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Abstract. We generalize an algorithm of Leclerc [L] describing explicitly the

bijection of Lalonde-Ram [LR] from finite to affine Lie algebras. In type A
(1)
n ,

we compute all affine standard Lyndon words for any order of the simple roots,

and establish some properties of the induced orders on the positive affine roots.

1. Introduction

1.1. Summary.
An interesting basis of the free Lie algebra generated by a finite family {ei}i∈I

was constructed in the 1950s using the combinatorial notion of Lyndon words. A few
decades later, this was generalized to any finitely generated Lie algebra a in [LR].
Explicitly, if a is generated by {ei}i∈I , then any order on the finite alphabet I gives
rise to the combinatorial basis b[ℓ] as ℓ ranges through all standard Lyndon words.
Here, the bracketing b[ℓ] is defined inductively via Definition 2.8 with b[i] = ei.

The key application of [LR] was to simple finite-dimensional g, or more precisely,
to its maximal nilpotent subalgebra n. According to the root space decomposition:

(1.1) n+ =
⊕

α∈∆+

C · eα , ∆+ =
{
positive roots

}
,

with elements eα called root vectors. By the PBW theorem, we thus have

(1.2) U(n+) =

k∈N⊕
γ1≥···≥γk∈∆+

C · eγ1 . . . eγk

for any total order on ∆+. Moreover, the root vectors (1.1) are such that

(1.3) [eα, eβ ] = eαeβ − eβeα ∈ C× · eα+β

whenever α, β ∈ ∆+ satisfy α+β ∈ ∆+. Thus, formula (1.3) provides an algorithm
for constructing all the root vectors (1.1) inductively starting from ei = eαi , where
{αi}i∈I ⊂ ∆+ are the simple roots of g. Therefore, all the root vectors {eα}α∈∆+ ,
and hence the PBW basis (1.2), can be read off from the combinatorics of ∆+.

The above discussion can be naturally adapted to the quantizations. Let Uq(g) be
the Drinfeld-Jimbo quantum group of g, a q-deformation of the universal enveloping
algebra U(g). Let Uq(n

+) be the positive subalgebra of Uq(g), explicitly generated
by {ẽi}i∈I subject to q-Serre relations. There exists a PBW basis analogous to (1.2):

(1.4) Uq(n
+) =

k∈N⊕
γ1≥···≥γk∈∆+

C(q) · ẽγ1 . . . ẽγk
.

1



2 YEHOR AVDIEIEV AND ALEXANDER TSYMBALIUK

The q-deformed root vectors ẽα ∈ Uq(n
+) are defined via Lusztig’s braid group

action, which requires one to choose a reduced decomposition of the longest element
in the Weyl group of g. It is well-known ([P]) that this choice precisely ensures that
the order ≥ on ∆+ is convex, in the sense of Definition 2.18. Moreover, the q-
deformed root vectors satisfy the following q-analogue of the relation (1.3):

(1.5) [ẽα, ẽβ ]q = ẽαẽβ − q(α,β)ẽβ ẽα ∈ C(q) · ẽα+β

whenever α, β, α+β ∈ ∆+ satisfy α < α+β < β as well as the minimality property:

(1.6) ̸ ∃ α′, β′ ∈ ∆+ s.t. α < α′ < β′ < β and α+ β = α′ + β′,

and (·, ·) denotes the scalar product corresponding to the root system of type g.
Similarly to the Lie algebra case, we conclude that the q-deformed root vectors can
be defined (up to scalar multiples) as iterated q-commutators of ẽi = ẽαi (i ∈ I),
using the combinatorics of ∆+ and the chosen convex order on it.

Following [G, R1, S], let us recall that Uq(n
+) can be also defined as a subalgebra

of the q-shuffle algebra (thus sweeping the defining relations under the rug):

(1.7) Uq(n
+)

Φ
↪−→ F =

k∈N⊕
i1,...,ik∈I

C(q) · [i1 . . . ik].

Here, F has a basis I∗, consisting of finite length words in I, and is endowed with
the so-called quantum shuffle product. As shown in [LR], there is a natural bijection

(1.8) ℓ : ∆+ ∼−→
{
standard Lyndon words

}
.

In particular, the lexicographical order on the right-hand side induces a total order
on ∆+, see (2.15). It was shown in [R2] that this total order is convex, and hence
can be applied to obtain quantum root vectors ẽα ∈ Uq(n

+) for any positive root α,
as in (1.5). Moreover, [L] shows that the quantum root vector ẽα is uniquely char-
acterized (up to a scalar multiple) by the property that Φ(eα) is an element of Im Φ
whose leading order term [i1 . . . ik] (in the lexicographic order) is precisely ℓ(α).

The motivation of the present note is to extend the above discussion to affine
root systems. To this end, we recall an enigmatic remark from the very end of [LR]:
“Preliminary computations seem to indicate that it will be very instructive to study
root multiplicities for Kac-Moody Lie algebras by way of standard Lyndon words”.

Let ĝ be the affinization of g, whose Dynkin diagram is obtained by extending the
Dynkin diagram of g with one vertex 0. Thus, on the combinatorial side, we consider

the alphabet Î = I⊔{0}. The corresponding positive subalgebra n̂+ ⊂ ĝ still admits

the root space decomposition n̂+ =
⊕

α∈∆̂+ n̂+α , with ∆̂+ = {positive affine roots}.
The key difference with (1.1) is that not all n̂+α are one-dimensional:

(1.9) dim n̂+α = 1 ∀α ∈ ∆̂+,re , dim n̂+α = |I| ∀α ∈ ∆̂+,im.

Here, ∆̂ = ∆̂+,re ⊔ ∆̂+,im is the decomposition into real and imaginary affine roots,

with ∆̂+,im = {kδ|k ≥ 1}. It is therefore natural to consider an extended set ∆̂+,ext

of (5.1). Then, the degree reasoning as in [LR] provides a natural analogue of (1.8):

(1.10) SL: ∆̂+,ext ∼−→
{
affine standard Lyndon words

}
.

Our first result (Proposition 3.4) is an inductive algorithm describing this bijection,
slightly generalizing Leclerc’s algorithm describing (1.8). As the first application,

we use it to find all affine standard Lyndon words for the simplest cases of ŝl2, ŝl3.
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Our major technical result is the explicit description of all affine standard Lyndon

words for ŝln+1 (n ≥ 3). To this end, we first straightforwardly treat the special
order (4.1) in Theorem 4.2. We then derive a similar pattern for an arbitrary
order in Theorem 4.7. The key feature is that all affine standard Lyndon words are
determined by those of length ≤ n. Furthermore, we crucially use Rosso’s convexity
result for sln+1 to obtain an explicit description of n affine standard Lyndon words
in degree δ, which are key to establishing the general periodicity pattern.

The induced order (5.2) on ∆̂+,ext is quite different from the orders in the litera-

ture on affine quantum groups ([B, KT]). While for ŝl2 one gets a usual order ([D])

α1 < α1 + δ < α1 + 2δ < · · · < · · · < 3δ < 2δ < δ < · · · < 2δ + α0 < δ + α0 < α0,

the imaginary roots are no longer consequently placed in other affine types. We use

Theorem 4.7 to establish some properties of this order for the case of ŝln+1.
It is thus interesting to study in future the quantum root vectors defined itera-

tively via q-commutators, specifically through the q-shuffle algebra approach. We
also expect this to shed some light on the generalization of [NT] to the toroidal case.

1.2. Outline.
The structure of the present paper is the following:

• In Section 2, we recall the notion of (standard) Lyndon words, their basic prop-
erties, and the application to simple Lie algebras through Lalonde-Ram’s bijec-
tion (2.12). We also recall Leclerc’s algorithm [L] describing the latter bijection
explicitly and the important convexity property of the induced order on the set
∆+ of positive roots discovered by Rosso [R2], see Propositions 2.16 and 2.20.

• In Section 3, we generalize the above Leclerc’s algorithm from finite dimensional
simple Lie algebras to affine Lie algebras, see Proposition 3.4. As the first appli-
cation, we use Proposition 3.4 to find explicitly all affine standard Lyndon words

in the simplest affine types A
(1)
1 and A

(1)
2 , see Proposition 3.7 and Theorem 3.9.

• In Section 4, we describe all affine standard Lyndon words in affine type A
(1)
n

(n ≥ 3) with an arbitrary order on the corresponding alphabet Î = {0, 1, . . . , n}.
First, we present the proof for the simplest order (4.1) on Î, in which case the
formulas for affine standard Lyndon words are very explicit, see Theorem 4.2.
We then treat a general case in Theorem 4.7 using similar ideas as well as
crucially utilizing the aforementioned Rosso’s convexity property and Leclerc’s
algorithm in finite type An. Akin to the simplest order (4.1), the set of all
affine standard Lyndon words is still determined by a finite subset of those of
length≤ n, and the resulting formulas manifest a compelling periodicity pattern.

• In Section 5, we use the explicit description of affine standard Lyndon words

from Theorem 4.7 to establish some properties of the order (5.2) on ∆̂+,ext,
induced from the lexicographical order on the affine standard Lyndon words.

• In Appendix A, we provide a link to the Python code and explain how it induc-
tively computes affine standard Lyndon words in all types and for any orders.
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subdivision of the MIT PRIMES program aimed at Ukrainian high-school students.
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2. Lyndon words approach to Lie algebras

In this section, we recall the results of [LR] and [L] that provide a combinatorial
construction of an important basis of finitely generated Lie algebras, with the main
application to the maximal nilpotent subalgebra of a simple Lie algebra.

2.1. Lyndon words.
Let I be a finite ordered alphabet, and let I∗ be the set of all finite length words

in the alphabet I. For u = [i1 . . . ik] ∈ I∗, we define its length by |u| = k. We
introduce the lexicographical order on I∗ in a standard way:

[i1 . . . ik] < [j1 . . . jl] if


i1 = j1, . . . , ia = ja, ia+1 < ja+1 for some a ≥ 0

or

i1 = j1, . . . , ik = jk and k < l

.

Definition 2.2. A word ℓ = [i1 . . . ik] is called Lyndon if it is smaller than all of
its cyclic permutations:

(2.1) [i1 . . . ia−1ia . . . ik] < [ia . . . iki1 . . . ia−1] ∀ a ∈ {2, . . . , k}.

For a word w = [i1 . . . ik] ∈ I∗, the subwords:

(2.2) wa| = [i1 . . . ia] and w|a = [ik−a+1 . . . ik]

with 0 ≤ a ≤ k will be called a prefix and a suffix of w, respectively. We call
such a prefix or a suffix proper if 0 < a < k. It is straightforward to show that
Definition 2.2 is equivalent to the following one:

Definition 2.3. A word w is Lyndon if it is smaller than all of its proper suffixes:

(2.3) w < w|a ∀ 0 < a < |w|.

As an immediate corollary, we obtain the following well-known result:

Lemma 2.4. If ℓ1 < ℓ2 are Lyndon, then ℓ1ℓ2 is also Lyndon, and so ℓ1ℓ2 < ℓ2ℓ1.

Proof. Let ℓ1 = i1i2 . . . ik and ℓ2 = ik+1ik+2 . . . in. Any cyclic permutation of the
word ℓ1ℓ2 is of the form uj = ijij+1 . . . ini1i2 . . . ij−1 with 1 < j ≤ k or k < j ≤ n.

• Case 1: 1 < j ≤ k. Since ℓ1 is Lyndon, we have ℓ1|j−1 = ij . . . ik > ℓ1 by (2.3).
As |ℓ1| > |ℓ1|j−1|, there is p ∈ {j, j+1, . . . , k} such that i1 = ij , . . . , ip−j = ip−1

and ip−j+1 < ip. This immediately implies the desired inequality ℓ1ℓ2 < uj .
• Case 2: k < j ≤ n. Since ℓ2 is Lyndon, we have ℓ2|j−k−1 = ij . . . in ≥ ℓ2
by (2.3) and so ℓ2|j−k−1 = ij . . . in > ℓ1 as ℓ2 > ℓ1. If ℓ1 is not a prefix of
ℓ2|j−k−1, then ij = i1, ij+1 = i2, . . . , ij+p−2 = ip−1 and ij+p−1 > ip for some
1 ≤ p ≤ min{k, n − j + 1}, so that ℓ1ℓ2 < uj . On the other hand, if ℓ1 is a
prefix of ℓ2|j−k−1, then ℓ2|j−k−1 = ℓ1ij+k . . . in = ℓ1ℓ2|j−1. In the latter case,
the desired inequality ℓ1ℓ2 < uj follows from ℓ2|j−1 > ℓ2, a consequence of (2.3).

This completes the proof of the first claim that ℓ1ℓ2 is Lyndon. The second claim,
the inequality ℓ1ℓ2 < ℓ2ℓ1, follows now from (2.1). □
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We recall the following two basic facts from the theory of Lyndon words:

Proposition 2.5. ([Lo, Proposition 5.1.3]) Any Lyndon word ℓ has a factorization:

(2.4) ℓ = ℓ1ℓ2

defined by the property that ℓ2 is the longest proper suffix of ℓ which is also a Lyndon
word. Under these circumstances, ℓ1 is also a Lyndon word.

The factorization (2.4) is called a costandard factorization of a Lyndon word.

Proposition 2.6. ([Lo, Proposition 5.1.5]) Any word w has a unique factorization:

(2.5) w = ℓ1 . . . ℓk

where ℓ1 ≥ · · · ≥ ℓk are all Lyndon words.

The factorization (2.5) is called a canonical factorization.

2.7. Bracketings of words.
Let a be a Lie algebra generated by a finite set {ei}i∈I labelled by the alphabet I.

Definition 2.8. The standard bracketing of a Lyndon word ℓ is given inductively by:

• b[i] = ei ∈ a for i ∈ I,
• b[ℓ] = [b[ℓ1], b[ℓ2]] ∈ a, where ℓ = ℓ1ℓ2 is the costandard factorization (2.4).

The major importance of this definition is due to the following result of Lyndon:

Theorem 2.9. ([Lo, Theorem 5.3.1]) If a is a free Lie algebra in the generators
{ei}i∈I , then the set

{
b[ℓ]|ℓ−Lyndon word

}
provides a basis of a.

2.10. Standard Lyndon words.
It is natural to ask if Theorem 2.9 admits a generalization to Lie algebras a

generated by {ei}i∈I but with some defining relations. The answer was provided a
few decades later in [LR]. To state the result, define we, ew ∈ U(a) for any w ∈ I∗:

• For a word w = [i1 . . . ik] ∈ I∗, we set

(2.6) we = ei1 . . . eik ∈ U(a)

• For a word w ∈ I∗ with a canonical factorization w = ℓ1 . . . ℓk of (2.5), we set

(2.7) ew = eℓ1 . . . eℓk ∈ U(a)

with eℓ = b[ℓ] ∈ a for any Lyndon word ℓ, cf. Definition 2.8.

It is well-known that the elements (2.6) and (2.7) are connected by the following
triangularity property:

(2.8) ew =
∑
v≥w

cvw · ve with cvw ∈ Z and cww = 1.

The following definition is due to [LR]:

Definition 2.11. (a) A word w is called standard if we cannot be expressed as a
linear combination of ve for various v > w, with we as in (2.6).

(b) A Lyndon word ℓ is called standard Lyndon if eℓ cannot be expressed as a
linear combination of em for various Lyndon words m > ℓ, with eℓ = b[ℓ] as above.

The following result is nontrivial and justifies the above terminology:

Proposition 2.12. ([LR]) A Lyndon word is standard iff it is standard Lyndon.
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The major importance of this definition is due to the following result:

Theorem 2.13. ([LR, Theorem 2.1]) For any Lie algebra a generated by a finite
collection {ei}i∈I , the set

{
b[ℓ]|ℓ−standard Lyndon word

}
provides a basis of a.

2.14. Application to simple Lie algebras.
Let g be a simple Lie algebra with the root system ∆ = ∆+⊔∆−. Let {αi}i∈I ⊂

∆+ be the simple roots, and Q =
⊕

i∈I Zαi be the root lattice. We endow Q with
the symmetric pairing (·, ·) so that the Cartan matrix (aij)i,j∈I of g is given by

aij =
2(αi,αj)
(αi,αi)

. The Lie algebra g admits the standard root space decomposition:

(2.9) g = h⊕
⊕
α∈∆

gα , h ⊂ g− Cartan subalgebra,

with dim(gα) = 1 for all α ∈ ∆. We pick root vectors eα ∈ gα so that gα = C · eα.
Consider the positive Lie subalgebra n+ =

⊕
α∈∆+ gα of g. Explicitly, n+ is

generated by {ei}i∈I subject to the classical Serre relations:

(2.10) [ei, [ei, . . . , [ei, ej ] . . . ]]︸ ︷︷ ︸
1−aij Lie brackets

= 0 ∀ i ̸= j.

Let Q+ =
⊕

i∈I Nαi. The Lie algebra n+ is naturally Q+-graded via deg(ei) = αi.
Fix any order on the set I. According to Theorem 2.13, n+ has a basis consisting

of the eℓ’s, as ℓ ranges over all standard Lyndon words. Evoking the above Q+-
grading of the Lie algebra n+, it is natural to define the grading of words as follows:

(2.11) deg[i1 . . . ik] = αi1 + · · ·+ αik ∈ Q+.

Due to the decomposition (2.9) and the fact that the root vectors {eα}α∈∆+ ⊂ n+

all live in distinct degrees α ∈ Q+, we conclude that there exists a bijection [LR]:

(2.12) ℓ : ∆+ ∼−→
{
standard Lyndon words

}
such that deg ℓ(α) = α for all α ∈ ∆+. We call (2.12) the Lalonde-Ram’s bijection.

2.15. Results of Leclerc and Rosso.
The Lalonde-Ram’s bijection (2.12) was described explicitly in [L]. To state the

result, we recall that for a root γ =
∑

i∈I niαi ∈ ∆+, its height is ht(γ) =
∑

i ni.

Proposition 2.16. ([L, Proposition 25]) The bijection ℓ is inductively given by:

• for simple roots, we have ℓ(αi) = [i]
• for other positive roots, we have the following Leclerc’s algorithm:

(2.13) ℓ(α) = max
{
ℓ(γ1)ℓ(γ2)

∣∣∣α = γ1 + γ2 , γ1, γ2 ∈ ∆+ , ℓ(γ1) < ℓ(γ2)
}
.

The formula (2.13) recovers ℓ(α) once we know ℓ(γ) for all {γ ∈ ∆+ |ht(γ) < ht(α)}.
Remark 2.17. While Lalonde-Ram computed explicitly the standard Lyndon words
for any simple g and a specific order in [LR, Theorem 3.4], the above Leclerc’s
algorithm allows to find standard Lyndon words for any simple g and any ordering
of its simple roots. Moreover, this algorithm is easy to program on a computer.

We shall also need one more important property of ℓ. To the end, let us recall:

Definition 2.18. A total order on the set of positive roots ∆+ is convex if:

(2.14) α < α+ β < β

for all α < β ∈ ∆+ such that α+ β is also a root.
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Remark 2.19. It is well-known ([P]) that convex orders on ∆+ are in bijection with
the reduced decompositions of the longest element w0 ∈ W in the Weyl group of g.

The following result is [L, Proposition 28], where it is attributed to the preprint
of Rosso [R2] (a detailed proof can be found in [NT, Proposition 2.34]):

Proposition 2.20. Consider the order on ∆+ induced from the lexicographical
order on standard Lyndon words:

(2.15) α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically.

This order is convex.

