’

where e, denotes the canonical origin in the fiber of the front face over the point (z, 2) |E|
Using coordinates (z,y, T, 7) near a fixed point (p,p) € dAr C M? and projective coordinates
(x, yt=x/x,Y = (y — y)/x) in M away from By, in terms of which Ay = {t =1,Y = 0}
and By; = {z = 0}, one can see that 1 is a smooth map. Indeed, recalling that *T*MZ C
ME x (°T*M)?* and suppressing the base point of 0-covectors for (z,€) € OT*M’M, we can
write in terms of the projective coordinates ¥(z,£) = ((x,y, 1,0), (—575)), which extends
smoothly down to x = 0.

We will next compose 1 with the flow of an appropriately chosen vector field on ®7T*Mg.
In |CH16], the authors analyze the Hamiltonian vector field X associated to the metric
Lagrangian £, = |{ \3 /2 on T* M viewed as a vector field on 97*M , under the identification
T*M < OT*M‘M; it turns out that X is smooth on °T*M. Let (z,y) be coordinates near

dz? 4 (hy)ordy’dy™ .

o)Ay @)
T

and also let (2,€) = (z,y,(,7) be coordinates for “T*M near the fiber over p such that

p such that the metric is written in normal form g =

&= gxfldx + 1oz tdy®. Then in terms of those coordinates
~ _ 1 - ~ 1 -
X =20, + xhI 10y — (hZT + §x8xh27) 17077735+ (Cﬁa — §$3yah;)‘77717,\) 05, (3.3.2)

which shows that X is smooth down to 9°T*M, and tangent to it. Thus if Xz = (0, X)
denotes the Hamiltonian vector field on the right factor of (“T*M)?, we can also deduce
that X extends smoothly to the boundary faces of (°T*M)?, meeting them tangentially.

Moreover, as shown in [CH16], X, lifts from the interior of (*T*M)? via By|,, =), to a vector

(M)
field on (®7*Mg)° (still denoted Xg), which extends smoothly to its boundary faces and is

tangent to all of them. More strongly, Xy is tangent to the level sets of £, = %(52+h”ﬁ0%)

>Only the the right 0-covector in the definition of (3.3.1)) will enter the subsequent arguments; nothing
essential changes if one choses to define, for instance, ¥(z,&) = (2,0, z,£) over the interior of °T* M and
accordingly at the boundary.
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on each factor of (T*M)2 Those level sets extend smoothly to the boundary, both in
(°T*M)? and in ®T* Mg, resulting in smooth compact manifolds with corners in both cases.

Thus the flow of Xg in *T*MZ is complete. Now let

& OT*M — M?

(Z,f) Héwoalow(z,f),

where ¢, is the flow of Xz. This map is smooth as a composition of smooth maps and it
extends ®. Moreover, it maps 0 € 0T;‘M at p € OM to 8AL0| (op) = since from it
follows that X vanishes at ¢ (p,0) = (e,, (0,0)) € *T* M.

It remains to show that d® has full rank in a sufficiently small neighborhood of (p,0) €
0T*M}aM. In 0T*M|M we write ®(z, &) = exp, (€#) and in coordinates (z,y,t,Y) as before

(2,9.4,Y) = ®(2,y,(,7)
— (Q; y go (exp(x,y) (Exaﬂc + ﬁUhUTajayT)> go (exp(zy) (gwaz + ﬁo—hUTway‘r)) — y)

Y

T T

(3.3.3)

For z > 0 we can compute its Jacobian matrix in these coordinates at the O-covector, using

the fact that the differential of the exponential map at 0 is the identity. We find

~ Id 0
dé(wvyv()?()) = ) (334)

——1
Yy

where §(_I1y) is the matrix of the dual metric corresponding to § = x2¢ in (z,y) coordinates
for x > 0. Since we have already established that ® is smooth in a neighborhood of e,,

(3.3.4) also holds down to x = 0 and this completes the proof. O

The behavior of the distance function on AH manifolds away from the diagonal has been
studied by various authors, see for instance [SW16], [CH16] and |[GGS™|, and also [MSV14]
for small perturbations of hyperbolic metric. As Proposition below indicates, provided

(M ,g) is simple, the lift of the distance function to Mg is smooth away from Ay and the
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side faces, however our analysis of NV, will also require smoothness of the lift of its square in
a neighborhood of A, all the way to the front face. We are not aware of this fact explicitly

stated in the literature, so we provide a proof.

Proposition 3.3.2. Let (M, g) be a simple AH manifold and let p : M2 = R be the geodesic
distance function. There exists o € C°(MZ\Aug) such that

Bop = o — log(w1g) — log(woy),

where x19 and o are defining functions for the left and right face of Mg respectively. More-

over, Bip* extends to a smooth function on MZ\(Byy U Boy).

Proof. The first statement follows from work in [SW16], [CH16] and [GGS™| (see [GGS™, Re-
mark 7]). We show the second statement. Assume without loss of generality that x1g, 291 = 1
in a neighborhood of Arg. Since p? is smooth near AcN M2 and thus 3;p? extends to a func-
tion in C°(MZ\ (AL U Byo U Byy)), it is enough to show that 3fp? extends to be smooth
in a neighborhood of 0A¢y. By the Inverse Function Theorem, Lemma implies that o
restricted to a neighborhood of a point (p,0) € °T*M ‘ oy 18 invertible. The inverse, defined
in a neighborhood U C M¢g of A ’ (op)’ is smooth all the way to the front face. In UN(Mg)°

#2 |~ 2
‘ (3.3.5)

B 2) = e () = (372)

using the identification (Mg)° < M?2. Since g induces a non-degenerate quadratic form on

the fibers of °T* M, smooth all the way to the boundary, (3.3.5]) extends smoothly to 0A¢
and this finishes the proof. O

The proof of the following lemma is essentially contained in [SU04]. Recall that by
simplicity of (M , g) the exponential map at any point is a diffeomorphism onto M and thus

it can be used to define a global coordinate system on M.

Lemma 3.3.3. Let M be a simple AH manifold and let z = (2°,...,2") andZ = (Z°,...,2™)

two copies of the same global coordinate system in each of the two factors of M?2. The kernel
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of N, viewed as a section of Q> (M?), is given by Ky, (2,2) - 70(2) ®10(Z), where

2| det(0:zp°/2)|
(z,2)\/det g(z)+/det g(2)

Proof. Let f € COO(M ). We compute N, f, viewed as a function:

/ / (exp, t£#))dtd,ug = 2/ / (exp.( (tE%)) dtdpy(€)
SzM Sz M

)
. — f (2)| det (d exp; ! )\ -~
= exp. (£7 det g~ 1(2)dé = dz
2/;Mf( p. (7)) €], V/det g1 (z)dE Payeren _detg

where the third equality follows by polar coordinates in the inner product space (TZ*M g7 1(2)).

