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We propose a natural generalization of the construction of the quantum difference Toda

lattice [6, 22] associated with a simple Lie algebra g. Our construction depends on two

orientations of the Dynkin diagram of g and some other data (which we refer to as a pair

of Sevostyanov triples). In types A and C, we provide an alternative construction via

Lax matrix formalism, cf. [15]. We also show that the generating function of the pairing

of Whittaker vectors in the Verma modules is an eigenfunction of the corresponding

modified quantum difference Toda system and derive fermionic formulas for the former

in spirit of [7]. We give a geometric interpretation of all Whittaker vectors in type A via

line bundles on the Laumon moduli spaces and obtain an edge-weight path model for

them, generalizing the construction of [4].

1 Introduction

In a recent work [10] of M. Finkelberg and the 2nd author, a family of 3n−1 commutative

subalgebras in the algebra of difference operators on (C×)n+1 was constructed, gener-

alizing the type A quantum difference Toda lattice of [6, 22]. In this paper, we show how
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the construction of [22] for an arbitrary semisimple Lie algebra g can be generalized to

produce 3rk(g)−1 integrable systems, thus answering a question of P. Etingof. In types A

and C, we identify these systems with the ones obtained via the Lax matrix formalism.

We also discuss some generalizations of the basic results on the quantum difference

Toda system to the current setting.

The importance of our generalization of q-Toda systems of [6, 22] is two-

fold. First of all, as emphasized in [10] (historically this goes back at least to [20])

already, the quasi-classical limit of this construction (known as the relativistic open

Toda system) crucially depends on a choice of a pair of Coxeter elements in the Weyl

group of G (simply connected algebraic group associated with g). One of our main

results, Theorem 3.1, gives an upper bound on the number of different integrable

systems we obtain this way in the quantum case. Another motivation arises from

the geometric representation theory, where Whittaker vectors (closely related to the

Toda systems due to Theorem 4.9) often have natural geometric interpretations that

unveil additional symmetry. We illustrate this in Section 5, where the universal Verma

module over Uv(sln) is realized as the equivariant K-theory of Laumon spaces due

to [3] (see Theorem 5.3); one of the Whittaker vectors is realized as a sum of the

structure sheaves (see (5.5) and Proposition 5.14(a)), while an extra symmetry noticed

in Proposition 5.14(b) gives rise to a family of Whittaker vectors (see Theorem 5.5 and

Proposition 5.17).

This paper is organized as follows:

• In Section 2, we construct the modified quantum difference Toda systems

depending on a pair of Sevostyanov triples (following [21, 22]) and general-

izing the q-Toda systems of [6, 22].

• In Section 3, we explain how to compute explicitly the corresponding

hamiltonians using [13]. We write down the formulas for the hamiltonians

corresponding to the 1st fundamental representation in the classical types

and G2. In the latter case of G2, our formula seems to be new even in the

simplest set-up of the standard q-Toda system of [6]; see (3.33).

One of the key results of this section is that there are at most 3rk(g)−1

different modified quantum difference Toda systems; see Theorem 3.1. For

the classical types and G2, see Theorem 3.2, whose proof is more elementary

and relies on Propositions 3.11, 3.14, 3.17, 3.20, and 3.38. We also show

that these are maximal commutative subalgebras, determined by their 1st

hamiltonians; see Theorem 3.3.
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Modified Quantum difference Toda Systems 8887

We also prove that in type A these integrable systems exactly match

those of [10, 11(ii, iii)]; see Theorem 3.24. This generalizes the Lax matrix

realization of the type A q-Toda system, due to [15]. In Theorem 3.31, we also

provide a similar Lax matrix realization of the type C modified quantum

difference Toda systems. Noticing that the periodic counterparts of these

two constructions in the classical case (i.e., for �k = �0 in the notations

of loc.cit.) match up with the hamiltonians of the affine q-Toda lattice

of [6], see formulas (3.22, 3.29, 3.30, 3.31, 3.34), we propose a periodic

analogue of the modified quantum difference Toda systems in types A, C;

see Propositions 3.26 and 3.33 and Remarks 3.28(b,c) and 3.35(b).

• In Section 4, we study the Shapovalov pairing between a pair of Whittaker

vectors (determined by Sevostyanov triples) in Verma modules. We obtain

fermionic formulas for those in spirit of [7]; see Theorems 4.6 and 4.7. We

also prove that their generating function is naturally an eigenfunction of the

corresponding modified quantum difference Toda system; see Theorem 4.9.

• In Section 5, we provide a geometric interpretation of all type A Whittaker

vectors and their Shapovalov pairing via the geometry of the Laumon moduli

spaces, generalizing [3]; see Theorems 5.5 and 5.11.

Following a suggestion of B. Feigin, we relate this family of Whittaker

vectors to an eigen-property of the (geometrically) simplest one (5.5) with

respect to the action of the quantum loop algebra Uv(Lsln) (via the evaluation

homomorphism); see Propositions 5.14 and 5.17 and Corollary 5.16. This

viewpoint also provides an edge-weight path model for a general type A

Whittaker vector, generalizing the path model of [4] for a particular choice

of a Sevostyanov triple; see Propositions 5.19 and 5.21.

• In Appendices, we prove Proposition 3.11 and Theorems 3.1, 3.2, 3.3,

and 3.24.

2 Sevostyanov Triples and Whittaker Functions

2.1 Quantum groups

We fix the notations as follows. Let G be a simply connected complex algebraic group

with a semisimple Lie algebra g. We denote by H ⊂ B a pair of a Cartan torus and

a Borel subgroup. The Cartan subalgebra h ⊂ g is defined as the Lie algebra of H,

� denotes the set of roots of (g, h), and �+ ⊂ � denotes the set of positive roots
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corresponding to B. Let n = rk(g) be the rank of g, α1, . . . , αn be the simple positive

roots, and ω1, . . . , ωn be the fundamental weights. Let P := ⊕n
i=1Zωi be the weight lattice,

Q := ⊕n
i=1Zαi be the root lattice, and set P+ := ⊕n

i=1Z≥0ωi, Q+ := ⊕n
i=1Z≥0αi. We write

β ≥ γ if β − γ ∈ Q+. We fix a nondegenerate invariant bilinear form (·, ·) : h × h → C

and identify h∗ with h via (·, ·). We set di := (αi,αi)
2 . The choice of (·, ·) is such that di = 1

for short roots αi, in particular, di ∈ {1, 2, 3} for any i. We also define ω∨
i := ωi/di so that

(ω∨
i , αj) = δi,j, and ρ := ∑n

i=1 ωi = 1
2

∑
γ∈�+ γ ∈ P. Let (aij)

n
i,j=1 be the corresponding

Cartan matrix with aij = 2(αi,αj)

(αi,αi)
. We define bij = diaij = (αi, αj), so that (bij)

n
i,j=1 is

symmetric.

Choose N ∈ Z>0 so that (P, P) ⊂ 1
NZ. The quantum group (of adjoint type in

the terminology of [16]) Uv(g) is the unital associative C(v1/N)-algebra generated by

{Ei, Fi, Kμ}μ∈P
1≤i≤n with the following defining relations:

KμKμ′ = Kμ+μ′ , K0 = 1,

KμEiK
−1
μ = v(μ,αi)Ei, KμFiK

−1
μ = v−(μ,αi)Fi, [Ei, Fj] = δi,j

Ki − K−1
i

vi − v−1
i

,

1−aij∑
r=0

(−1)r
[
1 − aij

r

]
vi

E
1−aij−r
i EjE

r
i = 0,

1−aij∑
r=0

(−1)r
[
1 − aij

r

]
vi

F
1−aij−r
i FjF

r
i = 0 (i �= j),

where Ki := Kαi
, vi := vdi , [r]v := vr−v−r

v−v−1 , [r]v! := [1]v · · · [r]v,
[m

r

]
v := [m]v!

[r]v!·[m−r]v! .

Set Li := Kωi
. Since P = ⊕n

i=1Zωi, we will alternatively view Uv(g) as the

C(v1/N)-algebra generated by {Ei, Fi, L±1
i }n

i=1 with the corresponding defining relations.

In particular,

LiEjL
−1
i = v

δi,j

i Ej, LiFjL
−1
i = v

−δi,j

i Fj, Ki =
n∏

j=1

L
aji

j .

2.2 Sevostyanov triples

Let Dyn(g) be the graph obtained from the Dynkin diagram of g by replacing all multiple

edges by simple ones, for example, Dyn(sp2n) = Dyn(so2n+1) = Dyn(sln+1) = An. Given

an orientation Or of Dyn(g), define the associated matrix ε = (εij)
n
i,j=1 via

εij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if aij = 0 or i = j,

1, if aij < 0 and the edge is oriented i → j in Or,

−1, if aij < 0 and the edge is oriented i ← j in Or.
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Modified Quantum difference Toda Systems 8889

Definition 2.3. A Sevostyanov triple is a collection of the following data:
(a) an orientation Or of Dyn(g),

(b) an integer matrix n = (nij)
n
i,j=1 satisfying djnij − dinji = εijbij for any i, j,

(c) a collection c = (ci)
n
i=1 ∈ (C(v1/N)×)n.

We refer to this Sevostyanov triple by (ε,n, c).

Fix a pair of integer matrices n± = (n±
ij )

n
i,j=1 and collections c± = (c±

i )n
i=1 ∈

(C(v1/N)×)n. Set ei := Ei · ∏n
p=1 L

n+
ip

p , fi := ∏n
p=1 L

−n−
ip

p · Fi, and let U+
n+(g), U−

n−(g) be the

C(v1/N)-subalgebras of Uv(g) generated by {ei}n
i=1 and {fi}n

i=1, respectively.

The following simple, but very important, observation is essentially due to [21].

Lemma 2.4. (a) The assignment ei �→ c+
i (1 ≤ i ≤ n) extends to an algebra

homomorphism χ+ : U+
n+(g) → C(v1/N) if and only if there exists an orientation Or+

of Dyn(g) with an associated matrix ε+, such that (ε+,n+, c+) is a Sevostyanov triple.

(b) The assignment fi �→ c−
i (1 ≤ i ≤ n) extends to an algebra homomorphism

χ− : U−
n−(g) → C(v1/N) if and only if there exists an orientation Or− of Dyn(g) with an

associated matrix ε−, such that (ε−,n−, c−) is a Sevostyanov triple.

Proof. (a) As the “if” part is proved in [21, Theorem 4], let us now prove the “only if” part

following similar arguments. Due to the triangular decomposition of Uv(g), the algebra

U+
n+(g) is generated by {ei}n

i=1 subject to
∑1−aij

r=0 (−1)rvr(djn
+
ij −din

+
ji )
[1−aij

r

]
vi

e
1−aij−r
i eje

r
i = 0

for i �= j. Hence, there is a character χ+ : U+
n+(g) → C(v1/N) with χ+(ei) �= 0 if and only

if
∑1−aij

r=0 (−1)rvr(djn
+
ij −din

+
ji )
[1−aij

r

]
vi

= 0 for any i �= j. If aij = 0, then we immediately

get djn
+
ij − din

+
ji = 0. If aij = −1, then we recover djn

+
ij − din

+
ji ∈ {±di} = {±bij} and

εij ∈ {±1}. Finally, if aij < −1, then aji = −1 and we can apply the previous case.

(b) Analogous. �

2.5. Whittaker functions

From now on, we fix a pair of Sevostyanov triples (ε±,n±, c±), which give rise to

the subalgebras U±
n±(g) of Uv(g) and the corresponding characters χ± : U±

n±(g) →
C(v1/N) of Lemma 2.4. We consider the quantum function algebra Ov(G) spanned

by the matrix coefficients of integrable Uv(g)-modules (with the highest weights in

P+). Let Dv(G) denote the corresponding Heisenberg double [19, Section 3]. It acts

on Ov(G). It is equipped with a homomorphism μv : Uv(g) ⊗ Uv(g) → Dv(G). Let

Ov(Bw0B) stand for the quantized coordinate ring of the big Bruhat cell [11, 8.2] (a

localization of Ov(G)). The action of Dv(G) on Ov(G) extends to the action on Ov(Bw0B).

In particular, U−
n−(g) ⊗ U+

n+(g) ⊂ Uv(g) ⊗ Uv(g) acts on Ov(Bw0B). According to [11,
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8890 R. Gonin and A. Tsymbaliuk

(3.22), Theorem 4.7, Proposition 8.3], there are subalgebras S±
v of Ov(Bw0B) (we note

that Ov(G),Ov(Bw0B), S+
v are denoted by Rv[G], Rv[Bw0B], S

∓
w0

, respectively, in [11]) such

that Ov(Bw0B) � S−
v ⊗Ov(H) ⊗ S+

v (as vector spaces) and S±
v � U±

v (g), where U−
v (g), U+

v (g)

are the subalgebras of Uv(g) generated by {Fi}n
i=1 and {Ei}n

i=1, respectively. Hence, there

is an (vector space) isomorphism

Ov(Bw0B) � U−
n−(g) ⊗ Ov(H) ⊗ U+

n+(g), (2.1)

under which the above actions of U−
n−(g), U+

n+(g) on Ov(Bw0B) are via the left and the

right multiplications. Let U±
n±(g)∧ denote the completions of U±

n±(g) with respect to the

natural gradings with deg(ei) = 1 and deg(fi) = 1. In view of the identification (2.1), we

define the completion of Ov(Bw0B) via Ov(Bw0B)∧ � U−
n−(g)∧ ⊗ Ov(H) ⊗ U+

n+(g)∧. Hence,

the subspace of semi-invariants
(
Ov(Bw0B)∧

)U−
n− (g)⊗U+

n+ (g),χ−⊗χ+
projects isomorphically

onto Ov(H) under the restriction projection Ov(Bw0B)∧ → Ov(H). We denote this

projection by φ �→ φ|H .

Definition 2.6. A Whittaker function is an element of
(
Ov(Bw0B)∧

)U−
n− (g)⊗U+

n+ (g),χ−⊗χ+
.

Remark 2.7. Following [6], we could alternatively work with the dual quantum formal

group Ah̄(g) = Uh̄(g)∗, defined as the space of linear functions on Uh̄(g). Here the

quantum group Uh̄(g) is defined over C[[h̄]] with v replaced by eh̄. In this set-up, a

Whittaker function is an element φ ∈ Ah̄(g) such that φ(x−xx+) = χ−(x−)χ+(x+)φ(x) for

any x± ∈ U±
n±(g), x ∈ Uh̄(g). Let us point out that this differs from the notion of Whittaker

functions as defined in loc.cit.

We note that the character lattice X∗(H) = P and the pairing (Q, P) ⊂ Z, hence,

we have the natural embedding of Q into the cocharacter lattice X∗(H). Thus, for every

λ ∈ Q we can define the difference operators Tλ acting on Ov(H) via (Tλf )(x) = f (x ·
vλ). Moreover, since v(P,P) ⊂ C(v1/N), the difference operators Tλ are also well-defined

for λ ∈ P. Let D̃v(H) be the algebra generated by {eλ, Tμ|λ, μ ∈ P}, and Dv(Had) be its

subalgebra generated by {eλ, Tμ|λ ∈ Q, μ ∈ P}. The following is completely analogous to

[6, Proposition 3.2].

Lemma 2.8. (a) For any Y ∈ Uv(g), there exists a unique difference operator D̃Y =
D̃Y(ε±,n±, c±) ∈ D̃v(H) such that (Yφ)|H = D̃Y(φ|H ) for any Whittaker function φ.

(b) D̃Y is an element of Dv(Had) ⊂ D̃v(H).

(c) If Y1 and Y2 are central elements of Uv(g), then D̃Y1Y2
= D̃Y1

D̃Y2
.

Recall the element  ∈ (Uv(g) ⊗ Uv(g))∧ of the completion of the vector space
Uv(g) ⊗ Uv(g) as defined in [16, 4.1.1]. Loosely speaking, the universal R-matrix is given
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Modified Quantum difference Toda Systems 8891

by R = op · R0, where R0 = vT and T ∈ h ⊗ h stand for the canonical element. Let

πV : Uv(g) → End(V) be a finite-dimensional representation, {wk}N
k=1 be a weight basis

of V, and μk ∈ P be the weight of wk. First, we note that though , op are defined as

infinite sums, their images (id⊗πV)(), (id⊗πV)(op) ∈ Uv(g)⊗End(V) are well-defined.

Second, the image (id⊗πV)(R0) = (id⊗πV)((R0)op) ∈ Uv(g)⊗End(V) is also well-defined

via (id ⊗ πV)(R0) = ∑N
k=1 Kμk

⊗ Ek,k with Ek,k ∈ End(V) given by Ek,k(wk′) = δk,k′wk′

(this does not depend on the choice of a weight basis {wk}). Hence, working over C(v1/N)

(rather than in the formal setting C[[h̄]] as in [6, 22]), the elements (id ⊗ πV)(R) and

(id ⊗ πV)(Rop) are still well-defined.

Due to [5, 18], the center of Uv(g) is spanned by elements CV corresponding to

finite-dimensional Uv(g)-representations V via the formula

CV = trV(id ⊗ πV)
(
RopR(1 ⊗ K2ρ)

)
. (2.2)

We define D̃V , DV ∈ Dv(Had) via D̃V := D̃CV
and DV := eρD̃Ve−ρ . Consider the fundamental

representations {Vi}n
i=1 of Uv(g) and set D̃i := D̃Vi

, Di := DVi
. According to Lemma 2.8,

{D̃i}n
i=1 and therefore {Di}n

i=1 are families of pairwise commuting elements of Dv(Had).

Definition 2.9. A modified quantum difference Toda system is the commutative

subalgebra T = T (ε±,n±, c±) of Dv(Had) generated by {Di}n
i=1.

Due to Theorem 3.3(c) below, DV ∈ T for any finite-dimensional Uv(g)-

representation V.

Remark 2.10. This construction is a q-deformed version of the Kazhdan–Kostant

approach to the classical Toda system. In case the two Sevostyanov triples coincide,

we recover the original construction of [22]. Let us point out right away that we do not

know how to generalize an alternative approach of [6] to obtain our modified quantum

difference Toda systems.

3 1st Hamiltonians, Classification, and Lax Realization in Types A,C

The main result of this section is the following.

Theorem 3.1. There are at most 3n−1 different modified quantum difference Toda

systems, up to algebra automorphisms of Dv(Had).

The proof of this result is presented in Appendix D and crucially relies on

Theorem 4.7.
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8892 R. Gonin and A. Tsymbaliuk

We also provide a more straightforward proof for the classical types

An, Bn, Cn, Dn as well as the exceptional type G2. To state the result, we label the simple

roots {αi}n
i=1 as in [2, Chapter VI, Section 4] (here n = 2 for the type G2). Given a

pair of Sevostyanov triples (ε±,n±, c±), we define �ε = (εn−1, . . . , ε1) ∈ {−1, 0, 1}n−1 via

εi :=
⎧⎨⎩

ε+
n−2,n−ε−

n−2,n
2 , if i = n − 1 in type Dn,

ε+
i,i+1−ε−

i,i+1
2 , otherwise.

Theorem 3.2. If g is of type An, Bn, Cn, Dn or G2, then up to algebra automorphisms

of Dv(Had), the modified quantum difference Toda system T (ε±,n±, c±) depends only

on �ε.

We present the proof of this result in Appendix B. The key ingredient in our

proof is that the 1st hamiltonian D1 depends only on �ε ∈ {−1, 0, 1}n−1 up to an algebra

automorphism of Dv(Had), which is established case-by-case in Propositions 3.11, 3.14,

3.17, 3.20, and 3.38. Following an elegant argument of P. Etingof, we show in Appendix B

that the other hamiltonians Di match as well under the same automorphism.