Remark 2.21. We note that both Proposition 2.16 and Proposition 2.20 are of
crucial importance for the further application to quantum groups Uq(g), see [L].

3. Generalization to affine Lie algebras

In this section, we generalize Proposition 2.16 to the case of affine Lie algebras g.

As an example, we compute all affine standard Lyndon words for g of type A
(1)
1 and

A
(1)
2 , while postponing the more general case of A

(1)
n with n ≥ 3 to the next section.

3.1. Affine Lie algebras.
In this section, we consider the next simplest class of Kac-Moody Lie algebras

after the simple ones, the affine Lie algebras. Let g be a simple finite dimensional
Lie algebra, {αi}i∈I be the simple roots, and θ ∈ ∆+ be the highest root (with the

maximal value of ht(θ)). We define Î = I ⊔ {0}. Consider the affine root lattice

Q̂ = Q × Z with the generators {(αi, 0)}i∈I and α0 := (−θ, 1). We endow Q̂ with
the symmetric pairing defined by:

(3.1)
(
(α, n), (β,m)

)
= (α, β) ∀ α, β ∈ Q , n,m ∈ Z.

This leads to the affine Cartan matrix (aij)i,j∈Î and the affine Lie algebra ĝ. The

associated affine root system ∆̂ = ∆̂+ ⊔ ∆̂− has the following explicit description:

∆̂+ =
{
∆+ × Z≥0

}
⊔
{
0× Z>0

}
⊔
{
∆− × Z>0

}
,(3.2)

∆̂− =
{
∆− × Z≤0

}
⊔
{
0× Z<0

}
⊔
{
∆+ × Z<0

}
,(3.3)

where Z≥0, Z>0, Z≤0, Z<0 denote the obvious subsets of Z. Here, δ = α0 + θ =

(0, 1) ∈ Q×Z is the minimal imaginary root of the affine root system ∆̂. With this
notation, we have the following root space decomposition, cf. (2.9):

(3.4) ĝ = ĥ⊕
⊕
α∈∆̂

ĝα , ĥ ⊂ ĝ− Cartan subalgebra.

Let us now recall another realization of ĝ. To this end, consider the Lie algebra

g̃ = g⊗ C[t, t−1]⊕ C · c with a Lie bracket given by

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tn+m + nδn,−m(x, y) · c and [c, x⊗ tn] = 0
(3.5)

where x, y ∈ g, m,n ∈ Z, and (·, ·) : g×g → C is a nondegenerate invariant pairing.
The rich theory of affine Lie algebras is mainly based on the following key result:
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Claim 3.2. There exists a Lie algebra isomorphism:

(3.6) ĝ
∼−→ g̃

determined on the generators by the following formulas:

ei 7→ ei ⊗ t0 e0 7→ fθ ⊗ t1

fi 7→ fi ⊗ t0 f0 7→ eθ ⊗ t−1

hi 7→ hi ⊗ t0 h0 7→ −[eθ, fθ]⊗ t0 + c

for all i ∈ I, where eθ and fθ are root vectors of degrees θ and −θ, respectively.

In view of this result, we can explicitly describe the root subspaces from (3.4):

ĝ(α,k) = gα ⊗ tk ∀ (α, k) ∈ ∆̂+,re :=
{
∆+ × Z≥0

}
⊔
{
∆− × Z>0

}
,(3.7)

ĝkδ = h⊗ tk for kδ ∈ ∆̂+,im :=
{
0× Z>0

}
.(3.8)

As dim(gα) = 1 for any α ∈ ∆ and dim(h) = rank(g) = |I|, we thus obtain:

(3.9) dim(ĝα) = 1 ∀ α ∈ ∆̂+,re , dim(ĝα) = |I| ∀ α ∈ ∆̂+,im.

Notation: In what follows, we shall always simply write xtn instead of x⊗ tn.

3.3. Affine standard Lyndon words.
It is natural to ask if the above results can be generalized to affine Lie algebras ĝ.

On the Lie algebraic side, we consider only the positive subalgebra n̂+ =
⊕

α∈∆̂+ ĝα.

Thus, n̂+ is generated by {ei}i∈Î subject to the Serre relations (2.10) for i ̸= j ∈ Î.

On the combinatorial side, we consider the finite alphabet Î with any order on it,
which allows to define Lyndon and standard Lyndon words (with respect to n̂+).
We shall use the term affine standard Lyndon words in the present setup.

The key difference with the case of simple g is that some root subspaces are not
one-dimensional, see (3.9). Thus, we do not get such a simple bijection as (2.12) for
simple Lie algebras. However, the degree reasoning as in Subsection 2.14 implies

that there is a unique affine standard Lyndon word in each real degree α ∈ ∆̂+,re,
denoted by SL(α), and |I| affine standard Lyndon words in each imaginary degree

α ∈ ∆̂+,im, denoted by SL1(α), . . . ,SL|I|(α), listed in the decreasing order.
The main result of this section is the following generalized Leclerc’s algorithm:

Proposition 3.4. The affine standard Lyndon words (with respect to n̂+) are de-
termined inductively by the following rules:

(a) For simple roots, we have SL(αi) = [i]. For other real α ∈ ∆̂+,re, we have:

(3.10) SL(α) = max

{
SL∗(γ1)SL∗(γ2)

∣∣∣ α=γ1+γ2, γk∈∆̂+

SL∗(γ1)<SL∗(γ2)
[b[SL∗(γ1)],b[SL∗(γ2)]] ̸=0

}
,

where SL∗(γ) denotes SL(γ) for γ ∈ ∆̂+,re and any of {SLk(γ)}|I|k=1 for γ ∈ ∆̂+,im.

(b) For imaginary α ∈ ∆̂+,im, the corresponding |I| affine standard Lyndon words

{SLk(α)}|I|k=1 are the |I| lexicographically largest words from the list as in the right-
hand side of (3.10) whose standard bracketings are linearly independent.

Remark 3.5. Since [ĝaδ, ĝbδ] = 0 for any a, b > 0, we shall assume that γ1, γ2 ∈ ∆̂+,re

when applying part (b). Thus, SL1(α) is given precisely by (3.10), SL2(α) is the next
largest word among the above concatenations whose bracketing is not a multiple of
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b[SL1(α)], and so on, up to SL|I|(α) which is the largest of the remaining concate-

nations whose standard bracketing is linearly independent with {b[SLk(α)]}|I|−1
k=1 .

Proof of Proposition 3.4. (a) Consider the costandard factorization SL(α) = ℓ1ℓ2
as in (2.4). Then, ℓ1 = SL∗(γ1), ℓ2 = SL∗(γ2) for some γ1, γ2 ∈ ∆̂+ and ℓ1 < ℓ2.
Finally, b[SL(α)] ̸= 0 implies that [b[SL∗(γ1)], b[SL∗(γ2)]] ̸= 0. Therefore, ℓ1ℓ2 is
an element from the right-hand side of (3.10). It thus remains to show that SL(α)
is ≥ any concatenation SL∗(γ1)SL∗(γ2) featuring in the right-hand side of (3.10).

The proof of the latter is completely analogous to that of [NT, Proposition 2.23].

Consider any γ1, γ2 ∈ ∆̂+ such that γ1 + γ2 = α. Let us write ℓ1 = SL∗(γ1),
ℓ2 = SL∗(γ2), ℓ = SL(α). We may assume, without loss of generality, that ℓ1 < ℓ2.
Evoking the notations of Subsection 2.10, we have:

(3.11) b[ℓk] = eℓk =
∑
v≥ℓk

cvℓk · ve

∀ k ∈ {1, 2}, due to the triangularity property (2.8). Thus, due to the degree reasons
(see [NT, Footnote 3]), we get:

(3.12) b[ℓ1]b[ℓ2] = eℓ1eℓ2 =
∑

v≥ℓ1ℓ2

xv · ve

for some coefficients xv. As a consequence of ℓ2ℓ1 > ℓ1ℓ2 (Lemma 2.4), we also get:

(3.13) b[ℓ2]b[ℓ1] = eℓ2eℓ1 =
∑

v≥ℓ1ℓ2

x′
v · ve

for some coefficients x′
v. Hence, we obtain the following formula for the commutator:

(3.14) [b[ℓ1], b[ℓ2]] = [eℓ1 , eℓ2 ] =
∑

v≥ℓ1ℓ2

yv · ve

for various coefficients yv. Furthermore, we may restrict the sum above to standard
v’s, since by the very definition of this notion, any ve can be inductively written as a
linear combination of ue’s for standard u ≥ v. By the same reason, we may restrict
the right-hand side of (2.8) to standard v’s, and conclude that {ew}w−standard pro-
vide a basis of U(n̂+) which is upper triangular in terms of the basis {we}w−standard.
With the above observations in mind, (3.14) implies:

(3.15) [b[ℓ1], b[ℓ2]] = [eℓ1 , eℓ2 ] =
∑

v≥ℓ1ℓ2
v−standard

zv · ev

for various coefficients zv.
On the other hand, the assumption [b[ℓ1], b[ℓ2]] ̸= 0 and ĝα = C · b[ℓ] imply:

(3.16) [b[ℓ1], b[ℓ2]] = [eℓ1 , eℓ2 ] ∈ C× · eℓ.

As {ev}v−standard is a basis of U(n̂+), comparing (3.15, 3.16) we obtain the desired

ℓ ≥ ℓ1ℓ2.

(b) The proof of part (b) is completely analogous to that of part (a), with the
only difference that we need to find |I| affine standard Lyndon words. Thus, we just
use Definition 2.11(b) to complement the above argument in the present setup. □
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3.6. Affine standard Lyndon words in type A
(1)
1 .

As the first simplest example, let us compute affine standard Lyndon words in

the simplest case of A
(1)
1 , which corresponds to the affinization ŝl2 of the unique

rank 1 simple Lie algebra sl2. In this case: there are two simple roots α0, α1 and

δ = α0 + α1. The set of positive roots is ∆̂+ = {kδ + α1, kδ + α0, (k + 1)δ|k ≥ 0}.
Without loss of generality, we can assume that 1 < 0, due to the 0 ↔ 1 symmetry.

Proposition 3.7. The affine standard Lyndon words for ŝl2 with the order 1 < 0

on the corresponding alphabet Î = {0, 1} are:

• For k ≥ 1, we have:

(3.17) SL(kδ + α1) = 1 10︸︷︷︸
k times

(3.18) SL(kδ + α0) = 10︸︷︷︸
k times

0

(3.19) SL((k + 1)δ) = 1 10︸︷︷︸
k times

0

• For the remaining roots, we have:

(3.20) SL(α1) = 1 , SL(α0) = 0 , SL(δ) = 10.

Proof. The formulas (3.20) are obvious, while the proof of (3.17)–(3.19) will proceed
by induction on k. The base k = 1 case is easy. We shall now prove the induction
step, just by using the generalized Leclerc’s algorithm from Proposition 3.4.

1) Root α = kδ + α1. Any decomposition α = γ1 + γ2 has the following form:
{γ1, γ2} = {aδ, bδ + α1 | a+ b = k, 1 ≤ a ≤ k}. By the induction hypothesis:

SL(bδ + α1) = 1 10︸︷︷︸
b times

< 1 10︸︷︷︸
(a−1) times

0 = SL(aδ).

Following (3.10), consider the lexicographically largest word among all possible
concatenations 1 10︸︷︷︸

b times

1 10︸︷︷︸
(a−1) times

0, which is the word 1 10︸︷︷︸
k times

. We claim that its

standard bracketing equals (−2)kE12t
k. Indeed, arguing by induction, we get:

b[1 10︸︷︷︸
k times

] = [b[1 10︸︷︷︸
(k−1) times

], b[10]] = [(−2)k−1E12t
k−1, (E11 − E22)t] = (−2)kE12t

k.

This completes the proof of (3.17), since the bracketing is nonzero.

2) Root α = kδ + α0. Any decomposition α = γ1 + γ2 has the following form:
{γ1, γ2} = {aδ, bδ+α0 | a+ b = k, 1 ≤ a ≤ k}. As in 1), one combines the inductive
hypothesis with (3.10) to find: SL(α) = 10︸︷︷︸

k times

0 with the standard bracketing

b[ 10︸︷︷︸
k times

0] = (−2)kE21t
k+1.

3) Let us now treat the imaginary root α = (k + 1)δ. As rank(sl2) = 1, there is
only one affine standard Lyndon word in degree α, which can be found by (3.10).
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Any decomposition α = γ1+γ2 that contributes into SL(α) is of the form: {γ1, γ2} =
{aδ + α1, bδ + α0 | a+ b = k, 0 ≤ a ≤ k}. By the induction hypothesis:

SL(aδ + α1) = 1 10︸︷︷︸
a times

< 10︸︷︷︸
b times

0 = SL(bδ + α0).

Following (3.10), consider the lexicographically largest word among all the corre-
sponding concatenations SL(aδ + α1)SL(bδ + α0) = 1 10︸︷︷︸

k times

0, which completes the

proof of (3.19). Let us evaluate its standard bracketing:

b[1 10︸︷︷︸
k times

0] = [b[1], b[ 10︸︷︷︸
k times

0]] = [E12, (−2)kE21t
k+1] = (−2)k(E11 − E22)t

k+1.

This completes the proof of the induction step. □

3.8. Affine standard Lyndon words in type A
(1)
2 .

We conclude this section with the computation of affine standard Lyndon words

for ŝl3. In the next section, we will generalize the corresponding pattern to the case

of ŝln with n > 3. The main difference from the ŝl2 case is that now there will be
two affine standard Lyndon words in each imaginary degree. In this case: there are
three simple roots α0, α1, α2, we have δ = α0 +α1 +α2, and the positive roots are:

∆̂+ =
{
kδ+α1, kδ+α2, kδ+α0, kδ+α1+α2, kδ+α2+α0, kδ+α0+α1, (k+1)δ | k ≥ 0

}
.

Without loss of generality, we can assume that 1 < 2 < 0, due to the S(3)-symmetry.

Theorem 3.9. The affine standard Lyndon words for ŝl3 with the order 1 < 2 < 0

on the corresponding alphabet Î = {0, 1, 2} are as follows:

• For k ≥ 1, we have:

(3.21) SL(kδ + α1) = 12 102︸︷︷︸
(k−1) times

10

(3.22) SL(kδ + α2) = 102︸︷︷︸
k times

2

(3.23) SL(kδ + α0) = 102︸︷︷︸
k times

0

(3.24) SL(kδ + α1 + α2) = 12 102︸︷︷︸
k times

(3.25) SL(kδ + α1 + α0) = 10 102︸︷︷︸
k times

(3.26) SL(kδ + α2 + α0) =


102︸︷︷︸

k
2 times

2 102︸︷︷︸
k
2 times

0 if 2 | k

102︸︷︷︸
k+1
2 times

0 102︸︷︷︸
k−1
2 times

2 if 2 ∤ k

(3.27) SL1((k + 1)δ) = 10 102︸︷︷︸
k times

2 , SL2((k + 1)δ) = 12 102︸︷︷︸
k times

0.
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• For the remaining roots, we have:

SL(α1) = 1 , SL(α2) = 2 , SL(α0) = 0 , SL(α1 + α2) = 12,

SL(α1 + α0) = 10 , SL(α2 + α0) = 20 , SL1(δ) = 102 , SL2(δ) = 120.
(3.28)

Proof. The formulas (3.28) are obvious, while the proof of (3.21)–(3.27) is by in-
duction on k. The base k = 1 case is easy, so we proceed to the induction step.

1) Root α = kδ + α1. The possible decompositions of α into the (unordered)
sum of two positive roots are as follows:

kδ + α1 = (aδ) + (bδ + α1), a+ b = k , 1 ≤ a ≤ k,

kδ + α1 = (aδ + α1 + α2) + (bδ + α1 + α0), a+ b = k − 1 , 0 ≤ a ≤ k − 1.

Combining the induction hypothesis with (3.10), we get the following list of words:

12 102︸︷︷︸
(b−1) times

1010 102︸︷︷︸
(a−1) times

2 , 12 102︸︷︷︸
(b−1) times

1012 102︸︷︷︸
(a−1) times

0,

110 102︸︷︷︸
(k−1) times

2 , 112 102︸︷︷︸
(k−1) times

0 , 12 102︸︷︷︸
a times

10 102︸︷︷︸
b times

.
(3.29)

Clearly, the lexicographically largest word from the list (3.29) is: 12 102︸︷︷︸
(k−1) times

10.

Let us evaluate its standard bracketing:

b[12 102︸︷︷︸
(k−1) times

10] = [b[12 102︸︷︷︸
(k−1) times

], b[10]] = [(−1)k−1E13t
k−1,−E32t] = (−1)kE12t

k

where we use the induction hypothesis for the value of b[12 102︸︷︷︸
(k−1) times

]. This com-

pletes the proof of (3.21), since the bracketing is nonzero.

2) Let us now treat the root α = kδ+α2. The possible decompositions of α into
the (unordered) sum of two positive roots are as follows:

kδ + α2 = (aδ) + (bδ + α2), a+ b = k , 1 ≤ a ≤ k,

kδ + α2 = (aδ + α1 + α2) + (bδ + α2 + α0), a+ b = k − 1 , 0 ≤ a ≤ k − 1.

Combining the induction hypothesis with (3.10), we get the following list of words:

10 102︸︷︷︸
(a−1) times

2 102︸︷︷︸
b times

2 , 12 102︸︷︷︸
(a−1) times

0 102︸︷︷︸
b times

2,

12 102︸︷︷︸
a times

102︸︷︷︸
b
2 times

2 102︸︷︷︸
b
2 times

0 (if 2 | b) , 12 102︸︷︷︸
a times

102︸︷︷︸
b+1
2 times

0 102︸︷︷︸
b−1
2 times

2 (if 2 ∤ b).(3.30)

Clearly, the lexicographically largest word from the list (3.30) is: 102︸︷︷︸
k times

2. Let us

evaluate its standard bracketing:

b[ 102︸︷︷︸
k times

2] = [b[102], b[ 102︸︷︷︸
(k−1) times

2]] = [(E22 − E33)t, 2
k−1E23t

k−1] = 2kE23t
k,

where we use the induction hypothesis for the value of b[ 102︸︷︷︸
(k−1) times

2]. This com-

pletes the proof of (3.22), since the bracketing is nonzero.
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3) For the root α = kδ + α0, arguing as above, we obtain the following list of
possible concatenations featuring in the right-hand side of (3.10):

10 102︸︷︷︸
(a−1) times

2 102︸︷︷︸
b times

0 , 12 102︸︷︷︸
(a−1) times

0 102︸︷︷︸
b times

0,

10 102︸︷︷︸
a times

102︸︷︷︸
b
2 times

2 102︸︷︷︸
b
2 times

0 (if 2 | b) , 10 102︸︷︷︸
a times

102︸︷︷︸
b+1
2 times

0 102︸︷︷︸
b−1
2 times

2 (if 2 ∤ b).(3.31)

Clearly, the lexicographically largest word from the list (3.31) is: 102︸︷︷︸
k times

0. Let us

evaluate its standard bracketing:

b[ 102︸︷︷︸
k times

0] = [b[102], b[ 102︸︷︷︸
(k−1) times

0]] = [(E22−E33)t, (−1)k−1E31t
k] = (−1)kE31t

k+1,

where we use the induction hypothesis for the value of b[ 102︸︷︷︸
(k−1) times

0]. This com-

pletes the proof of (3.23), since the bracketing is nonzero.