Ky, (2,%) = (3.3.6)

Now | exp;1(Z)|, = p(z,7) and by the Gauss Lemma exp;!(2)” = —pd.p, so

[ @G e
Ngf(Z)_/Mp (z,2)4/det g(z)/det g(2) dVs(Z).

Multiplying both sides by the half density 7(z) and viewing N, as an operator acting on

the half density f - 7o(Z) we have the claim. ]
We now prove the following key proposition:

Proposition 3.3.4. Let (M™, g) be a simple AH manifold. Then N, € 5 ™" (M). More-

over, it is elliptic.

Proof. We examine the Schwartz kernel of A, on M? and on the stretched product MZ2. As
noted in [SU04], the form of the kernel in Lemma implies that in open subsets of M2
the kernel of N, agrees with the kernel of a pseudodifferential operator of order —1 with
principal symbol C,[¢];!. Since smooth sections of (Qé/ (M 2)) lift to smooth sections of
OF2(M2) it suffices to study the behavior of Ky, (2,Z) in and its pullback to Mg
as z, z — OM, both away from, and near the diagonal. Throughout the proof, z = (x,y),
Z = (Z,y) are representations in terms of two copies of the same coordinate system in each
factor of M? such that x, * are boundary defining functions.

First note that | det(d.zp?/2)| = | det (dzexp;'(2)")| by the proof of Lemma , so by
simplicity det(d,zp*/2) # 0 on M? and the absolute value can be ignored in the process of
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examining the smoothness properties of Ky, and 3jKy,. Moreover, we observe a simplifi-
cation of away from the diagonal. We have that 0%(p?/2) = pd%p + 0.p ® Ozp. Since
for H € R and u,v € R? one has det(H +u ®v) = det(H) + (adj(H)u) - v by the matrix
determinant lemma, where adj(H) is the adjugate matrix of H and - denotes the Euclidean

dot product, we have
det (0%:(p°/2)) = p™*' det(9Z%p) + p" (adj(0%p)0zp) - Ozp.

Observe that the first term vanishes away from the diagonal. Indeed, if z # Z the Gauss
Lemma yields |d,p(z, Z)|; = 1, thus the rank of the map d.p(z, ) : M\{z} — S*M is at most

n. Therefore, det(92 p) = 0 and thus away from the diagonal we have

z

_ 2/(adj(02p)0:p) - Ozp|
Vdet g(z)y/det g(2)

We first examine Ky, (2,%) on M? away from the diagonal when z — M or ¥ — OM.

By Proposition if | for z, 2z away from the diagonal we have

Ky, (z,2) (3.3.7)

p(Z,E) = Oé(l’, Y §7@ - IOg(l’) - lOg(%),

where a € C*° (M*\Av). Since 0%p = 0% a, adj(9%p) € C°(M?*\Ar). Moreover, \/det g(z) =
"1 /detg(z) and \/det g(z) = 7" 'y/detg(2) with detg(z),detg(z) € C*(M) and

non-vanishing. Finally, 0.p € x7*C°°(M? \ A¢) and similarly for dzp, thus

Ky, (2,2) € 2"T"C> (M*\Au) .

Now we have to examine the pullback 35Ky, of Ky, to the stretched product Mg. The
coordinate systems (z,y) and (Z,y) we used before induce coordinate systems in various
neighborhoods of MZ. First let U be a neighborhood of By;\ 0Ag, disjoint from the diagonal

and Byg. On U we use projective coordinates

L y=2"Y (3.3.8)
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in terms of which ¢ is a defining function for By; and z is a defining function for By;. By

Proposition 3.3.2, in U we have jp = a — log(t), @ € C°°(U). Thus the chain rule yields

B3 (0xp, Oyp) = (89562 —tz! (8,5& — t_l) — 27 'Y%0y.a, O,a — a:_lf)y&) =z,
B5(0zp, O5p) = ( -1 ((‘lﬁ — til), :r:*layoz) =t 1z,

where ¢, ¢’ have components in C*° (i), and further

S@ggp =T —2 @oz + .%'82 tc?fta — YAgg/At&) = ZL’_2’(/J00,

(-
ﬁgaiag/) =2 (xazat& YatOé) = %40,
-p =27 (20

(-

* 02
Bﬂay Y
%aigfp =

X
-2
=T X O'YTa YG'YTa) =T wo-‘,-,
T —2

Oy-a + 202y, a — tOh & — Y’\a}%yf&') = 2 %o, (3.3.9)

where 1;; € C*°(U). Note that 0,, 0, have different meanings in the left and right hand sides
of the above equations. Since for H € R¥? and A € R we have adj(AH) = A4 ' adj(H) we
find 3 (adj(0%p)) € z~2"C=(U; R™D>*+1) " On the other hand, Bi+/det g(z) = 27" 1g
and S5y/detg(z) = t "o " 1g, with g; € C*°(U) and non-vanishing for j = 1,2. By
we conclude that 5Ky, € t"C*°(U). This shows that 55K, has the claimed behavior
away from Big and Aug; moreover, the fact that is symmetric implies that this is also

true away from By, and Acg.

We now examine 85Ky, in a neighborhood W of a point in Byp N By N By away from
Aug. Near such a point we have |y — y| # 0, hence at least one of the functions y” — 37 does

not vanish. We may assume without loss of generality that y” — 7™ > 0 and use coordinates

0= yvio u, v, (3.3.10)
r

~ X ~
r=yt-yt 0=

3|

where \ = 1,...,n—1. A computation using the chain rule yields

50, =17'09, B0y =17 ((r0, — 005)67 + V), Vi € Vy(MZ), dO(V;) = dr(V;) =0
B0z =105, Bidy =17 (— (rd, — 00p)07 +V;), V. € V(MZ), dO(V,) = dr(V;) = 0.
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In terms of Bgp =a—log(0) — log(6), @ € C=(W), so
Bi(0ep, Oyp) = (—(r0)~1,0) + 7713, Bi(Dsp,0gp) = (—(r0) ", 0) +r7'¢", (3.3.11)

where ¢, 3’ € C*°(W; R™1). Moreover, since (rd,—08,)((r0) ") = 0 and (rd,—005)((rf) ") =

0 we find that 850,z p € r=2C®°(W; ROFUXM+D)  Thus B adj(0%p) € r~2nC>=(W; Rv+Dx(n+1)),
Noting that £\/detg(z) = r" 107" "1g and B8i\/detg() = r" 0 " 1§, with g; €
C*° (W) and non-vanishing, we use again and ((3.3.11]) to find that 55Ky, € omg " C>>(W).
We conclude that 85Ky, € C®(Mg \ Avy) and vanishes to order n on By and By.