Let D≤
v (Had) be the subalgebra of Dv(Had), generated by {e−αi , Tμ}μ∈P

1≤i≤n. It

follows from the construction that Di ∈ D≤
v (Had), so that T ⊂ D≤

v (Had). Applying

ideas similar to those from the proof of Theorem 3.2, we get another important

result.

Theorem 3.3. Consider a modified quantum difference Toda system T = T (ε±,n±, c±).

(a) The difference operators {Di}n
i=1 ⊂ T (ε±,n±, c±) are algebraically independent.

(b) The centralizer of D1 in D≤
v (Had) coincides with T (ε±,n±, c±).

(c) We have DV(ε±,n±, c±) ∈ T (ε±,n±, c±) for any finite-dimensional Uv(g)-module V.

The proof of Theorem 3.3 is presented in Appendix C.

3.4 R-matrix and convex orderings

Our computations are based on the explicit formula for the universal R-matrix R, due

to [13]. First, let us recall the construction of Cartan–Weyl root elements {Eγ , Fγ }γ∈�+ ,

which is crucially based on the notion of a convex ordering on �+.

Definition 3.5. An ordering ≺ on the set of positive roots �+ is called convex (we note

that such orderings are called normal in [13, 23]) if for any three roots α, β, γ ∈ �+ such

that γ = α + β, we have either α ≺ γ ≺ β or β ≺ γ ≺ α.

Fix a convex ordering ≺ on �+. For a simple root αi (1 ≤ i ≤ n), set Eαi
:= Ei, Fαi

:=
Fi. To construct the remaining root vectors, we apply the following inductive algorithm.
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Modified Quantum difference Toda Systems 8893

Let α, β, γ ∈ �+ be such that γ = α +β, α ≺ β, and there are no α � α′ ≺ β ′ � β satisfying

γ = α′ + β ′. Suppose that Eα, Fα, Eβ , Fβ have been already constructed. Then we define

Eγ := EαEβ − v(α,β)EβEα, Fγ := FβFα − v−(α,β)FαFβ .

According to [13], we have [Eγ , Fγ ] = a(γ )
Kγ −K−1

γ

vγ −v−1
γ

for certain constants a(γ ) ∈ C(v1/N),

where vγ := v(γ ,γ )/2 (note that a(αi) = 1 and vαi
= vi). For γ ∈ �+, define

Rγ := expv−1
γ

(
vγ − v−1

γ

a(γ )
Eγ ⊗ Fγ

)
,

where expv(x) :=∑∞
r=0

xr

(r)v! , (r)v! := (1)v · · · (r)v, (r)v := 1−vr

1−v . The following is due to [13].

Theorem 3.6. ([13]). Fix a convex ordering ≺ on �+. Then op = ∏
γ∈�+ Rγ , where the

order in the product coincides with the ordering ≺.

The explicit computations of D1 below are based on the special choice of convex

orderings. We choose two convex orderings ≺± on �+ in such a way that ε±
ij = −1 ⇒

αi ≺± αj (as shown in [23], any ordering on simple positive roots can be extended to a

convex ordering on �+). This choice is motivated by Proposition 3.7 below. To state the

result, define

C′
V = trV(id ⊗ πV)

(∏
Rop

αi
· (R0)op ·

∏
Rαi

· R0 · (1 ⊗ K2ρ)
)

, (3.1)

where the 1st and the 2nd products are over all simple positive roots ordered according

to ≺− and ≺+, respectively, whereas (id ⊗ πV)(R0) = (id ⊗ πV)((R0)op) are understood as

before. We define D̄V := D̃C′
V
.

Proposition 3.7. We have D̃V = D̄V .

Proof. For γ = ∑n
i=1 miαi ∈ �+ (mi ∈ Z≥0), define eγ , fγ ∈ Uv(g) via eγ := Eγ ·∏n

i,k=1 L
min

+
ik

k and fγ := ∏n
i,k=1 L

−min
−
ik

k · Fγ , so that eαi
= ei, fαi

= fi as defined in Section

2.2. The proof of Proposition 3.7 is based on the following properties of these elements

{eγ , fγ }γ∈�+ established in [22, Propositions 2.2.4 and 2.2.5].

Lemma 3.8. (a) For γ ∈ �+, we have eγ ∈ U+
n+(g) and fγ ∈ U−

n−(g).

(b) If γ ∈ �+ is not a simple root, then χ+(eγ ) = 0 and χ−(fγ ) = 0.

We recall the proof of this Lemma to make our exposition self-contained.
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8894 R. Gonin and A. Tsymbaliuk

Proof. (a) The proof is by induction used in the above definition of the root vectors

Eγ , Fγ . The claim is trivial when γ is a simple root. For the remaining cases, let α, β, γ ∈
�+ be as above and assume that we have already established the inclusions eα, eβ ∈
U+
n+(g) and fα, fβ ∈ U−

n−(g). Let us write α =∑n
i=1 miαi, β =∑n

i=1 m′
iαi. Then

Eγ =
(
v−∑n

i,k=1 min
+
ik(ωk,β)eαeβ − v(α,β)−∑n

i,k=1 m′
in

+
ik(ωk,α)eβeα

)
·

n∏
i,k=1

L
−(mi+m′

i)n
+
ik

k ,

Fγ =
n∏

i,k=1

L
(mi+m′

i)n
−
ik

k ·
(
v
∑n

i,k=1 min
−
ik(ωk,β)fβfα − v−(α,β)+∑n

i,k=1 m′
in

−
ik(ωk,α)fαfβ

)
,

so that

eγ = v−∑n
i,k=1 min

+
ik(ωk,β)eαeβ − v(α,β)−∑n

i,k=1 m′
in

+
ik(ωk,α)eβeα (3.2)

and

fγ = v
∑n

i,k=1 min
−
ik(ωk,β)fβfα − v−(α,β)+∑n

i,k=1 m′
in

−
ik(ωk,α)fαfβ . (3.3)

Thus, eγ ∈ U+
n+(g) and fγ ∈ U−

n−(g), which completes our inductive step. Part (a) follows.

(b) Due to the formulas (3.2, 3.3), it suffices to prove χ+(eγ ) = 0 and χ−(fγ ) = 0

for γ = α + β with α = αi, β = αj.

In the former case, we get

eγ = v−djn
+
ij eiej − vbij−din

+
ji ejei = v−djn

+
ij [ei, ej],

since djn
+
ij − din

+
ji = ε+

ij bij = −bij as αi ≺+ αj. Hence, χ+(eγ ) = v−djn
+
ij [χ+(ei), χ

+(ej)] = 0.

In the latter case, we get

fγ = vdjn
−
ij fjfi − v−bij+din

−
ji fifj = vdjn

−
ij [fj, fi],

since djn
−
ij − din

−
ji = ε−

ij bij = −bij as αi ≺− αj. Thus, χ−(fγ ) = vdjn
−
ij [χ−(fj), χ

−(fi)] = 0. �

Tracing back the definition of D̃V , Lemma 3.8 implies that Rγ , Rop
γ give trivial

contributions to D̃V unless γ ∈ �+ is a simple root, cf. [6, Lemma 5.2] and [7, Proposition

3.6]. Hence, the equality D̃V = D̄V . �

3.9. Explicit formulas and classification in type An−1

Recall explicit formulas for the action of Uv(sln) on its 1st fundamental representation

V1. The space V1 has a basis {w1, . . . , wn}, in which the action is given by the following

formulas:

Ei(wj) = δj,i+1wj−1, Fi(wj) = δj,iwj+1, Li(wj) = v− i
n +δj≤iwj, Ki(wj) = vδj,i−δj,i+1wj
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for any 1 ≤ i < n, 1 ≤ j ≤ n. Let �1, . . . , �n be the weights of w1, . . . , wn, respectively, so

that (�i, �j) = δi,j − 1/n. Recall that the simple roots are given by αi = �i −�i+1 (1 ≤ i ≤
n − 1), while ρ = ∑n

j=1
n+1−2j

2 �j. According to Proposition 3.7, to compute D1 explicitly,

we should

• evaluate C′
V1

,

• replace Ei, Fi by ei, fi and Lp, moving the latter to the middle part,

• apply χ± as in [6] to obtain the difference operator D̃1 = D̄V1
,

• conjugate by eρ .

Note that the operators {Er
i , Fr

i }r>1
1≤i≤n−1 act trivially on V1. Hence, applying formula (3.1),

we can replace Rαi
by R̄αi

:= 1 + (v − v−1)Ei ⊗ Fi. Let us now compute all the nonzero

terms contributing to C′
V1

:

• Picking 1 out of each R̄op
αi , R̄αi

, we recover
∑n

j=1 vn+1−2j · K2�j
.

• Picking nontrivial terms only at R̄op
αj , R̄αi

, the result does not depend on Or±

(hence, the orderings ≺±) and the total contribution is∑n−1
i=1 (v − v−1)2vn+1−2i · FiK�i+1

EiK�i
. Rewriting in terms of ei, fi and Lp,

we get (v − v−1)2∑n−1
i=1 vn−2i+(n+

ii −n−
ii ) · fiK�i+�i+1

∏n−1
p=1 L

n−
ip−n+

ip
p ei.

• The computation of the remaining terms is based on the following obvious

formulas
Fik · · · Fi2Fi1(wi) = δi1,iδi2,i1+1 · · · δik,ik−1+1wi+k,

Ejk · · · Ej2Ej1(wj) = δj1,j−1δj2,j1−1 · · · δjk,jk−1−1wj−k.

Hence, picking nontrivial terms only at R̄op
αj1

, . . . , R̄op
αjk′ , R̄αik

, . . . , R̄αi1
(in the order listed)

is possible only if ik ≺+ · · · ≺+ i1, j1 ≺− · · · ≺− jk′ , and gives a nonzero contribution to

C′
V1

if and only if k = k′, ik = ik−1 + 1 = . . . = i1 + k − 1, and ia = ja for 1 ≤ a ≤ k. Thus,

the remaining terms contributing to C′
V1

depend on ≺± (only on Or±) and give in total

ε±
i,i+1=...=ε±

j−2,j−1=±1∑
1≤i<j−1≤n−1

(v − v−1)2(j−i)vn+1−2i · Fi · · · Fj−1K�j
Ej−1 · · · EiK�i

.

Rewriting this in terms of ei, fi and Lp, and moving the latter to the middle, we get

∑
(v − v−1)2(j−i)vn−2i+∑i≤a≤b≤j−1(n+

ab−n−
ab) · fi · · · fj−1 · K�i+�j

n−1∏
p=1

L
∑j−1

s=i (n
−
sp−n+

sp)

p · ej−1 · · · ei,

where the sum is over all 1 ≤ i < j − 1 ≤ n − 1 such that ε±
i,i+1 = . . . = ε±

j−2,j−1 = ±1.

Note that Lp = K�1+...+�p
. Set mik :=∑n−1

p=k(n−
ip − n+

ip). Then the Cartan part above equals

K�i+�j

∏n−1
p=1 L

∑j−1
s=i (n

−
sp−n+

sp)

p = K∑n
k=1(

∑j−1
s=i msk+δk,i+δk,j)�k

.
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8896 R. Gonin and A. Tsymbaliuk

We have listed all the nonzero terms contributing to C′
V1

. To obtain the desired

difference operator D̃1, apply the characters χ± with χ+(ei) = c+
i , χ−( fi) = c−

i as in

[6, Lemma 5.2]. Set bi := (v − v−1)2vn
+
ii −n−

ii c+
i c−

i . Then we have

D̃1 =
n∑

j=1

vn+1−2jT2�j
+

n−1∑
i=1

biv
n−2i · e−αiT∑n

k=1(mik+δk,i+δk,i+1)�k
+

ε±
i,i+1=...=ε±

j−2,j−1=±1∑
1≤i<j−1≤n−1

bi · · · bj−1vn−2i+∑i≤a<b≤j−1(n+
ab−n−

ab)×

e−∑j−1
s=i αsT∑n

k=1(
∑j−1

s=i msk+δk,i+δk,j)�k
. (3.4)

Conjugating this by eρ , we finally obtain the explicit formula for the 1st

hamiltonian D1 of the type An−1 modified quantum difference Toda system:

D1 =
n∑

j=1

T2�j
+

n−1∑
i=1

biv
∑n

k=1
2k−n−1

2 mik · e−αiT∑n
k=1(mik+δk,i+δk,i+1)�k

+

ε±
i,i+1=...=ε±

j−2,j−1=±1∑
1≤i<j−1≤n−1

bi · · · bj−1vj−i−1+∑i≤a<b≤j−1(n+
ab−n−

ab)+∑n
k=1

∑j−1
s=i

2k−n−1
2 msk×

e−∑j−1
s=i αsT∑n

k=1(
∑j−1

s=i msk+δk,i+δk,j)�k
. (3.5)

Remark 3.10. If ε+ = ε−, then the last sum is vacuous. If we also set n+ = n− and

c±
i = ±1 for all i, then we recover the formula [6, (5.7)] for the 1st hamiltonian of the

type An−1 quantum difference Toda lattice:

D1 =
n∑

j=1

T2�j
− (v − v−1)2

n−1∑
i=1

e−αiT�i+�i+1
. (3.6)

Let An be the associative C(v1/N)-algebra generated by {w±1
j ,D±1

j }n
j=1 with the

defining relations

[wi,wj] = [Di,Dj] = 0, w±1
i w∓1

i = D±1
i D∓1

i = 1, Diwj = vδi,jwjDi. (3.7)

Define Ān as the quotient of the C(v1/N)-subalgebra generated by {w±1
j , (Di/Di+1)±1}1≤j≤n

1≤i<n

by the relation w1 · · ·wn = 1. Consider the anti-isomorphism from the algebra Ān

to the algebra Dv(Had
sln

) of Section 2.5, sending wj �→ T−�j
,Di/Di+1 �→ e−αi . Then the
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hamiltonian D1 is the image of the following element H = H(ε±,n±, c±) of Ān:

H(ε±,n±, c±) =
n∑

j=1

w−2
j +

n−1∑
i=1

biv
∑n

k=1
2k−n−1

2 mik ·
n∏

k=1

w
−mik−δk,i−δk,i+1
k · Di

Di+1
+

ε±
i,i+1=...=ε±

j−2,j−1=±1∑
1≤i<j−1≤n−1

bi · · · bj−1vj−i−1+∑i≤a<b≤j−1(n+
ab−n−

ab)+∑n
k=1

∑j−1
s=i

2k−n−1
2 msk×

n∏
k=1

w
−∑j−1

s=i msk−δk,i−δk,j

k · Di

Dj
. (3.8)

The following is the key property of H(ε±,n±, c±) in type A.

Proposition 3.11. H(ε±,n±, c±) depends only on �ε = (εn−2, . . . , ε1) ∈ {−1, 0, 1}n−2 with

εi := ε+
i,i+1−ε−

i,i+1
2 , up to algebra automorphisms of Ān.

This result implies that given two pairs of Sevostyanov triples (ε±,n±, c±) and

(ε̃±, ñ±, c̃±) with ε+
i,i+1 − ε−

i,i+1 = ε̃+
i,i+1 − ε̃−

i,i+1, there exists an algebra automorphism

of Dv(Had
sln

) that maps the 1st hamiltonian D1(ε±,n±, c±) to D1(ε̃±, ñ±, c̃±). As we will

see in Appendix B, the same automorphism maps the modified quantum Toda system

T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±).

We present the proof of Proposition 3.11 in Appendix A.

3.12. Explicit formulas and classification in type Cn

Recall explicit formulas for the action of Uv(sp2n) on its 1st fundamental representation

V1. The space V1 has a basis {w1, . . . , wn, wn+1, . . . , w2n}, in which the action is

given via

Ei(wj) = δj,i+1wj−1, Ei(wn+j) = δj,iwn+j+1, En(wj) = 0, En(wn+j) = δj,nwn,

Fi(wj) = δj,iwj+1, Fi(wn+j) = δj,i+1wn+j−1, Fn(wj) = δj,nw2n, Fn(wn+j) = 0,

Li(wj) = vδj≤iwj, Li(wn+j) = v−δj≤iwj, Ln(wj) = vwj, Ln(wn+j) = v−1wn+j,

Ki(wj) = vδj,i−δj,i+1wj, Ki(wn+j) = v−δj,i+δj,i+1wn+j,

Kn(wj) = v2δj,nwj, Kn(wn+j) = v−2δj,nwn+j

for any 1 ≤ i < n, 1 ≤ j ≤ n. Let �j be the weight of wj (1 ≤ j ≤ n), so that the weight

of wn+j equals −�j, while (�i, �j) = δi,j. Recall that the simple positive roots are given
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8898 R. Gonin and A. Tsymbaliuk

by αi = �i − �i+1 (1 ≤ i ≤ n − 1) and αn = 2�n, while ρ = ∑n
i=1(n + 1 − i)�i and

d1 = . . . = dn−1 = 1,dn = 2.

To compute D1 explicitly, we use the same strategy as in type A. Note that the

operators {Er
i , Fr

i }r>1
1≤i≤n act trivially on V1. Therefore, applying formula (3.1), we can

replace Rαi
by R̄αi

:= 1 + (vi − v−1
i )Ei ⊗ Fi. Let us now compute all the nonzero terms

contributing to C′
V1

:

• Picking 1 out of each R̄op
αi , R̄αi

, we recover
∑n

i=1

(
v2(n+1−i) · K2�i

+ v−2(n+1−i)·
K−2�i

)
• Picking nontrivial terms only at R̄op

αj , R̄αi
, the result does not depend on Or±

(hence, the orderings ≺±) and the total contribution of the nonzero terms

equals

n−1∑
i=1

(v − v−1)2
(
v2(n+1−i)FiK�i+1

EiK�i
+ v−2(n−i)FiK−�i

EiK−�i+1

)
+

(v2 − v−2)2v2FnK−�n
EnK�n

.

• The other terms contributing to C′
V1

depend on ≺± (only on Or±). Picking

nontrivial terms only at R̄op
αj1

, . . . , R̄op
αjk′ , R̄αik

, . . . , R̄αi1
(in the order listed) is

possible only if ik ≺+ · · · ≺+ i1, j1 ≺− · · · ≺− jk′ , and gives a nonzero

contribution to C′
V1

if and only if k = k′, ik = ik−1 ± 1 = . . . = i1 ± (k − 1)

(the sign stays the same everywhere), and ia = ja for 1 ≤ a ≤ k. When

computing these contributions, we shall distinguish between the two cases:

max(i1, ik) = n and max(i1, ik) < n. The total contribution of such terms with

k > 1 equals

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

(v − v−1)2(j−i+1)v2(n+1−i) · Fi · · · FjK�j+1
Ej · · · EiK�i

+

ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

(v − v−1)2(n−i)(v2 − v−2)2v2(n+1−i) · Fi · · · FnK−�n
En · · · EiK�i

+

ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

(v − v−1)2(j−i+1)v−2(n−j) · Fj · · · FiK−�i
Ei · · · EjK−�j+1

+

ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

(v − v−1)2(n−i)(v2 − v−2)2v2 · Fn · · · FiK−�i
Ei · · · EnK�n

.
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We have listed all the nonzero terms contributing to C′
V1

. To obtain D̃1 = D̄V1
, we

should rewrite the above formulas via ei, fi and Lp = K�1+...+�p
(1 ≤ p ≤ n),

moving all the Cartan terms to the middle, and then apply the characters χ± with

χ+(ei) = c+
i , χ−(fi) = c−

i . Conjugating further by eρ , we obtain the explicit formula

for the 1st hamiltonian D1 of the type Cn modified quantum difference Toda system.