4) Let us now consider the root α = kδ + α1 + α2. The possible decompositions
of α into the (unordered) sum of two positive roots are as follows:

kδ + α1 + α2 = (aδ) + (bδ + α1 + α2), a+ b = k , 1 ≤ a ≤ k,

kδ + α1 + α2 = (aδ + α1) + (bδ + α2), a+ b = k , 1 ≤ a ≤ k,

kδ + α1 + α2 = (α1) + (kδ + α2).

Combining the induction hypothesis with (3.10), we get the following list of words:

12 102︸︷︷︸
b times

10 102︸︷︷︸
(a−1) times

2 , 12 102︸︷︷︸
b times

12 102︸︷︷︸
(a−1) times

0,

12 102︸︷︷︸
(a−1) times

10 102︸︷︷︸
b times

2 , 1 102︸︷︷︸
k times

2.
(3.32)

Clearly, the lexicographically largest word from the list (3.32) is: 12 102︸︷︷︸
k times

. Let us

evaluate its standard bracketing:

b[12 102︸︷︷︸
k times

] = [b[12 102︸︷︷︸
(k−1) times

], b[102]] = [(−1)k−1E13t
k−1, (E22−E33)t] = (−1)kE13t

k

where we use the induction hypothesis for the value of b[12 102︸︷︷︸
(k−1) times

]. This com-

pletes the proof of (3.24), since the bracketing is nonzero.

5) For the root α = kδ + α1 + α0, a completely analogous argument shows that
the lexicographically largest word from the list featuring in the right-hand side
of (3.10) is 10 102︸︷︷︸

k times

. Moreover, the standard bracketing of this word equals:

b[10 102︸︷︷︸
k times

] = [b[10 102︸︷︷︸
(k−1) times

], b[102]] = [−2k−1E32t
k, (E22 − E33)t] = −2kE32t

k+1,

where we use the induction hypothesis for the value of b[10 102︸︷︷︸
(k−1) times

]. This com-

pletes the proof of (3.25).
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6) Let us now treat the last family of real positive roots α = kδ + α2 + α0.
Arguing as above, we obtain the following list of possible concatenations featuring
in the right-hand side of (3.10):

10 102︸︷︷︸
(a−1) times

2 102︸︷︷︸
b
2 times

2 102︸︷︷︸
b
2 times

0 , 12 102︸︷︷︸
(a−1) times

0 102︸︷︷︸
b
2 times

2 102︸︷︷︸
b
2 times

0 (if 2 | b),

10 102︸︷︷︸
(a−1) times

2 102︸︷︷︸
b+1
2 times

0 102︸︷︷︸
b−1
2 times

2 , 12 102︸︷︷︸
(a−1) times

0 102︸︷︷︸
b+1
2 times

0 102︸︷︷︸
b−1
2 times

2 (if 2 ∤ b),

102︸︷︷︸
a times

2 102︸︷︷︸
b times

0 (if a ≥ b) , 102︸︷︷︸
b times

0 102︸︷︷︸
a times

2 (if a < b).

Clearly, the lexicographically largest word from this list is:

102︸︷︷︸
k
2 times

2 102︸︷︷︸
k
2 times

0 (if 2 | k) , 102︸︷︷︸
k+1
2 times

0 102︸︷︷︸
k−1
2 times

2 (if 2 ∤ k).

It remains to compute the standard bracketings of these two words:

b[ 102︸︷︷︸
k
2 times

2 102︸︷︷︸
k
2 times

0] = [b[ 102︸︷︷︸
k
2 times

2], b[ 102︸︷︷︸
k
2 times

0]] = (−2)⌊
k
2 ⌋E21t

k+1,

b[ 102︸︷︷︸
k+1
2 times

0 102︸︷︷︸
k−1
2 times

2] = [b[ 102︸︷︷︸
k+1
2 times

0], b[ 102︸︷︷︸
k−1
2 times

2]] = (−2)⌊
k
2 ⌋E21t

k+1.

This completes the proof of (3.26).

7) It remains to compute two affine standard Lyndon words in the imaginary
degree α = (k+1)δ. The possible decompositions of α into the (unordered) sum of
two positive roots that contribute to SL∗(α) are as follows: (k+ 1)δ = (aδ + α1) +
(bδ+α2+α0), (k+1)δ = (aδ+α2)+(bδ+α1+α0), (k+1)δ = (aδ+α0)+(bδ+α1+α2)
for a + b = k and 0 ≤ a ≤ k. By the induction hypothesis, we thus obtain the
following list of concatenated words:

12 102︸︷︷︸
(a−1) times

10 102︸︷︷︸
b+1
2 times

0 102︸︷︷︸
b−1
2 times

2 (if 2 ∤ b) , 12 102︸︷︷︸
(a−1) times

10 102︸︷︷︸
b
2 times

2 102︸︷︷︸
b
2 times

0 (if 2 | b)

1 102︸︷︷︸
k
2 times

2 102︸︷︷︸
k
2 times

0 (if 2 | k) , 1 102︸︷︷︸
k+1
2 times

0 102︸︷︷︸
k−1
2 times

2 (if 2 ∤ k) , 10 102︸︷︷︸
k times

2 , 12 102︸︷︷︸
k times

0.

The two lexicographically largest words from this list are: 10 102︸︷︷︸
k times

2 and 12 102︸︷︷︸
k times

0.

Let us compute the standard bracketings of these words:

b[10 102︸︷︷︸
k times

2] = [b[10], b[ 102︸︷︷︸
k times

2]] = [−E32t, 2
kE23t

k] = 2k(E22 − E33)t
k+1,

b[12 102︸︷︷︸
k times

0] = [b[12], b[ 102︸︷︷︸
k times

0]] = [E13, (−1)kE31t
k+1] = (−1)k(E11 − E33)t

k+1.

Since these bracketings are linearly independent, the above two words are indeed
the affine standard Lyndon words in degree (k + 1)δ.

This completes the proof of (3.27) and thus also of the induction step. □
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4. Affine standard Lyndon words in type A
(1)
n for n ≥ 3

In this section, we describe affine standard Lyndon words in affine type A
(1)
n for

n ≥ 3 and any order on Î = {0, 1, 2, . . . , n}. First, we treat the simplest case (of the
standard order) to which Proposition 3.4 can be easily applied, as in our proof of
Theorem 3.9. We then crucially utilize the convexity property of Proposition 2.20

to derive the structure of affine standard Lyndon words for an arbitrary order on Î.

4.1. Standard order.
We start by computing all affine standard Lyndon words for type A

(1)
n with

(4.1) the standard order on Î : 1 < 2 < 3 < · · · < n < 0.

There are n + 1 simple roots α0, α1, . . . , αn, and δ = α0 + α1 + · · · + αn. It

is convenient to place the letters of the alphabet Î = {0, 1, 2, . . . , n} on a circle
counterclockwise. For any counterclockwise oriented arch from i to j, we define

(4.2) αi→j := αi + αi+1 + · · ·+ αj ∈ Q.

Using this notation, the positive affine roots can be explicitly described as follows:

(4.3) ∆̂+ =
{
kδ + αi→j , (k + 1)δ

∣∣ k ≥ 0 , i, j ∈ Î , j ̸= i− 1
}
.

Here, for any k ∈ Z we define k ∈ Î via:

(4.4) k := k mod (n+ 1).

We also use [i → j) to denote all letters on the arch from i (included) to j (excluded):

(4.5) [i → j) :=
{
i, i+ 1, . . . , j − 1

}
.

Theorem 4.2. The affine standard Lyndon words for ŝln+1 with the standard order

1 < 2 < · · · < n < 0 on the corresponding alphabet Î = {0, 1, . . . , n} are as follows:

• For k ≥ 1, we have:

(4.6) SL(kδ + αi→j) = 10n . . . i 23 . . . (i− 1)︸ ︷︷ ︸
k times

i(i+ 1) . . . j , for 2 < i ≤ j ≤ 0

(4.7) SL(kδ + α2) = 10n . . . 32︸ ︷︷ ︸
k times

2

(4.8) SL(kδ + α2→j) =


10n . . . 32︸ ︷︷ ︸

k
2 times

2 10n . . . 32︸ ︷︷ ︸
k
2 times

34 . . . j if 2 | k

10n . . . 32︸ ︷︷ ︸
k+1
2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
k−1
2 times

2 if 2 ∤ k
, for 2 < j ≤ 0

(4.9) SL(kδ + α1→i) = 123 . . . n 1023 . . . n︸ ︷︷ ︸
(k−1) times

1023 . . . i , for 1 ≤ i < 0

(4.10) SL(kδ + αj→i) = SL(kδ + αj→0 + α1→i) = for i < i+ 1 < j

10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . j − 2︸ ︷︷ ︸
(k−1) times

10n . . . j − 1 23 . . . i
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(4.11) SLn((k + 1)δ) = 123 . . . n 1023 . . . n︸ ︷︷ ︸
k times

0,

SLr((k + 1)δ) = 10n . . . r + 223 . . . r 10n . . . (r + 1)23 . . . r︸ ︷︷ ︸
k times

(r + 1) , for r < n

• For the remaining roots, we have:

(4.12) SL(αi→j) = i(i+ 1) . . . j , for i ≤ j and (i, j) ̸= (1, 0)

(4.13) SL(αj→i) = SL(αj→0 + α1→i) = 10n . . . j 23 . . . i , for i < i+ 1 < j

(4.14) SLr(δ) = 10 . . . r + 223 . . . r + 1 , for 1 ≤ r ≤ n

Proof. The proof will proceed by induction on the height ht(α). Let h = ht(δ) =
n+1 be the Coxeter number of sln+1. The base of induction is ht(α) < 2h, that is,
k = 0, 1 cases for real roots kδ+ αi→j and k = 0 case for imaginary roots (k+ 1)δ.

Base of Induction (part I)

First, let us verify (4.12)–(4.14) and find bracketings of the corresponding words.

• Proof of (4.12).
Consider the costandard factorization ℓ = ℓ1ℓ2 of any Lyndon word ℓ with deg ℓ =

αi→j . As i < i + 1 are the two smallest letters of ℓ, the word ℓ1 starts with i
and ℓ2 starts with i + 1. If furthermore ℓ is standard Lyndon, so is ℓ1, hence,

deg ℓ1 ∈ ∆̂+. For degree reasons, this is only possible if ℓ1 = i and deg ℓ2 =
α(i+1)→j . Arguing by induction on the height of αi→j , we thus immediately derive
the desired formula (4.12). Moreover, we also inductively get the explicit formula
for the corresponding standard bracketing:

b[SL(αi→j)] = b[i(i+ 1) . . . j] = [b[i], b[(i+ 1) . . . j]] =

{
Ei,j+1t

0 if j ≤ n

Ei,1t if j = 0
.

Notation: Here and in what follows, the matrix E0,p shall always denote En+1,p.

• Proof of (4.13) for i = 1.
In this case, we shall rather use (3.10) and argue by induction on the height of

αj→1 (i.e. a descending induction of j ∈ Î). The possible decompositions of αj→1

into the (unordered) sum of two positive roots are as follows:

αj→1 = αj→k + αk+1→1 (j ≤ k ≤ n) , αj→1 = αj→0 + α1.

Combining the induction hypothesis and the formula (4.12), we get the following
list of concatenated words featuring in the right-hand side of (3.10) for α = αj→1:

(4.15) 10n . . . k + 1 j j + 1 . . . k (j ≤ k ≤ 0).

Clearly, 10n . . . j is the lexicographically largest word from this list (4.15). Let us
evaluate its standard bracketing:

b[10n . . . j] = [b[10n . . . j + 1], b[j]] = [(−1)n−j−1Ej+1,2t, Ej,j+1] = (−1)n−jEj,2t,

where we use the induction hypothesis for the value of b[10n . . . (j + 1)]. We thus
obtain SL(αj→1) = 10n . . . j as claimed in (4.13), since the bracketing is nonzero.

• Proof of (4.13) for i > 1.
In the present case, we can argue alike in our verification of (4.12). Consider the

costandard factorization SL(αj→i) = ℓ1ℓ2. Since 1 < 2 are the two smallest letters,
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ℓ1 starts from 1 and ℓ2 starts from 2. Moreover, we have deg ℓ1,deg ℓ2 ∈ ∆̂+. For
degree reasons, this is only possible if deg ℓ1 = αj→1 and deg ℓ2 = α2→i. We thus
have ℓ1 = 10n . . . j and ℓ2 = 23 . . . i by above, and (4.13) follows. Furthermore:

b[SL(αj→i)] = b[10n . . . j 23 . . . i] = [b[10n . . . j], b[23 . . . i]] = (−1)n−jEj,i+1t.

• Proof of (4.14).
Let us now treat the case of the smallest imaginary root δ. The possible decom-

positions of δ into the (unordered) sum of two positive roots are as follows:

δ = α1→i + αi+1→0 (1 ≤ i ≤ n) , δ = αi→j + αj+1→(i−1) (2 ≤ i ≤ j ≤ n).

Using already verified formulas (4.12) and (4.13), we thus get the following list of
concatenated words featuring in the right-hand side of (3.10) for α = δ:

12 . . . i i+ 1 . . . n0 , 10n . . . j + 123 . . . (i− 1)i(i+ 1) . . . j (2 ≤ j ≤ n).

Since this list contains exactly n different words (we note the independence of i),
all of them are precisely SL1(δ), . . . ,SLn(δ). Ordering them lexicographically, we
derive the desired formula (4.14). Let us compute their standard bracketings:

b[SLr(δ)] = b[10 . . . r + 223 . . . r + 1] = [b[10 . . . r + 2], b[23 . . . r + 1]] =

[(−1)n−rEr+2,2t, E2,r+2] = (−1)n−r+1(E22 − Er+2,r+2)t if r ≤ n− 1,

b[SLn(δ)] = b[123 . . . n0] = [b[1], b[23 . . . n0]] = (E11 − E22)t.

(4.16)

Base of Induction (part II)

As a continuation of the induction base, let us now verify (4.6)–(4.10) for k = 1.

• Proof of (4.6) for k = 1.
We verify the formula for SL(δ+αi→j) with 2 < i ≤ j by induction on ht(αi→j).

(1) The base of induction is i = j. The possible decompositions of δ + αi into the
(unordered) sum of two positive roots are as follows:

(4.17) δ + αi = (δ) + (αi) , δ + αi = αi→ȷ + αȷ+1→i (ȷ ̸= i, i− 1).

Using already verified formulas (4.12)–(4.14), we get the following list of concate-
nated words featuring in the right-hand side of (3.10) for α = δ + αi:

10n . . . i 23 . . . i− 1 i , 10n . . . i+ 123 . . . i i,

10n . . . ȷ+ 123 . . . i i(i+ 1) . . . ȷ for i < ȷ ≤ n,

10n . . . i 23 . . . ȷ (ȷ+ 1) . . . i for 1 ≤ ȷ < i− 1,

12 . . . i i i+ 1 . . . 0.

(4.18)

Here, the two words in the first line correspond to the fact that [b[SLr(δ)], b[i]] ̸= 0
only for r + 2 = i, i− 1, due to (4.16), while the last three lines just correspond to
the cases i < ȷ ≤ n, 1 ≤ ȷ < i− 1, and ȷ = 0 in (4.17). Clearly, 10n . . . i 23 . . . (i−1)i
is the lexicographically largest word from the list (4.18). Therefore, SL(δ + αi) is
indeed given by (4.6) as the corresponding standard bracketing does not vanish:

b[SL(δ + αi)] = b[10n . . . i 23 . . . (i− 1)i] =

{
(−1)n−iEi,i+1t if 2 < i ≤ n

−En+1,1t
2 if i = 0

.

(2) Let us now prove the induction step: compute SL(δ+αi→j) for ht(αi→j) = p+1
using the formulas for SL(δ+αι→ȷ) with ht(αι→ȷ) ≤ p. The possible decompositions
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of δ + αi→j into the (unordered) sum of two positive roots are as follows:

δ + αi→j = (δ) + (αi→j)

δ + αi→j = (δ + αi→ȷ) + (αȷ+1→j) for ȷ ∈ [i → j)

δ + αi→j = (αi→ȷ) + (δ + αȷ+1→j) for ȷ ∈ [i → j)

δ + αi→j = (αi→ȷ) + (αȷ+1→j) for ȷ ∈
[
j + 1 → (i− 1)

)(4.19)

The corresponding list of concatenations is as follows:

10n . . . i 23 . . . (i− 1)i . . . j , 10n . . . j + 123 . . . j i . . . j,

10n . . . i 23 . . . (i− 1)i . . . ȷ ȷ+ 1 . . . j for ȷ ∈ [i → j),

10n . . . ȷ+ 123 . . . . . . j i i+ 1 . . . ȷ for ȷ ∈ [i → j),

10n . . . ȷ+ 123 . . . j i(i+ 1) . . . j j + 1 . . . ȷ for j < ȷ ≤ n,

10n . . . i 23 . . . ȷ ȷ+ 1 . . . j for 1 ≤ ȷ < i− 1,

123 . . . j i i+ 1 . . . 0.

(4.20)

The two words in the first line correspond to the fact that [b[SLr(δ)], b[SL(αi→j)]] ̸=
0 only when r + 2 = i, j + 1, while the words from the last three lines correspond
to the cases j < ȷ ≤ n, 1 ≤ ȷ < i− 1, and ȷ = 0 in the last decomposition of (4.19).
Clearly, 10n . . . i 23 . . . j is the lexicographically largest word from the list (4.20).
Therefore, SL(δ + αi→j) is indeed given by (4.6) as the corresponding standard
bracketing does not vanish:

b[SL(δ + αi→j)] = b[10n . . . i 23 . . . j] =

{
(−1)n−iEi,j+1t if 2 < i < j ≤ n

(−1)n−iEi,1t
2 if 2 < i < j = 0

.

• Proof of (4.7) for k = 1.
The possible decompositions of δ + α2 into the (unordered) sum of two positive

roots are as follows:

(4.21) δ + α2 = (δ) + (α2) , δ + α2 = α2→ȷ + αȷ+1→2 (ȷ ̸= 1, 2).

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α2 are:

10n . . . r + 223 . . . r + 12 for 1 ≤ r ≤ n,

10n . . . ȷ+ 1223 . . . ȷ (2 < ȷ ≤ n) , 1223 . . . n0.
(4.22)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[2]] ̸= 0
for all 1 ≤ r ≤ n, according to (4.16). Clearly, 10n . . . 322 is the lexicographically
largest word from the list (4.22). Therefore, SL(δ + α2) is indeed given by (4.7) as
the corresponding standard bracketing does not vanish:

b[SL(δ + α2)] = b[10n . . . 322] = [b[10n . . . 32], b[2]] = 2(−1)nE23t.

• Proof of (4.8) for k = 1.
Let us prove by induction on j that:

(4.23) SL(δ + α2→j) = 10n . . . 3234 . . . j2 for 2 ≤ j ≤ 0.

(1) The base of induction is j = 2, for which the result was just proved above.
(2) Let us now prove the induction step: prove (4.23) for SL(δ + α2→j) utilizing
the same formula for SL(δ+α2→ȷ) with 2 ≤ ȷ < j. The possible decompositions of
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δ + α2→j into the (unordered) sum of two positive roots are as follows:

δ + α2→j = (δ) + (α2→j)

δ + α2→j = (δ + α2→ȷ) + (αȷ+1→j) for ȷ ∈ [2 → j)

δ + α2→j = (δ + αȷ+1→j) + (α2→ȷ) for ȷ ∈ [2 → j)

δ + α2→j = (α2→ȷ) + (αȷ+1→j) for ȷ ∈
[
j + 1 → 1

)(4.24)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ+α2→j are:

10n . . . r + 223 . . . r + 123 . . . j , for 1 ≤ r ≤ n,

10n . . . 3234 . . . ȷ 2 ȷ+ 1 . . . j for ȷ ∈ [2 → j),

10n . . . ȷ+ 123 . . . j 23 . . . ȷ for ȷ ∈ [2 → j),

10n . . . ȷ+ 123 . . . j 23 . . . ȷ (j < ȷ ≤ n) , 12 . . . j 23 . . . n0.