To finish the proof it remains to examine the behavior of the pullback of (3.3.6) near
aALo.

vanishes exactly on AN (MZ)°. By Proposition [3.3.2 5;p?

is smooth in a neighborhood of A, hence it also vanishes on 0A¢. Finally, by Proposition

24 in

. which for each g € Bn‘p
agrees with the distance between e, and ¢ induced by the hyperbolic metric h; on Bn|p.
Therefore, 3;p does not vanish on the front face at any point other than e,. We conclude
that 85p? € C°°(M¢ \ (Bio U Bo1)) and vanishes exactly on Au.

We now use a variant of the coordinates given by : near Aty and away from Big
we use (2,72) = (z,(z —2)/z) = (z,y,t — 1,Y). Note that in terms of those coordinates x is
again a defining function for By, and A is expressed as {Z = 0}. Observe that on (MZ)°

one has

ﬁSpQ‘Z:O =5 (p2|{z:z}) =0, Oz (58,02)‘210 =l (85j ('02)‘{,2:2}) =0,

0712 (530 oo = 285 (020D (o s) ) = 20%014(2) = 20,,(2). (3:3.12)

By smoothness of 3;p* near Aiy we conclude that (3.3.12)) holds all the way to the front face.

Thus by Taylor’s Theorem, viewing z as parameters, we write
Bor® =9,(2)Z2' 27 + b2, 2) 24 2' 27

where by (2, Z) is smooth.
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: N o 2ldet(d.zp%/2)]
We will now show that the expression K(z,2) := NN

vanishing smooth function in a neighborhood of the lifted diagonal all the way to the front

pulls back to a non-

face. First one can perform computations very analogous to ([3.3.9)), with p replaced by p?, to
conclude that x?(50%(p?/2) is a smooth matrix valued function in a neighborhood of dA¢,

(note here that its behavior near ¢t = 0 is irrelevant for this computation). Also, for z € M

one has |det(0.zp?/2)|.—z| = |det g(2)|. Therefore, since x*"*24;(\/det g(z)/det g(7)) is

smooth and non-vanishing near A, ﬁgf( is smooth in a neighborhood of the lifted diagonal.
Moreover, K’ALOMQ = 2 implies that BSK‘ALO =2.

Now the fact that 5Ky, € I “H(ME, Ap) follows from a standard argument, which we
will outline. Consider ¢ € C°(R™*!) with ¢ = 1 near 0 and write

a(z, Z)p(Z)
(EZJ<Z)ZZZ] + bklm(Z, Z)ZkZlZm)n/Q’

Ky(2,7) = Ky, (2,2 —2Z)p(Z) = (3.3.13)

where a is smooth with a(z,0) = 2. Now K, is smooth in z,Z away from Z = 0 down
to x = 0 (so the existence of this boundary z = 0 can be ignored). Moreover, K, is
compactly supported in Z and integrable in Z. Writing r = |Z|; and Z = r~'Z we have
K,(z,Z) =r"a(z,r, Z), where @ is C* in its entries, hence by Taylor’s theorem there exists
an expansion

Ky(2,2) ~ Y an(z 2)| 215", G € C®, G =2. (3.3.14)
>0

This is exactly the setup of Proposition 2.8, Chapter 7 in [Tayll], which implies that
K, (z,2) = [eZEp(z,€)dE, where p(z,€) € S (R™ x R™) ie. p(z,€) is actually a

classical symbol of order —1; this means by definition that p(z,{) admits an asymptotic

expansion of the form

p(z,€) ~ Y poij(.6) (3.3.15)

=0
for large E € R™" where each p,,(z, E ) is homogeneous in E of degree m. Therefore, G5 K €
I7H(MZ, Avg) (locally identifying a subset of R"™ x R™™! with the bundle N*A¢g ~ °T*M).
To show ellipticity we need to show that the principal symbol, given for large E € Rt

by p_1(2,€) in (3.3.15), is invertible. The full symbol p is given by F;(K,), but the principal
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symbol can be computed by taking the Fourier transform of the leading order singularity of
K, at Z = 0; the less singular terms contribute to the symbol terms vanishing at least as
fast as |§|§*2 as |§|§ — 00, since the symbol is classical. Now one has Fz(|Z];") = C'n|g|§’1
for C;, > 0 in the sense of tempered distributions, hence the principal symbol is o 1(J\/'g) =
Cn|§~’]§_ ! for large € € R™!. Using the identification of N*Auy with °T*M, and the fact that
the latter is trivialized by {d2? /2 } near M we can write invariantly oy ' (N,)(z,€) = Cy[€], 7,
(2,€) € °T* M; this agrees with the principal symbol computed in [SU04]. Note that for |¢],
bounded the principal symbol is smooth, since is compactly supported in Z; the
singularity at ¢ = 0 is an artifact of computing the Fourier transform of the non-compactly
supported leading order term in (3.3.14)). In fact, for bounded |¢|, the principal symbol can
be freely modified as long as it stays smooth; any such smooth modification will yield the
same operator modulo Wy*(M). Due to this fact and since g defines a smooth and non-
degenerate quadratic form in the fibers of °T*M, o' (N,) is invertible on °T*M. We have
thus shown that A, € U;""" (M) and is elliptic, completing the proof. ]

By Propositions [3.3.4] and [3.2.4] it follows immediately that for s > 0

Ny Q:EHS(M;Q(I)m) — 2 H3H (M 93/2)

is bounded if § > —n/2, ¢ < n/2 and ¢ < §. We can now prove a continuity property for
the X-ray transform showing that one can extend it to larger weighted L? spaces than the

ones that appeared in Section [3.1}

Corollary 3.3.5. Let (M"“,g) be a simple AH manifold. If &' <9, § <0 and § > —n/2

the X-ray transform is bounded:
122 L2(M;dV,) — ()72 L*(0_S* M, d)\y).

Proof. We will show that for 0, ¢’ as in the statement there exists a constant C' such that

for any f € C°°(M) one has

HIszé’m(sM;dA) < OHfHa:‘sLQ(M;dVg)' (3-3-16)
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Since for f € C°(M) one has If € CZ(S™M) N 29 L2(S*M: d\) as explained in the proof
of Lemma (3.1.1} m, the latter applies for If to show that if (3.3.16) is known then one has

||If|| P 1205 Mdrg) = C fllzs22(a:av,)» Yielding the result by density.

