HOMEWORK 6 (DUE APRIL 29)

1. Recall the inner product $\langle \cdot, \cdot \rangle \colon P \times P \to \mathbb{C}$ from Lecture 23 defined by:

$$\langle \varphi + \alpha, \psi + \beta \rangle = \varphi(h_{\beta}) + \psi(h_{\alpha}) + (h_{\alpha}, h_{\beta})$$

for any $\varphi, \psi \in \mathfrak{h}^*$ and $\alpha, \beta \in F$, whereas $P = \mathfrak{h}^* \oplus F$. Identifying $P \simeq \mathfrak{h}_{\text{ext}}^*$ (as in Lecture 22), verify that the induced pairing $(\cdot, \cdot) \colon \mathfrak{h}_{\text{ext}} \times \mathfrak{h}_{\text{ext}} \to \mathbb{C}$ is given by

$$(h_{\alpha_i}, h_{\alpha_j}) = d_i^{-1} a_{ij}, \quad (D_i, h_{\alpha_j}) = (h_{\alpha_j}, D_i) = \delta_{ij}, \quad (D_i, D_j) = 0.$$

Use this to derive a symmetric invariant non-degenerate pairing on $\mathfrak{g}_{\text{ext}}(A)$.

2. Recall the simple reflections $r_i \in \text{End } P$ from Lecture 25, defined via:

$$r_i(\chi) = \chi - \chi(h_i)\alpha_i.$$

Verify that $r_i^2 = \text{Id}$ and also that they preserve the pairing from Problem 1:

$$\langle r_i(x), r_i(y) \rangle = \langle x, y \rangle \qquad \forall x, y \in P.$$

3. Let M_{λ}^+ (resp. M_{λ}^-) be the highest weight (resp. lowest weight) Verma module over a finite dimensional simple Lie algebra \mathfrak{g} . Let V be any \mathfrak{h} -diagonalizable module over \mathfrak{g} (\mathfrak{h} is a Cartan subalgebra of \mathfrak{g}). Establish a vector space isomorphism:

$$\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}^{+} \otimes M_{\mu}^{-}, V) \simeq V[\lambda + \mu].$$

4. Show that any short exact sequence $0 \to L_{\mu} \to V \to L_{\nu} \to 0 \ (\mu, \nu \in P_+)$ of integrable modules over a Kac-Moody algebra $\mathfrak{g}(A)$ is split. Deduce that every integrable module V of finite length in the category \mathfrak{O} over $\mathfrak{g}(A)$ is a direct sum of irreducible modules $L_{\lambda} \ (\lambda \in P_+)$.

5. Show that Verma module M_{λ} over an extended Kac-Moody algebra $\mathfrak{g}_{\text{ext}}(A)$ is irreducible for generic $\lambda \in P$. Specify a countable collection of hyperplanes outside of which it is true.

6. Let V be a module over an extended Kac-Moody algebra $\mathfrak{g}_{\text{ext}}(A)$ from the category \mathcal{O} . Show that for a generic $\lambda \in P$ (more precisely, for λ outside of a countable collection of hyperplanes) the module $M_{\lambda} \otimes V$ is semisimple, and describe its decomposition into irreducibles.

7. Let \mathfrak{g} be a simple Lie algebra with the Chevalley generators $\{e_i, f_i, h_i\}_{i=1}^r$. Set

$$x[n] := x \cdot t^n \in L\mathfrak{g} = \mathfrak{g}[t, t^{-1}] \qquad \forall x \in \mathfrak{g}$$

Find the defining relations between the elements $\{e_i[n], f_i[n], h_i[n]\}_{1 \le i \le r}^{n \in \mathbb{Z}}$ generating $L\mathfrak{g}$.

8. Vertex Operator Construction for \mathfrak{sl}_2

Let $\{a_i\}_{i\in\mathbb{Z}}$ be the standard generators of the Heisenberg algebra \mathcal{A} . Let F_{μ} be the Fock representation over \mathcal{A} , and set $F := \bigoplus_{m\in\mathbb{Z}} F_{\sqrt{2}m}$. Define vertex operators on F:

$$X_{\pm}(u) := \exp\left(\pm\sqrt{2}\sum_{n>0}\frac{a_{-n}}{n}u^n\right)\exp\left(\mp\sqrt{2}\sum_{n>0}\frac{a_n}{n}u^{-n}\right)S^{\pm 1}u^{\pm\sqrt{2}a_0}$$

where S is the operator of shift $m \to m+1$ (compare to $\Gamma(u), \Gamma^*(u)$ of Lecture 11).

(a) Show that

$$X_a(u)X_b(v) = (u-v)^{2ab} : X_a(u)X_b(v)$$
: for any $a, b \in \{\pm\}$

(by abuse of notations, we identify \pm with ± 1 above). In particular,

 $X_a(u)X_b(v) = X_b(v)X_a(u)$

in the sense that the matrix elements of both sides are series in u, v which converge (but in different regions!) to the same rational functions.

- (b) Calculate $\langle 1, X_+(u_1) \cdots X_+(u_n) X_-(v_1) \cdots X_-(v_n) 1 \rangle$ for a highest weight vector $1 \in F_0$.
- (c) Find the commutation relation between $X_{\pm}(u)$ and a_n .
- (d) Show that the assignment

$$e(u) = \sum_{n \in \mathbb{Z}} e[n]u^{-n-1} \mapsto X_+(u), \ f(u) = \sum_{n \in \mathbb{Z}} f[n]u^{-n-1} \mapsto X_-(u), \ h[n] \mapsto \sqrt{2}a_n, \ K \mapsto \mathrm{Id}_F$$

defines an action of the affine Kac-Moody algebra $\widehat{\mathfrak{sl}}_2$ on F. Show that this is a level one highest weight representation of $\widehat{\mathfrak{sl}}_2$ with the highest weight 0 with respect to \mathfrak{sl}_2 .

(e) Show that F is an irreducible $\widehat{\mathfrak{sl}}_2$ -representation. Compute its character, i.e. $\operatorname{Tr}_F(e^{zh}q^{\mathsf{d}})$, where h is the Chevalley generator of \mathfrak{sl}_2 and d is the degree operator defined by the conditions $\mathsf{d}(1) = 0$ and $[\mathsf{d}, x[n]] = nx[n]$ for any $x \in \mathfrak{sl}_2$, $n \in \mathbb{Z}$.