(4.25)

The n words in the first line correspond to the fact that [b[SLr(δ)], b[SL(α2→j)]] ̸= 0
for all 1 ≤ r ≤ n, according to (4.16). Clearly, 10n . . . 3234 . . . j2 is the lexicograph-
ically largest word from the list (4.25). Therefore, SL(δ + α2→j) is indeed given
by (4.23) as the corresponding standard bracketing does not vanish:

b[SL(δ + α2→j)] = b[10n . . . 3234 . . . j2] =

{
(−1)nE2,j+1t if 2 < j ≤ n

(−1)nE21t
2 if j = 0

.

• Proof of (4.9) for k = 1.
Let us prove by induction on i that:

(4.26) SL(δ + α1→i) = 123 . . . n 1023 . . . i for 1 ≤ i ≤ n.

(1) The base of induction is i = 1. The possible decompositions of δ + α1 into the
(unordered) sum of two positive roots are as follows:

(4.27) δ + α1 = (δ) + (α1) , δ + α1 = (α1→ȷ) + (αȷ+1→1) (ȷ ̸= 0, 1).

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α1 are:

1 10n . . . r + 223 . . . r + 1 , for 1 ≤ r ≤ n

123 . . . ȷ 10n . . . ȷ+ 1 (1 < ȷ < n) , 123 . . . n 10.
(4.28)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[1]] ̸= 0
for all 1 ≤ r ≤ n, according to (4.16). Clearly, 123 . . . n 10 is the lexicographically
largest word from the list (4.28). Therefore, SL(δ + α1) is indeed given by (4.26)
as the corresponding standard bracketing does not vanish:

b[SL(δ + α1)] = b[123 . . . n 10] = [b[123 . . . n], b[10]] = −E12t.

(2) Let us now prove the induction step: prove (4.26) for SL(δ + α1→i) utilizing
the same formula for SL(δ + α1→ι) with 1 ≤ ι < i. The possible decompositions of
δ + α1→i into the (unordered) sum of two positive roots are as follows:

δ + α1→i = (δ) + (α1→i)

δ + α1→i = (δ + α1→ι) + (α(ι+1)→i) for ι ∈ [1 → i)

δ + α1→i = (δ + α(ι+1)→i) + (α1→ι) for ι ∈ [1 → i)

δ + α1→i = (α1→ι) + (αι+1→i) for ι ∈
[
i+ 1 → 0

)(4.29)



20 YEHOR AVDIEIEV AND ALEXANDER TSYMBALIUK

Thus, the concatenated words in the right-hand side of (3.10) for α = δ+α1→i are:

123 . . . i 10n . . . i+ 123 . . . i , 123 . . . i 123 . . . n0,

123 . . . n 1023 . . . ι (ι+ 1) . . . i for 1 ≤ ι < i,

123 . . . ι 10n . . . (ι+ 1) 23 . . . i for 1 < ι < i , 1 10n . . . 3234 . . . i2,

123 . . . ι 10n . . . ι+ 123 . . . i for i < ι ≤ n.

(4.30)

The two words in the first line correspond to the fact that [b[SLr(δ)], b[SL(α1→i)]] ̸=
0 only when r = i−1, n (for 1 < i ≤ n), while the words in the third line correspond
to the cases 1 < ι < i and ι = 1 in the third line of (4.29). Clearly, 123 . . . n 1023 . . . i
is the lexicographically largest word from the list (4.30). Therefore, SL(δ + α1→i)
is indeed given by (4.26) as the corresponding standard bracketing does not vanish:

b[SL(δ + α1→i)] = b[123 . . . n 1023 . . . i] = [b[123 . . . n], b[1023 . . . i]] = −E1,i+1t.

• Proof of (4.10) for k = 1.
Let us prove by induction on ht(αj→i) that

(4.31) SL(δ + αj→i) = 10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . i for i < i+ 1 < j.

(1) The base of induction is (j, i) = (0, 1). The possible decompositions of δ+α0→1

into the (unordered) sum of two positive roots are as follows:

δ + α0→1 = (δ) + (α0→1),

δ + α0→1 = (δ + α0) + (α1) , δ + α0→1 = (δ + α1) + (α0),

δ + α0→1 = (α0→ι) + (α(ι+1)→1) for 1 < ι < n.

(4.32)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ+α0→1 are:

1010 . . . r + 223 . . . (r + 1) for 1 < r ≤ n− 1 , 123 . . . n010,

11023 . . . n0 , 123 . . . n100,

1023 . . . ι 10n . . . (ι+ 1) for 1 < ι < n.

(4.33)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[10]] ̸= 0
for all 1 ≤ r ≤ n, according to (4.16). Clearly, 1023 . . . (n − 1)10n is the lexico-
graphically largest word from the list (4.33). Therefore, SL(δ + α0→1) is indeed
given by (4.31) as the corresponding standard bracketing does not vanish:

b[SL(δ+α0→1)] = b[1023 . . . (n−1)10n] = [b[1023 . . . (n−1)], b[10n]] = −En+1,2t
2.

(2) Let us now prove the induction step: prove (4.31) for SL(δ+αj→i) utilizing the
same formula for SL(δ+αȷ→ι) with [ȷ → ι) ⊊ [j → i). The possible decompositions
of δ + αj→i into the (unordered) sum of two positive roots are as follows:

δ + αj→i = (δ + αj→ȷ) + (αȷ+1→i) for ȷ ∈ [j → i)

δ + αj→i = (αj→ȷ) + (δ + αȷ+1→i) for ȷ ∈ [j → i)

δ + αj→i = (αj→ȷ) + (αȷ+1→i) for ȷ ∈ [(i+ 1) → j − 1)

(4.34)

as well as

(4.35) δ + αj→i = (δ) + (αj→i).
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The concatenated words in the right-hand side of (3.10) for α = δ + αj→i arising
through (4.34) are:

10n . . . ȷ+ 123 . . . i 10n . . . j 23 . . . ȷ for j ≤ ȷ ≤ 0,

10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . ȷ (ȷ+ 1) . . . i for 1 ≤ ȷ < i,

10n . . . ȷ+ 123 . . . (ȷ− 1)10n . . . ȷ 23 . . . i j(j + 1) . . . ȷ for j ≤ ȷ ≤ n,

123 . . . n 1023 . . . i j(j + 1) . . . n 0,

10n . . . j 10n . . . 32 34 . . . i 2,

10n . . . j 23 . . . ȷ 10n . . . (ȷ+ 1) 23 . . . i for 2 ≤ ȷ < i,

10n . . . j 23 . . . ȷ 10n . . . (ȷ+ 1) 23 . . . i for ȷ ∈ [(i+ 1) → j − 1),

(4.36)

where the words in the first two lines of (4.36) correspond to the first line of (4.34),
depending on whether ȷ ≥ j or ȷ < i, while the words in the third–sixth lines
of (4.36) correspond to the second line of (4.34), depending on whether j ≤ ȷ < 0,
ȷ = 0, ȷ = 1, or 1 < ȷ < i. Meanwhile, the concatenated words in the right-hand
side of (3.10) for α = δ+αj→i arising through the decomposition (4.35) depend on
whether i = 1 or i ̸= 1:

(4.37) 10n . . . j 23 . . . i 10n . . . j 23 . . . j − 1 , 10n . . . j 23 . . . i 10n . . . (i+ 1)23 . . . i

if i ̸= 1, and

10n . . . r + 223 . . . r + 110n . . . j for j − 2 < r ≤ n,

10n . . . j 10n . . . r + 223 . . . r + 1 for 1 ≤ r ≤ j − 2
(4.38)

if i = 1. It is easy to see that 10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . i is the lexico-
graphically largest word from the above lists (4.36)–(4.38). Thus, SL(δ + αj→i) is
indeed given by (4.31) as the corresponding standard bracketing does not vanish:

b[SL(δ + αj→i)] = b[10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . i] = −Ej,i+1t
2.

Step of Induction
Let us now prove the step of induction, proceeding by the height of a root. We

shall thus verify the stated formulas for affine standard Lyndon words SL∗(α) with

(4.39) (d+ 1)h ≤ ht(α) < (d+ 2)h , where h = n+ 1 = ht(δ),

assuming the validity of the stated formulas for all SL∗(β) with ht(β) < ht(α). In
other words, we verify (4.11) for k = d and formulas (4.6)–(4.10) for k = d+ 1.

When evaluating the standard bracketings b[· · · ] below, we will only need their
values up to nonzero scalar factors. To this end, we shall use the following notation:

(4.40) A
.
= B if A = c ·B for some c ∈ C×.

• Proof of (4.11) for k = d.
The possible decompositions of (d+1)δ into the (unordered) sum of two positive

real roots are as follows:

(d+ 1)δ = (aδ + α1) + ((d− a)δ + α2→0),(4.41)

(d+ 1)δ = (aδ + α1→j) + ((d− a)δ + αj+1→0) for 2 ≤ j ≤ n,(4.42)

(d+ 1)δ = (aδ + α2→j) + ((d− a)δ + αj+1→1) for 2 ≤ j ≤ n,(4.43)

(d+ 1)δ = (aδ + αi→j) + ((d− a)δ + αj+1→(i−1)) for 3 ≤ i ≤ j ≤ n,(4.44)
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with 0 ≤ a ≤ d. By the induction hypothesis, we get the following concatenations:

(4.45) ℓ
(a)
0 =



1 10n . . . 32︸ ︷︷ ︸
d
2

times

2 10n . . . 32︸ ︷︷ ︸
d
2

times

34 . . . n0 if a = 0, 2 | d

1 10n . . . 32︸ ︷︷ ︸
d+1
2

times

34 . . . n0 10n . . . 32︸ ︷︷ ︸
d−1
2

times

2 if a = 0, 2 ∤ d

12 . . . n 1023 . . . n︸ ︷︷ ︸
(a−1) times

10 10n . . . 32︸ ︷︷ ︸
d−a
2

times

2 10n . . . 32︸ ︷︷ ︸
d−a
2

times

34 . . . n0 if 0 < a < d, 2 | (d− a)

12 . . . n 1023 . . . n︸ ︷︷ ︸
(a−1) times

10 10n . . . 32︸ ︷︷ ︸
d−a+1

2
times

34 . . . n0 10n . . . 32︸ ︷︷ ︸
d−a−1

2
times

2 if 0 < a < d, 2 ∤ (d− a)

12 . . . n 1023 . . . n︸ ︷︷ ︸
d times

0 if a = d

for the decompositions (4.41),

(4.46) ℓ
(a)
1j =


123 . . . n 1023 . . . n︸ ︷︷ ︸

(a−1) times

1023 . . . j 10n . . . j + 123 . . . j︸ ︷︷ ︸
(d−a) times

j + 1 . . . 0 if 1 ≤ a ≤ d

123 . . . j 10n . . . j + 123 . . . j︸ ︷︷ ︸
d times

j + 1 . . . 0 if a = 0

for the decompositions (4.42) with 2 ≤ j ≤ n,

(4.47) ℓ
(a)
2j =



10n . . . j + 123 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
d times

j if a = 0

10n . . . j + 123 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

10n . . . 32︸ ︷︷ ︸
a
2

times

2 10n . . . 32︸ ︷︷ ︸
a
2

times

34 . . . j if 0 < a < d, 2 | a

10n . . . j + 123 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

10n . . . 32︸ ︷︷ ︸
a+1
2

times

34 . . . j 10n . . . 32︸ ︷︷ ︸
a−1
2

times

2 if 0 < a < d, 2 ∤ a

10n . . . j + 110n . . . 32︸ ︷︷ ︸
d
2

times

2 10n . . . 32︸ ︷︷ ︸
d
2

times

34 . . . j if a = d− even

10n . . . j + 110n . . . 32︸ ︷︷ ︸
d+1
2

times

34 . . . j 10n . . . 32︸ ︷︷ ︸
d−1
2

times

2 if a = d− odd

for the decompositions (4.43) with 2 ≤ j ≤ n, and

(4.48) ℓ
(a)
3ji =



10n . . . j + 123 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
d times

j if a = 0

10n . . . j + 123 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

23 . . . (i− 1) 10n . . . i 23 . . . (i− 1)︸ ︷︷ ︸
a times

i(i+ 1) . . . j if 0 < a < d

10n . . . j + 123 . . . (i− 1) 10n . . . i 23 . . . (i− 1)︸ ︷︷ ︸
d times

i(i+ 1) . . . j if a = d

for the decompositions (4.44) with 2 < i ≤ j ≤ n.
Clearly, the lexicographically largest word from the lists (4.45)–(4.48) is

ℓ
(0)
22 = 10n . . . 3 10n . . . 2︸ ︷︷ ︸

d times

2,
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which coincides with the word in the right-hand side of (4.11) for k = d and r = 1.
Let us compute its standard bracketing:

b[ℓ
(0)
22 ] = [b[10n . . . 3], b[10n . . . 2︸ ︷︷ ︸

d times

2]]
.
= [E32t, E23t

d]
.
= (E22 − E33)t

d+1,

where we use the induction hypothesis in the second equality. Moreover, a similar
argument also implies that

(4.49) b[ℓ
(a)
22 ]

.
= (E22 − E33)t

d+1 .
= b[ℓ

(0)
22 ] ∀ 0 < a ≤ d.

The next lexicographically largest word from the lists (4.45)–(4.48), with the

words {ℓ(a)22 }da=0 excluded due to (4.49), is

ℓ
(0)
23 = ℓ

(0)
333 = 10n . . . 42 10n . . . 32︸ ︷︷ ︸

d times

3,

which coincides with the word in the right-hand side of (4.11) for k = d and r = 2.
Let us compute its standard bracketing:

b[ℓ
(0)
23 ] = [b[10n . . . 42], b[10n . . . 32︸ ︷︷ ︸

d times

3]]
.
= [E43t, E34t

d]
.
= (E33 − E44)t

d+1,

where we use the induction hypothesis in the second equality. Moreover, a similar

argument also applies to the remaining words ℓ
(a)
23 and ℓ

(a)
333 with 0 < a ≤ d:

b[ℓ
(a)
23 ], b[ℓ

(a)
333] ∈ span

{
(E22 − E33)t

d+1, (E33 − E44)t
d+1

}
= span

{
b[ℓ

(0)
22 ], b[ℓ

(0)
23 ]

}
.

Proceeding further with the same line of reasoning we find that the (n− 1) lexico-
graphically largest words from the above lists with linearly independent standard

bracketings are: ℓ
(0)
22 , ℓ

(0)
23 , . . . , ℓ

(0)
2n . This proves (4.11) for k = d and 1 ≤ r ≤ n− 1.

The lexicographically largest word among the remaining lists (4.45)–(4.46) is

ℓ
(0)
1n = ℓ

(d)
0 = 123 . . . n 1023 . . . n︸ ︷︷ ︸

d times

0.

Let us evaluate its standard bracketing:

b[ℓ
(0)
1n ] = [b[123 . . . n], b[1023 . . . n︸ ︷︷ ︸

d times

0]]
.
= [E1,n+1, En+1,1t

d+1] = (E11−En+1,n+1)t
d+1.

As this bracketing is linear independent with {b[ℓ(0)2j ]}nj=2 computed above, we get

SLn((d+ 1)δ) = ℓ
(0)
1n . This completes our proof of (4.11) for k = d, and proves:

b[SLr((d+ 1)δ)]
.
=

{
(Er+1,r+1 − Er+2,r+2)t

d+1 if 1 ≤ r ≤ n− 1

(E11 − En+1,n+1)t
d+1 if r = n

.

• Proof of (4.6)–(4.10) for k = d+ 1.
The case of real roots is treated precisely as in our part II of the induction base.

Let us present the proof of (4.8), leaving the other ones to the interested reader.
Instead of listing all possible decompositions of (d + 1)δ + α2→j , we start by

noting that the word ℓ(d + 1, j) from the right-hand side of (4.8) for k = d + 1
corresponds to the decomposition (d+1)δ+α2→j = (⌊d+1

2 ⌋δ+α2)+(⌈d+1
2 ⌉δ+α3→j).

Since ℓ(d + 1, j) > 10n . . . 32 = SL1(δ), it suffices to consider in (3.10) only those
decompositions (d + 1)δ + α2→j = γ1 + γ2 such that each word SL∗(γ1), SL∗(γ2)
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is either > 10n . . . 32 or is a prefix of 10n . . . 32. By the induction hypothesis, this
restricts us to the following list:

(d+ 1)δ + α2→j = (δ) + (dδ + α2→j),

(d+ 1)δ + α2→j = (aδ + α2) + ((d+ 1− a)δ + α3→j) , 0 ≤ a ≤ d+ 1,

(d+ 1)δ + α2→j = ((d+ 1)δ + α2→ȷ) + (α(ȷ+1)→j) , 2 < ȷ < j.

(4.50)

We therefore get the following list of concatenated words:
10n . . . 32 10n . . . 32︸ ︷︷ ︸

d
2 times

2 10n . . . 32︸ ︷︷ ︸
d
2 times

34 . . . j if 2 | d

10n . . . 32 10n . . . 32︸ ︷︷ ︸
d+1
2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
d−1
2 times

2 if 2 ∤ d
,


10n . . . 32︸ ︷︷ ︸

a times

2 10n . . . 32︸ ︷︷ ︸
(d+1−a) times

34 . . . j if d+1
2 ≤ a ≤ d+ 1

10n . . . 32︸ ︷︷ ︸
(d+1−a) times

34 . . . j 10n . . . 32︸ ︷︷ ︸
a times

2 if 0 ≤ a < d+1
2

,


10n . . . 32︸ ︷︷ ︸
d+1
2 times

2 10n . . . 32︸ ︷︷ ︸
d+1
2 times

34 . . . ȷ (ȷ+ 1) . . . j if 2|(d+ 1)

10n . . . 32︸ ︷︷ ︸
d+2
2 times

34 . . . ȷ 10n . . . 32︸ ︷︷ ︸
d
2 times

2 (ȷ+ 1) . . . j if 2|d
.

(4.51)

It is easy to see that the word ℓ(d+ 1, j) is the lexicographically largest word from
the list (4.51). Let us evaluate its standard bracketing:

b[ℓ(d+ 1, j)]
.
=

[
b[10n . . . 32︸ ︷︷ ︸

⌊ d+1
2 ⌋ times

2], b[10n . . . 32︸ ︷︷ ︸
⌈ d+1

2 ⌉ times

34 . . . j]
] .
=

{
[E23t

⌊ d+1
2 ⌋, E3,j+1t

⌈ d+1
2 ⌉] if 2 < j ≤ n

[E23t
⌊ d+1

2 ⌋, E31t
⌈ d+3

2 ⌉] if j = 0

.
=

{
E2,j+1t

d+1 if 2 < j ≤ n

E21t
d+2 if j = 0

,

where we use the induction hypothesis for b[SL(⌊d+1
2 ⌋δ+α2)], b[SL(⌈d+1

2 ⌉δ+α3→j)].
This completes our proof of (4.8) for k = d+ 1. □

4.3. General order.
We now compute affine standard Lyndon words for ŝln+1 with an arbitrary order

< on Î = {0, 1, . . . , n}. The key feature is that all affine standard Lyndon words
are determined by those of length ≤ n. Furthermore, the explicit description of the
degree δ affine standard Lyndon words is instrumental for the general pattern.

