HOMEWORK 1 (DUE FEBRUARY 6)

1. (a) Verify that the 2-cocycle $\omega : W \otimes W \to \mathbb{C}$ defined via $\omega(L_n, L_m) = (n^3 - n)\delta_{n,-m}$ is not a 2-coboundary (here W is the Witt algebra).

(b) For a finite dimensional Lie algebra \mathfrak{g} with a nontrivial invariant symmetric bilinear form (\cdot, \cdot) , verify that the 2-cocycle $\omega \colon \mathfrak{g}[t, t^{-1}] \otimes \mathfrak{g}[t, t^{-1}] \to \mathbb{C}$ defined via $\omega(F, G) = \operatorname{Res}_{t=0}(dF, G)$ is not a 2-coboundary.

Note: This exercise completes our proofs of Theorems 1 from Lectures 1 and 2.

2. Consider the setup from Lecture 2: L is a Lie algebra, $\overline{L} \subset L$ is a Lie subalgebra, $M \subset L$ is an \overline{L} -submodule. Given a 2-cocycle $\omega \in Z^2(L)$, define $\varphi \colon \overline{L} \to M^*$ via $\varphi(x)(m) := \omega(x,m)$. Verify that $\varphi \in Z^1(\overline{L}, M^*)$, i.e. φ is a 1-cocycle with values in M^* .

Note: This exercise was crucially used in the proof of Theorem 1 from Lecture 2.

3. Recall the Fock modules F_{μ} of the oscillator algebra \mathcal{A} from Lecture 2.

(a) Construct an infinite-dimensional irreducible \mathcal{A} -representation, not isomorphic to any F_{μ} .

(b) For any \mathcal{A} -representation V, let $V[0] = \{v \in V \mid K(v) = v, a_0(v) = \mu v, a_n(v) = 0 \ \forall n > 0\}$. Construct a natural \mathcal{A} -module homomorphism $F_{\mu} \otimes V[0] \to V$ and prove that it is injective.

4. (a) Consider a \mathbb{Z} -grading of $\mathfrak{g} = \mathfrak{sl}_n$ defined via $\deg(E_{ij}) = j - i$. Verify that it makes \mathfrak{g} into a non-degenerate \mathbb{Z} -graded Lie algebra.

(b) For $\mathfrak{g} = \mathfrak{sl}_n$, define a \mathbb{Z} -grading of $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ via $\deg(E_{ij}t^k) = j - i + nk$, $\deg K = 0$. Verify if it makes $\widehat{\mathfrak{g}}$ and $\mathfrak{g}[t, t^{-1}]$ into non-degenerate \mathbb{Z} -graded Lie algebras.

Note: One can actually consider any simple finite dimensional \mathfrak{g} with the *principal* grading.

5. A linear operator A on a \mathbb{C} -vector space V acts locally finitely if $\mathbb{C}[A]v$ is finite dimensional for any $v \in V$. Verify that if $W \subset V$ is an A-stable subspace (i.e. $A(W) \subset W$) and A acts locally finitely both on W and the quotient V/W, then it also acts locally finitely on V itself.

Note: This was used in the proof of Proposition 1 from Lecture 3.

6. For each of the Lie algebras from Lectures 1–2, with a \mathbb{Z} -grading introduced in Lecture 3, decide if there is an element $L \in \mathfrak{g}_0$ such that $[L, x] = \deg(x) \cdot x$ for any homogeneous $x \in \mathfrak{g}$.

Note: This condition was used in Theorem 1(c) from Lecture 4.

7. (a) Let \mathfrak{a} be a Lie algebra, \mathfrak{b} be a Lie subalgebra of \mathfrak{a} , M be a \mathfrak{b} -module, N be an \mathfrak{a} -module. Prove that

$$\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}(M) \otimes N \simeq \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}(M \otimes \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{a}}(N))$$
 as \mathfrak{a} -modules

(b) Let \mathfrak{c} be a Lie algebra, $\mathfrak{a}, \mathfrak{b}$ be two Lie subalgebras of \mathfrak{c} such that $\mathfrak{a} + \mathfrak{b} = \mathfrak{c}$. Note that $\mathfrak{a} \cap \mathfrak{b}$ is also a Lie subalgebra of \mathfrak{c} . Let M be a \mathfrak{b} -module. Prove that

 $\mathrm{Res}^{\mathfrak{c}}_{\mathfrak{a}}(\mathrm{Ind}^{\mathfrak{c}}_{\mathfrak{b}}(M))\simeq\mathrm{Ind}^{\mathfrak{a}}_{\mathfrak{a}\cap\mathfrak{b}}(\mathrm{Res}^{\mathfrak{b}}_{\mathfrak{a}\cap\mathfrak{b}}(M)) \ \text{ as } \ \mathfrak{a}\mathrm{-modules}.$

Hint: You may wish to use $U(\mathfrak{a}) \otimes_{U(\mathfrak{a} \cap \mathfrak{b})} U(\mathfrak{b}) \simeq U(\mathfrak{c})$ both as left \mathfrak{a} and right \mathfrak{b} modules.

The last 3 problems are about representations of the Witt algebra W needed later in class.

8. (a) Show that W is a simple Lie algebra (i.e. it has no proper ideals).

(b) Deduce that W has no nontrivial finite dimensional representations.

9. For $\alpha, \beta \in \mathbb{C}$, let $V_{\alpha,\beta}$ be the vector space of formal expressions $g(t)t^{\alpha}(dt)^{\beta}$ with $g \in \mathbb{C}[t, t^{-1}]$ (*tensor fields* of rank β and branching α on the punctured complex plane \mathbb{C}^{\times}).

(a) Show that the formula

$$f\partial_t \circ gt^{\alpha}(dt)^{\beta} = (fg' + \alpha t^{-1}fg + \beta f'g)t^{\alpha}(dt)^{\beta}$$

defines an action of W on $V_{\alpha,\beta}$.

(b) Choose a basis $v_k := t^{k+\alpha} (dt)^{\beta}$ of $V_{\alpha,\beta}$. Verify that $L_n(v_k) = -(k+\alpha+(n+1)\beta)v_{k+n}$.

- 10. Consider the representations $V_{\alpha,\beta}$ of the Witt algebra W defined above.
- (a) Find the necessary and sufficient conditions on $(\alpha, \beta, \alpha', \beta')$ under which $V_{\alpha,\beta} \simeq V_{\alpha',\beta'}$.
- (b) Find the necessary and sufficient conditions on (α, β) under which $V_{\alpha,\beta}$ is irreducible.