HOMEWORK 2 (DUE FEBRUARY 20)

1. Let $\phi: M_{\lambda}^+ \to M_{\mu}^+$ be a nonzero homomorphism of Verma modules over a \mathbb{Z} -graded Lie algebra \mathfrak{g} (with an abelian \mathfrak{g}_0). Prove that ϕ is injective.

Hint: You may wish to use the PBW theorem (stated in the form gr $U(\mathfrak{n}_{-}) \simeq S(\mathfrak{n}_{-})$).

2. Recall the notion of a <u>character</u> $\operatorname{ch}_V(q, x) := \sum_{d \in \mathbb{C}} q^{-d} \operatorname{Tr}_{V[d]}(e^x)$ for any $V \in \mathcal{O}^+$, where q is a formal variable and $x \in \mathfrak{h} = \mathfrak{g}_0$. Prove the formula

$$\operatorname{ch}_{M_{\lambda}^{+}}(q, x) = \frac{e^{\lambda(x)}}{\prod_{k>0} \operatorname{det}_{\mathfrak{g}_{-k}}(1 - q^{k} e^{\operatorname{ad}(x)})}$$

where the \mathbb{C} -grading on the Verma module M_{λ}^+ is such that $\deg(v_{\lambda}^+) = 0$.

Hint: Use the PBW theorem, together with the equality $\sum_{n\geq 0} q^n \operatorname{Tr}_{S^n V}(S^n A) = \frac{1}{\det(1-qA)}$ for any endomorphism A of a finite-dimensional vector space V.

3. This problem is aimed at verification of two simple statements made in Lecture 6.

(a) Verify that for all \mathbb{Z} -graded Lie algebras discussed in Lectures 1–2, the map ω specified in Lecture 6 is indeed an involutive automorphism such that $\omega(\mathfrak{g}_k) = \mathfrak{g}_{-k} \forall k$ and $\omega|_{\mathfrak{g}_0} = -\mathrm{Id}$.

(b) Verify that the definition of the semidirect product $\mathfrak{g} \ltimes \mathfrak{a}$ indeed endows the vector space $\mathfrak{g} \oplus \mathfrak{a}$ with a Lie algebra structure.

4. Let \mathfrak{g} be a Lie algebra over \mathbb{C} with a <u>real structure</u> \dagger . Define

$$\mathfrak{g}_{\mathbb{R}} := \left\{ a \in \mathfrak{g} \, \big| \, a^{\dagger} = -a \right\}$$

It is usually called the <u>real form</u> of \mathfrak{g} , due to the following result:

(a) Prove that $\mathfrak{g}_{\mathbb{R}}$ is a Lie algebra over \mathbb{R} and $\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathfrak{g}$ as Lie algebras over \mathbb{C} .

Assume now that \mathfrak{g} is \mathbb{Z} -graded with $\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_k$, and $\mathfrak{g}_k^{\dagger} = \mathfrak{g}_{-k}$ for all k.

(b) Verify that $\overline{(M_{-\lambda}^-)^{-\dagger}} \simeq M_{\lambda}^+$ as modules over \mathfrak{g} iff λ is <u>real</u> (that is, $\lambda \in \mathfrak{g}_{0,\mathbb{R}}^*$).

(c) Prove that M_{λ}^+ has a nonzero Hermitian form iff λ is real.

5. Let $\lambda, \mu \in \mathbb{C}$ and $\mathbf{i} := \sqrt{-1}$. Recall linear operators $\{\widetilde{L}_n\}_{n \in \mathbb{Z}}$ acting on F_{μ} from Lecture 7:

$$\widetilde{L}_n = \frac{1}{2} \sum_{j \in \mathbb{Z}} a_{-j} a_{n+j} + \mathbf{i} \lambda n a_n \quad \text{if } n \neq 0, \qquad \widetilde{L}_0 = \frac{\lambda^2 + \mu^2}{2} + \sum_{j > 0} a_{-j} a_j.$$

(a) Verify the following equality in $\operatorname{End}(F_{\mu})$: $[\widetilde{L}_n, a_m] = -ma_{n+m} + i\lambda m^2 \delta_{m,-n} \operatorname{Id} \forall m, n \in \mathbb{Z}.$

(b) Show that \widetilde{L}_n define an action of Vir on F_{μ} with the central charge $c = 1 + 12\lambda^2$, i.e.

$$[\widetilde{L}_n, \widetilde{L}_m] = (n-m)\widetilde{L}_{n+m} + \delta_{n,-m}\frac{n^3 - n}{12}(1+12\lambda^2) \qquad \forall m, n \in \mathbb{Z}.$$

Note: This proves Proposition 2 of Lecture 7.

