Lecture 26: Review

Objectives:

1. Know all of the last two thirds of the course.

1 Review

You have learned 6 different types of integrals (yes, there are seven different notations listed):

/CF~dr, //Df(m,y)dA, /CFldx+F2dy, //sf(x,y,z)dS,
///Rf(x,y,z)dv, //SF-dS, ’/Ofds. |

For each of the following, identify the notation for the integral from the above list, and write
in words what each represents geometrically.

e Scalar line integral:

Double integral over zy-regions:

Scalar Surface integrals:

Triple Integrals over 3D solids:

Vector Line Integrals (this has two possible notations):

e Vector Surface Integral:




Now, for each of the scalar integrals, describe how to compute them (or what choices you
have to make):

e Scalar line integral:

e Double integral over zy-regions:

e Scalar Surface integrals:

e Triple Integrals over 3D solids:




Lastly, for each of the vector integrals, describe all the techniques/theorems that you can
use to compute the integral, and what you have to check for each one.

e Vector Line Integrals (this has two possible notations):

e Vector Surface Integral:
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Remember:

To push forward, you are checking that the domain of integration is closed (either a
closed curve or a closed surface). /

To move backwards, you are checking something about the vector field.

To see whether you can push a vector field backwards, move forwards and check that
you get 0 (either the zero vector or the zero function).

Always check orientation.



Example 1. Let F = (e + 2y?,3z + 2y,z +y + 2), and let S be the portion of
z = /2% +y? which lies inside the cylinder z* + y? = 16, oriented with outward normals.

Evaluate //F-dS.
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Example 2. Let C be the circle 22 + y? = 16 in the plane z = 4, oriented clockwise when -
viewed from above, and let F = (e® + 2y2 3z + 2y, z +y + 2). Evaluate / F-dr.
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Group Work 1. If F = (22 + 32z, 33 + x, cos(2%) + 2z) and C is the intersection of z = y?
with the cylinder 22 + y? = 1, oriented counterclockwise when viewed from above, evaluate

/F«dr.
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Group Work 2. Let S be the surface consisting of the paraboloid z = 1 —z2 —y? for 2 > 0,
oriented downward, and the cylinder 2% 4+ ¢y? = 1 for 0 < 2 < 2 with outward normals, as
shown below: : :

25

Let F = (z + 32,y + 2, 22 — 10). Evaluate:

() / /S F.dS

Answer. Here, S is not closed. As div(F) = 2 + 2z # 0, we know F # curl(Q), so we
can either do the flux directly, or close the surface and use divergence theorem. We
will do the latter (the flux would require two pieces). Let S’ be the disc 2% +3? < 1in
the plane z = 2, oriented upward. Then

//SF.ds"+//S/F-dS:ff/R(quéz)dv,

where R is the region enclosed by S and S’. The triple integral can be done in cylindrical

coordinates:
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The flux integral should be done directly. Parametrize S’ as G(z,y) = (z,9,2) in
domain D : 22 +y* < 1. Then G, x G, = (0,0, 1), which is the desired normal. Then

/ F.dS — //(x+6,y+2,—6)-(0,0,1)dA
S’ D

- [l

= —67.

Therefore,
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(b) / /S curl(F) - dS

Answer. We can use Stokes’ theorem to say

//s curl(F)dS = /CF -dr.

Here the boundary C' is the circle z? + 9% = 1 in the plane z = 2. We need it to be
clockwise when viewed from above (because of the outward normals of the cylinder).
Parametrize the circle as r(t) = (cos(t),sin(¢),2) for0 < ¢t < 27. But this goes the

wrong way. Therefore ,
/ F.-dr
c

/ / curl(F) - dS
s
S /27r (cos(t) + 6, sin(t) + 2, —6) - (— sin(t), cos(¢), 0) dt
= 0.

I

Try doing this problem with surface independence or divergence theorem
(after closing) instead!

(c) If C is the boundary of S, given a positive orientation, evaluate / curl(F) - dr.
' c

Answer. Notice curl(F) = (—1,3,0), and curl(curl(F)) = (0,0, 0), so curl(F) is conser-
vative. Since C is closed, the line integral is 0.