To write it down, define constants bi,mik via bi := (vi − v−1
i )2v

n+
ii −n−

ii
i c+

i c−
i and

mik :=∑n
p=k(n−

ip − n+
ip). Then we have

D1 =
n∑

i=1

(T2�i
+ T−2�i

) + bnv
∑n

k=1(k−n−1)mnk · e−αnT∑n
k=1 mnk�k

+

n−1∑
i=1

biv
∑n

k=1(k−n−1)mik · e−αi
(
T∑n

k=1(mik+δk,i+δk,i+1)�k
+ T∑n

k=1(mik−δk,i−δk,i+1)�k

)
+

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ab−n−

ab)+∑n
k=1

∑j
s=i(k−n−1)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk+δk,i+δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

bi · · · bnvn+1−i+∑i≤a<b≤n(n+
ab−n−

ab)(1+δb,n)+∑n
k=1

∑n
s=i(k−n−1)msk×

e−αi−...−αnT∑n
k=1(

∑n
s=i msk+δk,i−δk,n)�k

+
ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ba−n−

ba)+∑n
k=1

∑j
s=i(k−n−1)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk−δk,i−δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

bi · · · bnvn+1−i+∑i≤a<b≤n(n+
ba−n−

ba)+∑n
k=1

∑n
s=i(k−n−1)msk×

e−αi−...−αnT∑n
k=1(

∑n
s=i msk−δk,i+δk,n)�k

. (3.9)

Remark 3.13. If ε+ = ε−, then the last four sums are vacuous. If we also set n+ = n−

and c±
i = ±1 for all i, then we obtain the formula for the 1st hamiltonian of the type

Cn quantum difference Toda lattice as defined in [6] (we write down this formula as we

could not find it in the literature, even though it can be derived completely analogously
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to [6, (5.7)], cf. [7, the end of Section 3]):

D1 =
n∑

i=1

(T2�i
+T−2�i

)−(v−v−1)2
n−1∑
i=1

e−αi
(
T�i+�i+1

+ T−�i−�i+1

)
−(v2−v−2)2e−αn . (3.10)

Let Cn be the C(v1/N)-subalgebra of An generated by {w±1
j , (Di/Di+1)±1,D±2

n }1≤j≤n
1≤i<n

(note that Cn can be abstractly defined as the associative algebra generated

by {w̃±1
i , D̃±1

i }n
i=1 with the defining relations [w̃i, w̃j] = [D̃i, D̃j] = 0, w̃±1

i w̃∓1
i = D̃±1

i D̃∓1
i =

1, D̃iw̃j = vδi,jdiw̃jD̃i, where di = 1 + δi,n). Consider the anti-isomorphism from Cn to

the algebra Dv(Had
sp2n

) of Section 2.5, sending wj �→ T−�j
,Di/Di+1 �→ e−αi ,D2

n �→ e−αn .

Then the hamiltonian D1 is the image of the following element H = H(ε±,n±, c±)

of Cn:

H(ε±,n±, c±) =
n∑

i=1

(w−2
i + w2

i ) + bnv
∑n

k=1(k−n−1)mnk ·
n∏

k=1

w−mnk
k · D2

n+
n−1∑
i=1

biv
∑n

k=1(k−n−1)mik ·
(

n∏
k=1

w
−mik−δk,i−δk,i+1
k +

n∏
k=1

w
−mik+δk,i+δk,i+1
k

)
· Di

Di+1
+

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ab−n−

ab)+∑n
k=1

∑j
s=i(k−n−1)msk×

n∏
k=1

w
−∑j

s=i msk−δk,i−δk,j+1

k · Di

Dj+1
+

ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ba−n−

ba)+∑n
k=1

∑j
s=i(k−n−1)msk×

n∏
k=1

w
−∑j

s=i msk+δk,i+δk,j+1

k · Di

Dj+1
+

ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

bi · · · bnvn+1−i+∑i≤a<b≤n(n+
ab−n−

ab)(1+δb,n)+∑n
k=1

∑n
s=i(k−n−1)msk×

n∏
k=1

w
−∑n

s=i msk−δk,i+δk,n
k · DiDn+

ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

bi · · · bnvn+1−i+∑i≤a<b≤n(n+
ba−n−

ba)+∑n
k=1

∑n
s=i(k−n−1)msk×

n∏
k=1

w
−∑n

s=i msk+δk,i−δk,n
k · DiDn. (3.11)
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The following is the key property of H(ε±,n±, c±) in type C.

Proposition 3.14. H(ε±,n±, c±) depends only on �ε = (εn−1, . . . , ε1) ∈ {−1, 0, 1}n−1 with

εi := ε+
i,i+1−ε−

i,i+1
2 , up to algebra automorphisms of Cn.

The proof of this result is completely analogous to that of Proposition 3.11

given in Appendix A, see also Remark A.1; we leave the details to the interested reader.

Proposition 3.14 implies that given two pairs of Sevostyanov triples (ε±,n±, c±) and

(ε̃±, ñ±, c̃±) with ε+
i,i+1 − ε−

i,i+1 = ε̃+
i,i+1 − ε̃−

i,i+1, there exists an algebra automorphism

of Dv(Had
sp2n

) that maps the 1st hamiltonian D1(ε±,n±, c±) to D1(ε̃±, ñ±, c̃±). As we will

see in Appendix B, the same automorphism maps the modified quantum Toda system

T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±).

3.15 Explicit formulas and classification in type Dn

Recall explicit formulas for the action of Uv(so2n) on its 1st fundamental representation

V1. The space V1 has a basis {w1, . . . , w2n}, in which the action is given via

Ei(w2j−1) = δj,i+1w2j−3, Ei(w2j) = δj,iw2j+2,

Fi(w2j−1) = δj,iw2j+1, Fi(w2j) = δj,i+1w2j−2,

Lp(w2j−1) = vδj≤pw2j−1, Lp(w2j) = v−δj≤pw2j,

Ln−1(w2j−1) = v
1
2 −δj,nw2j−1, Ln−1(w2j) = v− 1

2 +δj,nw2j,

Ki(w2j−1) = vδj,i−δj,i+1w2j−1, Ki(w2j) = v−δj,i+δj,i+1w2j,

En(w2j) = δj,n−1w2n−1 + δj,nw2n−3, Fn(w2j−1) = δj,n−1w2n + δj,nw2n−2,

En(w2j−1) = 0, Fn(w2j) = 0, Ln(w2j−1) = v
1
2 w2j−1, Ln(w2j) = v− 1

2 w2j,

Kn(w2j−1) = vδj,n+δj,n−1w2j−1, Kn(w2j) = v−δj,n−δj,n−1w2j

for any 1 ≤ p ≤ n − 2, 1 ≤ i < n, 1 ≤ j ≤ n. Let �j be the weight of w2j−1 (1 ≤ j ≤ n), so

that the weight of w2j equals −�j, while (�i, �j) = δi,j. Recall that the simple roots are

given by αi = �i − �i+1 (1 ≤ i ≤ n − 1) and αn = �n−1 + �n, while ρ =∑n
i=1(n − i)�i and

d1 = . . . = dn = 1.
To compute D1 explicitly, we use the same strategy as in type A. Similarly to the

types A and C treated above, we note that the operators {Er
i , Fr

i }r>1
1≤i≤n act trivially on V1;

hence, applying formula (3.1), we can replace Rαi
by R̄αi

:= 1 + (v − v−1)Ei ⊗ Fi. Let us

now compute all the nonzero terms contributing to C′
V1

:

• Picking 1 out of each R̄op
αi , R̄αi

, we recover
∑n

i=1

(
v2(n−i) · K2�i

+ v−2(n−i)·
K−2�i

)
.
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8902 R. Gonin and A. Tsymbaliuk

• Picking nontrivial terms only at R̄op
αj , R̄αi

, the result does not depend on Or±

(hence, the orderings ≺±) and the total contribution of the nonzero terms

equals

n−1∑
i=1

(v − v−1)2
(
v2(n−i)FiK�i+1

EiK�i
+ v−2(n−i−1)FiK−�i

EiK−�i+1

)
+

(v − v−1)2
(
FnK−�n−1

EnK�n
+ FnK−�n

EnK�n−1

)
.

• In contrast to the types A, C considered above, there is one more summand

independent of the orientations. It arises by picking nontrivial terms only at

R̄op
αn−1 , R̄op

αn and R̄αn−1
, R̄αn

(note that En−1En = EnEn−1, Fn−1Fn = FnFn−1, due

to the v-Serre relations) and equals

(v − v−1)4v2FnFn−1K−�n−1
EnEn−1K�n−1

.

• The contribution of the remaining terms to C′
V1

depends on Or±. Tracing

back explicit formulas for the action of Uv(so2n) on V1, we see that the total

sum of such terms equals

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

(v − v−1)2(j−i+1)v2(n−i) · Fi · · · FjK�j+1
Ej · · · EiK�i

+

ε±
i,i+1=...=ε±

n−3,n−2=ε±
n−2,n=±1∑

1≤i<n−1

(v − v−1)2(n−i)v2(n−i)·

Fi · · · Fn−2FnK−�n
EnEn−2 · · · EiK�i

+
ε±
i,i+1=...=ε±

n−2,n−1=ε±
n−2,n=±1∑

1≤i<n−1

(v − v−1)2(n−i+1)v2(n−i)·

Fi · · · Fn−1FnK−�n−1
EnEn−1 · · · EiK�i

+
ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

(v − v−1)2(j−i+1)v−2(n−j−1) · Fj · · · FiK−�i
Ei · · · EjK−�j+1

+

ε±
i,i+1=...=ε±

n−3,n−2=ε±
n−2,n=∓1∑

1≤i<n−1

(v − v−1)2(n−i) · FnFn−2 · · · FiK−�i
Ei · · · En−2EnK�n

+
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ε±
i,i+1=...=ε±

n−2,n−1=ε±
n−2,n=∓1∑

1≤i<n−1

(v − v−1)2(n−i+1)v2·

FnFn−1 · · · FiK−�i
Ei · · · En−1EnK�n−1

.

We have listed all the nonzero terms contributing to C′
V1

. To obtain D̃1 = D̄V1
, we should

rewrite the above formulas via ei, fi and Lp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K�1+...+�p

, if 1 ≤ p ≤ n − 2

K 1
2 (�1+...+�n−1−�n)

, if p = n − 1

K 1
2 (�1+...+�n−1+�n)

, if p = n

,

moving all the Cartan terms to the middle, and then apply the characters χ± with

χ+(ei) = c+
i , χ−(fi) = c−

i . Conjugating further by eρ , we obtain the explicit formula for

the 1st hamiltonian D1 of the type Dn modified quantum difference Toda system. To

write it down, definemik :=
⎧⎨⎩
∑n−2

p=k(n−
ip − n+

ip) + 1
2 (n−

i,n−1 − n+
i,n−1) + 1

2 (n−
in − n+

in), if k < n

−1
2 (n−

i,n−1 − n+
i,n−1) + 1

2 (n−
in − n+

in), if k = n

and bi := (v − v−1)2vn
+
ii −n−

ii c+
i c−

i . Then we have

D1 =
n∑

i=1

(T2�i
+ T−2�i

) + bnv
∑n

k=1(k−n)mnk · e−αnT∑n
k=1(mnk−δk,n−1+δk,n)�k

+

bnv−2+∑n
k=1(k−n)mnk · e−αnT∑n

k=1(mnk+δk,n−1−δk,n)�k
+

bn−1bnv(n+
n−1,n−n−

n−1,n)+∑n
k=1(k−n)(mn−1,k+mnk) · e−αn−1−αnT∑n

k=1(mn−1,k+mn,k)�k
+

n−1∑
i=1

biv
∑n

k=1(k−n)mik · e−αi
(
T∑n

k=1(mik+δk,i+δk,i+1)�k
+ T∑n

k=1(mik−δk,i−δk,i+1)�k

)
+

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ab−n−

ab)+∑n
k=1

∑j
s=i(k−n)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk+δk,i+δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−2,n=±1∑
1≤i<n−1

bi · · · bn−2bnvn−i−1+∑a,b�=n−1
i≤a<b≤n(n+

ab−n−
ab)+∑n

k=1
∑s �=n−1

i≤s≤n (k−n)msk×

e−αi−...−αn−2−αnT∑n
k=1(

∑s �=n−1
i≤s≤n msk+δk,i−δk,n)�k

+
ε±
i,i+1=...=ε±

n−2,n−1=ε±
n−2,n=±1∑

1≤i<n−1

bi · · · bnvn−i+∑i≤a<b≤n(n+
ab−n−

ab)+∑n
k=1

∑n
s=i(k−n)msk× (3.12)
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8904 R. Gonin and A. Tsymbaliuk

e−αi−...−αnT∑n
k=1(

∑n
s=i msk+δk,i−δk,n−1)�k

+
ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

bi · · · bjv
j−i+∑i≤a<b≤j(n

+
ba−n−

ba)+∑n
k=1

∑j
s=i(k−n)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk−δk,i−δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−2,n=∓1∑
1≤i<n−1

bi · · · bn−2bnvn−i−1+∑a,b�=n−1
i≤a<b≤n(n+

ba−n−
ba)+∑n

k=1
∑s �=n−1

i≤s≤n (k−n)msk×

e−αi−...−αn−2−αnT∑n
k=1(

∑s �=n−1
i≤s≤n msk−δk,i+δk,n)�k

+
ε±
i,i+1=...=ε±

n−2,n−1=ε±
n−2,n=∓1∑

1≤i<n−1

bi · · · bnvn−i+∑i≤a<b≤n(n+
ba−n−

ba)+∑n
k=1

∑n
s=i(k−n)msk×

e−αi−...−αnT∑n
k=1(

∑n
s=i msk−δk,i+δk,n−1)�k

.

Remark 3.16. If ε+ = ε−, then the last six sums are vacuous. If we further set

n+ = n− and c±
i = ±1 for all i, then we obtain the formula for the 1st hamiltonian

of the type Dn quantum difference Toda lattice as defined in [6] (we write down this

formula as we could not find it in the literature, even though it can be derived completely

analogously to [6, (5.7)], cf. [7, the end of Section 3]):

D1 =
n∑

i=1

(T2�i
+ T−2�i

) − (v − v−1)2
n−1∑
i=1

e−αi
(
T�i+�i+1

+ T−�i−�i+1

)
−

(v − v−1)2e−αn
(
T−�n−1+�n

+ v−2T�n−1−�n

)
+ (v − v−1)4e−αn−1−αn . (3.13)

Recall the algebra Cn from Section 3.12. Consider the anti-isomorphism from

Cn to the algebra Dv(Had
so2n

) of Section 2.5, sending wj �→ T−�j
,Di/Di+1 �→ e−αi ,D2

n �→
eαn−1−αn . Let H = H(ε±,n±, c±) be the element of Cn that corresponds to D1 under this

anti-isomorphism (to save space, we omit the explicit long formula for H). The following

is the key property of H(ε±,n±, c±) in type D.

Proposition 3.17. H(ε±,n±, c±) depends only on �ε = (εn−1, . . . , ε1) ∈ {−1, 0, 1}n−1 with

εi := ε+
i,i+1−ε−

i,i+1
2 (1 ≤ i ≤ n − 2), εn−1 := ε+

n−2,n−ε−
n−2,n

2 , up to algebra automorphisms of Cn.

The proof of this result is completely analogous to that of Proposition 3.11

given in Appendix A, see also Remark A.1; we leave the details to the inter-
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ested reader. Proposition 3.17 implies that given two pairs of Sevostyanov triples

(ε±,n±, c±) and (ε̃±, ñ±, c̃±) with ε+
i,i+1 − ε−

i,i+1 = ε̃+
i,i+1 − ε̃−

i,i+1 (1 ≤ i ≤ n − 2) and

ε+
n−2,n − ε−

n−2,n = ε̃+
n−2,n − ε̃−

n−2,n, there exists an algebra automorphism of Dv(Had
so2n

) that

maps the 1st hamiltonian D1(ε±,n±, c±) to D1(ε̃±, ñ±, c̃±). As we will see in Appendix B,

the same automorphism maps the modified quantum Toda system T (ε±,n±, c±) to

T (ε̃±, ñ±, c̃±).

3.18 Explicit formulas and classification in type Bn

Recall explicit formulas for the action of Uv(so2n+1) on its 1st fundamental representa-

tion V1. The space V1 has a basis {w0, . . . , w2n}, in which the action is given via

Ei(w2j−1) = δj,i+1w2j−3, Ei(w2j) = δj,iw2j+2, Ei(w0) = 0,

Fi(w2j−1) = δj,iw2j+1, Fi(w2j) = δj,i+1w2j−2, Fi(w0) = 0,

Li(w2j−1) = v2δj≤iw2j−1, Li(w2j) = v−2δj≤iw2j, Li(w0) = w0,

Ki(w2j−1) = v2δj,i−2δj,i+1w2j−1, Ki(w2j) = v−2δj,i+2δj,i+1w2j, Ki(w0) = w0,

En(w2j−1) = 0, En(w2j) = δj,nw0, En(w0) = w2n−1,

Fn(w2j−1) = δj,nw0, Fn(w2j) = 0, Fn(w0) = w2n,

Ln(w2j−1) = vw2j−1, Ln(w2j) = v−1w2j, Ln(w0) = w0,

Kn(w2j−1) = vδj,nw2j−1, Kn(w2j) = v−δj,nw2j, Kn(w0) = w0

for any 1 ≤ i < n, 1 ≤ j ≤ n.

Let �j be the weight of w2j−1 (1 ≤ j ≤ n), so that the weight of w2j equals −�j,

while w0 has the zero weight. We note that now (�i, �j) = 2δi,j. Recall that the simple

roots are given by αi = �i −�i+1 (1 ≤ i ≤ n−1) and αn = �n, while ρ =∑n
i=1(n+ 1

2 − i)�i

and d1 = . . . = dn−1 = 2,dn = 1.

To compute D1 explicitly, we use the same strategy as in type A. In contrast to

the types A, C, D treated above, E2
n and F2

n act nontrivially on V1, while {Er
i , Fr

i }r>1
1≤i<n ∪

{Es
n, Fs

n}s>2 still act by zero on V1. Therefore, applying formula (3.1), we can replace Rαi
by

R̄αi
:= 1 + (v2 − v−2)Ei ⊗ Fi for 1 ≤ i < n and Rαn

by R̄αn
:= 1 + (v − v−1)En ⊗ Fn + cE2

n ⊗ F2
n

for c := (1 − v−1)(v − v−1). Let us now compute all the non-zero terms contributing

to C′
V1

:

• Picking 1 out of each R̄op
i , R̄i, we recover 1+∑n

i=1

(
v4n+2−4i · K2�i

+ v−4n−2+4i·
K−2�i

)
.
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8906 R. Gonin and A. Tsymbaliuk

• Picking nontrivial terms only at R̄op
αj , R̄αi

, the result does not depend on Or±

(hence, the orderings ≺±) and the total contribution of the nonzero terms

equals

n−1∑
i=1

(v2 − v−2)2
(
v4n+2−4iFiK�i+1

EiK�i
+ v−4n+2+4iFiK−�i

EiK−�i+1

)
+

(v − v−1)2(FnK−�n
En + v2FnEnK�n

) + c2v2F2
nK−�n

E2
nK�n

.

