HOMEWORK 5 (DUE APRIL 10)

1. Let \mathfrak{g} be a simple Lie algebra with an invariant non-degenerate pairing (\cdot, \cdot) . Prove that the Casimir element (with respect to (\cdot, \cdot)) acts on the Verma \mathfrak{g} -module M_{λ} as $(\lambda, \lambda + 2\rho) \mathrm{Id}_{\mathrm{M}_{\lambda}}$, where ρ is the half-sum of all positive roots of \mathfrak{g} .

2. Does any highest weight $\hat{\mathfrak{g}}$ -module admit a $\tilde{\mathfrak{g}}$ -action extending that of $\hat{\mathfrak{g}}$?

3. Verify that if an admissible $\hat{\mathfrak{g}}$ -module M of non-critical level is unitary as a $\hat{\mathfrak{g}}$ -module, then it is also unitary as a Vir-module, where Vir acts via the Sugawara construction (the corresponding antilinear anti-involutions \dagger on $\hat{\mathfrak{g}}$ and Vir were introduced in Lecture 7).

4. Verify that if \mathfrak{g} is simple, B' is an orthonormal basis of \mathfrak{g} with respect to the standard invariant form (\cdot, \cdot) , M is an admissible $\hat{\mathfrak{g}}$ -module of the critical level $k = -h^{\vee}$, then operators $T_n = \sum_{a \in B'}^{m \in \mathbb{Z}} :a_m a_{n-m}$: $(n \in \mathbb{Z})$ commute with $\hat{\mathfrak{g}}$ -action.

5. Prove directly that the positive part \mathfrak{n}_+ of the Lie algebras $\mathfrak{sl}_3, \mathfrak{sp}_4$ is generated by e_1, e_2 subject to the corresponding two Serre relations.

6. (a) Compute explicitly the generalized Cartan matrices and the corresponding Dynkin diagrams for $\hat{\mathfrak{g}}$ with \mathfrak{g} being a classical simple finite dimensional Lie algebra (series *ABCD*).

(b) Compute explicitly the generalized Cartan matrices and the corresponding Dynkin diagrams for $\hat{\mathfrak{g}}$ with \mathfrak{g} being an exceptional simple finite dimensional Lie algebra (types *EFG*).

7. Let $A = (a_{ij})_{i,j=1}^n \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. Let $\widetilde{\mathfrak{g}}(A)$ be the Lie algebra of Lecture 20, and $\widetilde{\mathfrak{h}}, \widetilde{\mathfrak{n}}_+, \widetilde{\mathfrak{n}}_-$ be the Lie subalgebras of $\widetilde{\mathfrak{g}}(A)$ generated by $\{h_i\}_{i=1}^n, \{e_i\}_{i=1}^n, \{f_i\}_{i=1}^n$, respectively.

(a) Let $\tilde{\mathfrak{n}}'_+$ be the free Lie algebra generated by $\{e_i\}_{i=1}^n$. Show that the universal enveloping $U(\tilde{\mathfrak{n}}'_+)$ is a free associative algebra in $\{e_i\}_{i=1}^n$.

(b) Let $\tilde{\mathfrak{h}}'$ be an abelian Lie algebra with a basis $\{h_i\}_{i=1}^n$. Construct an action of $\tilde{\mathfrak{h}}'$ on $\tilde{\mathfrak{n}}'_+$ via derivations, so that $h_i(e_j) = a_{ij}e_j$.

(c) Construct an action of $\widetilde{\mathfrak{g}}(A)$ on $U(\widetilde{\mathfrak{h}}' \ltimes \widetilde{\mathfrak{n}}'_+)$.

(d) Deduce the Lie algebra isomorphisms $\widetilde{\mathfrak{h}} \simeq \widetilde{\mathfrak{h}}'$ and $\widetilde{\mathfrak{n}}_+ \simeq \widetilde{\mathfrak{n}}'_+$.

(e) Show that the assignment $e_i \mapsto f_i, f_i \mapsto e_i, h_i \mapsto -h_i \ (1 \le i \le n)$ gives rise to a Lie algebra automorphism of $\tilde{\mathfrak{g}}(A)$. Deduce that $\tilde{\mathfrak{n}}_-$ is isomorphic to the free Lie algebra in $\{f_i\}_{i=1}^n$.

8. Let \mathfrak{g} be a simple finite dimensional Lie algebra and $L\mathfrak{g} = \mathfrak{g}[t, t^{-1}]$. For a \mathfrak{g} -representation V and $z \in \mathbb{C}^{\times}$, define an *evaluation representation* V(z) (with the underlying vector space V) of $L\mathfrak{g}$ as a composition of $L\mathfrak{g} \to \mathfrak{g}$ given by $at^n \mapsto z^n \cdot a$ ($a \in \mathfrak{g}, n \in \mathbb{Z}$) and $\mathfrak{g} \to \text{End}(V)$.

(a) Let V_1, \ldots, V_n be irreducible nontrivial g-representations. Show that the Lg-representation $V_1(z_1) \otimes \cdots \otimes V_n(z_n)$ is irreducible if and only if $z_i \neq z_j$ for $i \neq j$.

(b) When are two such irreducible representations isomorphic?

(c) Show that any irreducible finite dimensional $L\mathfrak{g}$ -representation has the form as in (a).

HOMEWORK 5 (DUE APRIL 10)

Hint: For an irreducible finite dimensional Lg-module V, show that Lg-action on V factors through the action of the finite dimensional Lie algebra $\mathfrak{g} \otimes (\mathbb{C}[t, t^{-1}]/I)$, where $I \subset \mathbb{C}[t, t^{-1}]$ is an ideal of finite codimension. Apply the primary decomposition of I and Lie's theorem.