First let 0 < ¢ < min{d + n/2,6 — ¢’} and note that for each fixed ¢ the expression
I(x*)(2,€) = [ 2° 0 ¢ (€)dt is uniformly bounded on S*M, by the proof of Lemma [3.1.1]
Now for f € C° (M ) apply Cauchy-Schwarz to find

7R s = [ o 15PN

/5* 2 /fgpt )dtrd)\

s/w o [ ogotzsdt/| Pz, )2t dx
<0/S* —25/| 2, €))|?dt d)
o [ / (2112 dpty AV, (=)

=C| Ny (== Mo 1 arsavy)-

Now if 6” := § — € the choice of €, § and ¢’ imply that 20’ < 0, 20” > —n and 26’ < 26”. On
the other hand, an argument similar to the one of Proposition , though simpler (also see
Appendix 1 in [Hel9]), shows that if P € Uy (M) with Re(Ey) > n+ o, Re(Ey) > —0
and ¢’ — o < Re(Ey;) then P : 27 LY(M;dV,) — x° L*(M;dV,) is bounded. Hence the fact
that N, € U™ (M) implies that

||N9(x_2€|f|2>||x25'L1(M;dVg) < O||x_2€|f|2||x25”L1(M;dVg) = O”f“i‘sLQ(M;dVg)

and this finishes the proof. O

Remark 3.3.6. By Corollary([3.3.5 and (3.1.5) one also has that I* : ()% L2(0_S* M, d\y) —
2 °L*(M;dV,) is bounded for §' < §, &' <0 and § > —n/2.
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3.4 The Model Operator

In this section we show that the model operator of NV, at a point p € M can be identified
with the normal operator A}, on the Poincaré hyperbolic ball (B"*1 h). This operator was
studied in [BC91] and explicit inversion formulas was computed for it using the spherical
Fourier transform; using those formulas we will show that its inverse lies in W™ """ (Bn+1),
In what follows we always assume that a choice of coordinates has been made with respect
to a point of interest p € dM, such that the hyperbolic metric h, induced by g on TJ M (see
Section takes the form h, = u™2(du® + |dw|?) with respect to induced linear coordinates
(u, w) on T,f M.

The following is an analog of Proposition 2.17 in [MMS87], which shows that for each
p € OM the model operator of the Laplacian corresponding to an AH metric g on M is the
hyperbolic Laplacian on (T,F M, h,,):

Proposition 3.4.1. For any p € OM the model operator N,(N,) on T;M 1S5 given by
Ny, the normal operator corresponding to the X-ray transform on T;M endowed with the

hyperbolic metric h,,.

Proof. As already discussed in detail in Section , for each p € OM the hyperbolic metric h,,

on Tp+M induces the metrics hé and h; on By . which are by construction isometric to each

o FN(@) = B3 K, |, (0) =
K N (ep,q) = K N, (ep,q) for the hyperbolic normal operators Nh; , /\fhé . Indeed, as we will

other. We claim that it suffices to show that for ¢ € éu

discuss in more detail in the proof of Proposition below, for the normal operator on
hyperbolic space one has that Ky (q,¢’) is a function of the hyperbolic distance function
pn(q,q"). Recall that we can always arrange that in terms of coordinates (7,7, s, W) and
(z,9,t,Y) described earlier we have hl, = s72(ds? + [dW|?) and hj, = t~2(dt + |dY|?) re-
spectively. Using the explicit formula for the hyperbolic distance function on the half space
model we can see that phé((l, 0),(s,W)) = phé((l, 0), (z/Z, (y — 9)/2)) = phé((x,y), (,9))
and analogously for f;. Using this fact and computation similar to the one in Lemma m
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we find with a change of variables that for f € C2°(T,F M) we have

(KNz (epv' /KNh v, U )dvhp(fﬁ)a

which implies the statement of the proposition.

It is more convenient given the setup of Lemmato show that Fj,(N,)(q) = Ky, (€p,q).
The fact that KNh; (€p,q) = KNh;, (ep,q) will then follow by noting that Phi (eps @) = pny(ep, q)
and K, only depends on pj, for a hyperbolic metric h, as already mentioned. We use copies
z = (z,y), z = (Z,y) of the same coordinate system near p € dM such that in terms of
coordinates Z = (¢,Y) on §11| , hi = t‘2(dt2 + |dY']?). By the proof of Lemma [3.3.3 we
can rewrite the function Ky, in as
%/MLdet ag(exlf)vz_l('i))” (3.4.1)

p*(z,2)y/det g(2)
where the matrix dz(exp; '(Z)) is computed with exp_!(Z) written in terms of coordinates on
T.M determined by the vectors 0., . .., d,». Recall the map ®(z,¢) = (z, exp, (g#)) = (z,mo
©1(2,€)) and its extension ®(z, ) = 0@ 01h(z, € ) from Lemma If w0 +w™0yr € TM°

denotes a generic vector (so v = (u,w®) are induced fiber coordinates) we can see that (3.3.3)

Ky, (2,%2) =

implies that on M2
(6P = B ] mOeTM).

Thus on (MZ)°

* — * ~ _ ~ —1
Bs det(dzexp, (%)) = B det(d, Z o exp, |v:( _1(2@)#) ' = det (d, Z o exp, M:(%—l)#)

-1 ~

—(detg(2)) " (det di.oy®) ' 0 @' = (det g(2)) "} (detde(Z 0 ®)) 0 B,

Now °T*M can be identified with N*A¢ and the fiber of the latter over e, with T:pé11|p,
hence OTI;"M ~ T;p(§11|p). Usmg this identification, (1)|0T* = Ppy T:pén‘p — £g>’11|p,
(ep, &) — ﬂoﬁlh’r’(ep, €), where ¢, got is the flow of the Hamiltonian X" generated on T*(By; ‘p)

by the Lagrangian L, = t*(7?+7Y?). This follows from the proof of Proposition 23 in [CH16:
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the lift of the right Hamiltonian Xp to ®*T*MZ (which generates the flow @;) is tangent to
én , and, on its flowout from N*A¢yN{L, = const.}, its restriction to 1-9)’11 |p can be identified
with X" viewed as a vector field on °T* By, ‘p.

