
HOMEWORK 4 (DUE MARCH 27)

1. Present and prove the Plücker relations explicitly, following our discussions in Lecture 13.

2. Verify that τ = τ(x1, x2, x3, . . .) satisfies the first nontrivial equation of the KP hierarchy( (
∂4z1 + 3∂2z2 − 4∂z1∂z3

)
τ(x− z)τ(x+ z)

)
|z=0

= 0

if and only if the function
u := 2∂2x log τ(x, y, t, c4, c5, . . .)

satisfies the KP equation

3

4
∂2yu = ∂x

(
∂tu− 3

2
u · ∂xu− 1

4
∂3xu

)
.

3. Show that the action ĝln ↷ F (m) can be uniquely extended to g̃ln ↷ F (m) with d(ψm) = 0.

4. Establish an isomorphism ĝln ≃ (ŝln ⊕A)/(K1 −K2), where K1 = (K, 0),K2 = (0,K).

5. (a) Prove that F = Λ
∞
2 V is an irreducible representation of the Clifford algebra generated

by {v̂j , v̌j}j∈Z.

(b) Compute TrF(q
dzm), wherem is the operator multiplying elements of F(m) by the number

m, while d is the operator multiplying homogeneous elements by their degree, defined via:

deg(ψ0) = 0, deg(v̂j) = j, deg(v̌j) = −j .

6. (a) Using the boson-fermion correspondence F ≃ B, compute the answer to Problem 5(b)
in the bosonic realization.

(b) Deduce the Jacobi triple product identity:∏
n≥0

(1− qnz)(1− qn+1z−1)(1− qn+1) =
∑
m∈Z

(−z)mq
m(m−1)

2 .

(c) Substitute q = z3 to obtain the Euler’s pentagonal identity:∏
n≥1

(1− zn) = 1 +
∑
k≥1

(−1)k
(
z

k(3k+1)
2 + z

k(3k−1)
2

)
.

7⋆. This problem (finally) outlines a proof of Theorem 1 from Lecture 5 stating that for a
non-degenerate Z-graded Lie algebra g and any n ≥ 0, the restriction

(·, ·)λ : M+
λ [−n]×M−

−λ[n] −→ C is nondegenerate for generic λ ∈ h∗

Identifying M±
±λ[∓n] ≃ U(n∓)[∓n] and choosing some fixed bases of the latter, this reduces

to a non-vanishing of the corresponding determinant, denoted det(·, ·)gλ,n. The key idea will

be to degenerate g to a “generalized Heisenberg algebra” where the proof is more feasible.
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Step 1 (degeneration process): Consider the Z-graded Lie algebra gϵ =
⊕

n∈Z g
ϵ
n with gϵn = gn

as vector spaces, and with the Lie bracket defined via

[x, y]ϵ = [x, y] · ϵ1+δn,0+δm,0−δn+m,0 for any x ∈ gϵn, y ∈ gϵm

For ϵ ̸= 0, show that the following linear map is a Lie algebra isomorphism

φϵ : g
ϵ → g with x 7→ ϵ1+δn,0x for x ∈ gϵn

Show that
(xv+,gϵ

λ , yv−,gϵ

−λ )λ = (φϵ(x)v
+,g
λ/ϵ2

, φϵ(y)v
−,g
−λ/ϵ2

)λ/ϵ2

for any x ∈ U(n−), y ∈ U(n+). Restricting to degree ±n components, deduce:

det(·, ·)g
ϵ

λ,n = ϵNdet(·, ·)g
λ/ϵ2,n

for some N ∈ Z≥0.

Conclusion: Deduce that the leading term of det(·, ·)gλ,n = det(·, ·)g
1

λ,n equals det(·, ·)g
0

λ,n.

Therefore, it suffices to prove the non-vanishing of det(·, ·)g
0

λ,n for generic λ ∈ h∗.

Step 2 (degenerated version explicitly): Note that g0 =
⊕

n∈Z gn as vector spaces with

[x, y]g0 =

{
[x, y] if deg(x) + deg(y) = 0

0 otherwise

for homogeneous elements x, y (hence, we call g0 a “generalized Heisenberg algebra”). Note
that n± =

⊕
n>0 g

0
±n are abelian, so that U(n±) ≃ S(n±).

Verify that the g-invariant form (·, ·)g
0

λ : S(n−)× S(n+) → C is given by

(⋆) (a1 . . . ak, b1 . . . bl) = δk,l
∑

σ∈S(k)

λ([a1, bσ(1)]) · · ·λ([ak, bσ(k)]) with λ|g ̸=0
= 0

Step 3 (verification for g0): Use formula (⋆) to show that det(·, ·)g
0

λ,n ̸= 0 for generic λ ∈ h∗.

8. (a) Show that the leading h-power of detn(c, h) arises only from the diagonal.

(b) Prove the formula of Lecture 15 for the coefficient of the leading power of h in detm(c, h):

Kn =

rs≤n∏
r,s≥1

(
(2r)s · s!

)m(r,s)

with m(r, s) = p (n− rs)− p (n− r(s+ 1)), where p(k) is the partition function.