Notation: To distinguish from <, we shall now use ≺ for the standard order on Î:

1 ≺ 2 ≺ 3 ≺ · · · ≺ n ≺ 0 .

We start with the following simple result:

Lemma 4.4. Consider two arches [a → b+ 1) ⊊ [a′ → b′ + 1) such that b′ ̸= a′−1
and min[a′ → b′ + 1) ∈ [a → b+ 1). Then: SL(αa→b) < SL(αa′→b′).

Proof. We note that this result is a property of the Lalonde-Ram’s bijection ℓ (2.12)
for the simple Lie algebra slht(αa′→b′ )+1 with simple roots labelled by [a′ → b′ + 1).
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If b ̸= b′, consider roots γ1 = αa→b and γ2 = αb+1→b′ whose sum is α = γ1+γ2 =
αa→b′ . In view of the remark made above (reduction to a finite case), the convexity
of Proposition 2.20 implies that SL(α) is sandwiched between SL(γ1) and SL(γ2).
But by our assumption the minimal letter of SL(γ1) is min[a′ → b′ + 1) which is
smaller than the minimal letter of SL(γ2). Thus, we get: SL(γ1) < SL(α) < SL(γ2).

By a similar argument, we also conclude that SL(αa→b′) < SL(αa′→b′) if a ̸= a′.
This completes our proof of the desired inequality SL(αa→b) < SL(αa′→b′). □

Due to the Dn+1-symmetry of Î and ∆̂+, where Dn+1 is the dihedral group, we
can assume, without loss of generality, that

(4.52) 1 = min
{
a
∣∣ a ∈ Î

}
and i := min

{
a
∣∣ a ∈ Î \ {1}

}
̸= 0,

where min is taken with respect to our order < on Î.

Lemma 4.5. For c ∈ Î\{1} = {2, . . . , n, 0}, define the degree δ word ℓc(δ) ∈ Î∗ via:

(4.53) ℓc(δ) := SL(αc+1→c−1)c.

Then, we have:

1) ℓa(δ) > ℓb(δ) whenever i ⪯ a ≺ b ≤ 0,
2) ℓa(δ) < ℓb(δ) whenever 1 ≺ a ≺ b ⪯ i,

so that ℓ2(δ) < ℓ3(δ) < · · · < ℓi(δ) > ℓi+1(δ) > · · · > ℓ0(δ).

We need a simple fact about Lalonde-Ram’s bijection (2.12) for a finite type A:

Claim 4.6. (1) If b = min{a, a+ 1, . . . , b− 1, b}, then SL(αa→b) = b b− 1 . . . a+ 1 a.

(2) If a = min{a, a+ 1, . . . , b− 1, b}, then SL(αa→b) = a a+ 1 . . . b− 1 b.

Proof of Lemma 4.5. The proof is based on the more explicit formulas for ℓc(δ):
• Case 1: 1 ≺ c ≺ i.

Consider the costandard factorization SL(αc+1→c−1) = ℓ1,cℓ2,c. As ℓ1,c starts

with 1, ℓ2,c starts with i, deg ℓ1,c,deg ℓ2,c ∈ ∆̂+, and deg ℓ1,c+deg ℓ2,c = αc+1→c−1,
we see that ℓ2,c = SL(αc+1→e) and ℓ1,c = SL(αe+1→c−1) for some e ⪰ i. For e ≻ i,
we have SL(αe+1→c−1) < SL(αi+1→c−1) by Lemma 4.4. Therefore, we have:

SL(αe+1→c−1)SL(αc+1→e) < SL(αi+1→c−1)SL(αc+1→i) ∀ e ≻ i .

Since the word SL(αi+1→c−1)SL(αc+1→i) is Lyndon (as it starts with the smallest
letter 1 which appears only once) and its bracketing is clearly nonzero, we conclude:

SL(αc+1→c−1) = SL(αi+1→c−1)SL(αc+1→i) = SL(αi+1→c−1) i i− 1 . . . c+ 1 ,

with the last equality due to Claim 4.6. Thus, we obtain:

(4.54) ℓc(δ) = SL(αi+1→c−1) i i− 1 . . . c+ 1 c ∀ 1 ≺ c ⪯ i .

The desired inequality ℓa(δ) < ℓb(δ) for 1 ≺ a ≺ b ⪯ i follows now from Lemma 4.4.
• Case 2: i ≺ c ⪯ 0.

Arguing as in the previous case, we see that the costandard factorization
SL(αc+1→c−1) = ℓ1,cℓ2,c has the form ℓ2,c = SL(αe→c−1) and ℓ1,c = SL(αc+1→e−1)
for some 1 ≺ e ⪯ i. For 1 ≺ e ≺ i, we have SL(αc+1→e−1) < SL(αc+1→i−1) by
Lemma 4.4, and so SL(αc+1→e−1)SL(αe→c−1) < SL(αc+1→i−1)SL(αi→c−1). As
the word SL(αc+1→i−1)SL(αi→c−1) is Lyndon (as it starts with the smallest letter
1 which appears only once) and clearly has a nonzero bracketing, we conclude:

SL(αc+1→c−1) = SL(αc+1→i−1)SL(αi→c−1) = SL(αc+1→i−1) i i+ 1 . . . c− 1
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with the last equality due to Claim 4.6. Thus, we obtain:

(4.55) ℓc(δ) = SL(αc+1→i−1) i i+ 1 . . . c− 1 c ∀ i ≺ c ⪯ 0 .

The desired inequality ℓa(δ) > ℓb(δ) for i ⪯ a ≺ b follows from Lemma 4.4 again. □

For a, b ∈ Î, we introduce sgn(a− b) ∈ {−1, 0, 1} via:

(4.56) sgn(a− b) :=


1 if a ≻ b

−1 if a ≺ b

0 if a = b

.

The following generalization of Theorem 4.2 is the main result of this section:

Theorem 4.7. The affine standard Lyndon words for ŝln+1 (n ≥ 3) with any order

< on Î = {0, 1, . . . , n} satisfying (4.52) are described by the formulas below (k ≥ 1):

(4.57)
{
SL1(kδ), . . . ,SLn(kδ)

}
=

{
SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸

(k−1) times

c
∣∣∣ c ∈ Î \ {1}

}

(4.58) SL(kδ + αa→b) = ℓb+1(δ)︸ ︷︷ ︸
k times

b(b− 1) . . . a , for 1 ≺ a ⪯ b ≺ i

(4.59) SL(kδ + αa→b) = ℓa−1(δ)︸ ︷︷ ︸
k times

a a+ 1 . . . b , for i ≺ a ⪯ b ⪯ 0

(4.60) SL(kδ + αa→b) = for 1 ≺ a ≺ i ≺ b

ℓi(δ)︸︷︷︸
k
3 times

i ℓi(δ)︸︷︷︸
k
3 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
k
3 times

i− 1 . . . a if 3 | k

ℓi(δ)︸︷︷︸
k+1
3 times

i− 1 . . . a ℓi(δ)︸︷︷︸
k−2
3 times

i ℓi(δ)︸︷︷︸
k+1
3 times

i+ 1 . . . b if 3 | k + 1

ℓi(δ)︸︷︷︸
k+2
3 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
k−1
3 times

i ℓi(δ)︸︷︷︸
k−1
3 times

i− 1 . . . a if 3 | k + 2

, if i− 1 < i+ 1



ℓi(δ)︸︷︷︸
k
3 times

i ℓi(δ)︸︷︷︸
k
3 times

i− 1 . . . a ℓi(δ)︸︷︷︸
k
3 times

i+ 1 . . . b if 3 | k

ℓi(δ)︸︷︷︸
k+1
3 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
k−2
3 times

i ℓi(δ)︸︷︷︸
k+1
3 times

i− 1 . . . a if 3 | k + 1

ℓi(δ)︸︷︷︸
k+2
3 times

i− 1 . . . a ℓi(δ)︸︷︷︸
k−1
3 times

i ℓi(δ)︸︷︷︸
k−1
3 times

i+ 1 . . . b if 3 | k + 2

, if i− 1 > i+ 1

(4.61) SL(kδ + αi→b) =


ℓi(δ)︸︷︷︸
k
2 times

i ℓi(δ)︸︷︷︸
k
2 times

i+ 1 . . . b if 2 | k

ℓi(δ)︸︷︷︸
k+1
2 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
k−1
2 times

i if 2 ∤ k
, for i ≺ b ⪯ 0
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(4.62) SL(kδ + αa→i) =


ℓi(δ)︸︷︷︸
k
2 times

i ℓi(δ)︸︷︷︸
k
2 times

i− 1 . . . a if 2 | k

ℓi(δ)︸︷︷︸
k+1
2 times

i− 1 . . . a ℓi(δ)︸︷︷︸
k−1
2 times

i if 2 ∤ k
, for 1 ≺ a ≺ i

(4.63) SL(kδ + αi) = ℓi(δ)︸︷︷︸
k times

i

and finally a slightly less explicit formula

(4.64) SL(kδ + αb→a) = ℓ1 ℓb→a(δ)︸ ︷︷ ︸
(k−1) times

ℓ2 , for 1 ∈
[
b → a+ 1

)
where SL(δ + αb→a) = ℓ1ℓ2 is the costandard factorization (2.4)

and ℓb→a(δ) is one of ℓc(δ) such that SL(2δ + αb→a) = ℓ1ℓb→a(δ)ℓ2.

Remark 4.8. (a) The implicit words ℓ1 and ℓ2 providing the costandard factorization
of SL(δ + αb→a) in (4.64) can actually be described explicitly (see Lemma 4.11):

ℓ1 = SL(αb→b−2) and ℓ2 = SL(αb−1→a) if SL(αb−1→a) > SL(αb→a+1) ,

ℓ1 = SL(αa+2→a) and ℓ2 = SL(αb→a+1) if SL(αb−1→a) < SL(αb→a+1) .

(b) Likewise, the word ℓb→a(δ) featuring in (4.64) can be characterized as the lexi-
cographically largest among those ℓc(δ) that satisfy [b[ℓ1], b[ℓc(δ)]] ̸= 0. Explicitly,
as follows from the proof below, we have (cf. part (a) above):

(4.65) ℓb→a(δ) =

{
ℓb−1+sgn(i−(b−1))(δ) if SL(αb−1→a) > SL(αb→a+1)

ℓa+1+sgn(i−(a+1))(δ) if SL(αb−1→a) < SL(αb→a+1)
.

(c) Let us also record the explicit order between the words ℓ1, ℓ2, ℓb→a(δ), cf. (4.80):

ℓ1 < ℓ2 ≤ ℓb→a(δ) .

(d) For the standard order (4.1), we clearly recover the formulas from our previous
Theorem 4.2. We also note that the proof below significantly simplifies when i = 2.

(e) Finally, we note SL(αa→b) can be easily reconstructed using either of the algo-
rithms presented before Lemma 4.11, with 1 replaced by min{a, a+ 1, . . . , b− 1, b}.

Remark 4.9. (a) In the base of induction below we prove that

(4.66)
{
SL1(δ), . . . ,SLn(δ)

}
=

{
ℓc(δ) | c ∈ Î \ {1}

}
.

As easily follows from (4.54, 4.55), their standard bracketings are:

(4.67) b[ℓc(δ)]
.
=

{
(Ei+1,i+1 − Ec,c)t if 1 ≺ c ⪯ i

(Ei,i − Ec+1,c+1)t if i ≺ c ⪯ 0
.

(b) The bracketing b[SL(αa→b)] for 1, i /∈ [a → b+ 1) is a nonzero multiple of Ea,b+1

if b ̸= 0, Ea1t if a ≺ b = 0, En+1,1t if a = b = 0. Thus, the lexicographically largest
word among SL∗(δ) whose bracketing b[SL∗(δ)] does not commute with b[SL(αa→b)]
is ℓb+1(δ) if a ≺ i and ℓa−1(δ) if a ≻ i, due to Lemma 4.5, (4.67), and (4.58, 4.59).
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Proof of Theorem 4.7. The proof proceeds by induction on k.

Base of Induction
The base of induction is k = 1. In this case, the nontrivial cases are the formu-

las (4.57) for SL∗(δ) and (4.58)–(4.63) for SL(δ + αa→b) with 1 /∈ [a → b+ 1).

• Proof of (4.57) for k = 1.
For any 1 ≤ r ≤ n, consider the costandard factorization SLr(δ) = ℓ1ℓ2. For

degree reasons, we have ℓ1 = SL(αb+1→a−1), ℓ2 = SL(αa→b) for some b ̸= a− 1

such that 1 ∈ [b+ 1 → a) and i ∈ [a → b+ 1). If b = i, then 1 ≺ a ⪯ i and

SLr(δ) = SL(αi+1→a−1)SL(αa→i) = SL(αi+1→a−1) i i− 1 . . . a = ℓa(δ) ,

due to (4.54) and Claim 4.6. Likewise, if a = i, then i ≺ b and

SLr(δ) = SL(αb+1→i−1)SL(αi→b) = SL(αb+1→i−1) i i+ 1 . . . b = ℓb(δ) ,

due to (4.55) and Claim 4.6. Finally, if 1 ≺ a ≺ i ≺ b, then SLr(δ) < ℓc(δ) for
any c ∈ [a → b+ 1), due to Lemma 4.4 and the explicit formulas (4.54, 4.55). On
the other hand, b[SLr(δ)] = [b[ℓ1], b[ℓ2]]

.
= (Ea,a − Eb+1,b+1)t, while the standard

bracketing b[ℓc(δ)] is given by (4.67). Hence, the bracketing b[SLr(δ)] is a linear
combination of the bracketings of the larger words ℓa(δ), ℓi(δ), ℓb(δ), a contradiction
with SLr(δ) being standard. Thus, any degree δ affine standard Lyndon word is of
the form ℓc(δ) for c ̸= 1. This completes the proof of (4.66), as we have n such words.

• Proof of (4.58)–(4.63) for k = 1.
We omit the proof as it coincides with the one in the step of induction below.

Step of Induction
Let us now prove the step of induction, proceeding by the height of a root.

We thus verify the formulas (4.57)–(4.64) for affine standard Lyndon words SL∗(α)
with k = r+1 assuming the validity of these formulas for SL∗(β) with ht(β) < ht(α).

Notation: In what follows, we shall denote [a → b+ 1) from (4.5) simply by [a; b]:

[a; b] :=
{
a, a+ 1, . . . , b− 1, b

}
.

• Proof of (4.57) for k = r + 1.
We consider only decompositions of the form (r+1)δ = (r1δ+αa→b)+((r−r1)δ+

αb+1→a−1), due to Remark 3.5. We may further assume that 1 ∈ [b+ 1; a− 1]. We
start with the following useful result (which will be strengthened in Lemma 4.11):

Claim 4.10. If ℓ1ℓ2 is the costandard factorization (2.4) of SL(δ + αb+1→a−1) and

1 ∈ [b+ 1; a− 1], then both words ℓ1 and ℓ2 contain all the letters located on the
(counterclockwise oriented) arch [b+ 1; a− 1].

Proof of Claim 4.10. First, we note that both ℓ1, ℓ2 start with 1. If ℓ1 does not
contain all the letters from [b+ 1; a− 1], then it consists only of letters from c to
d, where 1 ∈ [c; d] ⊊ [b+ 1; a− 1]. Thus, ℓ1 < SL(αb+1→a−1) by Lemma 4.4, hence

(4.68) SL(δ + αb+1→a−1) = ℓ1ℓ2 < SL(αb+1→a−1)ℓe(i;a,b)(δ) ,

with e(i; a, b) := a if a ⪯ i and e(i; a, b) := b if i ≺ a ⪯ b. However,
SL(αb+1→a−1) < ℓe(i;a,b)(δ) by Lemma 4.4 and their standard bracketings do not
commute by (4.67): [b[SL(αb+1→a−1)], b[ℓe(i;a,b)(δ)]] ̸= 0. Thus, the concatenated
word SL(αb+1→a−1)ℓe(i;a,b)(δ) appears in the set from the right-hand side of (3.10)
for the root α = δ + αb+1→a−1, contradicting (4.68).
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If ℓ2 does not contain all the letters from [b+ 1; a− 1], then we apply precisely the
same argument to ℓ2ℓ1 and use the inequality ℓ1ℓ2 < ℓ2ℓ1 to get a contradiction. □

For r1 < r, we have SL((r− r1)δ+αb+1→a−1) = ℓ1 ℓb+1→a−1(δ)︸ ︷︷ ︸
(r−r1−1) times

ℓ2 by the induc-

tion hypothesis, where ℓ1ℓ2 is the costandard factorization of SL(δ + αb+1→a−1).

According to Claim 4.10: b[ℓ1]
.
= Eb+1,ct

1−δb+1,1 for some c ∈ [a; b] or b[ℓ1]
.
= Ec,at

for some c ∈ [a+ 1; b]. For any d ∈ [a; b], one of the roots deg ℓ1,deg ℓ2 ∈ ∆̂+ does
not contain αd, which together with ℓ1 < ℓ2, Lemma 4.4, and Claim 4.10 implies:

(4.69) ℓ1 ≤ SL(αd+1→d−1) .

Moreover, the equality in (4.69) does hold only for d = b if SL(αb→a−1) >
SL(αb+1→a) and for d = a if SL(αb→a−1) < SL(αb+1→a), according to Lemma 4.11.

Thus, if a ̸= b and SL(αb→a−1) > SL(αb+1→a), then for d ∈ [a; b− 1] we have:

SL((r − r1)δ + αb+1→a−1)SL(r1δ + αa→b) < SL(αd+1→d−1) <

SL(αd+1→d−1) ℓd+sgn(i−d)(δ)︸ ︷︷ ︸
r times

d.

In the remaining case d = b (with a ̸= b and SL(αb→a−1) > SL(αb+1→a)), we have:

SL((r − r1)δ + αb+1→a−1)SL(r1δ + αa→b) =

SL(αb+1→b−1) ℓb+1→a−1(δ)︸ ︷︷ ︸
(r−r1−1) times

ℓ2 SL(r1δ + αa→b) <

SL(αb+1→b−1) ℓb+1→a−1(δ)︸ ︷︷ ︸
r times

b = SL(αb+1→b−1) ℓb+sgn(i−b)(δ)︸ ︷︷ ︸
r times

b ,

cf. (4.65), with the inequality implied by ℓ2 < ℓb+1→a−1(δ), due to (4.80) and a ̸= b.
The case of a ̸= b and SL(αb→a−1) < SL(αb+1→a) is treated completely analogously.

On the other hand, if a = b = d and r1 ≥ 0, then

SL(r1δ + αa→b) = SL(r1δ + αa) = ℓa+sgn(i−a)(δ)︸ ︷︷ ︸
r1 times

a

by the induction hypothesis (applying (4.58) if a < i, (4.59) if a > i, (4.63) if a = i)
and SL((r − r1)δ + αb+1→a−1) = SL((r − r1)δ + αa+1→a−1) is given by

(4.70) SL((r − r1)δ + αa+1→a−1) = SL(αa+1→a−1) ℓa+sgn(i−a)(δ)︸ ︷︷ ︸
(r−r1) times

.