Restricting to é11|p we obtain, using that det(g(p)) = 1 with our normalization,

By det(ds exp; }(2))] | = (det dg (qu%;))‘lo@,;g:det (dzexp, ' (Z)), (3.4.2)

P

B11

where in (3.4.2)) £ denote fiber variables on T, B ‘p and exp is the h7-exponential map. Now
by Proposition 24 in [CH16] 3jp restricts to the front face as the h-distance between (1,0)
and Z = (t,Y). Moreover,

g V/det g(2) =" /det g(z, y) _ g Vdetg(z) 1

= = at p.
" Jdetgm)  (tz)iy/detglte,y taY) Oy Jdetezm) t

Combining the restrictions of the various factors of (3.4.1)) completes the proof. n

As mentioned in Section , for each p € 9M the model operator NV}, can be equivalently
realized as an operator acting on C°(B"*1), where (B"*!, h) is the Poincaré ball with metric
h = %), upon making a choice of coordinates that identifies (7,7 M, hy,) with (H"*', h)
and conjugating by the Cayley transform. For the next proof we write B instead of B!

(i.e. without a superscript for the dimension). The following proposition is essentially an

immediate consequence of the results in [BC91|:

Proposition 3.4.2. For any p € OM the model operator N,(N;) can be identified with the
operator Ny, : C°(B; Q(l)/Q) — C~(B; Q(l)/Q) on (B" ™' Rh), which for § € (—n/2,n/2) extends
continuously to an operator Ny, : 29 L2(B: Q%) — 20 HL(B; Q/%). The operator N, has a two
sided inverse Ny ' € Uy H(B) such that Ny "N, = NN, = Id on 2° L2 (B; 93/2) for
d€(—n/2,n/2).

Proof. For each p € OM, N,(Ny) = Ny, on (T,f M, hy) by Proposition [3.4.1, and N, can be
identified with \j, on (B, h) as explained before. Thus by Proposition N, € U, "™ (B)
and the extension statement follows from Proposition It was observed in [BC91] that
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N}, can be expressed as

NiF(2) = [ R(p( 2N IEAVE), | e C(B), (3.4.3)

where py, is the geodesic distance function with respect to the hyperbolic metric and
(%5

=g 227
RO =T

sinh™" (7).
Note that B is a homogeneous space on which G = O*(1,n + 1) acts by isometries, thus it
can be identified with the quotient G/H,, where H, = O(n + 1) is the isotropy group of the

origin o € B. Hence (3.4.3) can be interpreted as convolution by a locally integrable radial

(H,-invariant) function: for f € C'°(B)

N (gH,) =R % f(gH,) = / RGgH,) [ GH,)AVAGH,), == gH,, &= §H,

where above and in what follows by abuse of notation we identify radial functions and
distributions on B with ones on [0, 00), writing for instance R(z) = R(pn(z,0)) for z € B.
An exact left inverse for N}, is computed in [BC91] (Theorems 4.2, 4.3, 4.4): if A denotes

the hyperbolic Laplacian with principal symbol —|¢]?, one has
Cnp(A)S, Ny =1d  on C(B).

Here C,, is an explicit constant, p(t) = —(t +n — 1) and S, is given by convolution by the
locally integrable radial kernel

coth(r) — 1, n=1
Sp(r) = , (3.4.4)

sinh™"(r) cosh(r), n >2

that is,
Suf(2) = S % f(2) = / S5u(on(22) FE)AE), | € Co(B).

B

The fact that C,p(A)S, is also a right inverse for A, follows by tracing through the
proofs of Theorems 4.2-4.5 in [BC91|. They use the spherical Fourier transform of a radial
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distribution, given by f()\) = [ f(Z)0_x(Z2)dVi(Z) for XA € R, where ¢, is the radial eigen-
function of A with eigenvalue —n?/4 — \? that satisfies ¢5(0) = 1. The spherical Fourier
transform is well defined pointwise whenever f(Z)¢_,(Z) is integrable; the reason why the
formula corresponding to n = 1 in differs from the one corresponding to n > 2 is ex-
actly to ensure that 3: is well defined. Their strategy is to show that (C,p(A)S,, * R)A = 3\,
where 0 is the delta distribution at the origin. Thus the claim reduces to showing that
(R % Cpp(A)S,) = 6. This in turn follows from the fact that for radial distributions i,
V one has ﬁ()\) = U(N)V(N), and also m()\) = —p(—n2/4 — A2)U(N), provided the
expressions make sense.

Now let ¢(x) € C°([0,00)) be identically 1 on [0, 1] and identically 0 on [0, 2]¢ and let

$.1f(2) = [ #lon(, DS (pn( ) FEIVA(E)

and Suaf(e) = [ (L= elon ) Sa(pn( ) FEMVA(E) for f € OB,

B

so that S, = Sp.1 + Sy.2. Using Proposition one sees that the Schwartz kernel of S,
vanishes identically near the left and right faces of the O-stretched product Eg; thus together
with the last part of the proof of Proposition analyzing the conormal singularity of N,
we find that S,,; € U;'(B) and hence p(A)S,; € Vi(B) since p(A) € Diff5(B).

The Laplacian acting on radial distributions is given in terms of geodesic polar coordinates

by A = 9% + ncoth(r)d, and one checks that for n > 1
p(A)S,(r) = —(A +n — 1) sinh™"(r) cosh(r) = —n sinh™" %(r) cosh(r). (3.4.5)
Since for f € C*(B)

P(A)Syaf (=) = / () (1 = o(r))Sa(r)|

B

(z’g)f(g)dvh(g)’

T=pPh

(3.4.5) and Proposition imply that P(A)Sp, € W, (B). We conclude that
p(A)S, € " " Y(B) for all n > 1 and the spaces on which the inversion is valid follow

again from Proposition by density. O]
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3.5 Parametrix construction and Stability Estimates
Proposition 3.5.1. Let (M"H?g) be a simple AH manifold. There exists an operator B
such that for 6 € (—n/2,n/2) and s > 0
Bt Hy Y (M; Q%) — 2P HS (M QL) (3.5.1)
is bounded and on x° Hi(M:; 9(1)/2) one has
BN,=Id— K, KecU," (M), Fy>1, Fy,Fy>n. (3.5.2)
In particular, K : 2 Hi(M; Q(l)/Q) — 2 HS(M; Q(l)/Q) is compact for such 6 and s.

Proof. We write N, = A; + Ay, where A; € Wy (M), Ay € U,°™"(M). By the ellipticity
of NV, (and hence of A;), Theorem 3.8 in [Maz91|] shows the existence of By € ¥§(M) such
that

BiA =Id—K,, K, €U;>M).

