HOME EXAM

IAP 2014: DIRECTED READING PROGRAM

Part I

- 1. Let G be the group of nonconstant linear transformations $x \mapsto ax + b$ over \mathbb{F}_q .
- (a) Find all irreducible G-representations and compute their characters.
- (b) Compute the tensor product of irreducible representations.
 - 2. Let X_1, X_2 be two G-sets, so that $\mathbb{C}[X_1]$ and $\mathbb{C}[X_2]$ become G-representations.
- (a) Find $c(X_1, X_2) := \dim \operatorname{Hom}_G(\mathbb{C}[X_1], \mathbb{C}[X_2])$.
- (b) Let X_1 and X_2 be homogeneous G-spaces, so that $X_i = G/H_i$. Show that $\mathbb{C}[X_i] = \operatorname{Ind}_{H_i}^G \mathbb{C}$ and prove that $c(X_1, X_2) = \# H_1 \backslash G / H_2$.
- (c) Let us consider the action of $G \times G$ on G given by $(g_1, g_2) \circ g := g_1 g g_2^{-1}$, and let Reg be the corresponding $G \times G$ -representation on $\mathbb{C}[G]$. Prove that dim $\mathrm{Hom}_{G \times G}(\mathrm{Reg},\mathrm{Reg})$ is equal to the number of G-conjugacy classes on the one hand, and to the number of irreducible finite dimensional G-representations on the other hand.
- 3. Let $G := \mathrm{GL}_n(\mathbb{F}_q)$ and $X_k^q := \mathrm{Gr}_k(\mathbb{F}_q^n)$ —the space of k-dimensional subspaces of \mathbb{F}_q^n . The natural action of G on X_k^q induces a G-action on $\mathbb{C}[X_k^q] :=: V_k^q$.
- (a) Compute #G and $\#\ddot{X}_k^q$.
- (b) Prove that G-representations V_k^q and V_{n-k}^q are isomorphic.
- (c) Prove that $\dim \operatorname{Hom}_G(V_k^q, V_l^q) = 1 + \min\{k, l, n k, n l\}$. (d) Prove that $V_k^q = \bigoplus_{i=0}^{\min\{k, n k\}} U_i^q$ for some G-irreducible representations $U_0^q, \dots, U_{\lfloor n/2 \rfloor}^q$.

Part II

- 4. (a) Decompose $\operatorname{Ind}_{S_3}^{S_4}\pi$ into irreducibles for every irreducible S_3 -representation π .
- (b) Decompose $\mathrm{Ind}_{S_3\times S_2}^{S_5}\mathrm{sgn}\otimes\mathrm{sgn}$ into irreducibles.
- (c) Decompose $\operatorname{Res}_{S_2 \times S_2}^{S_4^*} \pi$ into irreducibles for every irreducible S_4 -representation π .
- 5. Consider a subgroup $\mathbb{Z}_n \subset S_n$ generated by the long cycle $\sigma = (12 \dots n)$, and a character $\chi: \mathbb{Z}_n \to \mathbb{C}^*$ with $\chi(\sigma)$ being a primitive *n*-th root of 1.
- (a) Decompose $\operatorname{Ind}_{\mathbb{Z}_n}^{S_n} \chi$ into irreducibles for n = 3, 4.
- (b) Find the multiplicities of $V_{(1^n)} = \operatorname{sgn}$ and the standard representation $V_{(n-1,1)}$ in $\operatorname{Ind}_{\mathbb{Z}_n}^{S_n} \chi$.
- (c) In general, show that the multiplicity of V_{λ} in $\operatorname{Ind}_{\mathbb{Z}_m}^{S_n}\chi$ is given by the following formula:

$$\frac{1}{n} \sum_{d|n} \mu(d) \chi_{V_{\lambda}}(\sigma^{n/d}),$$

where $\mu(d)$ is the Möbius function.

- 6. Let us define an element $C_n := \sum_{i < j} (ij) \in \mathbb{C}S_n$.
- (a) Show that C_n acts on V_{λ} as a multiplication by the scalar $c_{\lambda} = \sum_{j} \sum_{i=1}^{\lambda_j} (i-j)$. (b) Show that $E_n := (12) + \ldots + (1n) \in \mathbb{C}S_n$ acts diagonalizably on V_{λ} with integer eigenvalues from $\{1-n, 2-n, \ldots, n-2, n-1\}$.
- (c) Show that E_n acts on V_{λ} as a multiplication by a scalar iff λ is a rectangular Young diagram. Compute this scalar in the latter case.
- 7. Recall that $\operatorname{Res}_{A_n}^{S_n} V_{\lambda}$ is irreducible iff $\lambda \neq \lambda^*$. If $\lambda = \lambda^*$ it decomposes into a sum of two conjugate A_n -irreducibles: $\operatorname{Res}_{A_n}^{S_n} V_{\lambda} = V_{\lambda}' \oplus V_{\lambda}''$. Compute the characters of V_{λ}' and V_{λ}'' .

 Hint : See [Fulton-Harris, Exercise 5.4] for the outline of key steps.

8. As we know, the group $G = \mathrm{SL}_2(\mathbb{F}_3)$ has 7 irreducible representations $\{V_i\}_{i=1}^7$. Let V_7 denote the representation $\operatorname{Res}^{\operatorname{GL}_2(\mathbb{F}_3)}_{\operatorname{SL}_2(\mathbb{F}_3)} X_{\varphi}$ in the notation of [Fulton-Harris, p. 70] (it is also recommended to check that this restriction is indeed irreducible and does not depend on φ).

Draw the graph, whose vertices are parametrized by $\{1,\ldots,7\}$ and the number of edges between vertices #i and #j is equal to dim $\operatorname{Hom}_G(V_i, V_i \otimes V_7)$.

9. Prove that $PSL_2(\mathbb{F}_q)$ is a simple group for odd q > 3. Is $PSL_2(\mathbb{F}_3)$ simple?

Part III

- 10. Classify irreducible finite dimensional representations of the two-dimensional Lie algebra with basis X, Y and commutation relation [X, Y] = Y. Consider the cases of zero and positive characteristic (we work only over algebraically closed fields).
- 11. Let L be a free Lie algebra on k generators x_1, \ldots, x_k . Consider a grading on L with $\deg(x_1) = \ldots = \deg(x_k) = 1$. Thus $L = \bigoplus_{n \geq 0} L_n$ with L_n being the degree n component. Prove the following formula:

$$\dim L_n = \frac{1}{n} \sum_{d|n} \mu(d) \cdot k^{n/d},$$

where $\mu(d)$ is the Möbius function.

Hint: Use the Möbius inversion formula.

12. Let $\mathfrak g$ be a simple Lie algebra and $\mathfrak h\subset\mathfrak g$ —its Cartan subalgebra. Let $R=R^-\cup R^+$ be the set of all roots of \mathfrak{g} and $\Pi \subset \mathbb{R}^+$ be the set of positive simple roots. Choose nonzero elements $e_{\alpha} \in \mathfrak{g}_{\alpha}$ for each $\alpha \in \Pi$ and set $e := \sum_{\alpha \in \Pi} e_{\alpha}$, $h := \sum_{\alpha \in R^{+}} h_{\alpha}$. Show that there is a unique element $f \in \mathfrak{g}$ such that $\{f, h, e\}$ generate a subalgebra isomorphic to \mathfrak{sl}_{2} via

$$F \mapsto f, \ H \mapsto h, \ E \mapsto e.$$