

HOMEWORK 3 (DUE FEBRUARY 6)

1. Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Given an open cover $\{U_\alpha\}_{\alpha \in \mathcal{I}}$ of X and a collection $\{h_{\alpha\beta}\}_{\alpha, \beta \in \mathcal{I}}$ of clutching functions

$$h_{\alpha\beta}: U_\alpha \cap U_\beta \rightarrow GL_n(\mathbb{K})$$

satisfying the consistency conditions

$$(\dagger) \quad h_{\alpha\beta}(x) = h_{\beta\alpha}(x)^{-1} \quad \text{and} \quad h_{\alpha\beta}(x) \circ h_{\beta\gamma}(x) = h_{\alpha\gamma}(x) \quad \forall \alpha, \beta, \gamma \in \mathcal{I}$$

construct a \mathbb{K} -vector bundle of rank n on X .

(b) Given an atlas $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in \mathcal{I}}$ on an analytic manifold X , with $\varphi_\alpha: U_\alpha \rightarrow \mathbb{K}^n$, define

$$h_{\alpha\beta}(x) := d_{\varphi_\beta(x)}(\tau_{\alpha\beta}) \in GL_n(\mathbb{K})$$

as the differentials of the corresponding transition maps

$$\tau_{\alpha\beta} = \varphi_\alpha \circ \varphi_\beta^{-1}: \varphi_\beta(U_\alpha \cap U_\beta) \rightarrow \varphi_\alpha(U_\alpha \cap U_\beta).$$

Verify (\dagger) for $h_{\alpha\beta}$ (thus completing the construction of the tangent bundle TX).

(c) Show that a \mathbb{K} -vector bundle $\pi: E \rightarrow X$ of rank n is trivial iff there exist n sections $s_1, \dots, s_n \in \Gamma(X, E)$ such that $\{s_1(x), \dots, s_n(x)\}$ is a basis of the fiber $\pi^{-1}(x)$ for any $x \in X$.

2. (a) Show that the assignment $V \mapsto V(1)$ gives rise to a vector space isomorphism

$$\{\text{biinvariant vector fields on } G\} \xrightarrow{\sim} (T_1 G)^{Ad G} := \{x \in T_1 G \mid Ad g(x) = x \ \forall g \in G\}$$

(b) For $G = GL_n(\mathbb{R}) \subset End(\mathbb{R}^n)$, let us identify each tangent space $T_g G \simeq End(\mathbb{R}^n)$. Verify that the value of the left-invariant vector field $V_x \in Vect(G)$ at $g \in G$ is given by $(L_g)_* x = gx$, the usual product of matrices. Provide a similar description of the right-invariant vector fields.

3. Let G be a real/complex Lie group. Show that:

(a) If H is a normal closed Lie subgroup in G , then $Lie(H)$ is an ideal in $Lie(G)$.

(b) If H is a closed Lie subgroup in G , both H and G are connected, and $Lie(H)$ is an ideal in $Lie(G)$, then H is normal.

4. Let G be a Lie group with $\mathfrak{g} = Lie(G)$. Define $\text{Aut}(\mathfrak{g})$ and $\text{Der}(\mathfrak{g})$ via

$$\text{Aut}(\mathfrak{g}) = \{g \in GL(\mathfrak{g}) \mid g[a, b] = [ga, gb] \quad \forall a, b \in \mathfrak{g}\}$$

$$\text{Der}(\mathfrak{g}) = \{x \in \mathfrak{gl}(\mathfrak{g}) \mid x[a, b] = [xa, b] + [a, xb] \quad \forall a, b \in \mathfrak{g}\}$$

(a*) Show that $\text{Aut}(\mathfrak{g})$ is a Lie group with the Lie algebra $\text{Der}(\mathfrak{g})$.

Hint: Use the orbit-stabilizer theorem for Lie groups, see [Lecture 5, Proposition 1].

(b) Verify that $g \mapsto \text{Ad } g$ is a homomorphism of Lie groups $G \rightarrow \text{Aut}(\mathfrak{g})$ (the automorphisms of the form $\text{Ad } g$ are called *inner automorphisms*).

(c) Verify that $x \mapsto \text{ad } x$ is a homomorphism of Lie algebras $\mathfrak{g} \rightarrow \text{Der}(\mathfrak{g})$ (the derivations of the form $\text{ad } x$ are called *inner derivations*).

(d) Show that $\text{ad}(\mathfrak{g})$ is an ideal in $\text{Der}(\mathfrak{g})$.

5. (a) Prove that \mathbb{R}^3 with the commutator given by cross-product is a Lie algebra.

(b) Construct a Lie algebra isomorphism $\phi: \mathfrak{so}_3(\mathbb{R}) \rightarrow \mathbb{R}^3$ (see part (a)), which intertwines the standard action $\mathfrak{so}_3(\mathbb{R}) \curvearrowright \mathbb{R}^3$ with the action $\mathbb{R}^3 \curvearrowright \mathbb{R}^3$ given by the cross-product:

$$x \cdot \vec{v} = \phi(x) \times \vec{v} \quad \forall x \in \mathfrak{so}_3(\mathbb{R}), \vec{v} \in \mathbb{R}^3.$$

6. (a) For any manifold X show that the vector space Vect_X of all vector fields on X forms a Lie algebra.

(b) For any Lie group G , identify explicitly the Lie subalgebra Vect_G^L (resp. Vect_G^R) of left invariant (resp. right invariant) vector fields on G with the Lie algebra \mathfrak{g} of G .