Note that K is not compact on any weighted Sobolev space x7 H§(M; Qé/ 2) since its kernel

does not vanish at Bj;. Using Proposition [3.2.1| we reach
BlNg:]d—Kz, Ky = K| — BiAy € \I](;oo,n,n(M)

We now improve the error term to to ensure that its kernel vanishes at the front face.

For each p € OM, F,(K,) € Z,’Z’;(Bn‘p) and thus N,(K,) € ¥,*"™"(B"+!), under the

identification of (T,F M, h,) with (B"*! h) using coordinates and the Cayley transform as

described before; this identification depends smoothly on p. Propositions [3.4.2] and (3.2.1]
imply that N,(Ky)N; b = N (Ky)N,(N,) ™! € U, % (B, By, Eyy > n, Re(Ey;) > 0. In

fact, we can obtain an improvement of the expansions: to see this, use Propositions

and [3.4.2] to write
NP(K2)NP(N9)_1 = Np(Id - BlNg)Np(Ng)_l = Np(Ng)_l - NP(Bl) € \Il(lJ’nH’nH(BnT)‘

Thus N, (Ky)N,(N,) ™" € Wy 8 (Brr) gyt Bedl) ¢ wy oot ([Brrl), Again using
the identification (T,7 M, h,) <> (B"*', h), the convolution kernel of Np(K3)Ny(N)™" is a
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polyhomogeneous (and in fact smooth) function in AZ,;Lgl’”H(BH‘p). According to (3.2.17)),
it can be extended off of By, smoothly to produce an operator By € ¥y " 1" (M) such
that at each p € OM, F,(Bs) agrees with the convolution kernel of N,(K2)N,(N,)~'. By
Lemma and Proposition this implies that F,(BsN,) = F,(K3). Setting B =

By + By € U™ H(M) and using Proposition we find

BN, =1Id—- K, K¢&¥;>~" (M),

FH = {(1,0)} U {(Qn + 1, 1)}, Fl() = F01 = {(n,O)} U {(TL + ]_, 1)}

As already stated earlier, by Propositionone has that for s > 0, N, : 2° H3(M; Qé/ 2) —
2 Hy ™ (M; Q(l)/?) is bounded provided 6 > —n/2, § < n/2 and ¢’ < §. Moreover, B :
2 HSPH (M Q(l)/2) — 2" HS(M; 95/2) is bounded provided ¢’ > —n/2 -1, 8" <n/2+1 and
§" < ¢'. Hence choosing § = ¢’ = ¢" € (—n/2,n/2) we obtain and (3.5.2)). Moreover,
for such choice of § one can choose 0 such that § < § < min{n/2,d + 1}, and 5 > s to

guarantee that

K 2 He(M; Q%) = 2 HE(M; QY%

is bounded, implying that K : 2° H3(M; Q(l)/Q) — 2 H3(M; 9(1)/2) is compact, as claimed. [J

Proposition together with Proposition imply that for 6 € (—n/2,n/2)

2 L2 (M; 93/2) Nker N, C m 2 H'(M; 93/2) = 2 H&(M; Q) C’OO(]\Z;Q(I)/Q). (3.5.3)

meR

We will now show using a technique shown to us by Rafe Mazzeo that the functions in (3.5.3)
also have polyhomogeneous expansions at the boundary. We start by showing tangential

regularity (here we work with functions as opposed to half densities for convenience).

Lemma 3.5.2. Let u € 2°L*(M;dV,) Nker N, with § € (—n/2,n/2). Then

u € 2’ Hi*(M;dV,) := {u € 2°L*(M;dV,) :
Vi- Vipu € 2’ L*(M;dV,), for allm >0, V; € V,(M)}.
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Proof. Smoothness of u in M was already remarked in (3.5.3). By analogy with Diff§" (M),
below we write Diffy" (M) for the differential operators consisting of finite sums of at most
m-fold products of vector fields in V,(M). Let u be as in the statement and 6 € (—n/2,n/2).
We will show that for any m > 0, if Pu € 2°L?(M;dV,) whenever P € Diff}"(M), then
P'u € 2°L*(M;dV,) whenever P’ € Diff]"""(M). Since u € 2°L*(M;dV,) by assumption,
this suffices to prove the lemma.

The claim will be shown by induction. To motivate the inductive hypothesis, first observe
that a vector field V' € V(M) lifts from the left factor of M? to a vector field on M2
tangent to the interior of the side faces, which is either smooth everywhere on Mg or it
blows up at the front face with order 1. Thus by Proposition [3.5.1] we have Vu = V Ku with
VK € \I/goo’Flo’Fm’F{l(M), F|, = F1; —1 > 0. This implies that Vu € 2°L*(M;dV,), by
Proposition [3.2.4]

Now fix m > 0 and assume that if P € Diff}""" (M), then Pu can be written as a finite

sum

Pu=Y"QPMu, Q" e w0 ang P € Difty (M), (3.5.4)
J

As we already showed, the claim is true for m = 0. We will show that holds for m+1.
Any operator in Diff}""*(M) can be written as a finite sum of the form 3 ; ViPj, where
V; € Vy(M) and P; € Diff]"""(M). Thus it suffices to differentiate by V € Vy(M)
and show that it has the required form. We find

J J

VPu=> VQP™u=>"(Q"vP™u—[Q" VIP™u).
J J

By Proposition 3.30 in [Maz91], [Q,V] € ¥, % (M) for Q € U;°%(M) and V € V,(M).

Thus [Q\™, V] € Wy ™™ (0r) for all j. Since VP™, PI™ € Difff"*1(M) we obtain

(3.5.4) for m + 1.
Now the fact that for any m > 0, Pu € 2°L*(M;dV,) for P € Diff;"(M) implies that

Plu € 2°L*(M;aV,) for P' € Diff]"™ (M) follows immediately by (3.5.4) and Proposition
3.2.4 O
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We will use the Mellin transform to show the existence of polyhomogeneous expansion at
the boundary for elements in the nullspace of N;. We briefly recall its definition and main

properties. Below we write RT = (0, 00).

Definition 3.5.3. If f € C°(R") and ¢ € C we define the Mellin Transform of f by

Q) = / )

x

By the fact that fu(¢) = F(f(exp(-)))(i¢) for ¢ imaginary, we see that for f € C°(R™)
the Mellin transform is rapidly decaying along each line ( = o +in, as R 3 n — +o0 where
a € R is constant. Moreover, there is automatically a Plancherel type theorem: that is, we
obtain an isomorphism

M: LR %) 5 L2({Re(¢) = 0};[dC]).