To prove the latter claim, we first note that ℓ1 = SL(αa+1→a−1) and ℓ2 = SL?(δ),
while the lexicographically largest word SL?(δ) whose bracketing does not commute
with b[SL(αa+1→a−1)]

.
= Ea+1,at

1−δa,0 is precisely ℓa+sgn(i−a)(δ), due to (4.67) and
Lemma 4.5. Therefore, ℓ2 = ℓa+sgn(i−a)(δ). Second, we also claim that ℓa+1→a−1(δ)
equals ℓ2 = ℓa+sgn(i−a)(δ). To this end, recall that for α = 2δ+αa+1→a−1 we have

(4.71) SL(α) = ℓ1ℓa+1→a−1(δ)ℓ2 = SL(αa+1→a−1)ℓa+1→a−1(δ)ℓa+sgn(i−a)(δ) .
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◦ If ℓa+1→a−1(δ) < ℓa+sgn(i−a)(δ), then SL(αa+1→a−1)ℓa+1→a−1(δ)ℓa+sgn(i−a)(δ) <

SL(αa+1→a−1)ℓa+sgn(i−a)(δ)ℓa+sgn(i−a)(δ) =: ℓ̃ and the bracketing of the latter is

b[ℓ̃] = [b[SL(αa+1→a−1)ℓa+sgn(i−a)(δ)], b[ℓa+sgn(i−a)(δ)]]
.
=

[b[SL(αa+1→a−1)], b[ℓa+sgn(i−a)(δ)]] · t ̸= 0 .

We get a contradiction, since ℓ̃ is one of the concatenations (corresponding to the
decomposition α = (δ + αa+1→a−1) + (δ)) in the right-hand side of (3.10) for α.
◦ If ℓa+1→a−1(δ) > ℓa+sgn(i−a)(δ), then the costandard factorization (2.4) of SL(α)
in (4.71) must be of the form SL(α) = ℓ′1ℓ

′
2 with ℓ′2 = ℓa+sgn(i−a)(δ) and ℓ′1 =

SL(αa+1→a−1)ℓa+1→a−1(δ). We get a contradiction again, since ℓ′1 is an SL-word
and so ℓ′1 = SL(deg ℓ′1) = SL(δ + αa+1→a−1) = SL(αa+1→a−1)ℓa+sgn(i−a)(δ).

This completes our proof of (4.70). Combining all the above, we obtain the
following inequalities for ℓ := SL((r − r1)δ + αb+1→a−1)SL(r1δ + αa→b):

(4.72) ℓ ≤ SL(αd+1→d−1) ℓd+sgn(i−d)(δ)︸ ︷︷ ︸
r times

d ∀ d ∈ [a; b] .

We also note that (4.72) still holds for r1 = r.
Let us record the bracketings of the words from the right-hand side of (4.57):

(4.73) b[SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸
r times

c]
.
=

{
(Ecc − Ec+1,c+1)t

r+1 if 1 < c ≤ n

(En+1,n+1 − E11)t
r+1 if c = 0

.

We shall now compute the standard bracketing of ℓ. We have two possibilities (due
to the inequalities of Remark 4.8(c)):

1) The costandard factorization (2.4) of ℓ is of the form:

ℓ = ℓ′1ℓ
′
2 with ℓ′1 = SL((r − r1)δ + αb+1→a−1) , ℓ

′
2 = SL(r1δ + αa→b) .

Hence, the standard bracketing of ℓ is:

b[ℓ] = [b[ℓ′1], b[ℓ
′
2]]

.
= (Eaa − Eb+1,b+1)t

r+1 .
=

(Eaa −Ea+1,a+1)t
r+1 + (Ea+1,a+1 −Ea+2,a+2)t

r+1 + · · ·+ (Ebb −Eb+1,b+1)t
r+1.

Thus, if ℓ is not a word from the right-hand side of (4.57) for k = r+1, then b[ℓ]
can be written as a linear combination of the bracketings of the larger words
{ℓd(δ) | d ∈ [a; b]}, cf. (4.72, 4.73). Hence, the word ℓ can not be standard.

2) The costandard factorization (2.4) of ℓ is of the form:

ℓ = ℓ′1ℓ
′
2 with ℓ′1 = ℓ1 ℓb+1→a−1(δ)︸ ︷︷ ︸

(r−r1−1) times

, ℓ′2 = ℓ2 SL(r1δ + αa→b) .

Hence, the standard bracketing of ℓ is either b[ℓ]
.
= (Ecc − Eb+1,b+1)t

r+1 for
c ∈ [a; b] or b[ℓ]

.
= (Eaa − Ecc)t

r+1 for c ∈ [a + 1; b]. Thus, analogously to 1),
if ℓ is not a word from the right-hand side of (4.57) for k = r + 1, then b[ℓ]
can be written as a linear combination of the bracketings of the larger words
{ℓd(δ) | d ∈ [a; b]}, cf. (4.72, 4.73). Therefore, the word ℓ can not be standard.

Finally, if SL((r − r1)δ + αb+1→a−1) > SL(r1δ + αa→b), then the concatenation ℓ̃
arising from the decomposition (r+1)δ = (r1δ+αa→b)+ ((r− r1)δ+αb+1→a−1) is

(4.74) ℓ̃ = SL(r1δ + αa→b)SL((r − r1)δ + αb+1→a−1) < ℓ .
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By the induction hypothesis, we likewise have b[ℓ̃]
.
= (Epp − Eqq)t

r+1 for some

p, q ∈ [a; b+ 1]. The latter is a linear combination of the bracketings of the larger

words {ℓd(δ) | d ∈ [a; b]}, cf. (4.72)–(4.74), hence the word ℓ̃ is not standard either.

• Proof of (4.58) for k = r + 1.
Consider α = (r + 1)δ + αa→b with 1 ≺ a ⪯ b ≺ i. Its possible decompositions

are α = (r1δ + αa→c) + (r2δ + αc+1→b) with r1 + r2 = r or r + 1, depending on c.
First, we show that decompositions with c /∈ [a; b] give rise to concatenated words

which are lexicographically smaller than the word in the right-hand side of (4.58)
for k = r + 1. There are four cases to consider: 1 ∈ [a; c] or 1 ∈ [c+ 1; b], treating
separately r1 = 0, r1 ≥ 1 in the first case and r2 = 0, r2 ≥ 1 in the second case.

1) If 1 ∈ [a; c] ̸= Î and r1 = 0, then 1 ∈ [a; c] ⊂ [e+1; e−1] for any e ∈ [c+1; a−1],

and so SL(αa→c) ≤ SL(α(e+1)→(e−1)) by Lemma 4.4. As 1 = min Î, we get:
SL(αa→c) 1 < SL(α(e+1)→(e−1)) e = ℓe(δ) < ℓa(δ) < ℓb+1(δ) with the last two
inequalities due to Lemma 4.5. We note that SL(αa→c) 1 cannot be a proper prefix
of ℓb+1(δ) (as the former word contains the letter 1 twice) and SL(rδ+αc+1→b) starts
with 1. Thus, the concatenation SL(αa→c)SL(rδ + αc+1→b) is lexicographically
smaller than ℓb+1(δ), hence, smaller than the right-hand side of (4.58) for k = r+1.

2) If 1 ∈ [c+ 1; b] and r2 = 0, then 1 ∈ [c+ 1; b] ⊂ [b+ 2; b], and so SL(αc+1→b) ≤
SL(αb+2→b) by Lemma 4.4. Thus, SL(αc+1→b) 1 < SL(αb+2→b)(b + 1) = ℓb+1(δ).
The rest of the argument proceeds exactly as in 1) above.

3) If 1 ∈ [a; c] ̸= Î and r1 ≥ 1, then SL(r1δ + αa→c) = ℓ1 ℓa→c(δ)︸ ︷︷ ︸
(r1−1) times

ℓ2 with

ℓ1 and ℓ2 defined through the costandard factorization SL(δ + αa→c) = ℓ1ℓ2. We
claim that ℓ1 < ℓb+1(δ), from which the argument proceeds exactly as in 1) above.
Indeed, according to Claim 4.10, ℓ1 is given by one of the following two formulas:

(A) ℓ1 = SL(αa→d) for d ∈ [c → (a− 1));
(B) ℓ1 = SL(αd→c) for d ∈ [(c+ 2) → a).

According to Lemmas 4.4, 4.5, we thus get: ℓ1 ≤ SL(αa→(a−2)) < ℓa−1(δ) < ℓb+1(δ)
in case (A) and ℓ1 ≤ SL(α(c+2)→c) < ℓc+1(δ) < ℓb+1(δ) in case (B), as stated above.

4) If 1 ∈ [c+ 1; b] ̸= Î and r2 ≥ 1, then SL(r2δ+αc+1→b) = ℓ1 ℓc+1→b(δ)︸ ︷︷ ︸
(r2−1) times

ℓ2 with

ℓ1 and ℓ2 defined through the costandard factorization SL(δ+αc+1→b) = ℓ1ℓ2. We
claim that ℓ1 < ℓb+1(δ), from which the argument proceeds exactly as in 1) above.
Indeed, according to Claim 4.10, ℓ1 is given by one of the following two formulas:

(A) ℓ1 = SL(αd→b) for d ∈ [b+ 2; c+ 1];
(B) ℓ1 = SL(αc+1→d) for d ∈ [(b+ 1) → c).

According to Lemmas 4.4, 4.5, we thus get: ℓ1 ≤ SL(αb+2→b) < ℓb+1(δ) in case (A)
and ℓ1 < ℓ2 = SL(αd+1→b) ≤ SL(αb+2→b) < ℓb+1(δ) in case (B), as claimed above.

Therefore, it suffices to consider only the following decompositions in (3.10):

(4.75) α = (r1δ+αa→c)+ ((r+1− r1)δ+α(c+1)→b) , a ⪯ c ≺ b , 0 ≤ r1 ≤ r+1,

(4.76) α = (r1δ) + ((r + 1− r1)δ + αa→b) , 1 ≤ r1 ≤ r + 1.

◦ Case 1: Concatenations arising through (4.75).
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1) If 0 < r1 < r + 1, then the corresponding concatenated word starts with
ℓc+1(δ), due to the induction hypothesis and the inequality ℓc+1(δ) < ℓb+1(δ) of
Lemma 4.5. Thus, this concatenation is < the right-hand side of (4.58) for k = r+1.

2) If r1 = r + 1, then the corresponding concatenated word again starts with
ℓc+1(δ), but now because the first letter of ℓc+1(δ) is smaller than any of c+1, . . . , b.
Therefore, this concatenation is < the right-hand side of (4.58) for k = r + 1.

3) If r1 = 0, then the concatenation equals ℓb+1(δ)︸ ︷︷ ︸
(r+1) times

b(b−1) . . . (c+1) SL(αa→c).

But SL(αa→c) ≤ c(c − 1) . . . a (either they differ in the first letters, or Claim 4.6
applies), hence, this concatenation is ≤ the right-hand side of (4.58) for k = r+ 1.

◦ Case 2: concatenations arising through (4.76).
First, we record the standard bracketing b[SL((r+1−r1)δ+αa→b)]

.
= Ea,b+1t

r+1−r1 .
1) If r1 > 1, then according to (4.73) the only words from the right-hand side

of (4.57) with k = r1 whose standard bracketing does not commute with the above
b[SL((r+1− r1)δ+αa→b)] start with SL(αc+1→c−1)1 for c = a−1, a, b, b+1. Each
of these words is lexicographically smaller than ℓb+1(δ). Hence, the corresponding
concatenation is < the right-hand side of (4.58) for k = r + 1.

2) If r1 = 1, then we should rather use the formula (4.67) for the bracketings.
◦ If b ≺ i− 1, then the only ℓ?(δ) whose bracketing does not commute with
b[SL(rδ + αa→b)] are ℓa(δ) and ℓb+1(δ). As ℓa(δ) < ℓb+1(δ) by Lemma 4.5, the
resulting concatenation is ≤ the right-hand side of (4.58) for k = r + 1.
◦ If b = i− 1, then the only ℓ?(δ) whose bracketing does not commute with
b[SL(rδ+αa→b)] are ℓa(δ) and {ℓc(δ)|c ≥ i}. As ℓi(δ) is the maximal of these words
(Lemma 4.5), the concatenation is still ≤ the right-hand side of (4.58) for k = r+1.

We note that in both cases above the equality is possible (when ℓb+1(δ) is used).
This completes our proof of (4.58) for k = r + 1.

• Proof of (4.59) for k = r + 1.
The argument is completely analogous to the one used in the previous case (we

leave details to the interested reader).

• Proof of (4.60)–(4.63) for k = r + 1.
Let us prove the most complicated formula (4.60) for the case α = (r+1)δ+αa→b

with 1 ≺ a ≺ i ≺ b and i− 1 < i+ 1 (the proofs for the other cases are analogous).
There exists a degree α Lyndon word with a nonzero bracketing that starts with

SL1(δ) = ℓi(δ). Therefore, it suffices to consider in (3.10) only those decompositions
α = (r1δ+β1)+(r2δ+β2) such that each word SL(r1δ+β1), SL(r2δ+β2) is either
> ℓi(δ) or is a prefix of ℓi(δ). This excludes the following cases (with p = 1, 2):

1) βp = αa→c with 1 ∈ [a; c] ̸= Î, as in this case we have SL(αa→c) 1 < ℓi(δ) and
ℓ1 1 < ℓi(δ) with ℓ1 arising through the costandard factorization SL(δ + αa→c) =
ℓ1ℓ2, cf. our verification of (4.58) above;

2) βp = αc→b with 1 ∈ [c; b] ̸= Î, as in this case we have SL(αc→b) 1 < ℓi(δ) and
ℓ1 1 < ℓi(δ) with ℓ1 arising through the costandard factorization SL(δ + αc→b) =
ℓ1ℓ2, cf. our verification of (4.58) above;

3) βp = kδ with k > 1, as SL(αc+1→c−1) 1 < SL(αc+1→c−1) c = ℓc(δ) ≤ ℓi(δ);
4) βp = αa→c with c ∈ [a → (i−1)) and rp > 0, as SL(rpδ+βp) then starts with

ℓc+1(δ) which has the same length but is lexicographically smaller than ℓi(δ);
5) βp = αc+1→b with c ∈ [i+ 1 → b) and rp > 0, as SL(rpδ + βp) then starts

with ℓc(δ) which has the same length but is lexicographically smaller than ℓi(δ).
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Furthermore, if βp = αa→c with c ∈ [a → (i−1)) and rp = 0, then the corresponding
concatenation SL((r + 1)δ + α(c+1)→b)SL(αa→c) is ≤ the right-hand side of (4.60)

for k = r+1, due to the inequality i− 1 . . . (c+1)SL(αa→c) ≤ i− 1 . . . (c+1) c . . . a
(implied by Claim 4.6) and the induction hypothesis. Likewise, if βp = αc+1→b

with c ∈ [i+ 1 → b) and rp = 0, then the corresponding concatenation SL((r +
1)δ+αa→c)SL(αc+1→b) is ≤ the right-hand side of (4.60) for k = r+1, due to the

analogous inequality i+ 1 . . . cSL(αc+1→b) ≤ i+ 1 . . . b and induction hypothesis.
Therefore, it suffices to consider only the following decompositions in (3.10):

α = (r1δ + αa→i−1) + ((r + 1− r1)δ + αi→b) , 0 ≤ r1 ≤ r + 1

α = (r1δ + αa→i) + ((r + 1− r1)δ + αi+1→b) , 0 ≤ r1 ≤ r + 1

α = (δ) + (αa→b + rδ).

(4.77)

Clearly, we can choose only SL1(δ) = ℓi(δ) in the latter case. By the induction
hypothesis, all the corresponding concatenations have the following specific form:

(4.78) ℓ = ℓi(δ)︸︷︷︸
p times

ℓ1 ℓi(δ)︸︷︷︸
q times

ℓ2 ℓi(δ)︸︷︷︸
m times

ℓ3 with

p+ q +m = r + 1 and {ℓ1 , ℓ2 , ℓ3} = {i− 1 . . . a , i , i+ 1 . . . b}.
Since the corresponding concatenation ℓ is Lyndon (Lemma 2.4) and ℓi(δ) starts
with 1 which is smaller than the first letter of the words ℓ1, ℓ2, ℓ3, we must have

(4.79) p ≥ q and p ≥ m.

Let us consider three cases:

◦ Case 1: 3 | (r + 1). According to (4.79), we have p ≥ r+1
3 . To get the lexi-

cographically largest word, we need to pick p the smallest possible: p = r+1
3 . As

p ≥ q,m and p + q +m = r + 1, we have p = q = m = r+1
3 . Additionally, ℓ being

Lyndon implies ℓ1 < ℓ2 and ℓ1 < ℓ3 if p = q = m. It thus follows that ℓ1 = i. As we
assumed i+ 1 > i− 1, the largest word occurs if ℓ2 = i+ 1 . . . b > ℓ3 = i− 1 . . . a.
Thus, we end up exactly with the word in the right-hand side of (4.60) for k = r+1:

ℓmax = ℓi(δ)︸︷︷︸
r+1
3 times

i ℓi(δ)︸︷︷︸
r+1
3 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
r+1
3 times

i− 1 . . . a.

This word arises from the decomposition α = ( 2(r+1)
3 δ+αi→b) + ( r+1

3 δ+αa→i−1).
The latter provides the costandard factorization of ℓmax, in particular, b[ℓmax] ̸= 0.

◦ Case 2: 3 | (r + 2). According to (4.79), we have p ≥ r+2
3 . To get the lexico-

graphically largest word, we need to pick p the smallest possible: p = r+2
3 . Then,

we have {q,m} = { r+2
3 , r−1

3 }. As ℓ is Lyndon and q = p or m = p, ℓ1 ≤ ℓ2 or

ℓ1 ≤ ℓ3, respectively. Thus, ℓ1 equals i or i− 1 . . . a, and to get the lexicographi-
cally largest word, we need to pick ℓ1 = i− 1 . . . a and q = r−1

3 . Then m = r+2
3 ,

and ℓ being Lyndon implies that ℓ3 = i+ 1 . . . b, so that ℓ2 = i. Thus, we end up
exactly with the word in the right-hand side of (4.60) for k = r + 1:

ℓmax = ℓi(δ)︸︷︷︸
r+2
3 times

i− 1 . . . a ℓi(δ)︸︷︷︸
r−1
3 times

i ℓi(δ)︸︷︷︸
r+2
3 times

i+ 1 . . . b.

This word arises from the decomposition α = ( 2r+1
3 δ + αa→i) + ( r+2

3 δ + αi+1→b).
The latter provides the costandard factorization of ℓmax, in particular, b[ℓmax] ̸= 0.
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◦ Case 3: 3 | r. According to (4.79), we have p ≥ r
3 +1. To get the lexicographi-

cally largest word, we need to pick p the smallest possible and then ℓ1 the maximal
possible: p = r

3 + 1 and ℓ1 = i+ 1 . . . b. As ℓ1 is then larger than ℓ2, ℓ3 and ℓ is
Lyndon, we must have q,m < p = r

3 + 1. Evoking p+ q +m = r + 1, we thus get
q = m = r

3 . It is then straightforward to see (using the induction hypothesis) that

the only possible concatenation corresponds to ℓ2 = i, ℓ3 = i− 1 . . . a. Thus, we
end up exactly with the word in the right-hand side of (4.60) for k = r + 1:

ℓmax = ℓi(δ)︸︷︷︸
r+3
3 times

i+ 1 . . . b ℓi(δ)︸︷︷︸
r
3 times

i ℓi(δ)︸︷︷︸
r
3 times

i− 1 . . . a.

This word arises from the decomposition α = ( 2r3 δ+αa→i)+( r+3
3 δ+αi+1→b). The

latter provides the costandard factorization of ℓmax, in particular, b[ℓmax] ̸= 0.