• The contribution of the remaining terms to C′
V1

depends on Or±. Tracing

back explicit formulas for the action of Uv(so2n+1) on V1, we see that the

total sum of such terms equals

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

(v2 − v−2)2(j−i+1)v4n+2−4i · Fi · · · FjK�j+1
Ej · · · EiK�i

+

ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

(v2 − v−2)2(n−i)(v − v−1)2v4n+2−4i · Fi · · · FnEn · · · EiK�i
+

ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

c2(v2−v−2)2(n−i)v4n+2−4i · Fi · · · Fn−1F2
nK−�n

E2
nEn−1· · · EiK�i

+

ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

(v2 − v−2)2(j−i+1)v−4n+2+4j · Fj · · · FiK−�i
Ei · · · EjK−�j+1

+

ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

(v2 − v−2)2(n−i)(v − v−1)2 · Fn · · · FiK−�i
Ei · · · En+

ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

c2(v2 − v−2)2(n−i)v2 · F2
nFn−1 · · · FiK−�i

Ei · · · En−1E2
nK�n

.

We have listed all the nonzero terms contributing to C′
V1

. To obtain D̃1 = D̄V1
, we

should rewrite the above formulas via ei, fi and Lp =
⎧⎨⎩K�1+...+�p

, if 1 ≤ p < n

K 1
2 (�1+...+�n)

, if p = n
,

moving all the Cartan terms to the middle, and then apply the characters

χ± with χ+(ei) = c+
i , χ−(fi) = c−

i . Conjugating further by eρ , we obtain the explicit

formula for the 1st hamiltonian D1 of the type Bn modified quantum difference Toda
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Modified Quantum difference Toda Systems 8907

system. To write it down, define constants bi,mik via mik := ∑n
p=k(n−

ip − n+
ip)(1 − 1

2δp,n)

and bi := (vi − v−1
i )2v

n+
ii −n−

ii
i c+

i c−
i . Then we have

D1 = 1 +
n∑

i=1

(T2�i
+ T−2�i

)+

bnv
∑n

k=1(2k−2n−1)mnk · e−αn
(
vT∑n

k=1(mnk−δk,n)�k
+ v−1T∑n

k=1(mnk+δk,n)�k

)
+

(1 + v)−2b2
nv−2+(n+

nn−n−
nn)+∑n

k=1(4k−4n−2)mnk · e−2αnT∑n
k=1 2mn,k�k

+
n−1∑
i=1

biv
∑n

k=1(2k−2n−1)mik · e−αi
(
T∑n

k=1(mik+δk,i+δk,i+1)�k
+ T∑n

k=1(mik−δk,i−δk,i+1)�k

)
+

ε±
i,i+1=...=ε±

j−1,j=±1∑
1≤i<j<n

bi · · · bjv
2j−2i+2

∑
i≤a<b≤j(n

+
ab−n−

ab)+∑n
k=1

∑j
s=i(2k−2n−1)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk+δk,i+δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

bi · · · bnv2n−2i−1+∑i≤a<b≤n(n+
ab−n−

ab)(2−δb,n)+∑n
k=1

∑n
s=i(2k−2n−1)msk×

e−αi−...−αnT∑n
k=1(

∑n
s=i msk+δk,i)�k

+
ε±
i,i+1=...=ε±

n−1,n=±1∑
1≤i<n

(1 + v)−2bi · · · bn−1b2
nv2n−2i+(n+

nn−n−
nn)+2

∑
i≤a<b≤n(n+

ab−n−
ab)×

v
∑n

k=1
∑j

s=i(2k−2n−1)(1+δs,n)msk · e−αi−...−αn−1−2αnT∑n
k=1(

∑n
s=i msk+mnk+δk,i−δk,n)�k

+
ε±
i,i+1=...=ε±

j−1,j=∓1∑
1≤i<j<n

bi · · · bjv
2j−2i+2

∑
i≤a<b≤j(n

+
ba−n−

ba)+∑n
k=1

∑j
s=i(2k−2n−1)msk×

e−αi−...−αjT∑n
k=1(

∑j
s=i msk−δk,i−δk,j+1)�k

+
ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

bi · · · bnv2n−2i+1+2
∑

i≤a<b≤n(n+
ba−n−

ba)+∑n
k=1

∑n
s=i(2k−2n−1)msk×

e−αi−...−αnT∑n
k=1(

∑n
s=i msk−δk,i)�k

+
ε±
i,i+1=...=ε±

n−1,n=∓1∑
1≤i<n

(1 + v)−2bi · · · bn−1b2
nv2n−2i+(n+

nn−n−
nn)+∑i≤a<b≤n(n+

ba−n−
ba)(2+2δb,n)×

v
∑n

k=1
∑n

s=i(2k−2n−1)(1+δs,n)msk · e−αi−...−αn−1−2αnT∑n
k=1(

∑n
s=i msk+mnk−δk,i+δk,n)�k

. (3.14)
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8908 R. Gonin and A. Tsymbaliuk

Remark 3.19. If ε+ = ε−, then the last six sums are vacuous. If we further set n+ = n−

and c±
i = ±1 for all i, then we obtain the formula for the 1st hamiltonian of the type

Bn quantum difference Toda lattice as defined in [6] (we write down this formula as we

could not find it in the literature, even though it can be derived completely analogously

to [6, (5.7)], cf. [7, the end of Section 3]):

D1 = 1 +
n∑

i=1

(T2�i
+ T−2�i

) − (v2 − v−2)2
n−1∑
i=1

e−αi
(
T�i+�i+1

+ T−�i−�i+1

)
−

(v − v−1)2e−αn
(
vT−�n

+ v−1T�n

)
+ v−2(1 − v−1)2(v − v−1)2e−2αn . (3.15)

Recall the algebra An from Section 3.9. Consider the anti-isomorphism from An

to the algebra Dv(Had
so2n+1

) of Section 2.5, sending wj �→ T−�j
,Dj �→ e−∑n

k=j αk . Let H =
H(ε±,n±, c±) be the element of An that corresponds to D1 under this anti-isomorphism

(to save space, we omit the explicit long formula for H). The following is the key property

of H(ε±,n±, c±) in type B.

Proposition 3.20. H(ε±,n±, c±) depends only on �ε = (εn−1, . . . , ε1) ∈ {−1, 0, 1}n−1 with

εi := ε+
i,i+1−ε−

i,i+1
2 , up to algebra automorphisms of An.

The proof of this result is analogous to that of Proposition 3.11 given in

Appendix A, see also Remark A.1; we leave the details to the interested reader.

Proposition 3.20 implies that given two pairs of Sevostyanov triples (ε±,n±, c±) and

(ε̃±, ñ±, c̃±) with ε+
i,i+1 − ε−

i,i+1 = ε̃+
i,i+1 − ε̃−

i,i+1, there exists an algebra automorphism of

Dv(Had
so2n+1

) that maps the 1st hamiltonian D1(ε±,n±, c±) to D1(ε̃±, ñ±, c̃±). As we will

see in Appendix B, the same automorphism maps the modified quantum Toda system

T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±).

3.21. Lax matrix realization in type A

In this section, we identify the type An−1 modified quantum difference Toda systems

with those discovered in [10, 11(ii, iii)] via the Lax matrix formalism.

Recall the algebra An of Section 3.9. Consider the following three (local) Lax

matrices:

Lv,−1
i (z) :=

(
w−1

i − wiz
−1 wiD

−1
i

−wiDiz
−1 wi

)
∈ Mat(2, z−1An[z]), (3.16)
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Modified Quantum difference Toda Systems 8909

Lv,0
i (z) :=

(
w−1

i z1/2 − wiz
−1/2 D−1

i z1/2

−Diz
−1/2 0

)
∈ Mat(2, z−1/2An[z]), (3.17)

Lv,1
i (z) :=

(
w−1

i z − wi w−1
i D−1

i z

−w−1
i Di −w−1

i

)
∈ Mat(2,An[z]). (3.18)

For any �k = (kn, . . . , k1) ∈ {−1, 0, 1}n, define the mixed complete monodromy matrix

Tv
�k(z) := Lv,kn

n (z) · · · Lv,k1
1 (z). (3.19)

We also recall the standard trigonometric R-matrix

Rtrig(z) :=

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 z−1
vz−v−1

z(v−v−1)

vz−v−1 0

0 v−v−1

vz−v−1
z−1

vz−v−1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ .

The following key property of the complete monodromy matrices is established in [10,

11(ii)].

Proposition 3.22. For any �k∈{−1, 0, 1}n, Tv
�k(z) satisfies the trigonometric RTT relation:

Rtrig(z/w)
(
Tv

�k(z) ⊗ 1
) (

1 ⊗ Tv
�k(w)

)
=
(
1 ⊗ Tv

�k(w)
) (

Tv
�k(z) ⊗ 1

)
Rtrig(z/w).

As an immediate corollary of this result, we obtained (see [10, 11(iii)]) the

following.

Proposition 3.23. ([10]). Fix �k = (kn, . . . , k1) ∈ {−1, 0, 1}n.

(a) The coefficients in powers of z of the matrix element Tv
�k(z)11 generate a com-

mutative subalgebra of An. Moreover, they lie in the subalgebra of An generated by

{w±1
j , (Di/Di+1)±1}1≤j≤n

1≤i<n.

(b) Tv
�k(z)11 = (−1)nw1 · · ·wn

(
zs − H�k

2zs+1 + higher powers of z
)

, where s = ∑n
j=1

kj−1
2 .

The hamiltonian H�k
2 equals

H
�k
2 =

n∑
j=1

w−2
j +

n−1∑
i=1

w−ki−1
i w−ki+1−1

i+1 · Di

Di+1
+

ki+1=...=kj−1=1∑
1≤i<j−1≤n−1

w−ki−1
i · · ·w−kj−1

j · Di

Dj
. (3.20)

(c) Set �k′ = (0, kn−1, . . . , k2, 0). Then H�k
2 is conjugate to H�k′

2 .
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8910 R. Gonin and A. Tsymbaliuk

Let T �k denote the commutative subalgebra of Ān generated by the images of the

coefficients in powers of z of the matrix element Tv
�k(z)11, while H̄�k

2 ∈ T �k denote the image

of H�k
2. The main result of this section identifies T �k with the pre-images T̃ (ε±,n±, c±) of

T (ε±,n±, c±) in type An−1 under the anti-isomorphism Ān → Dv(Had
sln

) of Section 3.9.

This provides a Lax matrix realization of the type A modified quantum difference Toda

systems.

Theorem 3.24. Given a pair of type An−1 Sevostyanov triples (ε±,n±, c±) and �k ∈
{−1, 0, 1}n satisfying ki+1 = ε+

i,i+1−ε−
i,i+1

2 for any 1 ≤ i ≤ n − 2, the following holds:

(a) There is an algebra automorphism of Ān that maps H(ε±,n±, c±) to H̄�k
2.

(b) The automorphism of part (a) maps T̃ (ε±,n±, c±) to T �k.

The proof of Theorem 3.24 is presented in Appendix E and closely follows our

proofs of Proposition 3.11 (see Appendix A) and Theorem 3.2 (see Appendix B).

Remark 3.25. For �k = �0, we recover the Lax matrix realization of the type A quantum

difference Toda lattice, due to [15].

Actually, the above construction admits a standard one-parameter deformation

of commutative subalgebras of An as provided by the following result.

Proposition 3.26. (a) For any ε ∈ C(v1/N), the coefficients in powers of z of the linear

combination Tv
�k(z)11+εTv

�k(z)22 generate a commutative subalgebra of An. Moreover, they

lie in the subalgebra of An generated by {w±1
j , (Di/Di+1)±1}1≤j≤n

1≤i<n.

(b) We have Tv
�k(z)11 + εTv

�k(z)22 = (−1)nw1 · · ·wn

(
Ĥ�k

1zs − Ĥ�k
2zs+1 + higher powers of z

)
,

where s =∑n
j=1

kj−1
2 . Here Ĥ�k

1 = 1 + ε
∏n

j=1 δkj,1
∏n

j=1 w
−2
j , while Ĥ�k

2 is given by

Ĥ
�k
2 =

n∑
j=1

w−2
j +

n−1∑
i=1

w−ki−1
i w−ki+1−1

i+1 · Di

Di+1
+

ki+1=...=kj−1=1∑
1≤i<j−1≤n−1

w−ki−1
i · · ·w−kj−1

j · Di

Dj
+

ε

⎛⎜⎜⎜⎝
k1=...=ki−1=1
kj+1=...=kn=1∑

1≤i<j≤n

w−k1−1
1 · · ·w−ki−1

i w
−kj−1
j · · ·w−kn−1

n · Dj

Di
+

kj=−1
ki=1(i�=j)∑

1≤j≤n

∏
k �=j

w−2
k

⎞⎟⎟⎟⎠ . (3.21)

Proof. (a) Follows from the equality
[
Tv

�k(z)11 + εTv
�k(z)22,Tv

�k(w)11 + εTv
�k(w)22

]
= 0,

which is implied by the RTT relation of Proposition 3.22.

(b) Straightforward computation. �
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Modified Quantum difference Toda Systems 8911

Definition 3.27. A type An−1 periodic modified quantum difference Toda system is

the commutative subalgebra T̂ �k,ε of Ān.

We note that T̂ �k,0 coincides with T �k.

Remark 3.28. (a) In particular, Ĥ�0
2 is conjugate (in the sense of (A1, A2)) to the element

of Ān that corresponds under the anti-isomorphism Ān → Dv(Had
sln

) of Section 3.9 to the

1st hamiltonian of the type A(1)
n−1 quantum difference affine Toda system of [6, (5.9)]:

D̂1 =
n∑

j=1

T2�j
− (v − v−1)2

n−1∑
i=1

e−�i+�i+1T�i+�i+1
− κ(v − v−1)2e−�n+�1T�n+�1

(3.22)

with κ = (−1)n(v − v−1)−2nε.

The quantum difference affine Toda systems are defined similarly to the (finite

type) q-Toda systems of loc.cit., but starting from a quantum affine algebra and its

center at the critical level. The parameter κ ∈ C(v1/N) is essential, that is, it cannot be

removed, cf. [6, Remark 1].

(b) We expect that most of our results from this paper can be generalized to an affine

setting. In particular, the type An−1 periodic modified quantum difference Toda systems

introduced above should be conjugate to the type A(1)
n−1 modified quantum difference

affine Toda systems, thus generalizing part (a) of the current Remark. To state this

more precisely, let us first specify what we mean by a Sevostyanov triple (ε̂, n̂, ĉ) for

ĝ of an affine type, except A(1)
1 . Let α0, . . . , αn be simple positive roots of ĝ (with α0

the distinguished one) and {ai}n
i=0 be the labels on the Dynkin diagram of ĝ as in [12,

Chapter IV, Table Aff]. Then a Sevostyanov triple (ε̂, n̂, ĉ) is a collection of the following

data: (1) ε̂ = (εij)
n
i,j=0 is the associated matrix of an orientation of Dyn(ĝ) as before, (2)

ĉ = (ci)
n
i=0 ∈ (C(v1/N)×)n+1 is a collection of nonzero constants, and (3) n̂ = (nij)

1≤j≤n
0≤i≤n

is an integer matrix satisfying djnij − dinji = εijbij for 1 ≤ i, j ≤ n and djn0j +∑n
p=1 dpnjp

ap
a0

= ε0jb0j for 1 ≤ j ≤ n.

In particular, given a pair of type A(1)
n−1 (n > 2) Sevostyanov triples (ε̂±, n̂±, ĉ±),

the corresponding difference operator H(ε̂±, n̂±, ĉ±) ∈ Ān should depend (up to algebra

automorphisms of Ān) only on �ε = (εn−1, . . . , ε0) ∈ {−1, 0, 1}n, where εi := ε+
i,i+1−ε−

i,i+1
2 with

indices considered modulo n. The resulting 3n difference operators H(ε̂±, n̂±, ĉ±) should

be conjugate to the images of 3n hamiltonians Ĥ�k
2 in Ān. We have verified this result for

ε±
0,1 = ε±

0,n−1 = 1.

(c) The type A(1)
1 deserves a special treatment, since it is the only affine type for which

the analogue of Lemma 2.4 fails to hold (as a01 = a10 = −2). Instead, such characters
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8912 R. Gonin and A. Tsymbaliuk

χ± exist if and only if n±
01 + n±

11 ∈ {−2, 0, 2}. Let H(n̂±, ĉ±) be the element of Ā2 that

corresponds to the 1st hamiltonian of the type A(1)
1 modified quantum difference affine

Toda system associated with the pair (n̂±, ĉ±). We expect that H(n̂±, ĉ±) depends (up to

algebra automorphisms of Ā2) only on
n+

01+n+
11−n−

01−n−
11

2 ∈ {±2, ±1, 0}. On the other hand, it

is easy to see that the equivalence class of the difference operator Ĥ(k2,k1)
2 depends only

on k2 − k1 ∈ {±2, ±1, 0}. We expect that the resulting five difference operators in Ā2 are

conjugate to the aforementioned five difference operators H(n̂±, ĉ±).

3.29. Lax matrix realization in type C

Motivated by the construction of the previous section, we provide a Lax matrix

realization of the type C modified quantum difference Toda systems.

In addition to Lv,k
i (z) (k = ±1, 0) of (3.16–3.18), consider three more (local) Lax

matrices:

L̄v,−1
i (z) :=

(
wi − w−1

i z−1 w−1
i Di

−w−1
i D−1

i z−1 w−1
i

)
∈ Mat(2, z−1An[z]), (3.23)

L̄v,0
i (z) :=

(
wiz

1/2 − w−1
i z−1/2 Diz

1/2

−D−1
i z−1/2 0

)
∈ Mat(2, z−1/2An[z]), (3.24)

L̄v,1
i (z) :=

(
wiz − w−1

i wiDiz

−wiD
−1
i −wi

)
∈ Mat(2,An[z]). (3.25)

For any �k = (kn, . . . , k1) ∈ {−1, 0, 1}n, define the double mixed complete monodromy

matrix

Tv
�k(z) := L̄v,−k1

1 (z) · · · L̄v,−kn
n (z)Lv,kn

n (z) · · · Lv,k1
1 (z). (3.26)

Let us summarize the key properties of the double mixed complete monodromy

matrices.

Proposition 3.30. Fix �k = (kn, . . . , k1) ∈ {−1, 0, 1}n.

(a) Tv
�k(z) satisfies the trigonometric RTT relation

Rtrig(z/w)
(
Tv

�k(z) ⊗ 1
) (

1 ⊗ Tv
�k(w)

)
=
(
1 ⊗ Tv

�k(w)
) (

Tv
�k(z) ⊗ 1

)
Rtrig(z/w).

(b) The coefficients in powers of z of the matrix element Tv
�k(z)11 generate a commutative

subalgebra of An. Moreover, they belong to the subalgebra Cn of An, introduced in

Section 3.12.
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(c) We have Tv
�k(z)11 = z−n − H

�k
2z−n+1 + higher powers of z. The hamiltonian H

�k
2 equals

H
�k
2 =

n∑
i=1

(w2
i + w−2

i ) +
n−1∑
i=1

(
w−ki−1

i w−ki+1−1
i+1 + w−ki+1

i w−ki+1+1
i+1

)
· Di

Di+1
+ v−knw−2kn

n · D2
n+

ki+1=...=kj=1∑
1≤i<j<n

w−ki−1
i · · ·w−kj+1−1

j+1 · Di

Dj+1
+

ki+1=...=kn=1∑
1≤i<n

v−1w−ki−1
i · · ·w−kn−1

n · DiDn+

ki+1=...=kj=−1∑
1≤i<j<n

w−ki+1
i · · ·w−kj+1+1

j+1 · Di

Dj+1
+

ki+1=...=kn=−1∑
1≤i<n

vw−ki+1
i · · ·w−kn+1

n · DiDn. (3.27)

Proof. (a) Note that L̄v,k
i (z) is obtained from Lv,k

i (z) by applying the automorphism of

An that maps w±1
i �→ w∓1

i ,D±1
i �→ D∓1

i . Hence, each of them satisfies the trigonometric

RTT relation. Thus, an arbitrary product of Lv,k
i (z) and L̄v,k

i (z) also satisfies the

trigonometric RTT relation. (b) This is an immediate corollary of (a). (c) Straightforward

computation. �

Let T �k denote the commutative subalgebra of Cn generated by the coefficients in

powers of z of the matrix element Tv
�k(z)11. The main result of this section identifies T �k

with the pre-images T̃ (ε±,n±, c±) of T (ε±,n±, c±) in type Cn under the anti-isomorphism

Cn → Dv(Had
sp2n

) of Section 3.12. This provides a Lax matrix realization of the type C

modified quantum difference Toda systems.