More generally, the Mellin transform induces an isomorphism

M L2 (R ) o L2({Re(() = — Re(6)): ¢

with inverse given by
1

— = dcl.
u(z) = 5 /R PRSI

Moreover, by the Paley-Wiener theorem if v € 2z°L?(R™; %) and suppu C [0,1) then
up extends to a holomorphic function on the half plane {Re(¢) > — Re(d)}, uniformly
in L?({Re(¢) = a}; |d¢]) for a > —Re(d), that is, sup,>_ re(s) |t llz2((re(e)=a} jacy < C. On
the other hand, if u € L*(R*; df) with suppu CC (0,00) then uy(¢) extends to be entire,
with |up(¢)] < AeBIRe© for constants A, B depending on u. By analogy with the Fourier
transform, we also have (z0,u)m(() = —Cupr(¢) on the half plane {Re(¢) > — Re(d)} pro-
vided v € 2 H}(R*; ) := {u € 2°L*(R"; ©) : 20,u € 2°L*(R™; %)} with suppu C [0,1).
Moreover, if ¢ € C2°([0,00)) is identically 1 near 0 then (2°|log(z)|"¢)(¢) is holomorphic
on the half plane {Re({) > — Re(d)} for k non-negative integer, and using an integration by

parts one sees that it extends meromorphically on C, with a pole of order k£ + 1 at ( = —9.
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If M is a compact manifold with boundary one can use a product decomposition [0, €),. X
OM of a collar neighborhood of OM and compute the Mellin transform in the x variable for
polyhomogeneous conormal functions supported near M. If ¢ € C*°(M) is supported near
OM and u € A%, (M), then (up(x))r is meromorphic on C with poles of order p + 1 at
¢ = —s —{ and values in C*(0M) for each (s,p) € E and for £ € Ny = {0,1,...}. The fact
that the space .Aghg(M ) is invariantly defined, as already remarked earlier, implies that the
analyticity properties of (pu)n are invariantly defined.

Before we show the existence of an asymptotic expansion for elements in the nullspace of

./\/; we show a lemma about index sets.

Lemma 3.5.4. Let E, Ey, F C Cx Ny be index sets satisfying (3.2.2). Then (Ey\UEy)+F C
(B + F)U(Ey + F).

Proof. First note that (Ey3 U Es) + F = (Ey + F)U(Ey + F) C (Ey + F)U(E2 + F). Now
suppose that (s,p1 +pa+1) € EZUE,, where (s,p1) € Ey and (s,ps2) € Es and let (s,p) € F.
Then (s +5,(p1 +p)+ (p2+p)+1) € (Ey + F)U(Ey + F), so it is also the case that
(s,p1+p2+1)+(5,p) = (s+5,p1 +p2+p+1) € (E1+ F)U(Ey+ F) by and we have

shown the claim. O

Remark 3.5.5. In general one does not have (E\UEy) + F = (Ey + F)U(Ey + F). For
instance consider the index sets Fy = {(1,10)}, Ey = {(1/2,0)} and F = {(1/2,5),(0,0)}.
Then (1,16) € (Ey + F)U(E> + F) \ ((E\UE>) + F).

Proposition 3.5.6. Let u € 2°L?(M;dV,) Nker N,, with § € (—n/2,n/2). Then u €
AL (M) with E = szo(Flo + jF11), where Fy, Fi1 are the index sets in (3.5.2)) and jFy; =
ZLI Fy1. Note that Fyg+ jF11 > n+ j and hence E is an index set.

Proof. By , any u as in the statement is smooth in M , hence it suffices to show
the existence of an asymptotic expansion at the boundary for u. We first show that if
u € v L*(M;dV,)Nker N, for some § € (—n/2,n/2) then u € x* Hg(M;dV,) for all §' < n/2.
Since u = Kwu, the mapping properties of K (by and Proposition imply that
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u € 2 H®(M;dV,) provided §; < n/2, §; < § + 1, that is, the existence of a parametrix
allows us to obtain an improvement in the decay of w. Using the improved decay and
u = Ku j times, we inductively find that in fact u € 2% H°(M;dV,), provided 6; < n/2
and d; < 6 + j, that is, taking j sufficiently large we conclude that u € x‘SIHgO(M; dVv,) for

§' < n/2. Equivalently, u € ™ H® (M; |d”;dy‘), where 7 < n. (For the remaining part of the
argument we prefer to use the measure induced by €, (M), which by abuse of notation write
as %, due to its more natural behavior with respect to the Mellin transform.) By Lemma
u € " Hp® (M; @) for 7 < n.

Functions in o™ H*(M; %) supported near JM can be identified with functions in
Ni.cen, £ HE (d/x; H(OM)), where o™ H (dx/x; H*(OM)) is the space of v : RY — H(OM)
that are almost everywhere on Rt k times Fréchet differentiable (and supported near 0), and
|27 (202)7v|| eonry € LP(dz/x) for j = 0,..., k. Therefore, if ¢ € C2°(M) is supported in
a sufficiently small neighborhood of M and identically 1 near M, by taking the Mellin
transform in x we find that (¢u)ar(¢) is holomorphic in the half plane {Re(¢) > —7}, with
values in smooth functions with respect to y and with the L?({Re(¢) = a};|d¢|) norm of
| (ou) ml| e (oary being uniformly bounded for av > —7 for each .

We now recover the leading order term in the expansion of u at M. We first make the
observation that localizing K near the boundary from the left does not alter its index sets:
that is, if ¢ € C°(M) is as before, i.e. ¢ =1 near M and supported near M, then pK €
U, (M), with F = (Fio, For, Fi1) as in (3.5.2). Recall that Fyy = szo{(n—i——j,pj)} with
po = 0 and denote F}, = sze{(n—i-—j,pj)} for £ € Ng. Now let Py = (20, — n) € Diffj(M);
Py lifts to MZ to a C™ vector field that takes the form (sd; — n) near Bjg, where as before
s is a defining function for Byy. Then Ky := Py(pK) € \Ifaoo’Fllo’Fm’F“(M), that is, the term
of order n in the expansion of pK at the left face of Mg is removed. This allows us to show
that Kou € 2" H° (M, |d:z;_dy\) if 7 < n+1: by an inductive argument using commutators
as in Lemma [3.5.2) one sees that if P € Diff}"(M), m > 0, then PKou = Zjﬁl Q,Pju,
where P; € Diff;"(M) and Q; € \I/(;OO’F%O’FM’FH(M). Recall that P'u € x7 H®(M; ‘dz—dyl) C

