

HOMEWORK 4 (DUE FEBRUARY 13)

1. (a) Verify that the formulas for the dual, the direct sum, and the tensor product of representations of a Lie algebra \mathfrak{g} , as defined in class, indeed produce \mathfrak{g} -representations.

(b) For finite-dimensional \mathfrak{g} -modules V, W , identifying $V^* \otimes W \simeq \text{Hom}(V, W)$ as vector spaces, endow $\text{Hom}(V, W)$ with a \mathfrak{g} -module structure.

(c) For a \mathfrak{g} -module (U, ρ_U) , the **space of \mathfrak{g} -invariants** is defined as

$$U^{\mathfrak{g}} := \{u \in U \mid \rho_U(x)(u) = 0 \ \forall x \in \mathfrak{g}\}.$$

Verify that $\text{Hom}(V, W)^{\mathfrak{g}} = \text{Hom}_{\mathfrak{g}}(V, W)$, where the right-hand side denotes \mathfrak{g} -module homomorphisms, while the left-hand side denotes the space of \mathfrak{g} -invariants of the module from (b).

(d) For $\mathfrak{g} = \text{Lie}(G)$, derive the formulas for the \mathfrak{g} -action on $V \oplus W$, V^* , and $V \otimes W$ from the corresponding constructions for G -modules (spell out the latter ones).

2. Recall the definition of the **character** of any finite-dimensional \mathfrak{sl}_2 -module (V, ρ_V) :

$$\chi_V(z) := \text{tr}_V(z^h) = \sum_m \dim V(m) z^m$$

where $V(m)$ denotes a generalized eigenspace of $\rho_V(h)$ with eigenvalue $m \in \mathbb{C}$.

(a) Show that $V(m)$ coincides with the m -eigenspace of $\rho_V(h)$ and $V(m) = 0$ unless $m \in \mathbb{Z}$.

(b) Prove the character formulas for the dual, the direct sum, and the tensor product:

$$\chi_{V^*}(z) = \chi_V(z^{-1}), \quad \chi_{V \oplus W}(z) = \chi_V(z) + \chi_W(z), \quad \chi_{V \otimes W}(z) = \chi_V(z)\chi_W(z).$$

(c) Deduce the Clebsch-Gordan formula by matching the characters of both sides.

3. (a) For a $\mathbb{Z}_{\geq 0}$ -filtered associative algebra \mathcal{A} show that if $\text{gr } \mathcal{A}$ is a domain, then so is \mathcal{A} .

(b) For a linear map $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ of $\mathbb{Z}_{\geq 0}$ -filtered associative algebras satisfying $\varphi(F_k \mathcal{A}) \subset F_k \mathcal{B}$, construct $\text{gr } \varphi: \text{gr } \mathcal{A} \rightarrow \text{gr } \mathcal{B}$. Show that if $\text{gr } \varphi$ is a vector space isomorphism, then so is φ .

(c) Verify that the symmetrization map $\sigma: S(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ is a \mathfrak{g} -module homomorphism. Deduce that it is actually a \mathfrak{g} -module isomorphism.

4.(a) Verify that the Casimir element $C := fe + ef + h^2/2 \in U(\mathfrak{sl}_2)$ is central.

(b) Finish the argument in the proof of complete reducibility of finite dimensional \mathfrak{sl}_2 -modules by showing that if V has a Jordan-Hölder flag $0 = V'_0 \subset V'_1 \subset \cdots \subset V'_s = V$ of \mathfrak{sl}_2 -submodules with $V'_j/V'_{j-1} \simeq V_n$ for all $1 \leq j \leq s$ and some $n \geq 0$, then in fact $V \simeq V_n^{\oplus s}$.

5. Working over \mathbb{C} , prove that the center $ZU(\mathfrak{sl}_2)$ of $U(\mathfrak{sl}_2)$ is a polynomial algebra in C .

6. For any finite-dimensional complex vector space V , verify that V , all its symmetric powers $S^n V$, and all exterior powers $\Lambda^m V$ ($m \leq \dim V$) are irreducible representations of $GL(V)$.