Theorem 3.31. Given a pair of type Cn Sevostyanov triples (ε±,n±, c±) and �k ∈
{−1, 0, 1}n satisfying ki+1 = ε+

i,i+1−ε−
i,i+1

2 for any 1 ≤ i ≤ n − 1, the following holds:

(a) There is an algebra automorphism of Cn which maps H(ε±,n±, c±) to H
�k
2.

(b) The automorphism of part (a) maps T̃ (ε±,n±, c±) to T �k.

The proof of Theorem 3.31 is completely analogous to that of Theorem 3.24 given

in Appendix E, see also Remark A.1; we leave the details to the interested reader.

Remark 3.32. Recall that any nonsimply laced simple Lie algebra g′ admits a folding

realization g′ � gσ , where g is a simply laced Lie algebra endowed with an outer

automorphism σ of a finite order (arising as an automorphism of the corresponding

Dynkin diagram). This observation allows to relate the classical Toda system of g′ to the

Toda system of g; see [17]. The above construction of the modified quantum difference
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Toda systems in types Cn and A2n−1 via Lax matrices exhibits the former as a folding

of the latter, once we require that the orientations ε± of Dyn(sl2n) = A2n−1 satisfy

ε±
i,i+1 = −ε±

2n−i−1,2n−i for all i. However, such a naive approach fails to work for the

pair (Bn, Dn+1). It would be interesting to understand the explicit relation. Let us warn

the interested reader that the folding for quantum groups is more elaborate than in the

classical set-up; see [1].

Analogously to the type A case, the above construction admits a standard one-

parameter deformation of commutative subalgebras of Cn as provided by the following

result.

Proposition 3.33. (a) For any ε ∈ C(v1/N), the coefficients in powers of z of the linear

combination Tv
�k(z)11+εTv

�k(z)22 generate a commutative subalgebra of An. Moreover, they

belong to the subalgebra Cn of An.

(b) We have Tv
�k(z)11 + εTv

�k(z)22 = z−n − Ĥ
�k
2z−n+1 + higher powers of z. The hamiltonian

Ĥ
�k
2 is given by the following formula:

Ĥ
�k
2 =

n∑
i=1

(w2
i + w−2

i ) +
n−1∑
i=1

(
w−ki−1

i w−ki+1−1
i+1 + w−ki+1

i w−ki+1+1
i+1

)
· Di

Di+1
+ v−knw−2kn

n · D2
n+

ki+1=...=kj=1∑
1≤i<j<n

w−ki−1
i · · ·w−kj+1−1

j+1 · Di

Dj+1
+

ki+1=...=kn=1∑
1≤i<n

v−1w−ki−1
i · · ·w−kn−1

n · DiDn+

ki+1=...=kj=−1∑
1≤i<j<n

w−ki+1
i · · ·w−kj+1+1

j+1 · Di

Dj+1
+

ki+1=...=kn=−1∑
1≤i<n

vw−ki+1
i · · ·w−kn+1

n · DiDn+

ε

(
δn,1(1 − δk1,0)w−2k1

1 + vk1w−2k1
1 · D−2

1 +
n∏

i=1

δki,1 ·
n∏

i=1

w−2
i · Dn

D1
+

n∏
i=1

δki,−1 ·
n∏

i=1

w2
i · Dn

D1
+

k1=...=ki=1∑
1≤i<n

vw−k1−1
1 · · ·w−ki+1−1

i+1 · 1

D1Di+1
+

k1=...=ki=−1∑
1≤i<n

v−1w−k1+1
1 · · ·w−ki+1+1

i+1 · 1

D1Di+1

⎞⎠ .

(3.28)

Definition 3.34. A type Cn periodic modified quantum difference Toda system is the

commutative subalgebra T̂ �k,ε of Cn.

We note that T̂ �k,0 coincides with T �k.
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Remark 3.35. (a) In particular, Ĥ�0
2 is conjugate to the element of Cn that

corresponds under the anti-isomorphism Cn → Dv(Had
sp2n

) of Section 3.12 to the

1st hamiltonian of the type C(1)
n quantum difference affine Toda system of [6]

(cf. Remark 3.28(a)):

D̂1 =
n∑

i=1

(T2�i
+ T−2�i

) − (v − v−1)2
n−1∑
i=1

e−�i+�i+1
(
T�i+�i+1

+ T−�i−�i+1

)
−

(v2 − v−2)2e−2�n − κv−2n−2(v2 − v−2)2e2�1 (3.29)

with κ = v2n+2(v − v−1)−4(n−1)(v2 − v−2)−4ε.

Here κ ∈ C(v1/N) is an essential parameter. For κ = 0, we recover D1 of (3.10).

(b) Following our discussion and notations of Remark 3.28(b), we have also verified

that the element of Cn corresponding under the anti-isomorphism Cn → Dv(Had
sp2n

) to

H(ε̂±, n̂±, ĉ±) with ε±
01 = 1, is conjugate to Ĥ

�k
2 with k1 = 0 and ki+1 = ε+

i,i+1−ε−
i,i+1

2 for any

1 ≤ i ≤ n − 1.

(c) For completeness of our list (3.22, 3.29), let us present explicit formulas for the

1st hamiltonian D̂1 of the quantum difference affine Toda systems (defined in [6]) for

the remaining classical series D(1)
n and B(1)

n (as we could not find such formulas in the

literature):

• In type D(1)
n , we have

D̂1 =
n∑

i=1

(T2�i
+ T−2�i

) − (v − v−1)2
n−1∑
i=1

e−�i+�i+1
(
T�i+�i+1

+ T−�i−�i+1

)
−

(v − v−1)2e−�n−1−�n
(
T−�n−1+�n

+ v−2T�n−1−�n

)
+ (v − v−1)4e−2�n−1−

κv−2n+2(v − v−1)2e�1+�2(T−�1+�2
+ T�1−�2

) + κv−2n+2(v − v−1)4e2�2 .

(3.30)

• In type B(1)
n , we have

D̂1 = 1+
n∑

i=1

(T2�i
+T−2�i

)−(v2−v−2)2
n−1∑
i=1

e−�i+�i+1
(
T�i+�i+1

+ T−�i−�i+1

)
−

(v − v−1)2e−�n
(
vT−�n

+ v−1T�n

)
+ v−2(1 − v−1)2(v − v−1)2e−2�n−

κv−4n+2(v2 − v−2)2e�1+�2(T−�1+�2
+ T�1−�2

) + κv−4n+2(v2 − v−2)4e2�2 .

(3.31)

For κ = 0, these formulas recover D1 of (3.13) and (3.15), respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/12/8885/5485540 by Purdue U
niversity Libraries AD

M
N

 user on 15 Septem
ber 2021



8916 R. Gonin and A. Tsymbaliuk

3.36 Explicit formulas and classification in type G2

Recall explicit formulas for the action of Uv(g2) on its 1st fundamental representation

V1. The space V1 has a basis {wi}6
i=0, in which the action is given by the following

formulas:

E1 : w0 �→ (v + v−1)w2, w1 �→ 0, w2 �→ 0, w3 �→ 0, w4 �→ w3, w5 �→ (v + v−1)w0,

w6 �→ w1,

E2 : w0 �→ 0, w1 �→ 0, w2 �→ w6, w3 �→ w5, w4 �→ 0, w5 �→ 0, w6 �→ 0,

F1 : w0 �→ w5, w1 �→ w6, w2 �→ w0, w3 �→ w4, w4 �→ 0, w5 �→ 0, w6 �→ 0,

F2 : w0 �→ 0, w1 �→ 0, w2 �→ 0, w3 �→ 0, w4 �→ 0, w5 �→ w3, w6 �→ w2,

L1 : w0 �→ w0, w1 �→ v2w1, w2 �→ vw2, w3 �→ v−1w3, w4 �→ v−2w4, w5 �→ v−1w5,

w6 �→ vw6,

L2 : w0 �→ w0, w1 �→ v3w1, w2 �→ w2, w3 �→ v−3w3, w4 �→ v−3w4, w5 �→ w5,

w6 �→ v3w6,

K1 : w0 �→ w0, w1 �→ vw1, w2 �→ v2w2, w3 �→ vw3, w4 �→ v−1w4, w5 �→ v−2w5,

w6 �→ v−1w6,

K2 : w0 �→ w0, w1 �→ w1, w2 �→ v−3w2, w3 �→ v−3w3, w4 �→ w4, w5 �→ v3w5,

w6 �→ v3w6.

Let �1 and �2 be the weights of w2 and w6, respectively, so that (�1, �1) =
(�2, �2) = 2, (�1, �2) = −1. Then the weights of w0, w1, w3, w4, w5 are equal to 0, �1 +
�2, −�2, −�1 − �2, −�1, respectively. We also note that the simple roots are given by

α1 = �1, α2 = −�1 + �2. Finally, we have ρ = 5α1 + 3α2 = 2�1 + 3�2 and d1 = 1,d2 = 3.

To compute D1, we use the same strategy as for the classical types. Analogously

to type B, the operators E2
1 and F2

1 act nontrivially on V1, while {Er
i , Fr

i }r>1+δi,1
i=1,2 still act

by zero on V1. Therefore, applying formula (3.1), we can replace Rα2
by R̄α2

:= 1 + (v3 −
v−3)E2 ⊗ F2 and Rα1

by R̄α1
:= 1 + (v − v−1)E1 ⊗ F1 + cE2

1 ⊗ F2
1 for c := (1 − v−1)(v − v−1).

Let us now compute all the nonzero terms contributing to C′
V1

:

• Picking 1 out of each R̄op
i , R̄i, we recover

1+v2·K2�1
+v−2·K−2�1

+v8·K2�2
+v−8·K−2�2

+v10·K2�1+2�2
+v−10·K−2�1−2�2

.
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Modified Quantum difference Toda Systems 8917

• Picking nontrivial terms only at R̄op
αj , R̄αi

, the result does not depend on Or±

(hence, the orderings ≺±) and the total contribution of the nonzero terms

equals

(v − v−1)2
(
v2(v + v−1)F1E1K�1

+ (v + v−1)F1K−�1
E1

+ v10F1K�2
E1K�1+�2

+ v−8F1K−�1−�2
E1K−�2

)
+ (v3 − v−3)2

(
v8F2K�1

E2K�2
+ v−2F2K−�2

E2K−�1

)
+ c2v2(v + v−1)2F2

1 K−�1
E2

1K�1
.

• The contribution of the remaining terms to C′
V1

depends on Or±. Tracing

back explicit formulas for the action of Uv(g2) on V1, let us evaluate the total

contribution of such terms for each of the four possible pairs (Or+, Or−).

Case 1: if Or+ = Or−, then there are no other terms.

Case 2: if Or+ : α1 ← α2 and Or− : α1 → α2, then the total contribution equals

(v − v−1)2(v3 − v−3)2(v8(v + v−1)F2F1E1E2K�2
+ v−2F2F1K−�1−�2

E1E2K−�1
)+

c2(v3 − v−3)2v8(v + v−1)2 · F2F2
1 K−�1

E2
1E2K�2

.

Case 3: if Or+ : α1 → α2 and Or− : α1 ← α2, then the total contribution equals

(v − v−1)2(v3 − v−3)2(v10F1F2K�1
E2E1K�1+�2

+ (v + v−1)F1F2K−�2
E2E1)+

c2(v3 − v−3)2v2(v + v−1)2 · F2
1 F2K−�2

E2E2
1K�1

.

Thus, we have listed all the nonzero terms contributing to C′
V1

. To obtain D̃1 = D̄V1
,

we should rewrite the above formulas via ei, fi and Lp =
⎧⎨⎩K�1+�2

, if p = 1

K�1+2�2
, if p = 2

, moving

all the Cartan terms to the middle, and then apply the characters χ± with χ+(ei) =
c+

i , χ−(fi) = c−
i . Conjugating further by eρ , we obtain the explicit formula for the 1st

hamiltonian D1 of the type G2 modified quantum difference Toda system. To write it

down, define constants mi1 := (n−
i1 − n+

i1) + (n−
i2 − n+

i2), mi2 := (n−
i1 − n+

i1) + 2(n−
i2 − n+

i2) and

bi := (vi − v−1
i )2v

n+
ii −n−

ii
i c+

i c−
i . Then we have

D1 = 1 + (T2�1
+ T−2�1

+ T2�2
+ T−2�2

+ T2�1+2�2
+ T−2�1−2�2

)+

b1v−m11−4m12 · e−α1
(
v−1(v + v−1)T(m11+1)�1+m12�2

+ v(v + v−1)T(m11−1)�1+m12�2
+
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8918 R. Gonin and A. Tsymbaliuk

T(m11+1)�1+(m12+2)�2
+ T(m11−1)�1+(m12−2)�2

)+
b2v−m21−4m22 · e−α2

(
T(m21+1)�1+(m22+1)�2

+ T(m21−1)�1+(m22−1)�2

)+
b2

1(v + v−1)2

(1 + v)2 v−2+(n+
11−n−

11)−(2m11+8m12) · e−2α1T2m11�1+2m12�2
+

δε+
12,−1δε−

12,1 ·
{
b1b2v−4+3(n+

12−n−
12)−(m11+m21+4m12+4m22)×

e−α1−α2
(
(v + v−1)T(m11+m21)�1+(m12+m22+1)�2

+ vT(m11+m21−2)�1+(m12+m22−1)�2

)
+

b2
1b2(v + v−1)2

(1 + v)2 v−8+(n+
11−n−

11)+6(n+
12−n−

12)−(2m11+m21+8m12+4m22)×

e−2α1−α2T(2m11+m21−1)�1+(2m12+m22+1)�2

}
+

δε+
12,1δε−

12,−1 ·
{
b1b2v3+3(n+

12−n−
12)−(m11+m21+4m12+4m22)×

e−α1−α2
(
v(v + v−1)T(m11+m21)�1+(m12+m22−1)�2

+ T(m11+m21+2)�1+(m12+m22+1)�2

)
+

b2
1b2(v + v−1)2

(1 + v)2 v4+(n+
11−n−

11)+6(n+
12−n−

12)−(2m11+m21+8m12+4m22)×

e−2α1−α2T(2m11+m21+1)�1+(2m12+m22−1)�2

}
. (3.32)

Remark 3.37. If ε+ = ε−, then the terms with δ’s are vacuous. If we further set n+ = n−

and c±
i = ±1 for all i, then we obtain the formula for the 1st hamiltonian of the type G2

quantum difference Toda lattice as defined in [6]:

D1 = 1 + (T2�1
+ T−2�1

+ T2�2
+ T−2�2

+ T2�1+2�2
+ T−2�1−2�2

)−
(v − v−1)2 · e−α1(v−1(v + v−1)T�1

+ v(v + v−1)T−�1
+ T�1+2�2

+ T−�1−2�2
)−

(v3 − v−3)2 · e−α2(T�1+�2
+ T−�1−�2

) + v−2(1 − v−1)2(v2 − v−2)2 · e−2α1 . (3.33)

Let G2 be the associative C(v)-algebra generated by {w±1
i ,D±1

i }2
i=1 subject to

[w1,w2] = [D1,D2] = 0, w±1
i w∓1

i = D±1
i D∓1

i = 1,

D1w1 = v2w1D1, D1w2 = v−1w2D1, D2w1 = v−3w1D2, D2w2 = v3w2D2.

Consider the anti-isomorphism from G2 to the algebra Dv(Had
g2

) of Section 2.5, sending

wi �→ T−�i
,Di �→ e−αi . Let H = H(ε±,n±, c±) be the element of G2 that corresponds to

D1 under this anti-isomorphism. The following is the key property of H(ε±,n±, c±) in

type G2.
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Modified Quantum difference Toda Systems 8919

Proposition 3.38. H(ε±,n±, c±) depends only on ε := ε+
12−ε−

12
2 ∈ {−1, 0, 1}, up to algebra

automorphisms of G2.

The proof of Proposition 3.38 is completely analogous to that of Proposition 3.11

given in Appendix A; we leave the details to the interested reader. Proposition 3.38

implies that given two pairs of Sevostyanov triples (ε±,n±, c±) and (ε̃±, ñ±, c̃±) with

ε+
12 − ε−

12 = ε̃+
12 − ε̃−

12, there exists an algebra automorphism of Dv(Had
g2

) that maps the

1st hamiltonian D1(ε±,n±, c±) to D1(ε̃±, ñ±, c̃±). As we will see in Appendix B, the same

automorphism maps the modified quantum Toda system T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±).

Remark 3.39. For completeness of our list (3.22, 3.29, 3.30, 3.31), let us present the

explicit formula for the 1st hamiltonian D̂1 of the type G(1)
2 quantum difference affine

Toda system:

D̂1 = 1 + (T2�1
+ T−2�1

+ T2�2
+ T−2�2

+ T2�1+2�2
+ T−2�1−2�2

)−
(v − v−1)2e−�1(v−1(v + v−1)T�1

+ v(v + v−1)T−�1
+ T�1+2�2

+ T−�1−2�2
)−

(v3 − v−3)2e�1−�2(T�1+�2
+ T−�1−�2

) + v−2(1 − v−1)2(v2 − v−2)2 · e−2�1−
κv−12(v3 − v−3)2e�1+2�2(T�1

+ T−�1
) + κv−12(v − v−1)2(v3 − v−3)2e2�2 . (3.34)

For κ = 0, this recovers D1 of (3.33).

4 Whittaker Vectors and Their Pairing

In this section, we study a pairing of two general Whittaker vectors (associated with

a pair of Sevostyanov triples (ε±,n±, c±)) in universal Verma modules, following [7].

We obtain a fermionic formula for the corresponding terms J̃β . We show that their

generating series is a natural solution of the modified quantum difference Toda system

T (ε±,n±, c±) of Section 2. This provides a natural generalization of [7, Section 3], where

ε+ = ε− and n+ = n−.

4.1 Whittaker vectors

Following the notations of [7], consider Uv(g) and Uv−1(g), whose generators will be

denoted by Ei, Fi, Li and Ēi, F̄i, L̄i, respectively. In contrast to [7], we will work with

universal Verma modules. Let {ui}n
i=1 be indeterminates and consider an extension

k := C(v1/N, u1, . . . , un) of C(v1/N). Let Uv(g)≤ be the subalgebra of Uv(g) generated

by {L±1
i , Fi}n

i=1 and consider its action on k with Fi acting trivially and Li acting

via multiplication by ui. We define the universal Verma module V over Uv(g) as
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8920 R. Gonin and A. Tsymbaliuk

V := Uv(g) ⊗Uv(g)≤ k. It is generated by 1 ∈ k such that Ei(1) = 0 and Li(1) = ui · 1

for 1 ≤ i ≤ n. We define the formal symbol λ := ∑n
i=1

log(ui)

di log(v)
αi, which will appear

only as an index or in the context of the homomorphism v(λ,·) : P → k defined by

P � miωi �→ v(λ,
∑n

i=1 miωi) =∏n
i=1 umi

i , so that Kμ(1) = v(λ,μ) ·1 for μ ∈ P. In particular, V is

graded by Q+: V = ⊕β∈Q+Vβ with Vβ = {w ∈ V|Kμ(w) = v(μ,λ−β)w (μ ∈ P)}. Similarly, let

V̄ be the universal Verma module over Uv−1(g) generated by the highest weight vector 1̄

such that Ēi(1̄) = 0 and L̄i(1̄) = u−1
i · 1̄ for 1 ≤ i ≤ n. It is also Q+-graded: V̄ = ⊕β∈Q+ V̄β

with V̄β = {w ∈ V̄|K̄μ(w) = v−(μ,λ−β)w (μ ∈ P)}.