• Proof of (4.64) for k = r + 1.

The last root to consider is αb→a+(r+1)δ, where 1 ∈ [b; a] ̸= Î. First, let us prove
the aforementioned fact about the order of ℓ1, ℓb→a(δ), and ℓ2 (see Remark 4.8(c)):

(4.80) ℓ1 < ℓ2 ≤ ℓb→a(δ).

To prove this we need to look at the word SL(2δ+αb→a). The first inequality is clear.
According to Claim 4.10, ℓ2 is either ℓ∗(δ) or one of the words SL(αd→a),SL(αb→c)
with d ∈ [a+ 2; b− 1], c ∈ [a; b− 2], respectively. Let us consider these three cases:
◦ If ℓ2 = ℓ∗(δ), then one gets ℓb→a(δ) = ℓ2 exactly as in our proof of (4.70).
◦ If ℓ2 = SL(αd→a), then in fact ℓ1 = SL(αb→b−2) < ℓ2 = SL(αb−1→a), due to

Lemma 4.11. Also SL(αb−1→a) < SL(αb−1→b−3) b− 2 = ℓb−2(δ) by Lemma 4.4.

1) If i ∈ [2; b− 2], then b[ℓb−2(δ)]
.
= (Ei,i − Eb−1,b−1)t, which does not

commute with b[ℓ1] = b[SL(αb→b−2)]
.
= Eb,b−1t

1−δb,1 . Thus, the word
ℓ1ℓb−2(δ)ℓ2 is Lyndon and its bracketing is b[ℓ1ℓb−2(δ)ℓ2] = [b[ℓ1ℓb−2(δ)], b[ℓ2]] =

[[b[ℓ1], b[ℓb−2(δ)]], b[ℓ2]]
.
= [b[ℓ1], b[ℓ2]]t ̸= 0. Therefore, ℓ2 < ℓb−2(δ) ≤ ℓb→a(δ).

2) If i ∈ [b− 1; 0], then ℓb−2(δ) < ℓb−1(δ) by Lemma 4.5 so that ℓ2 < ℓb−1(δ).

Then, b[ℓb−1(δ)]
.
= (Ei+1,i+1 − Eb−1,b−1)t, which again does not commute with

b[ℓ1]
.
= Eb,b−1t

1−δb,1 . Thus, the word ℓ1ℓb−1(δ)ℓ2 is Lyndon and moreover, arguing
as in 1), we also get b[ℓ1ℓb−1(δ)ℓ2] ̸= 0. Therefore, ℓ2 < ℓb−1(δ) ≤ ℓb→a(δ).
◦ If ℓ2 = SL(αb→c), then in fact ℓ1 = SL(αa+2→a) < ℓ2 = SL(αb→a+1), due to

Lemma 4.11. Also SL(αb→a+1) < SL(αa+3→a+1) a+ 2 = ℓa+2(δ) by Lemma 4.4.

1) If i ∈ [a+ 2; 0], then b[ℓa+2(δ)]
.
= (Ei+1,i+1 − Ea+2,a+2)t, which does

not commute with b[ℓ1] = b[SL(αa+2→a)]
.
= Ea+2,a+1t. Thus, the word

ℓ1ℓa+2(δ)ℓ2 is Lyndon and its bracketing is b[ℓ1ℓa+2(δ)ℓ2] = [b[ℓ1ℓa+2(δ)], b[ℓ2]] =
[[b[ℓ1], b[ℓa+2(δ)]], b[ℓ2]]

.
= [b[ℓ1], b[ℓ2]]t ̸= 0. Therefore, ℓ2 < ℓa+2(δ) ≤ ℓb→a(δ).

2) If i ∈ [2; a+ 1], then ℓa+2(δ) < ℓa+1(δ) by Lemma 4.5 so that ℓ2 < ℓa+1(δ).
Then, b[ℓa+1(δ)]

.
= (Ei,i −Ea+2,a+2)t, which again does not commute with b[ℓ1]

.
=

Ea+2,a+1t. Thus, the word ℓ1ℓa+1(δ)ℓ2 is Lyndon and moreover, arguing as in 1),
we also get b[ℓ1ℓa+1(δ)ℓ2] ̸= 0. Therefore, ℓ2 < ℓa+1(δ) ≤ ℓb→a(δ).

This completes our proof of (4.80).

We also note the following inequality:

(4.81) SL(αb→a) ≤ ℓ1 < SL(δ + αb→a) = ℓ1ℓ2.
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According to Lemma 4.11, ℓ1 is either SL(αb→b−2) or SL(αa+2→a). Evoking
Lemma 4.4, we thus get SL(αb→a) ≤ ℓ1 < ℓ1ℓ2 in both cases, as claimed in (4.81).

To prove our key Lemma 4.11 below, we need an explicit algorithm for computing
the words SL(αb→a). This is essentially a description of Lalonde-Ram’s bijection
(2.12) for a finite type A, generalizing our former Claim 4.6 to the case when the
minimal letter on the arch [b; a] is not its end-point, and it utilizes the argument
from our proof of (4.54, 4.55). We provide two algorithms: building SL(αb→a) either
from right to left or from left to right by stacking “segmental” words accordingly.

Right-to-Left Algorithm for SL(αb→a) with 1 ∈ [b; a].

This algorithm (which crucially uses the fact that each letter appears at most
once) reads off the word SL(αb→a) from right to left, stacking “segmental” words
accordingly. First, we note that 1 will be the first letter. Then, we choose the second
smallest letter 1 ̸= c ∈ [b; a]. If c ∈ [2; a], then we place the word u1 := c c+ 1 . . . a
in the very end of SL(αb→a), while for c ∈ [b; 0] we place the word u1 := c c− 1 . . . b
in the very end of SL(αb→a). Next, we apply the same algorithm to the arch [b; c−1]
or [c+ 1; a], respectively. In other words, we take the second smallest letter among
the remaining ones, and place the resulting word u2 right before u1, and so on.

Left-to-Right Algorithm for SL(αb→a) with 1 ∈ [b; a].
Since the lexicographical order compares words from left to right, we shall now

restate the above algorithm by rather building SL(αb→a) from left to right. The
first letter is clearly 1, while the second letter is the max{0, 2}. If it is 0, then either
n /∈ [b; a] in which case we just place the segment 23 . . . a after 0, or n ∈ [b; a] and
we compare n and 2, do the same operation, and proceed further. Let us rephrase
the above algorithm. Pick the largest letter among 2 and 0 and add after 1 the
longest Lyndon segment 23 . . . c with c ∈ [2; a] (if 2 > 0) or 0n . . . d with d ∈ [b; 0]
(if 2 < 0). Then, compare c+ 1 with 0 or d− 1 with 2 accordingly, and so on. This
reconstructs SL(αb→a) by stacking “segmental” words from left to right after 1.

Let us now describe the costandard factorization of SL(δ+αb→a) with 1 ∈ [b; a].

Lemma 4.11. Let SL(δ + αb→a) = ℓ1ℓ2 be the costandard factorization, 1 ∈ [b; a].

(a) If SL(αb−1→a) > SL(αb→a+1), then: ℓ1 = SL(αb→b−2), ℓ2 = SL(αb−1→a).

(b) If SL(αb−1→a) < SL(αb→a+1), then: ℓ1 = SL(αa+2→a), ℓ2 = SL(αb→a+1).

Remark 4.12. For a = b− 2 (equivalently, b = a+ 2), the above formulas for ℓ2
should be understood as follows: ℓ2 = ℓb→b−2(δ) = ℓb−1+sgn(i−(b−1))(δ).

Proof of Lemma 4.11. For a = b− 2, the above formulas (cf. Remark 4.12) are
obvious, since according to Claim 4.10 there is only one decomposition to consider:

αb→b−2 + δ = (αb→b−2) + (δ) .

If a ̸= b− 2 and SL(αb−1→a) > SL(αb→a+1), then we claim that:

(4.82) SL(αb−1→a) > SL(αb→b−2) .

Indeed, let us construct all three SL-words SL(αb−1→a), SL(αb→a+1), SL(αb→b−2)
using the above “Left-to-Right Algorithm”. Then, SL(αb−1→a) > SL(αb→a+1)

implies that at the leftmost spot where these words differ, the former has b− 1
while the latter has some c < b− 1. But then clearly SL(αb−1→a) > SL(αb→b−2).
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According to (4.82) and Lemma 2.4, the word SL(αb→b−2)SL(αb−1→a) is Lyndon.
Its costandard factorization (2.4) is precisely given by ℓ1 = SL(αb→b−2) and ℓ2 =
SL(αb−1→a), since both words start with 1 (and have no more 1’s). Hence, the stan-
dard bracketing b[SL(αb→b−2)SL(αb−1→a)] = [b[SL(αb→b−2)], b[SL(αb−1→a)]] ̸= 0.
We thus conclude that SL(δ+αb→a) ≥ SL(αb→b−2)SL(αb−1→a). We also note that
combining (4.82) with Lemma 4.4, we obtain:

(4.83) SL(αb→c) ≤ SL(αb→b−2) < SL(αb−1→a) ∀ c ∈ [a; b− 2] .

Combining Claim 4.10 with (4.83), we get SL(δ+αb→a) ≤ SL(αb→b−2)SL(αb−1→a).
Therefore, we actually have the equality

SL(δ + αb→a) = SL(αb→b−2)SL(αb−1→a)

and the two words in the right-hand side determine the costandard factorization,
as shown above. This proves part (a).

The proof of (b) is completely analogous and is left to the interested reader. □

Corollary 4.13. In the setup of Lemma 4.11, we have:

(4.84) ℓ1 = min
{
SL(αb→b−2),SL(αa+2→a)

}
.

Proof. For a = b− 2, the claim is vacuous by Lemma 4.11. If SL(αb−1→a) >
SL(αb→a+1), then ℓ1 = SL(αb→b−2) < SL(αb−1→a) by (4.82) and Lemma 4.11.

But SL(αb−1→a) ≤ SL(αa+2→a) by Lemma 4.4 as 1 ∈ [b− 1; a] ⊆ [a+ 2; a] for

a ≺ b− 2. Combining the above, we obtain: ℓ1 = SL(αb→b−2) < SL(αa+2→a).
The case SL(αb−1→a) < SL(αb→a+1) is completely analogous. □

With the inequalities (4.80, 4.81) and Lemma 4.11 at hand, we shall finally
proceed to the proof of (4.64) for k = r + 1. To this end, we consider all possible
decompositions of α = (r + 1)δ + αb→a with 1 ∈ [b; a] case-by-case:

1) α = (r1δ + αb→c) + ((r + 1− r1)δ + αc+1→a), with c ∈ [b → a).

Let us assume that 1 ∈ [b; c] (the case 1 ∈ [c+ 1; a] is analogous). The corre-
sponding concatenation ℓ is ≤ ℓ′1 ℓb→c(δ)︸ ︷︷ ︸

(r1−1) times

ℓ′2 SL((r+1− r1)δ+αc+1→a) if r1 > 0,

or ≤ SL(αb→c)SL((r + 1)δ + αc+1→a) if r1 = 0. Here, SL(δ + αb→c) = ℓ′1ℓ
′
2 is the

costandard factorization. According to (4.80, 4.81), we have: SL(αb→c) ≤ ℓ′1 <
ℓ′2 ≤ ℓb→c(δ), where both equalities hold if and only if either of them holds. As
c ∈ [a → b) and b ̸= a− 1, we have SL(αb→c) ̸= ℓ′1, due to Lemma 4.11. Thus
SL(αb→c) < ℓ′1, so that SL(k1δ + αb→c) < SL(k2δ + αb→c) and the former is not a
prefix of the latter for any 0 ≤ k1 < k2. Therefore, ℓ ≤ ℓ′1 ℓb→c(δ)︸ ︷︷ ︸

r times

ℓ′2 SL(αc+1→a).

By Lemma 4.11, ℓ′2 is either SL(αb−1→c) or SL(αb→c+1). We consider these cases:
◦ If ℓ′2 = SL(αb−1→c), then ℓ′2 SL(αc+1→a) ≤ SL(αb−1→a). Moreover, by

Lemma 4.11 and its proof, we also have SL(αb−1→c) > SL(αb→c+1) as well as
SL(αb−1→c) > SL(αb→b−2) = ℓ′1. Evoking Lemma 4.5, we thus obtain a sequence
of inequalities: SL(αb−1→a) > SL(αb−1→c) > SL(αb→b−2) ≥ SL(αb→a+1). Hence,
applying Lemma 4.11 once again to SL(δ + αb→a), we see that its costandard
factorization has factors ℓ1 = ℓ′1, ℓ2 = SL(αb−1→a), and also ℓb→a(δ) = ℓb→c(δ).
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Thus, we derive the desired inequality:

ℓ ≤ ℓ′1 ℓb→c(δ)︸ ︷︷ ︸
r times

SL(αb−1→c)SL(αc+1→a) ≤ ℓ′1 ℓb→c(δ)︸ ︷︷ ︸
r times

SL(αb−1→a) = ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

Moreover, the equality is possible for a specific c ∈ [b → a) and r1 = r + 1.
◦ If ℓ′2 = SL(αb→c+1), then b[ℓ′2 SL(αc+1→a)] = [b[ℓ′2], b[SL(αc+1→a)]] = 0 for

degree reasons (as deg ℓ′2 + αc+1→a /∈ ∆̂+), and so

b[ℓ′1 ℓb→c(δ)︸ ︷︷ ︸
r times

ℓ′2 SL(αc+1→a)] = [b[ℓ′1 ℓb→c(δ)︸ ︷︷ ︸
r times

], b[ℓ′2 SL(αc+1→a)]] = 0 .

But then it is clear that b[ℓ] = 0. Therefore, the word ℓ can not be standard.

2) α = (r1δ + αb→c) + ((r − r1)δ + αc+1→a), where 1 ∈ [b; c] and 1 ∈ [c+ 1; a].
Assume first that 0 < r1 < r, and let SL(δ + αb→a) = ℓ1ℓ2 be the costandard

factorization. By Lemma 4.11, it is easy to see that either SL(δ + αb→c) or SL(δ +
αc+1→a) start with ℓ1. Assuming the former, we get a costandard factorization

SL(δ + αb→c) = ℓ1ℓ3 and ℓb→c(δ) = ℓb→a(δ). If c ̸= b− 2, then ℓ1 < ℓ3 < ℓb→c(δ).
Therefore, we get the desired inequality on the corresponding concatenation ℓ:

ℓ ≤ SL(r1δ + αb→c)SL((r − r1)δ + α(c+1)→a) < ℓ1 ℓb→c(δ)︸ ︷︷ ︸
r times

ℓ2 = ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

If c = b− 2, then ℓ3 = ℓb→a(δ) = αb→b−2(δ) = ℓb−1+sgn(i−(b−1))(δ) ≥ ℓb−2(δ),
with the last inequality by Lemma 4.5. Let SL(δ+αb−1→a) = ℓ4ℓ5 be the costandard

factorization. Then, ℓ4 ≤ SL(αb−1→b−3) < SL(αb−1→b−3) b− 2 = ℓb−2(δ), due
to (4.84). Hence, the corresponding concatenation ℓ satisfies the desired inequality:

ℓ ≤ ℓ1 ℓb→b−2(δ)︸ ︷︷ ︸
r1 times

ℓ4 ℓb−1→a(δ)︸ ︷︷ ︸
(r−r1−1) times

ℓ5 < ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

For r1 = r, we get ℓ ≤ SL(rδ + αb→c)SL(αc+1→a) = ℓ1 ℓb→c(δ)︸ ︷︷ ︸
(r−1) times

ℓ3 SL(αc+1→a).

If c ̸= b− 2, then the argument is the same as in the previous case. If c = b− 2,
then ℓ3 = ℓb→c(δ) = ℓb→a(δ), and we again obtain the desired inequality:

ℓ ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

Finally, if r1 = 0 and SL(rδ + αc+1→a) = ℓ4ℓ5 is the costandard factorization,
then using SL(αb→c) ≤ ℓ1 and ℓ4 < ℓb−2(δ) ≤ ℓb→a(δ), cf. (4.84), we again obtain:

ℓ ≤ SL(αb→c)SL(rδ + αc+1→a) ≤ ℓ1ℓ4 ℓc+1→a(δ)︸ ︷︷ ︸
(r−1) times

ℓ5 < ℓ1ℓb→a(δ) < ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

3) α = (r1δ) + ((r + 1− r1)δ + αb→a).
If a ̸= b− 2, then (using the induction hypothesis) the corresponding con-

catenated word ℓ is ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
(r−r1) times

ℓ2 SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸
(r1−1) times

c if r1 ≤ r, or

≤ SL(αb→a)SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸
r times

c if r1 = r+ 1, for some c ̸= 1. Due to the



38 YEHOR AVDIEIEV AND ALEXANDER TSYMBALIUK

inequalities SL(αb→a) < ℓ1 < ℓ2 < ℓb→a(δ), cf. (4.80, 4.81), we obtain (∀ c ̸= 1):

ℓ ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
(r−1) times

ℓ2 SL(αc+1→c−1)c < ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

Let us now treat the case a = b− 2, for which we utilize the non-commutativity of
the corresponding bracketings. We consider the cases r1 = 1 and r1 > 1 separately.

If r1 = 1, then the corresponding concatenation ℓ is ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓc(δ), where

ℓ2 = ℓb→a(δ) = ℓb−1+sgn(i−(b−1))(δ) by Remark 4.12. Here, b[ℓc(δ)] does not com-
mute with b[SL(rδ + αb→b−2)], which is equivalent to [b[ℓc(δ)], Eb,b−1] ̸= 0. The
latter guarantees that ℓc(δ) ≤ ℓb→a(δ), due to (4.67) and Lemma 4.5:

◦ if b ≺ i then c = b− 1, b and ℓc(δ) ≤ ℓb(δ) = ℓb−1+sgn(i−(b−1))(δ);
◦ if b = i, i+ 1, i+ 2, then ℓb−1+sgn(i−(b−1))(δ) = ℓi(δ) ≥ ℓc(δ);
◦ if b ≻ i + 2, then c = b − 1, b − 2 and ℓc(δ) ≤ ℓb−2(δ) = ℓb−1+sgn(i−(b−1))(δ).

Hence, we derive the desired inequality:

ℓ ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓc(δ) ≤ ℓ1 ℓb→a(δ)︸ ︷︷ ︸
(r+1) times

= ℓ1 ℓb→a(δ)︸ ︷︷ ︸
r times

ℓ2 .

For r1 > 1, the argument is precisely the same and is based on the inequalities
SL(αc+1→c−1) < ℓc(δ) ≤ ℓb→a(δ). Here, the second inequality is proved as above,
but using (4.73) instead of (4.67).

This completes the proof of (4.64). In the particular case r = 1, this proves the
formula SL(2δ+αb→a) = ℓ1ℓb→a(δ)ℓ2 implicitly used in the statement of (4.64). □

5. Properties of orders

To account for dim gkδ = |I|, let us extend ∆̂+ to ∆̂+,ext:

(5.1) ∆̂+,ext := ∆̂+,re ⊔
{
(kδ, r)

∣∣ k ≥ 1, 1 ≤ r ≤ |I|
}
.

We define SL((kδ, r)) := SLr(kδ) accordingly. Consider the order on ∆̂+,ext induced
from the lexicographical order on affine standard Lyndon words, cf. (2.15):

(5.2) α < β ⇐⇒ SL(α) < SL(β) lexicographically.

In this section, we investigate some properties of this order using Theorem 4.7.