6. Let $\delta \in \{0, 1/2\}$. Recall the algebra C_{δ} (generated by the fermions $\{\psi_j\}_{j \in \delta + \mathbb{Z}}$) acting on the vector space V_{δ} (polynomials in anticommuting variables $\{\xi_j\}_{j \in \delta + \mathbb{Z} \ge 0}$) from Lecture 8.

Define the normal ordering $:\psi_i\psi_j:=\begin{cases} \psi_i\psi_j & \text{if } i\leq j\\ -\psi_j\psi_i & \text{if } i>j \end{cases}$ and recall $L_n\in \operatorname{End}(V_\delta)$ defined via $L_n=\delta_{n,0}\frac{1-2\delta}{16}+\frac{1}{2}\sum_{i\in\delta+\mathbb{Z}}j:\psi_{-j}\psi_{n+j}:\qquad\forall n\in\mathbb{Z}.\end{cases}$

(a) Verify the following equality in End(V_{δ}): $[\psi_m, L_n] = (m + \frac{n}{2}) \psi_{m+n} \quad \forall m \in \delta + \mathbb{Z}, n \in \mathbb{Z}.$

(b) Show that L_n define an action of Vir on V_{δ} with the central charge $c = \frac{1}{2}$, i.e.

$$[L_n, L_m] = (n-m)L_{n+m} + \delta_{n,-m}\frac{n^3 - n}{24} \qquad \forall m, n \in \mathbb{Z}.$$

Note: This proves Proposition 1 of Lecture 8.

For any algebra \mathcal{C} , we can split any quantum field $A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1}$, with $A_n \in \mathcal{C}$, into:

$$A(z) = A_{+}(z) + A_{-}(z)$$
 with $A_{+}(z) = \sum_{n \le -1} A_n z^{-n-1}, A_{-}(z) = \sum_{n \ge 0} A_n z^{-n-1}$

Given $A(z), B(z) \in \mathbb{C}[[z, z^{-1}]]$, define $:A(z)B(w): = A_+(z)B(w) + B(w)A_-(z)$.

7. Let $a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$, $T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$ be the quantum fields with coefficients in the universal enveloping of the Heisenberg (\mathcal{A}) and Virasoro (Vir) algebras, respectively.

(a) Compute the difference a(z)a(w) - a(z)a(w): on the Fock representation F_{μ} . Present the corresponding power series by rational functions (depending only on z - w).

(b) Evaluate the difference T(z)a(w) - T(z)a(w): on the Fock representation F_{μ} , viewed as a Vir $\ltimes \mathcal{A}$ -module. Present the answer as a linear combination of a(w) and its derivatives with coefficients being rational functions in z - w.

(c) Evaluate the difference T(z)T(w) - :T(z)T(w): on the highest weight Vir representation with central charge c. Present the answer as a linear combination of T(w) and its derivatives with coefficients being rational functions in z - w.

Recall the <u>delta-function</u> from Lecture 8:

$$\delta(w-z) = \sum_{n \in \mathbb{Z}} z^{-n-1} w^n = \frac{1}{z-w} + \frac{1}{w-z} \quad \text{with} \quad \frac{1}{z-w} = \sum_{n \ge 0} z^{-n-1} w^n.$$

8. Express [a(z), a(w)], [T(z), a(w)], [T(z), T(w)] via $a(z), T(z), \delta(w-z)$ and its derivatives. 9. Let F_0 be the Fock module of \mathcal{A} , $1 \in F_0$ denote the highest weight vector, $1 \in F_0^*$ denote the lowest weight vector of the dual representation, and a(z) be as in Problem 7. Prove:

$$\left\langle 1^*, a(z_1) \cdots a(z_{2n}) 1 \right\rangle = \sum_{\{\sigma \in S_{2n} : \ \sigma^2 = 1, \ \sigma(i) \neq i \ \forall i\}} \prod_{i < \sigma(i)} \frac{1}{(z_i - z_{\sigma(i)})^2}.$$