Remark 4.2. One can alternatively work with the standard Verma modules Vλ and

V̄λ, λ ∈ P (one should further require λ to be strictly antidominant for the existence of

Whittaker vectors), so that ui = v(λ,ωi) ∈ C(v1/N). This viewpoint is used in [7]. We prefer

the current exposition as it is compatible with our discussion in Section 5. Nevertheless,

motivated by the above standard set-up, we will freely use the above notation v(λ,μ) for

μ ∈ P.

There is a unique nondegenerate k-bilinear pairing (·, ·) : V × V̄ → k such that

(1, 1̄) = 1 and (xw, w′) = (w, σ(x)w′) for all x ∈ Uv(g), w ∈ V, w′ ∈ V̄ , where the algebra

anti-isomorphism σ : Uv(g) → Uv−1(g) is determined by σ(Ei) = F̄i, σ(Fi) = Ēi, σ(Li) = L̄−1
i .

Remark 4.3. One can alternatively work with a single universal Verma module V over

Uv(g) endowed with the Shapovalov form (·, ·) : V × V → k; see our discussion in Remark

5.12.

For the key definition of this section, consider the completions V∧, V̄∧ of V, V̄ ,

defined via

V∧ :=
∏

β∈Q+
Vβ , V̄∧ :=

∏
β∈Q+

V̄β .

Given a pair of Sevostyanov triples (ε±,n±, c±) (now c±
i ∈ k×), define ν±

i ∈ P via ν±
i :=∑n

k=1 n
±
ikωk, so that (ν±

i , αj) − (ν±
j , αi) = ε±

i,jbi,j. We have associated Whittaker vectors

θ = θ(ε+,n+, c+) =
∑

β∈Q+
θβ ∈ V∧ (with θβ ∈ Vβ)

and

θ̄ = θ̄ (ε−,n−, c−) =
∑

β∈Q+
θ̄β ∈ V̄∧ (with θ̄β ∈ V̄β),
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Modified Quantum difference Toda Systems 8921

which are uniquely determined by the following conditions:

θ0 = 1, EiKν+
i
(θ) = c+

i · θ and θ̄0 = 1̄, ĒiK̄ν−
i
(θ̄) = c−

i · θ̄ . (4.1)

Remark 4.4. This is a direct generalization of the classical notion of Whittaker vectors

for Lie algebras as defined by B. Kostant in his milestone work on the subject [14].

4.5. Pairing of Whittaker vectors

Set (t; t)r :=∏r
k=1(1 − tk) for r ∈ Z>0, and (t; t)0 := 1. Choose convex orderings ≺± on �+

such that ε±
ij = −1 ⇒ αi ≺± αj, cf. Section 3.4. Let αi±1

≺± · · · ≺± αi±n be the simple roots

ordered with respect to ≺±. For 1 ≤ i �= j ≤ n we write i ≺± j if αi ≺± αj. Define

Jβ = Jβ(ε±,n±, c±) :=
(
θβ(ε+,n+, c+), θ̄β(ε−,n−, c−)

)
. (4.2)

Following [7, (3.11)] (we note that J̃β is denoted by Jλ
β in [7]) we also consider its slight

modification

J̃β = J̃β(ε±,n±, c±) := v−(β,β)/2+(λ,β)
(
θβ(ε+,n+, c+), θ̄β(ε−,n−, c−)

)
. (4.3)

For β /∈ Q+, we set Jβ := 0 and J̃β := 0. Our 1st result provides a recursive formula for

J̃β .

Theorem 4.6. We have

J̃β =
∑

0≤γ≤β

1

(v2)β−γ

v(γ ,γ )−2(λ+ρ,γ )cβ−γ vτλ(β−γ ,β) · J̃γ , (4.4)

where (v2)α := ∏n
i=1(v2

i ; v2
i )mi

, cα := ∏n
i=1(−c+

i c−
i (vi − v−1

i )2)mi , τλ(α, β) := ∑n
i=1 mi(ν

−
i −

ν+
i , λ − β) +∑j≺+i mimj(ν

−
i − ν+

i , αj) +∑n
i=1

mi(mi−1)
2 (ν−

i − ν+
i , αi) for α =∑n

i=1 miαi ∈ Q+.

Proof. The proof is completely analogous to that of [7, Theorem 3.1] and is based

on an evaluation of (C(θβ), θ̄β) in two different ways, where C is the Drinfeld Casimir

element. �

Solving the recursive relation (4.4), one obtains an explicit fermionic formula

for J̃β .

Theorem 4.7. We have

J̃β = cβ ·
∑∞

t=0 β(t)=β∑
β={β(t)}∞t=0∈QN+

v2B(β)+R(β)∏∞
t=0(v2)β(t)

, (4.5)
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8922 R. Gonin and A. Tsymbaliuk

where we set R(β) :=∑∞
t=0 τλ

(
β(t), β −∑t−1

s=0 β(s)
)

and

B(β) := 1

2

∞∑
t,t′=0

min(t, t′)
(
β(t), β(t′)

)
−

∞∑
t=0

t
(
λ + ρ, β(t)

)
.

Proof. We will give a direct proof as the general machinery of fermionic formulas

developed in [7, Section 2] does not apply to our set-up. The formula is obvious for

β = 0. From now on, fix β > 0 (that is, β ∈ Q+\{0}). Let us rewrite the equality (4.4) as(
1 − v(β,β)−2(λ+ρ,β)

)
J̃β =

∑
0<β1≤β

1

(v2)β1

v(β−β1,β−β1)−2(λ+ρ,β−β1)cβ1vτλ(β1,β)J̃β−β1
.

We apply the same formula for J̃β−β1
if β1 < β. Proceeding in the same way, we finally

obtain

J̃β =
∑
d≥1

β1+...+βd=β∑
β1,...,βd>0

∏d
e=1 cβevτλ(βe,βe+...+βd)v(βe+1+...+βd,βe+1+...+βd)−2(λ+ρ,βe+1+...+βd)∏d

e=1(v2)βe
(1 − v(βe+...+βd,βe+...+βd)−2(λ+ρ,βe+...+βd))

. (4.6)

On the other hand, the summation in the right-hand side of (4.5) is over all

β = {β(t)}∞t=0 ∈ QN+ with
∑∞

t=0 β(t) = β. Such sequences are in bijection with tuples

{d, {βe}d
e=1, {te}d

e=1|d ≥ 1, βe > 0, te ∈ N,
∑d

e=1 βe = β} via β(t1+...+te+e−1) = βe (1 ≤ e ≤ d)

and β(t) = 0 otherwise.

Hence, the right-hand side of (4.5) equals

∑
d≥1

β1+...+βd=β∑
β1,...,βd>0

{
cβv

∑d
e=1 τλ(βe,β−β1−...−βe−1)∏d

e=1(v2)βe

×

∑
t1,...,td≥0

v
∑d

e=1(t1+...+te+e−1)(βe,βe)+2
∑

e<e′ (t1+...+te+e−1)(βe,βe′ )−2(λ+ρ,
∑d

e=1(t1+...+te+e−1)βe)

⎫⎬⎭ .

(4.7)

It is straightforward to verify that the right-hand side of (4.6) coincides with (4.7). �

4.8. J-functions: eigenfunctions of modified quantum difference Toda systems

Recall the elements ω∨
i = ωi/di ∈ P ⊗ZQ satisfying (αj, ω

∨
i ) = δi,j. Consider a vector space

Nλ that consists of all formal sums
{∑

β∈Q aβyβ−λ|aβ ∈ k
}

for which there exists β0 ∈ Q

such that aβ = 0 unless β − β0 ∈ Q+, where yβ−λ is used to denote
∏n

i=1 y
(β−λ,ω∨

i )

i . The

vector space Nλ+ρ is defined analogously with λ being replaced by λ + ρ. Consider
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the natural action of the algebra Dv(Had) of Section 2.5 on the vector space Nλ,

determined by

Tμ(yβ−λ) = v−(μ,β−λ)yβ−λ, eα(yβ−λ) = yβ−α−λ for α, β ∈ Q, μ ∈ P. (4.8)

The action of Dv(Had) on Nλ+ρ is defined analogously.

Consider the following generating functions of the terms Jβ defined in (4.2):

J̃ = J̃({yi}n
i=1) :=

∑
β∈Q+

Jβ

n∏
i=1

y
(β−λ,ω∨

i )

i ∈ Nλ,

J = J({yi}n
i=1) :=

∑
β∈Q+

Jβ

n∏
i=1

y
(β−λ−ρ,ω∨

i )

i ∈ Nλ+ρ .

(4.9)

Recall the difference operators D̃V , DV ∈ Dv(Had) of Section 2.5, associated with the pair

of Sevostyanov triples (ε±,n±, c±) and a finite-dimensional Uv(g)-representation V. The

following is the key result of this section.

Theorem 4.9. (a) We have D̃V(J̃) = trV

(
v2(λ+ρ)

) · J̃.

(b) We have DV(J) = trV

(
v2(λ+ρ)

) · J.

Proof. First, we note that part (a) implies part (b), due to DV = eρD̃Ve−ρ and J = eρ(J̃).

The proof of part (a) is based on an evaluation of
(
CV(θβ), θ̄β

)
in two different ways,

where CV is the central element of (2.2). On the one hand, CV acts on V as a multiplication

by trV(v2(λ+ρ)) (since CV is central, V is generated by 1, and CV(1) = trV(v2(λ+ρ)) · 1),

so that
(
CV(θβ), θ̄β

)
= trV(v2(λ+ρ)) ·Jβ . On the other hand, we can use the explicit formula

for CV .

Let {wk}N
k=1 be a weight basis of V, and μk ∈ P be the weight of wk, cf. Section

2.5. Then we have

CV(θβ) =
1≤k≤N∑

�m=(m1,...,mn)∈Nn

c( �m) · v(λ−β+2ρ,μk)+(λ−β+α( �m),μk−α( �m))×
〈
wk

∣∣∣∣Em
i−1

α
i−1

· · · E
m

i−n
α

i−n
· F

m
i+1

α
i+1

· · · F
m

i+n
α

i+n

∣∣∣∣wk

〉
· F

m
i−1

α
i−1

· · · F
m

i−n
α

i−n
· E

m
i+1

α
i+1

· · · E
m

i+n
α

i+n
(θβ), (4.10)

where 〈wk|x|wk〉 is the matrix coefficient of x ∈ Uv(g), α( �m) := ∑n
i=1 miαi ∈ Q+,

and c( �m) ∈ C(v) are certain coefficients for which we currently do not need explicit

formulas.
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Using the defining property of (·, ·), we get(
F

m
i−1

α
i−1

· · · F
m

i−n
α

i−n
· E

m
i+1

α
i+1

· · · E
m

i+n
α

i+n
(θβ), θ̄β

)
=
(

E
m

i+1
α

i+1
· · · E

m
i+n

α
i+n

(θβ), Ē
m

i−n
α

i−n
· · · Ē

m
i−1

α
i−1

(θ̄β)

)
.

To evaluate the pairing in the right-hand side, note that the defining conditions (4.1)

of the Whittaker vectors imply EiKν+
i
(θγ ) = c+

i θγ−αi
and ĒiK̄ν−

i
(θ̄γ ) = c−

i θ̄γ−αi
for γ ∈ Q;

hence, Ei(θγ ) = c+
i v−(ν+

i ,λ−γ )θγ−αi
and Ēi(θ̄γ ) = c−

i v(ν−
i ,λ−γ )θ̄γ−αi

. Applying this iteratively,

we find

E
m

i+1
α

i+1
· · · E

m
i+n

α
i+n

(θβ) =
n∏

i=1

(c+
i )mivτ+

λ ( �m,β) · θβ−α( �m),

Ē
m

i−n
α

i−n
· · · Ē

m
i−1

α
i−1

(θ̄β) =
n∏

i=1

(c−
i )mivτ−

λ ( �m,β) · θ̄β−α( �m)

with τ±
λ ( �m, β) given by τ+

λ ( �m, β) := −∑n
k=1

∑m
i+k

−1

r=0

(
ν+

i+k
, λ − β + rαi+k

+∑n
s=k+1 mi+s αi+s

)
and τ−

λ ( �m, β) :=∑n
k=1

∑m
i−k

−1

r=0

(
ν−

i−k
, λ − β + rαi−k

+∑k−1
s=1 mi−s αi−s

)
.

Summarizing all these calculations, we obtain the following equality:

1≤k≤N∑
�m=(m1,...,mn)∈Nn

c( �m)

n∏
i=1

(c+
i c−

i )mi · v(λ−β+2ρ,μk)+(λ−β+α( �m),μk−α( �m))+τ+
λ ( �m,β)+τ−

λ ( �m,β)×
〈
wk

∣∣∣∣Em
i−1

α
i−1

· · · E
m

i−n
α

i−n
· F

m
i+1

α
i+1

· · · F
m

i+n
α

i+n

∣∣∣∣wk

〉
· Jβ−α( �m) = trV

(
v2(λ+ρ)

)
· Jβ . (4.11)

Let us now compute D̃V(J̃). First, we need to rewrite F
m

i−1
α

i−1
· · · F

m
i−n

α
i−n

and

E
m

i+1
α

i+1
· · · E

m
i+n

α
i+n

in terms of the Sevostyanov generators ei, fi and Cartan terms, moving

the latter to the right of fi’s and to the left of ei’s. We have

F
m

i−1
α

i−1
· · · F

m
i−n

α
i−n

= vτ̃−
λ ( �m)f

m
i−1

α
i−1

· · · f
m

i−n
α

i−n
· K∑n

i=1 miν
−
i

,

E
m

i+1
α

i+1
· · · E

m
i+n

α
i+n

= vτ̃+
λ ( �m)K−∑n

i=1 miν
+
i

· e
m

i+1
α

i+1
· · · e

m
i+n

α
i+n

,

where τ̃±
λ ( �m) are given by τ̃+

λ ( �m) := ∑n
k=1

∑m
i+k

r=1

(
ν+

i+k
, rαi+k

+∑k−1
s=1 mi+s αi+s

)
and

τ̃−
λ ( �m) := −∑n

k=1
∑m

i−k
r=1

(
ν−

i−k
, rαi−k

+∑n
s=k+1 mi−s αi−s

)
. Tracing back the definition
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of D̃V , we find

D̃V(J̃) = D̃V

⎛⎝∑
β̃∈Q+

Jβ̃yβ̃−λ

⎞⎠ =
∑

β̃∈Q+

1≤k≤N∑
�m=(m1,...,mn)∈Nn

c( �m)

n∏
i=1

(c+
i c−

i )mi×

v(2ρ,μk)+∑n
i=1 mi(ν

+
i −ν−

i ,β̃−λ)−(2μk−α( �m),β̃−λ)−(μk,α( �m))+τ̃+
λ ( �m)+τ̃−

λ ( �m)×〈
wk

∣∣∣∣Em
i−1

α
i−1

· · · E
m

i−n
α

i−n
· F

m
i+1

α
i+1

· · · F
m

i+n
α

i+n

∣∣∣∣wk

〉
· Jβ̃yα( �m)+β̃−λ. (4.12)

Due to the equalities τ̃+
λ ( �m)+ τ̃−

λ ( �m) = τ+
λ ( �m, β)+τ−

λ ( �m, β)+∑n
i=1 mi(ν

+
i −ν−

i , α( �m)+λ−β)

and −(μk, α( �m)) − (2μk − α( �m), β − λ − α( �m)) = (λ − β, μk) + (λ − β + α( �m), μk − α( �m)),

the coefficient of yβ−λ in the right-hand side of (4.12) coincides with the left-hand side

of (4.11).

The equality D̃V(J̃) = trV

(
v2(λ+ρ)

) · J̃ follows. �

5 Geometric Realization of the Whittaker Vectors in Type A

In [3], A. Braverman and M. Finkelberg provided a geometric realization of the universal

Verma module over Uv(sln), the Shapovalov form on it, and two particular Whittaker

vectors k,w of it via the Laumon based quasiflags’ moduli spaces. The vectors k

and w correspond to particular Sevostyanov triples (ε,n, c) with the corresponding

orientations of the An−1 Dynkin diagram being equioriented.x‘ In this section, we

generalize their construction by providing a geometric interpretation of all Whittaker

vectors and their pairing.

5.1 Laumon spaces

First, we recall the set-up of [9]. Let C be a smooth projective curve of genus zero. We fix

a coordinate z on C, and consider the action of C× on C such that v(z) = v−2z. We have

CC
× = {0, ∞}. We consider an n-dimensional vector space W with a basis w1, . . . , wn.

This defines a Cartan torus T ⊂ G = SL(n) ⊂ Aut(W). We also consider its 2n−1-

fold cover, the bigger torus T̃, acting on W as follows: for T̃ � t = (t1, . . . , tn) we have

t(wk) = t2
kwk.

Given an (n − 1)-tuple of nonnegative integers d = (d1, . . . , dn−1) ∈ Nn−1, we

consider the Laumon’s based quasiflags’ space Qd. It is the moduli space of flags of

locally free subsheaves 0 ⊂ W1 ⊂ · · · ⊂ Wn−1 ⊂ W = W ⊗ OC such that rk(Wk) =
k, deg(Wk) = −dk, Wk ⊂ W is a vector subbundle in a neighborhood of ∞ ∈ C, and the

fiber of Wk at ∞ equals the span 〈w1, . . . , wk〉 ⊂ W. It is a smooth connected quasi-

projective variety of dimension
∑n−1

i=1 2di.
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8926 R. Gonin and A. Tsymbaliuk

The group T̃ × C× acts naturally on Qd. The set of fixed points of T̃ × C× on Qd

is finite and is parametrized by collections d̃ of nonnegative integers (dij)1≤j≤i≤n−1 such

that di = ∑i
j=1 dij and dkj ≥ dij for i ≥ k ≥ j; see [9, 2.11]. Given a collection d̃ as above,

we will denote by d̃ + δij the collection d̃′, such that d′
ij = dij + 1, while d′

kl = dkl for

(k, l) �= (i, j). By abuse of notation, we use d̃ to denote the corresponding T̃ × C×-fixed

point in Qd.

For i ∈ {1, . . . , n−1} and d = (d1, . . . , dn−1), we set d+i := (d1, . . . , di+1, . . . , dn−1).

We have a correspondence Ed,i ⊂ Qd × Qd+i formed by the pairs (W•,W ′•) such that

W ′
i ⊂ Wi and Wj = W ′

j for j �= i. It is a smooth quasi-projective variety of dimension 1 +∑n−1
i=1 2di. We denote by p (resp. q) the natural projection Ed,i → Qd (resp. Ed,i → Qd+i).

We also have a map s : Ed,i → C, given by (W•,W ′•) �→ supp(Wi/W ′
i). The correspondence

Ed,i comes equipped with a natural line bundle Li whose fiber at a point (W•,W ′•) equals

�(C,Wi/W ′
i).

We denote by ′M the direct sum of equivariant K-groups: ′M := ⊕dKT̃×C
×
(Qd). It

is a module over KT̃×C
×
(pt) = C[T̃ × C×] = C[t±1

1 , . . . , t±1
n , v±1 : t1 · · · tn = 1]. We define

M := ′M ⊗KT̃×C×
(pt) Frac(KT̃×C

×
(pt)) ⊗

C(v) C(v1/N). It is naturally graded: M = ⊕dMd.