a7 L*(M; @) for P" € Diff}"(M), m > 0 and 7 < n as observed earlier. Thus Proposition
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together with the fact that Fllo >n+1—c¢forall e >0 and Fi; > 1 implies that for
P € Diff]*(M), PKyu € 2" L*(M; @) if 7 <n+1and m > 0, thus Kogu € 2" Hy*(M; ‘df‘x—dm)
for such 7. This implies that (Kou)a(¢) is holomorphic on the half plane {Re(¢) > —n —
1} with values in functions smooth in y. Since (Py(pu))m = (—=C — n)(pu)pm, (pu)pm =
(—¢ —n)~!(Kou)p and we conclude that (¢u)a extends meromorphically on the half plane
{Re(¢) > —n — 1}, with a pole of order 1 at ( = —n and values in smooth functions on
OM. Computing the inverse Mellin transform on the line {Re(¢) = —n — 1 + €}, where
e > 0 is small (note that on such a line (—¢ —n)~'(Kyu) s depends smoothly on y and is in
L*({Re(¢) = —n — 1+ €}; |d(]) for each y), we recover the leading term of the expansion of

u: near OM

dxd
u(z,y) = ag(y)z" +v, ag € C*(OM), v € xTHg’O(M; | drdy|

),T<n+1.

Now suppose that we have recovered the asymptotic expansion of v up to the m-th
exponent that appears in the index set £ and corresponds to powers of z, where E is defined
in the statement of the proposition. It will be convenient to write E = ;5o {(n +j,r;)}
and Fio +mF = Ujs,, {(n+4,77")}, so that r; +1 = i o(rf +1) ﬁ Note that 7§ = p;

and also 9 = 1) = py = 0. Thus suppose that we have

dxd
U =U,, + v where v GxTH{,’o(M; | y|)7 T<n+m,
and near OM  u,(x,y) Z y)z" | logx|*,  aj, € C(OM). (3.5.5)
j=0 k=0

We will show that | holds for m + 1; then by induction we will be done.

By (3:5.5)), (pu)p is meromorphlc on the half plane {Re(¢) > —n — m} with poles of
order 7j+1at ( = —n—jfor 0 < j<m—1. Set P; = (20, —n — j) € Diff (M) and write
Ko =[]}%, f’fﬁl(goK); then K, € \IJSOO’F{SH’FM’FH(M) as before. Now by

m

H }’J-pj+1(gpu) = Ky, + K. (3.5.6)

J=0

SHere the notation " does not indicate raising to a power: the 77" can be written explicitly in terms of

m, the p;, and the largest powers of logarithmic factors in an expansion induced by Fi;, but we do not
need such an explicit expression.
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— 00 m—+1 .
Since K, € ¥, F1o ’Fm’F“(M) with F}; > 1 and Fﬂ}“ >n+m+1—c¢forall e >0,

the fact that v € .ITH,;”(M; |dxdy|), for 7 < n 4+ m implies that K,,v € 2" H*(M; ‘dxm—dm)

T

for 7 < n+ m 4+ 1 using the same commutator argument as before and Proposition [3.2.4].

Moreover, it follows by Proposition that K, um € AS, (M), where

—m~—1 —m
_ m—+177 - m—+177 . /

G = FlO U<Uj:[) (Fl(J +jF11> + Fll)CFlo U(Uk:1(F10 + kFll)) = G y (357)
where the inclusion follows from Lemma m Thus K,,u., € AG

phg

Mellin transform in ({3.5.6]),
[I(=¢=n =" (ew)anlQ) = (Kmtim) aa(€) + (Kmv)aa(0), (35.8)
=0
where (K, v)p(C¢) is holomorphic in {Re({) > —n —m — 1} (with values in C*(0OM)).
On the other hand, for 1 < j < m, (K,un)m(¢) has a pole of order izl(rf + 1) at

¢ = —n — j. Note that the index set Fig*" in (3.5.7) does not contribute any poles in the

(M). Upon taking the

open half plane {Re({) > —n —m — 1}. Thus upon dividing we find that (pu)ar(C) is
meromorphic on the half plane {Re(¢) > —n —m — 1} with values in C*°(0M) and poles of
orderpj—l—l—kZi:l(r;?—i—l) = (7’?+1)+Zi:1(r§“+1) =rj+lat{=-n—-4,0<7<m.
Taking the inverse Mellin transform of on a vertical line {Re({) = —n —m —1+¢}
for small € > 0 similarly to the first inductive step we obtain for m + 1 and we are
done. O

Remark 3.5.7. It follows from (3.5.7)) that the index set E in the statement of Proposition
(3.5.6) allows for higher powers of logarithmic factors than it needs to, but its form suffices

for our needs.

We will need the following standard result from functional analysis (see [SU04] for a

proof):

Lemma 3.5.8. Let X, Y, Z be Banach spaces, and let A : X — Y be bounded and injective.
If there exists a compact operator K : X — Z such that

[ullx < C([Aully + |Kullz), weX
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for some constant C, then there exists a constant C" such that

|ullx < C'||Aully, ueX.

We now prove the main theorem:

Proof of Theorem[3. Let u € 2°L*(M;dV,) Nker(N,), 6 € (—n/2,n/2). We claim that
u = 0. Note that the X-ray transform is well defined on such a u: by Corollary [3.3.5
Tu € (n);* L*(0_S*M;d)y), & < min{4,0}. By Proposition ue Al (M), E>n. In
particular, u € x°L*(M;dV,) for § < n/2. Now by and the discussion immediately

after it we find

0 = (N, u) r2(anav,) =T Tu, w) 2(arav,) = ||[u||%2(8_S*M;d>\a)'

This implies that Ju = 0. Then one checks that the proof of Theorem 1 in [GGS™|, which
shows injectivity of I on 2C*°(M), also applies for polyhomogeneous functions in fhg(M ),
E > 1. More specifically, by the proof of Proposition 3.15 there it follows that for v €
AP, (M) Nker I one has the stronger result u € C>(M) (i.e. u vanishes to infinite order at
the boundary). Then the injectivity argument using Pestov identities in the proof of Theorem

1 in the same paper yields v = 0. We have shown that N is injective on 20 L2 (M; dvy),
d > —n/2. Now by Proposition we have

||U||x6Hg(M;dVg) <C (“NgunxéHg“(M;dvg) + ||KU||z5Hg(M;dVg)> , 6€(-n/2,n/2), s>0,
where K : 2 H3(M;dV,) — 2° H3(M; dV,) is compact. Thus Lemma implies
Hu||x5Hg(M;dVg) < C/HNgU”xéHg“(M;dVg)v 0 € (—n/2,n/2), s >0,

which is the claimed estimate. O
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