Example 5.1. The only case when ∆̂+,ext = ∆̂+ is the case of ŝl2. Using the formulas
of Proposition 3.7, we see that (5.2) recovers the usual order (cf. the Introduction):

α1 < α1 + δ < α1 + 2δ < · · · < · · · < 3δ < 2δ < δ < · · · < 2δ + α0 < δ + α0 < α0 .

5.2. Important counterexample.

Unlike the orders on ∆̂+,ext in the theory of affine quantum groups ([B, KT]),
arising through the affine braid group action, the order (5.2) does separate imagi-

nary roots. Explicitly, for type A
(1)
n (n > 1) and any order on Î, one always has:

(k1δ, n) < α < (k2δ, 1) for some α ∈ ∆̂+,re , k1, k2 ≥ 1.

It is thus natural to ask (motivated by Levendorskii-Soibelman convexity property):

Question: Is it true that we cannot have a pattern

(k2δ, n) < β2 < β1 < (k1δ, 1) with β1, β2 ∈ ∆̂+,re , β1 + β2 = (k1 + k2)δ.

The answer is actually negative, as shown by the following simplest counterexample.
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Counterexample: Consider the affine Lie algebra ŝl5 with the standard order

1 < 2 < 3 < 4 < 0 on Î. For k,m > 0, set β1 = kδ+α4, β2 = mδ+(α0+α1+α2+α3)
and k1 = 1, k2 = k +m. According to Theorem 4.2, we have:

SL1(δ) = 10432 , SL4((k +m)δ) = 1234 10234︸ ︷︷ ︸
(k+m−1) times

0,

SL(β1) = 10423︸ ︷︷ ︸
k times

4 , SL(β2) = 1023 10423︸ ︷︷ ︸
m times

.

Thus, indeed (k2δ, 4) < β2 < β1 < (δ, 1) with respect to the order (5.2) on ∆̂+,ext.

5.3. Chain monotonicity in type A
(1)
n .

For α ∈ ∆̂+,re, define the chain Chα as the sequence α, α+ δ, α+2δ, . . . ∈ ∆̂+,re.

Proposition 5.4. For any α ∈ ∆̂+,re, the chain Chα is monotonous:

SL(α) < SL(α+δ) < SL(α+2δ) < · · · or SL(α) > SL(α+δ) > SL(α+2δ) > · · ·

Proof. Without loss of generality, we can assume that (4.52) holds, so that the
formulas of Theorem 4.7 apply. The proof follows by a simple case-by-case analysis:

• α = αa→b with i ≺ a ⪯ b ⪯ 0.
According to (4.59), we have SL(kδ + αa→b) = ℓa−1(δ)︸ ︷︷ ︸

k times

a a+ 1 . . . b for all k ≥ 1.

As a a+ 1 . . . b starts with a letter a which is larger than 1, the first letter of ℓa−1(δ),
we obtain SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for any k ≥ 1. In the remaining
case k = 0, we also have SL(αa→b) > SL(δ + αa→b), as SL(αa→b) starts with a
letter min{a, . . . , b} which is larger than 1, the first letter of SL(δ + αa→b).

• α = αa→b with 1 ≺ a ⪯ b ≺ i.
The proof of SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for any k ≥ 0 is exactly the

same as above, with ℓb+1(δ) used instead of ℓa−1(δ).

• α = αa→b with 1 ≺ a ≺ i ≺ b.
Combining the formula (4.60) with the inequalities i± 1 > i > 1 = first letter

of ℓi(δ), we obtain SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for any k ≥ 1. In the
remaining case k = 0, we also have SL(αa→b) > SL(δ + αa→b), as 1 /∈ [a; b].

• α = αa→b with a = i or b = i and 1 /∈ [a; b].
The proof of SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for any k ≥ 0 is exactly the

same as above, where we use one of the formulas (4.61)–(4.63) instead of (4.60).

• α = αb→a with 1 ∈ [b; a].
According to (4.64), we have SL(kδ + αb→a) = ℓ1 ℓb→a(δ)︸ ︷︷ ︸

(k−1) times

ℓ2 for all k ≥ 1.

Here, we have ℓ2 ≤ ℓb→a(δ), due to (4.80), so that ℓ2 < ℓb→a(δ)ℓ2. Thus, we obtain
SL(kδ + αb→a) < SL((k + 1)δ + αb→a) for any k ≥ 1. In the remaining case k = 0,
we also have SL(αb→a) < SL(δ + αb→a), due to (4.81). □

Remark 5.5. It follows from the proof that the chain Chα monotonously increases

if α = kδ + αa→b with min{Î} ∈ [a; b], and monotonously decreases otherwise.
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Remark 5.6. For any k ≥ 1 and c ̸= 1, we also have SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸
(k−1) times

c >

SL(αc+1→c−1) ℓc+sgn(i−c)(δ)︸ ︷︷ ︸
k times

c, cf. (4.57). Since the order among length n words

{SL(αc+1→c−1) | c ̸= 1} determines the order among the n words in the right-hand
side of (4.57) for any k, we also see that {SL(kδ, r)}k≥1 monotonously decreases:

SL(δ, r) > SL(2δ, r) > SL(3δ, r) > · · · ∀ 1 ≤ r ≤ n.

5.7. Pre-convexity in type A
(1)
n .

Motivated by Definition 2.18, we shall call an order < on ∆̂+,re pre-convex if

(5.3) α < α+ β < β or β < α+ β < α ∀ α, β, α+ β ∈ ∆̂+,re.

Proposition 5.8. The restriction of (5.2) to ∆̂+,re is pre-convex.

Proof. Without loss of generality, we can assume that (4.52) holds, so that the
formulas of Theorem 4.7 apply. The proof follows by a direct case-by-case analysis:

• α = αa→b + kδ, β = α(b+1)→c + rδ for 1 ≺ a ⪯ b ≺ c ≺ i.
◦ Case 1: k, r > 0. In this case, we have SL(α) = ℓb+1(δ)︸ ︷︷ ︸

k times

b(b− 1) . . . a, SL(β) =

ℓc+1(δ)︸ ︷︷ ︸
r times

c(c − 1) . . . (b + 1), SL(α + β) = ℓc+1(δ)︸ ︷︷ ︸
(k+r) times

c(c − 1) . . . a. The inequality

SL(α) < SL(α + β) is a consequence of ℓc+1(δ) > ℓb+1(δ) (Lemma 4.5), while the
inequality SL(α+ β) < SL(β) is obvious as ℓc+1(δ) starts with 1 which is < c.

◦ Case 2: k = 0, r > 0. In this case, we have SL(β) = ℓc+1(δ)︸ ︷︷ ︸
r times

c(c− 1) . . . (b+ 1),

SL(α+ β) = ℓc+1(δ)︸ ︷︷ ︸
r times

c(c− 1) . . . a, while SL(α) starts with a letter > 1. Therefore,

we immediately get SL(α) > SL(α+ β) > SL(β).
◦ Case 3: k > 0, r = 0. In this case, we have SL(α) = ℓb+1(δ)︸ ︷︷ ︸

k times

b(b − 1) . . . a,

SL(α + β) = ℓc+1(δ)︸ ︷︷ ︸
k times

c(c − 1) . . . a, while SL(β) starts with a letter > 1. Evoking

the inequality ℓc+1(δ) > ℓb+1(δ), we immediately get SL(α) < SL(α+ β) < SL(β).
◦ Case 4: k = r = 0. In this case, α, β, α+β ∈ ∆+, hence the claim follows from

Proposition 2.20 (a priori we do not know which of the two possible orders holds).

• α = αa→b + kδ, β = αb+1→c + rδ for i ≺ a ⪯ b ≺ c ⪯ 0.

◦ Case 1: k, r > 0. In this case, we have SL(α) = ℓa−1(δ)︸ ︷︷ ︸
k times

a a+ 1 . . . b, SL(β) =

ℓb(δ)︸ ︷︷ ︸
r times

b+ 1 b+ 2 . . . c, SL(α + β) = ℓa−1(δ)︸ ︷︷ ︸
(k+r) times

a a+ 1 . . . c. The inequality SL(β) <

SL(α + β) is a consequence of ℓa−1(δ) > ℓb(δ) (Lemma 4.5), while the inequality
SL(α+ β) < SL(α) is obvious as ℓa−1(δ) starts with 1 which is < a.
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◦ Case 2: k = 0, r > 0. In this case, we have SL(β) = ℓb(δ)︸ ︷︷ ︸
r times

b+ 1 b+ 2 . . . c,

SL(α+ β) = ℓa−1(δ)︸ ︷︷ ︸
r times

a a+ 1 . . . c, while SL(α) starts with a letter > 1. Evoking the

inequality ℓa−1(δ) > ℓb(δ), we immediately get SL(β) < SL(α+ β) < SL(α).
◦ Case 3: k > 0, r = 0. In this case, we have SL(α) = ℓa−1(δ)︸ ︷︷ ︸

k times

a a+ 1 . . . b,

SL(α + β) = ℓa−1(δ)︸ ︷︷ ︸
k times

a a+ 1 . . . c, while SL(β) starts with a letter > 1. Therefore,

we immediately get SL(α) < SL(α+ β) < SL(β).
◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again.

• α = αa→(i−1) + kδ, β = αi + rδ for 1 ≺ a ≺ i.

◦ Case 1: k > 0, r ≥ 0. In this case, we have SL(α) = ℓi(δ)︸︷︷︸
k times

i− 1 i− 2 . . . a,

SL(α+β) =


ℓi(δ)︸︷︷︸

k+r
2 times

i ℓi(δ)︸︷︷︸
k+r
2 times

i− 1 . . . a if 2 | (k + r)

ℓi(δ)︸︷︷︸
k+r+1

2 times

i− 1 . . . a ℓi(δ)︸︷︷︸
k+r−1

2 times

i if 2 ∤ (k + r)
, and SL(β) = ℓi(δ)︸︷︷︸

r times

i.

If 2 | (k + r) and k > k+r
2 > r, then clearly SL(α) < SL(α + β) < SL(β). If

2 | (k + r) and k ≤ k+r
2 ≤ r, then clearly SL(α) > SL(α+ β) > SL(β).

If 2 ∤ (k + r) and k ≥ k+r+1
2 > r, then clearly SL(α) < SL(α + β) < SL(β). If

2 ∤ (k + r) and k < k+r+1
2 ≤ r, then clearly SL(α) > SL(α+ β) > SL(β).

◦ Case 2: k = 0, r > 0. In this case, SL(α) starts with a letter > 1, SL(β) =

ℓi(δ)︸︷︷︸
r times

i, SL(α + β) =


ℓi(δ)︸︷︷︸
r
2 times

i ℓi(δ)︸︷︷︸
r
2 times

i− 1 . . . a if 2 | r

ℓi(δ)︸︷︷︸
r+1
2 times

i− 1 . . . a ℓi(δ)︸︷︷︸
r−1
2 times

i if 2 ∤ r
. Therefore, we imme-

diately get SL(α) > SL(α+ β) > SL(β).
◦ Case 3: k = r = 0. In this case, the claim follows from Proposition 2.20 again.

In fact, we get SL(α) > SL(α+β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i−1).

• α = αa→b + kδ, β = α(b+1)→i + rδ for 1 ≺ a ⪯ b ≺ i− 1.
◦ Case 1: k, r > 0. Combining (4.58, 4.62) and Lemma 4.5, we obtain:

SL(α) = ℓb+1(δ)︸ ︷︷ ︸
k times

b b− 1 . . . a < ℓi(δ) < SL(β) , SL(α+ β) .

It thus remains to prove that SL(α + β) < SL(β). This is obvious unless k = 1
and 2 ∤ r, as SL(α+ β) has strictly bigger number of ℓi(δ)’s in the beginning than
SL(β), due to (4.62) and ⌈k+r

2 ⌉ > ⌈ r
2⌉. Meanwhile, for k = 1 and 2 ∤ r we have:

SL(α+ β) = ℓi(δ)︸︷︷︸
r+1
2

i ℓi(δ)︸︷︷︸
r+1
2

i− 1 . . . a < ℓi(δ)︸︷︷︸
r+1
2

i− 1 . . . b+ 1 ℓi(δ)︸︷︷︸
r−1
2

i = SL(β) .

◦ Case 2: k = 0, r > 0. It has been already shown in the proof of Theo-
rem 4.7 that SL(α(b+1)→i + rδ)SL(αa→b) ≤ SL(αa→i + rδ), cf. Claim 4.6. There-
fore: SL(β) < SL(β)SL(α) ≤ SL(αa→i + rδ) = SL(α + β). On the other hand,
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SL(α) starts with min{a, . . . , b} which is > 1 = the first letter of SL(α+β). Hence,
SL(β) < SL(α+ β) < SL(α).

◦ Case 3: r = 0, k > 0. In this case, we have SL(α) < SL(α + β) < SL(β), due
to ℓb+1(δ) < ℓi(δ) (Lemma 4.5) and 1 < i.

◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again.
In fact, we get SL(α) > SL(α+β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i−1).

• α = αa→b + kδ, β = α(b+1)→c + rδ for 1 ≺ a ⪯ b ≺ i− 1 and i ≺ c ⪯ 0.
The proof is absolutely analogous to the previous case, but we should now look

at r mod 3 (rather than r mod 2) and use the formula (4.60) instead of (4.62).

• α = αa→(i−1) + kδ, β = αi→b + rδ for 1 ≺ a ≺ i ≺ b ⪯ 0.
◦ Case 1: k, r > 0. Let us compare the multiplicity of the word ℓi(δ) in the

beginning of our words: it is k for SL(α), ⌈ r
2⌉ for SL(β), and ⌈k+r

3 ⌉ for SL(α+ β).

If r = 2k + 3 or r > 2k + 4, then k < ⌈k+r
3 ⌉ < ⌈ r

2⌉ (as ⌈k+r
3 ⌉ ≤ k+r+2

3 < r
2 ≤ ⌈ r

2⌉
for r > 2k+4), and so SL(β) < SL(α+β) < SL(α). If r < 2k−3, then likewise k >
⌈k+r

3 ⌉ > ⌈ r
2⌉ (as ⌈k+r

3 ⌉ ≥ k+r
3 > r+1

2 ≥ ⌈ r
2⌉), and so SL(α) < SL(α + β) < SL(β).

Thus, it remains to consider r ∈ {2k − 3, 2k − 2, 2k − 1, 2k, 2k + 1, 2k + 2, 2k + 4}.
Let us illustrate the argument for r = 2k − 2, while the other six cases are treated
completely analogously. For r = 2k−2, ⌈ r

2⌉ < k = ⌈k+r
3 ⌉, and so it suffices to prove

that SL(α) < SL(α + β). Comparing the formulas (4.58, 4.60), we see that either
SL(α) is a proper prefix of SL(α+β) if i− 1 > i+ 1, or its first letter after k copies
of ℓi(δ) is smaller than that of SL(α+β) if i− 1 < i+ 1. Thus SL(α) < SL(α+β).

◦ Case 2: k = 0, r > 0. Comparing the first letters, we get SL(α) > SL(α+β). It
thus remains to prove SL(α+ β) > SL(β). For r > 2, this follows from ⌈ r

2⌉ > ⌈ r
3⌉.

The cases r = 1 and r = 2 are treated similarly to r = 2k − 2 in Case 1.
◦ Case 3: k > 0, r = 0. Comparing the first letters, we get SL(β) > SL(α + β),

while SL(α+ β) > SL(α) is verified alike SL(α+ β) > SL(β) in Case 2.
◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again.

In fact, we get SL(α) > SL(α+β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i−1).

The next four cases are absolutely similar to the previous four:
• α = αi + kδ, β = αi+1→b + rδ for i ≺ b ⪯ 0.
• α = αi→b + kδ, β = αb+1→c + rδ for i ≺ b ≺ c ⪯ 0.
• α = αa→b + kδ, β = αb+1→c + rδ for 1 ≺ a ≺ i ≺ b ≺ c ⪯ 0.
• α = αa→i + kδ, β = αi+1→b + rδ for 1 ≺ a ≺ i ≺ b ⪯ 0.

Finally, let us treat the remaining three cases that utilize (4.64) and its proof.

• α = (αa→b + kδ), β = (αb+1→c + rδ) for 1 ∈ [a; b] and 1 /∈ [b+ 1; c].
If k > 0, r > 0, then SL(α) < SL(α)SL(β) ≤ SL(α+β) with the second inequality

proved in case 1) of our proof of (4.64). Hence, it remains to show that SL(α+β) <
SL(β). By Corollary 4.13, SL(α + β) starts min{SL(αa→a−2) 1,SL(αc+2→c) 1} <

SL(αc+2→c)c+ 1 = ℓc+1(δ). On the other hand, SL(β) starts with ℓi(δ) ≥ ℓc+1(δ)
if i ∈ [(b + 1) → c), with ℓc+1(δ) if 1 ≺ b + 1 ⪯ c ≺ i, with ℓb(δ) > ℓc+1(δ) for i ≺
b+1 ⪯ c (by Lemma 4.5). This completes the proof of SL(α) < SL(α+β) < SL(β)
for k, r > 0. The inequalities are similar when k ̸= r = 0 or r ̸= k = 0.

Finally, for k = r = 0 the claim follows from Proposition 2.20. In fact, we get

SL(α) < SL(α+ β) < SL(β) since 1 is the minimal element of Î.

• α = (αa→b + kδ), β = (αb+1→c + rδ) for 1 /∈ [a; b] and 1 ∈ [b+ 1; c].
The proof in this case is completely analogous to the previous one.
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• α = αa→b + kδ, β = αb+1→c + rδ for 1 ∈ [a; b] and 1 ∈ [b+ 1; c].
According to Lemmas 4.5 and 4.10, we have: SL(αa→b + kδ) ≥ SL(αa→b) and

SL(αb+1→c + rδ) ≥ SL(αb+1→c) for k, r ≥ 0. Thus, SL(αa→b + kδ) > SL(αa→c+1)

and SL(αb+1→c + rδ) ≥ SL(αa−1→c) by Lemma 4.5 as 1 ∈ [a; c+ 1] ⊊ [a; b] and

1 ∈ [a− 1; c] ⊆ [b+ 1; c]. Evoking the proof of Lemma 4.11, see (4.82), we conclude
that one of the words SL(αa−1→c) and SL(αa→c+1) is > SL(αa→c + (k + r + 1)δ).
This implies that max{SL(α),SL(β)} > SL(α+β). The other inequality is obvious:
min{SL(α),SL(β)} < SL(α+β), cf. our treatment of case 2) in the proof of (4.64).
This competes the proof for any k, r ≥ 0. □

Appendix A. Computer code

The generalized Leclerc’s algorithm of Proposition 3.4 is easy to program. This
allows one to find affine standard Lyndon words for any affine type (which is espe-

cially useful for exceptional types F4 and E6,7,8) and any order on the alphabet Î,
arguing by induction on the height of an affine root. Here are the clickable codes:

• Python Code 1
• Python Code 2

The first code computes SL(α) for α ∈ ∆̂+,re with kh < ht(α) < (k + 1)h (here,
h = ht(δ) is the Coxeter number of g) using the algorithm of Proposition 3.4(a). The

second code evaluates {SLr((k+1)δ))}|I|r=1 using the algorithm of Proposition 3.4(b).

Remark A.1. To code the algorithm of Proposition 3.4 it is key to define a function
that evaluates standard bracketing of affine standard Lyndon words and a function
that checks bracketings for linear independence. The code works inductively and
proceeds block-wise evaluating SL∗(α) for kh < ht(α) ≤ (k + 1)h at each step.
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