According to the Thomason localization theorem, restriction to the T̃ × C×-fixed point

set induces an isomorphism of localized K-groups . The classes of the structure sheaves

[d̃] of the T̃ × C×-fixed points d̃ form a basis in ⊕dKT̃×C
×
(QT̃×C

×
d )loc. The embedding of

a point d̃ into Qd is a proper morphism, so the direct image in the equivariant K-theory

is well-defined, and we will denote by [d̃] ∈ Md the direct image of the structure sheaf

of the point d̃. The set {[d̃]} forms a basis of M.

5.2 Uv(sln)-action via Laumon spaces

Following Section 4.1, consider the universal Verma module V over Uv(sln) with ui =
v

i(i−1)
2 t1 · · · ti, that is, Li(1) = v

i(i−1)
2 t1 · · · ti ·1. We identify k � Frac(KT̃×C

×
(pt))⊗

C(v)C(v1/N).

Define the following operators on M:

Ei := t−1
i+1vdi+1−di+1−ip∗q∗ : Md → Md−i,

Fi := −t−1
i vdi−di−1+iq∗(Li ⊗ p∗) : Md → Md+i,

Li := t1 · · · tiv
−di+ i(i−1)

2 : Md → Md,

Ki := L−1
i−1L2

i L−1
i+1 = t−1

i+1tiv
di+1−2di+di−1−1 : Md → Md.

To each d̃, we also assign a collection of T̃ × C×-weights sij := t2
j v−2dij .

The following result is due to [3] (though our formulas follow [10, 24]).

Theorem 5.3. (a) The operators {Ei, Fi, L±1
i }n−1

i=1 give rise to the action of Uv(sln) on M.

(b) There is a unique Uv(sln)-module isomorphism taking [OQ0
] to 1.
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(c) The action of Li is diagonal in the basis {[d̃]} and Li([d̃]) = t1 · · · tiv
−di+ i(i−1)

2 · [d̃].

(d) The matrix coefficients of Fi, Ei in the fixed point basis {[d̃]} of M are as follows:

Fi[d̃,d̃′] = −(1 − v2)−1t−1
i vdi−di−1+isij

∏
j �=k≤i

(1 − sij/sik)−1
∏

k≤i−1

(1 − sij/si−1,k)

if d̃′ = d̃ + δij for certain j ≤ i;

Ei[d̃,d̃′] = (1 − v2)−1t−1
i+1vdi+1−di+1−i

∏
j �=k≤i

(1 − sik/sij)
−1

∏
k≤i+1

(1 − si+1,k/sij)

if d̃′ = d̃ − δij for certain j ≤ i. All the other matrix coefficients of Fi, Ei vanish.

5.4. Geometric realization of the Whittaker vectors

Choose a Sevostyanov triple (ε,n, c) and let ei := Ei
∏n−1

p=1 L
nip
p = EiKν , ν :=∑n−1

p=1 nipωp, be

the corresponding Sevostyanov generators. Choose a = (a1, . . . , an−1) ∈ {0, 1}n−1 so that

ai = 1+εi−1,i
2 = 1−ni−1,i+ni,i−1

2 for 1 < i ≤ n − 1, while a1 equals either 0 or 1.

Consider the line bundle Di on Qd whose fiber at the point (W•) equals

det R�(C,Wi). We also define the line bundle Da on Qd via Da := ⊗n−1
i=1 D−ai

i . Note that

D1 is a pull-back of the 1st line bundle on the Drinfeld compactification and therefore

is trivial, which explains the irrelevance of our choice of a1. Finally, we introduce

the constants

X(d) :=
n−1∏
i=1

((1 − v2)ci)
di

n−1∏
p=1

(t1 · · · tp)−2ap−∑n−1
i=1 dinip

n−1∏
p=1

t
dp−1−2apdp
p ×

v
∑n−1

i=1

(
(nii+i)di−2ai+1didi+1+ di(di−1)

2 (nii+2ai+1)
)
+∑i<j njididj−

∑n−1
i,p=1

p(p−1)
2 dinip .

The following is the key result of this section.

Theorem 5.5. Define θd := X(d) · [Da] ∈ Md and set θ := ∑
d θd. Then ei(θ) = ci · θ for

any 1 ≤ i ≤ n − 1.

Remark 5.6. (a) Due to Theorem 5.3, this provides a geometric realization of all

Whittaker vectors (associated with Sevostyanov triples) of the universal Verma module

V over Uv(sln).

(b) It is straightforward to verify that θ does not depend on the choice of a1 ∈ {0, 1}.
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Proof. According to the Bott–Lefschetz formula, we have the following:

• θ =∑d̃ ad̃ · X(d) · (Da)|d̃ · [d̃], where ad̃ =∏w∈Td̃Qd
(1 − w)−1;

• ad̃′
ad̃

(p∗q∗)[d̃′,d̃] = (q∗p∗)[d̃,d̃′].

According to Theorem 5.3(c, d), we have

• (q∗p∗)[d̃,d̃+δij]
= 1

1−v2

∏
j �=k≤i(1 − sij/sik)−1∏

k≤i−1(1 − sij/si−1,k);

• (
∏n−1

p=1 L
nip
p )[d̃ + δij] = v−nii

∏n−1
p=1

(
t1 · · · tpv−dp+ p(p−1)

2

)nip · [d̃ + δij],

where sij = t2
j v−2dij as before. Finally, we also have

• (Da)|d̃+δij
/(Da)|d̃ = sai

ij .

Therefore, it suffices to prove the following equality for any d̃ and 1 ≤ i ≤ n − 1:

X(d + i)

X(d)

t−1
i+1vdi+1−di−i

1 − v2 v−nii

n−1∏
p=1

(
t1 · · · tpv−dp+ p(p−1)

2

)nip ·
∑
j≤i

sai
ij

∏
k≤i−1(1 − sij/si−1,k)∏k �=j

k≤i(1 − sij/sik)
= ci.

Lemma 5.7. For any d̃ and 1 ≤ i ≤ n − 1, the following equality holds:

∑
j≤i

sai
ij

∏
k≤i−1(1 − sij/si−1,k)∏k �=j

k≤i(1 − sij/sik)
= (t2

i v2di−1−2di)ai . (5.1)

Proof. First, let us rewrite the left-hand side of (5.1) as

si1 · · · sii

si−1,1 · · · si−1,i−1
·
∑
j≤i

sai−1
ij

∏i−1
k=1(si−1,k − sij)∏k �=j

k≤i(sik − sij)
.

If ai = 1, then the above sum
∑

j≤i sai−1
ij

∏i−1
k=1(si−1,k−sij)∏k �=j

k≤i (sik−sij)
is a rational function in

{sij}i
j=1 of degree 0 and without poles, hence, a constant. To evaluate this constant, let

sii → ∞, in which case the 1st i−1 summands tend to zero, while the last one tends to 1.

Hence, this constant is 1, and the left-hand side of (5.1) equals si1···sii
si−1,1···si−1,i−1

= t2
i v2di−1−2di .

If ai = 0, then
∑

j≤i s−1
ij

∏i−1
k=1(si−1,k−sij)∏k �=j

k≤i (sik−sij)
− ∑j≤i s−1

ij

∏i−1
k=1 si−1,k∏k �=j

k≤i (sik−sij)
= 0 as the left-hand

side is a rational function in {sij}i
j=1 of degree -1 and without poles. Thus, the left-hand

side of (5.1) equals
∑

j≤i

∏k �=j
k≤i sik∏k �=j

k≤i (sik−sij)
. This is a rational function in {sij}i

j=1 of degree 0 and

without poles, hence, a constant. Specializing sii �→ 0, we see that this constant equals

1 (as the 1st i − 1 summands specialize to 0, while the last one specializes to 1). �
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Due to Lemma 5.7, it remains to verify

X(d + i)

X(d)
= (1 − v2)citi+1vdi−di+1+ivnii

n−1∏
p=1

(
t1 · · · tpv−dp+ p(p−1)

2

)−nip
(t2

i v2di−1−2di)−ai ,

which is straightforward. This completes our proof of Theorem 5.5. �

Remark 5.8. Note that if εi,i+1 = −1 (resp. εi,i+1 = 1) for all i, then θ is a linear

combination of [OQd
] (resp. [D−1

d ] with Dd := ⊗n−1
i=1 Di). These are exactly the two cases

considered in [3].

5.9. Geometric realization of the J-function

Recall the Shapovalov form (·, ·) on the universal Verma module V, which is a unique

nondegenerate symmetric bilinear form on V with values in k � Frac(KT̃×C
×
(pt)) ⊗

C(v)

C(v1/N) characterized by (1, 1) = 1 and (xw, w′) = (w, σ̃ (x)w′) for all w, w′ ∈ V, x ∈
Uv(sln), where σ̃ is the antiautomorphism of Uv(sln) determined by σ̃ (Ei) = Fi, σ̃ (Fi) =
Ei, σ̃ (Li) = Li.

Identifying V ∼= M via Theorem 5.3(b), a geometric expression for the Shapovalov

form was obtained in [3, Proposition 2.29] (note that our formula differs from the one of

[3] as we use a slightly different action of Uv(sln)).

Proposition 5.10. If d �= d′, then Md is orthogonal to Md′ . For F ,F ′ ∈ Md, we have

(F ,F ′) = (−1)
∑n−1

i=1 div
∑n−1

i=1 (didi+1−d2
i +(1−2i)di)

n∏
i=1

t
di−di−1
i · [R�(Qd,F ⊗ F ′ ⊗ Dd)], (5.2)

where Dd = ⊗n−1
i=1 Di as in Remark 5.8.

Given a pair of Sevostyanov triples (ε±,n±, c±), choose the corresponding a± ∈
{0, 1}n−1 and X(d)± ∈ Frac(KT̃×C

×
(pt)), and define vectors θ±

d := X(d)±[Da±
] ∈ Md as in

Section 5.4. Consider the following generating function:

J = J(y1, . . . , yn−1) :=
n−1∏
i=1

y
− log(t1···ti)

log(v)
− i(n−1)

2

i ·
∑

d

(
θ+

d , θ−
d

)
yd1

1 · · · ydn−1
n−1 . (5.3)

Due to (5.2), the coefficient (θ+
d , θ−

d ) equals

(−1)
∑n−1

i=1 div
∑n−1

i=1 (didi+1−d2
i +(1−2i)di)X(d)+X(d)−

n∏
i=1

t
di−di−1
i · [R�(Qd, ⊗n−1

i=1 D1−a+
i −a−

i
i )].

The following result is an immediate consequence of Theorems 4.9, 5.3, and

Remark 5.6.
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Theorem 5.11. J is an eigenfunction of the type An−1 modified quantum difference

Toda system T (±ε±, ±n±, c±). In particular, for D1 computed explicitly in (3.5), we have

D1(J) =
(

vn−1
n∑

i=1

t2
i

)
· J. (5.4)

Remark 5.12. (a) There is an algebra isomorphism determined

by Ei �→ Ēi, Fi �→ F̄i, Li �→ L̄−1
i . Note that σ = ς ◦ σ̃ (with σ defined in Section 4.1) and

the action of Uv(sln) on V̄ (as a ς-pull-back of Uv−1(sln)-action) is isomorphic to V. This

implies that the Shapovalov form on V is identified with the k-bilinear form on V × V̄ of

Section 4.1.

(b) Under the identification of part (a), the Whittaker vector of V̄ associated with a

Sevostyanov triple (ε−,n−, c−) becomes the Whittaker vector of V associated with the

Sevostyanov triple (−ε−, −n−, c−). This explains the appearance of the sign ‘–’ in front

of ε−,n− in Theorem 5.11.

5.13. B. Feigin’s viewpoint via Uv(Lsln)-action

According to [24, Theorem 2.12] (see also [10, Theorem 12.7]), the action of Uv(sln) on M

can be extended to an action of the quantum loop algebra Uv(Lsln) on M (actually, this

action factors through the one of Uv(gln), extending the Uv(sln)-action from Theorem 5.3,

via the evaluation homomorphism ev: Uv(Lsln) → Uv(gln)). In particular, loop generators

{ei,r, fi,r}r∈Z
1≤i≤n−1 (see [24, 2.10]) act via

ei,r = t−1
i+1vdi+1−di+1−ip∗((viLi)

⊗r ⊗ q∗) : Md → Md−i,

fi,r = −t−1
i vdi−di−1+iq∗(Li ⊗ (viLi)

⊗r ⊗ p∗) : Md → Md+i.

Note that ei,0 = Ei and fi,0 = Fi. Following [3], define k ∈ M∧ :=∏d Md
∼= V∧ via

k :=
∑

d

kd with kd := [OQd
] ∈ Md. (5.5)

Proposition 5.14. (a) For any 1 ≤ i ≤ n − 1, we have ei,0L−1
i Li+1(k) = v

1−v2 k.

(b) For any 1 ≤ i ≤ n − 1, we have ei,1L2
i−1L−3

i Li+1(k) = v5−i

1−v2 k.

Proof. Part (a) follows from Theorem 5.5 (see also [10, Proposition 12.21]). The proof

of part (b) is completely analogous to our proof of Theorem 5.5 (see also [10, Remark

12.22(b)]). �
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Let us now explain the relation between Proposition 5.14 regarding the “eigen-

property” of the (geometrically) simplest Whittaker vector k and the geometric descrip-

tion of the general Whittaker vectors from Theorem 5.5. In what follows, we will view

the line bundle D±1
i as an endomorphism of M given by the multiplication by [D±1

i ].

Proposition 5.15. We have the following equalities in End(M):

(a) Diej,0D−1
i = ej,0 for j �= i,

(b) Diei,0D−1
i = v−iei,1.

Proof. According to [8, Corollary 6.5(a)], the operator Di is diagonal in the fixed point

basis {[d̃]}, and the eigenvalue at [d̃] is equal to
∏i

k=1 t2(1−dik)

k vdik(dik−1). Part (a) follows

as ej,0 : Md → Md−j. Likewise, the only nonzero matrix coefficients of Diei,0D−1
i are given

by Diei,0D−1
i [d̃,d̃−δij]

= t2
j v−2(dij−1) · ei,0[d̃,d̃−δij]

= v2sij · ei,0[d̃,d̃−δij]
, where sij = t2

j v−2dij as

before. According to [24, Proposition 2.15], the only non-zero matrix coefficients of ei,1

in the fixed point basis are given by ei,1[d̃,d̃−δij]
= vi+2sij · ei,0[d̃,d̃−δij]

. Part (b) follows. �

Corollary 5.16. For any a = (a1, . . . , an−1) ∈ {0, 1}n−1, the following holds in End(M):

(Da)−1ei,0Da =
⎧⎨⎩ei,0, if ai = 0,

v−iei,1, if ai = 1.
(5.6)

For a ∈ {0, 1}n−1, define ka ∈ M∧ via

ka :=
∑

d

k
a
d with k

a
d :=

n−1∏
i=1

(t1 · · · ti)
−2ai · [Da] ∈ Md. (5.7)

Note that k0 = k. The special case of Theorem 5.5 follows immediately from

Proposition 5.14.

Proposition 5.17. ka ∈ M∧ ∼= V∧ is the Whittaker vector corresponding to the

Sevostyanov triple (ε,n, c) with εi,i+1 = 2ai+1 − 1,nij = δj,i+1 − (1 + 2ai)δj,i + 2aiδj,i−1, ci =
v1+ai(4−2i)

1−v2 .

Proof. Since k
a
0 = [OQ0

], it remains to verify the following equality for any 1 ≤ i ≤ n−1:

ei,0L2ai
i−1L−1−2ai

i Li+1([Da]) = v1+ai(4−2i)

1 − v2 · [Da]. (5.8)

This follows by combining formula (5.6) with Proposition 5.14. �
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Remark 5.18. We note that the above operator of multiplication by [Dk] can be

interpreted entirely algebraically as a product of the Drinfeld Casimir element of the

subalgebra Uv(slk) ⊂ Uv(sln) and a certain Cartan element, due to [8, Corollary 6.5(b)]. In

loc.cit., the authors choose to work with the action of Uv(gln) instead of Uv(sln), which

results in shorter formulas.

We conclude this section by generalizing the construction of [4, Theorem 6.12]. In

loc.cit., the authors established an edge-weight path model for the type An−1 Whittaker

vector associated with a particular Sevostyanov triple (ε,n, c) with εi,i+1 = 1 (1 ≤
i ≤ n − 2) and nij = (i − 1)(δj,i+1 − 2δj,i + δj,i−1). More generally, their construction

can be applied to Whittaker vectors associated with (ε,n, c) satisfying ε1,2 = ε2,3 =
. . . = εn−2,n−1 (corresponding to an equioriented An−1 Dynkin diagram). In particular,

identifying V ∼= M, we obtain the following edge-weight path model for the Whittaker

vector k ∈ M∧ of (5.5).

Proposition 5.19. The following equality holds:

k =
∑

β∈Q+

(
v

1 − v2

)|β| ∑
P∈Pβ

y(P) · |P〉, (5.9)

where we use the following notations:

• |β| :=∑n−1
i=1 mi for β =∑n−1

i=1 miαi ∈ Q+,

• the set Pβ consists of all paths P = (p0, . . . , pN) such that p0 = 0, pN = β,

and pk − pk−1 = αik(1 ≤ ik ≤ n − 1) for all 1 ≤ k ≤ N,

• for P = (p0, . . . , pN) ∈ Pβ , the vector |P〉 ∈ M is defined as |P〉 :=
fiN fiN−1

· · · fi1([OQ0
]) with fi := LiL

−1
i+1Fi,

• for P = (p0, . . . , pN) ∈ Pβ with pk − pk−1 = αik , the coefficient y(P) edge-

factorizes as y(P) = ∏N
k=1

1
v(ik)(pk)

, where v(i)(γ ) = vτi(γ )v(γ ) with τi(γ ) = (λ +
ρ−γ , ωi−1−ωi+1) and v(γ ) = (v−v−1)−2∑n−1

i=0

(
v2(λ+ρ,ωi+1−ωi) − v2(λ+ρ−γ ,ωi+1−ωi)

)
for 1 ≤ i ≤ n − 1 and γ ∈ Q+. Here ωi is the i-th fundamental weight of sln as

before, and we set ω0 := 0, ωn := 0.

Noteworthy, there seems to be no such straightforward edge-weight path model

for a general type A Whittaker vector. Nevertheless, one can fix this by changing the

above definition of |P〉 with the help of the quantum loop algebra Uv(Lsln) in spirit of

Proposition 5.15 and Corollary 5.16. This is based on the following result.
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Proposition 5.20. For any a = (a1, . . . , an−1) ∈ {0, 1}n−1, the following holds in End(M):

Dafi,0(Da)−1 =
⎧⎨⎩fi,0, if ai = 0,

v−ifi,1, if ai = 1,
(5.10)

where Da denotes an endomorphism of M given by the multiplication by [Da].

Proof. The proof is completely analogous to that of Proposition 5.15. �

Recall the element ka ∈ M∧ of (5.7). Since [Da] = Da(k), we obtain the following

edge-weight path model for ka.

Proposition 5.21. The following equality holds:

ka =
n−1∏
i=1

(t1 · · · ti)
−2ai ·

∑
β∈Q+

(
v

1 − v2

)|β| ∑
P∈Pβ

y(P) · |P〉a, (5.11)

where for a path P = (p0, . . . , pN) ∈ Pβ with pk − pk−1 = αik we set

|P〉a := f a
iN

f a
iN−1

· · · f a
i1

([OQ0
]) with f a

i :=
⎧⎨⎩LiL

−1
i+1fi,0, if ai = 0,

v−iLiL
−1
i+1fi,1, if ai = 1.

Proof. Follows by combining Propositions 5.19 and 5.20.
�

According to Proposition 5.17, ka is the Whittaker vector corresponding to the

Sevostyanov triple (ε,n, c) with εi,i+1 = 2ai+1 − 1,nij = δj,i+1 − (1 + 2ai)δj,i + 2aiδj,i−1, ci =
v1+ai(4−2i)

1−v2 . As a ∈ {0, 1}n−1 varies, we get all possible orientations Or of Dyn(sln) = An−1

(here Or is determined by ε). Since it is clear how the edge-weight path model gets

modified once we change n, c (while ε is kept fixed), cf. [7, (3.8, 3.9)], Proposition 5.21

provides an edge-weight path model for a general type A Whittaker vector.

A Proof of Proposition 3.11

Given two pairs of type An−1 Sevostyanov triples (ε±,n±, c±) and (ε̃±, ñ±, c̃±) such that

ε+
i,i+1 − ε−

i,i+1 = ε̃+
i,i+1 − ε̃−

i,i+1 for 1 ≤ i ≤ n − 2, we will prove that there exist constants

{rij, ri}1≤i≤j≤n such that the function

F = F(w1, . . . ,wn) := exp

⎛⎝ ∑
1≤i≤j≤n

rij log(wi) log(wj) +
∑

1≤i≤n

ri log(wi)

⎞⎠ (A1)
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satisfies the equality

F−1H(ε±,n±, c±)F = H(ε̃±, ñ±, c̃±). (A2)

We will view this as an equality in An (rather than Ān), treating H of (3.8) as elements of

An. This will immediately imply the result of Proposition 3.11. Set h̄ := log(v).

• First, we note that the terms without Di’s are the same (and equal to
∑n

j=1 w
−2
j )

both in F−1H(ε±,n±, c±)F and H(ε̃±, ñ±, c̃±), independently of our choice of constants

{rij, ri}.
• Second, we will match the terms with { Di

Di+1
}n−1
i=1 appearing in F−1H(ε±,n±, c±)F

and H(ε̃±, ñ±, c̃±). Their equality is equivalent to the following system of equations on

{rij}:

mij − m̃ij

h̄
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

rji − rj,i+1, if 1 ≤ j < i

rij − ri+1,j, if i + 2 ≤ j ≤ n

2rii − ri,i+1, if j = i

ri,i+1 − 2ri+1,i+1, if j = i + 1

(A3)

and the following system of equations on {ri}:

ri − ri+1 = h̄(ri,i+1 − rii − ri+1,i+1) + h̄−1 log(b̃i/bi) +
n∑

k=1

(n − k + 1/2)(mik − m̃ik), (A4)

where the coefficients mij, m̃ij, bi, b̃i are defined as in Section 3.9 via

mij :=∑n−1
p=j (n−

ip − n+
ip),

m̃ij :=∑n−1
p=j (ñ−

ip − ñ+
ip),

bi := (v − v−1)2vn
+
ii −n−

ii c+
i c−

i ,

b̃i := (v − v−1)2vñ
+
ii −ñ−

ii c̃+
i c̃−

i .

It suffices to show that (A3) admits a solution, since (A4) obviously admits a

solution in terms of ri (unique up to a common constant). Pick any r11. Using the last

two cases of (A3), we determine uniquely {ri,i+1, ri+1,i+1}n−1
i=1 . Using the 1st case of (A3),

we determine uniquely rij for j > i + 1. The resulting collection {rij}1≤i≤j≤n satisfies the

1st, 3rd, and 4th cases of (A3). It remains to verify that it also satisfies the 2nd case of

(A3). We prove this by induction in j − i ≥ 2.

(a) If j = i+2, then ri,i+2−ri+1,i+2 = (ri,i+1−2ri+1,i+1)+(2ri+1,i+1−ri+1,i+2)−(ri,i+1−
ri,i+2) = h̄−1(mi,i+1+mi+1,i+1−mi+1,i−m̃i,i+1−m̃i+1,i+1+m̃i+1,i). Hence, it remains to prove

mi,i+1 +mi+1,i+1 −mi+1,i −mi,i+2 = m̃i,i+1 + m̃i+1,i+1 − m̃i+1,i − m̃i,i+2. Since mst −ms,t+1 =
n−

st − n+
st, this is reduced to n−

i,i+1 − n+
i,i+1 − n−

i+1,i + n+
i+1,i = ñ−

i,i+1 − ñ+
i,i+1 − ñ−

i+1,i + ñ+
i+1,i.

The latter equality follows from n±
st − n±

ts = ε±
stbst and our assumption on the triples.
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(b) If j > i + 2, then rij − ri+1,j = (ri,j−1 − ri+1,j−1) + (ri+1,j−1 − ri+1,j) − (ri,j−1 −
rij) = h̄−1(mi,j−1 +mj−1,i+1 −mj−1,i − m̃i,j−1 − m̃j−1,i+1 + m̃j−1,i). Hence, it remains to prove

(mi,j−1 −mij)− (mj−1,i −mj−1,i+1) = (m̃i,j−1 − m̃ij)− (m̃j−1,i − m̃j−1,i+1). Similarly to (a), this

is reduced to the proof of bi,j−1(ε−
i,j−1 − ε+

i,j−1) = bi,j−1(ε̃−
i,j−1 − ε̃+

i,j−1). The latter follows

immediately from the equality bi,j−1 = 0.

Thus, we have determined a collection of constants {rij, ri}1≤i≤j≤n sat-

isfying (A3, A4) (this collection is uniquely determined by a choice of r11, r1;

however, we note that the image of F defined via (A1) in Ān is independent of

this choice).

• Finally, it remains to verify that for F of (A1) with the constants rij, ri chosen

as above, the terms with Di
Dj

(j > i + 1) in F−1H(ε±,n±, c±)F and H(ε̃±, ñ±, c̃±) do coincide.

First, we note that the conditions ε±
i,i+1 = . . . = ε±

j−2,j−1 = ±1 and ε̃±
i,i+1 = . . . = ε̃±

j−2,j−1 =
±1 are equivalent under our assumption on the triples. Pick j > i + 1 such that either of

these equivalent conditions is satisfied. Then the compatibility of the terms with Di
Dj

is

equivalent to the following equality:

F(w1, . . . , vwi, . . . , v−1wj, . . . ,wn)

F(w1, . . . ,wn)
=

n∏
k=1

w
∑j−1

s=i (msk−m̃sk)

k ·
j−1∏
s=i

b̃s

bs
· v
∑

i≤a<b≤j−1(n−
ab−n+

ab−ñ−
ab+ñ+

ab)+∑n
k=1

∑j−1
s=i

n+1−2k
2 (msk−m̃sk). (A5)

We prove this by induction in j − i. Note that the j = i + 1 counterpart of (A5) is

just the compatibility of the terms with Di
Di+1

, established in the previous step. Writing

the left-hand side of (A5) as a product

F(w1, . . . , vwi, . . . , v−1 · vwj−1, v−1wj, . . . ,wn)

F(w1, . . . , vwj−1, v−1wj, . . . ,wn)
· F(w1, . . . , vwj−1, v−1wj, . . . ,wn)

F(w1, . . . ,wn)
(A6)

and applying the induction assumption to both fractions of (A6), it is straightforward

to see that we obtain the right-hand side of (A5).

Thus, the function F defined via (A1) with the constants {rij, ri}1≤i≤j≤n

determined in our 2nd step satisfies the equality (A2). This completes our proof of

Proposition 3.11. �

Remark A.1. (a) The proofs of Propositions 3.14, 3.17, and 3.20 are analogous to the

above proof of Proposition 3.11. In each case, there exists a unique collection of con-

stants {rij, ri}1≤i≤j≤n such that the function F defined via (A1) satisfies the corresponding

equality (A2). The way we choose such constants closely follows the above 2nd step in
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8936 R. Gonin and A. Tsymbaliuk

our proof of Proposition 3.11 and is determined by matching up the coefficients of

• {Di/Di+1}n−1
i=1 and D2

n for the type Cn,

• {Di/Di+1}n−1
i=1 and Dn−1Dn for the type Dn,

• {Di/Di+1}n−1
i=1 and Dn for the type Bn.

Finally, it remains to check that the function F defined via (A1) with thus determined

{rij, ri}1≤i≤j≤n conjugates each of the remaining terms appearing in H(ε±,n±, c±) into the

one of H(ε̃±, ñ±, c̃±). This is verified by induction similarly to the above last step in our

proof of Proposition 3.11.

(b) The proof of Proposition 3.38 is also analogous, but the constants rij, ri are deter-

mined by matching the terms with D1 and D2.

B Proof of Theorem 3.2

Assume that g is either of the classical type or G2. Given two pairs of Sevostyanov

triples (ε±,n±, c±) and (ε̃±, ñ±, c̃±) with �ε = �̃ε (defined right before Theorem 3.2), we

need to show that there exists an automorphism of Dv(Had) that maps T (ε±,n±, c±) to

T (ε̃±, ñ±, c̃±).

According to our proof of Proposition 3.11 and Remark A.1 (which states that

the same argument applies to all classical types and G2), there exists a “formal function”

F of the shift operators Tμ such that conjugation by F is a well-defined automorphism of

Dv(Had) satisfying FD1(ε±,n±, c±)F−1 = D1(ε̃±, ñ±, c̃±). It remains to prove the following

result.

Proposition B.1. For any 1 ≤ i ≤ n, we have FDi(ε
±,n±, c±)F−1 = Di(ε̃

±, ñ±, c̃±).

Proof. Recall that Di ∈ D≤
v (Had), where D≤

v (Had) is the subalgebra of Dv(Had) generated

by {e−αi , Tμ|1 ≤ i ≤ n, μ ∈ P}. Let us extend the field C(v1/N) to k and recall the

vector space Nλ of Section 4.8, which was equipped with a natural Dv(Had)-action. In

particular, the subspace Wλ of Nλ formed by the formal sums
{∑

β∈Q+ aβyβ−λ|aβ ∈ k
}

is D≤
v (Had)-stable. Moreover, X(yβ−λ) contains only yγ−λ with γ ≥ β for any X ∈

D≤
v (Had), which we refer to as the “upper-triangular” property of the D≤

v (Had)-action.

In particular, we have

Di(ε
±,n±, c±)(yβ−λ), Di(ε̃

±, ñ±, c̃±)(yβ−λ) ∈
⎛⎝ Ni∑

k=1

v2(μ
(i)
k ,λ−β)

⎞⎠ · yβ−λ ⊕
⊕
γ>β

kyγ−λ, (B1)

where Ni is the dimension and {μ(i)
k }Ni

k=1 are the weights (counted with multiplicities)

of the i-th fundamental Uv(g)-representation Vi, while v(ν,λ) (ν ∈ P) is defined as in

Section 4.1.
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Modified Quantum difference Toda Systems 8937

Therefore, the action of D1(ε̃±, ñ±, c̃±) on Wλ is upper-triangular with pairwise

distinct diagonal matrix coefficients; hence, it is diagonalizable with a simple spectrum.

Moreover, the eigenvalues are exactly
{∑N1

k=1 v2(μ
(1)

k ,λ−β)|β ∈ Q+
}
.

Remark B.2. Due to Theorem 4.9, the corresponding eigenbasis consists of the J-

functions J({yi}n
i=1) associated with {λ − ρ − β|β ∈ Q+}, cf. (4.9).

Since [Di(ε̃
±, ñ±, c̃±), D1(ε̃±, ñ±, c̃±)] = 0, the action of Di(ε̃

±, ñ±, c̃±) on Wλ is

diagonal in a D1(ε̃±, ñ±, c̃±)-eigenbasis with the corresponding eigenvalues given by∑Ni
k=1 v2(μ

(i)
k ,λ−β) (this also follows from Remark B.2 and Theorem 4.9). On the other hand,

the action of FDi(ε
±,n±, c±)F−1 on Wλ is also upper-triangular with the same diagonal

matrix coefficients and commutes with D1(ε̃±, ñ±, c̃±) (since FD1(ε±,n±, c±)F−1 =
D1(ε̃±, ñ±, c̃±) and [D1(ε±,n±, c±), Di(ε

±,n±, c±)] = 0). Thus, both FDi(ε
±,n±, c±)F−1

and Di(ε̃
±, ñ±, c̃±) act diagonally in a D1(ε̃±, ñ±, c̃±)-eigenbasis and have the same

corresponding eigenvalues.

The equality FDi(ε
±,n±, c±)F−1 = Di(ε̃

±, ñ±, c̃±) follows.
�

Thus, conjugation by F maps T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±). Theorem 3.2

follows. �

C Proof of Theorem 3.3

Following the discussion in Appendix B, consider a basis of Wλ in which all Di act

simultaneously diagonally with the corresponding eigenvalues given by
∑Ni

k=1 v2(μ
(i)
k ,λ−β).

The latter can be viewed as characters χi of the fundamental representations evaluated

at v2(λ−β).

Since the point v2λ ∈ H(k) is general and the characters {χi}n
i=1 are known to be

algebraically independent, we immediately obtain part (a) of Theorem 3.3.

Part (c) of Theorem 3.3 follows from part (b) as DV(ε±,n±, c±) ∈ D≤
v (Had)

commutes with D1(ε±,n±, c±) for any finite-dimensional Uv(g)-representation V, due

to Lemma 2.8(c).

It remains to prove part (b) of Theorem 3.3. The algebra D≤
v (Had) is Z-graded via

deg(Tμ) = 0 and deg(e−αi) = −1, so that the degree zero component D≤
v (Had)0 has a basis

{Tμ|μ ∈ P}. Note that the degree zero component D(0)

i of Di equals D(0)

i = ∑Ni
k=1 T

2μ
(i)
k

. Let

D≤
v (Had)0

ev be the subspace spanned by {T2μ|μ ∈ P}. We also consider a natural action of

the Weyl group W both on D≤
v (Had)0 and D≤

v (Had)0
ev via w(Tμ) = Twμ for μ ∈ P, w ∈ W.

Given D ∈ D≤
v (Had) that commutes with D1, let D(0) denote its degree zero component.

Proposition C.1. We have D(0) ∈ (D≤
v (Had)0

ev)W .
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8938 R. Gonin and A. Tsymbaliuk

The proof of Proposition C.1 is based on the rank 1 case, for which we prove a

slightly more general result. In type A1, the modified quantum difference Toda systems

are conjugate to the q-Toda of [6] with the 1st hamiltonian D1 = T2�1
+ T−2�1

− (v −
v−1)2e−αT0; see (3.6).

Lemma C.2. In type A1, given D ∈ D≤
v (Had) that commutes with D′ = arDr

1 +ar−1Dr−1
1 +

. . . + a0 for some a0, . . . , ar ∈ Q(v1/N) with ar �= 0, r > 0, D must be a polynomial in D1.

Proof. Let D = D(0) + e−αD(−1) + . . . + e−sαD(−s) with D(0), . . . , D(−s) ∈ D≤
v (Had)0 and

D(−s) �= 0. We prove the claim by induction in s. Comparing the degree −r − s terms

in DD′ = D′D, we immediately get D(−s) = csT0 for some constant cs. Replacing D by

D − cs(−(v − v−1)−2)sDs
1, we obtain another element of D≤

v (Had) that commutes with D′

and has a smaller value of s, hence, is a polynomial in D1 by the induction assumption.

Therefore, D is also a polynomial in D1. �

Proof of Proposition C.1. The result of Proposition C.1 follows immediately from

Lemma C.2. Indeed, it suffices to verify the following two claims for any 1 ≤ i ≤ n:

(I) the operator D(0) is invariant with respect to the simple reflection si,

(II) every μ appearing in D(0) satisfies (μ, αi) ∈ 2diZ.

To prove this, consider a subspace W ′
λ of Wλ that consists of{∑

β∈Q+\Zαi
aβyβ−λ|aβ ∈ k

}
. It is stable under the action of D≤

v (Had), hence, we obtain

the action of D≤
v (Had) on the quotient W̄λ := Wλ/W ′

λ. We also specialize uj �→ 1 for

j �= i (recall that uj were used in our definition of λ). As a result, summands with

e−αj (j �= i) in D, D1 act by zero on W̄λ, while Tωj
(j �= i) act by the identity operator.

Identifying further W̄λ with the space W(sl2)

λ′ constructed for sl2 instead of g (hence,

the superscript in our notations), D1 gives rise to the operator D(sl2)
V with V being the

restriction of the 1st fundamental Uv(g)-representation V1 to the subalgebra generated

by Ei, Fi, L±1
i , which is isomorphic to Uvi

(sl2). As V is not a trivial Uvi
(sl2)-module, D(sl2)

V

is a nonconstant polynomial in the 1st hamiltonian D(sl2)
1 . Hence, Lemma C.2 can be

applied with D′ = D(sl2)
V and D denoting the image of D acting on W̄λ � W(sl2)

λ′ by abuse

of notation. Therefore, both claims (I) and (II) follow. �

It is clear that (D≤
v (Had)0

ev)W is generated by {D(0)

i }n
i=1. Hence, due to

Proposition C.1, there exists a polynomial P in n variables such that D′ := D −
P(D1, . . . , Dn) is of strictly negative degree. Thus, the action of D′ on Wλ is upper-

triangular with zeros on the diagonal. As [D′, D1] = 0 and D1 acts on Wλ with a simple

spectrum, we immediately get D′ = 0.

This completes our proof of Theorem 3.3. �
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D Proof of Theorem 3.1

Given a rank n simple Lie algebra g, fix an arbitrary orientation of the edges of Dyn(g)

as well as their labeling by numbers from 1 up to n − 1. For an edge 1 ≤ e ≤ n − 1, the

vertices t(e), h(e) will denote the tail and the head of that edge, respectively. To every

pair of Sevostyanov triples (ε±,n±, c±), we associate an invariant �ε = (εn−1, . . . , ε1) ∈
{−1, 0, 1}n−1 via εe := ε+

t(e),h(e)
−ε−

t(e),h(e)

2 ∈ {−1, 0, 1} for 1 ≤ e ≤ n − 1.

To prove Theorem 3.1, it suffices to verify that given two pairs of Sevostyanov

triples (ε±,n±, c±) and (ε̃±, ñ±, c̃±) satisfying �ε = �̃ε, there exists an automorphism

of Dv(Had) that maps T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±). Our proof is similar to that of

Theorem 3.2 presented in Appendix B, but is crucially based on the fermionic formula

of Theorem 4.7 for J̃β instead of Propositions 3.11, 3.14, 3.17, 3.20, and 3.38 (we owe this

observation to A. Braverman).

Following Appendix B, consider the action of D≤
v (Had) on Wλ. Due to Remark B.2,

the action of pairwise commuting operators Di(ε
±,n±, c±) (resp. Di(ε̃

±, ñ±, c̃±)) is simul-

taneously diagonalizable in the basis of J-functions {J�(ε±,n±, c±; {yi})|� = λ−ρ−β, β ∈
Q+} (resp. {J�(ε̃±, ñ±, c̃±; {yi})|� = λ − ρ − β, β ∈ Q+}) (as � varies, we will use

the notations J�({yi}), J�
β instead of J({yi}), Jβ used in Section 4). We note that both

J�(ε±,n±, c±; {yi}) − yβ−λ and J�(ε̃±, ñ±, c̃±; {yi}) − yβ−λ contain only {yγ−λ}γ>β .

The following is the key observation.

Proposition D.1. If �ε = �̃ε, there exists a difference operator D that acts on Wλ

and maps J�(ε±,n±, c±; {yi}) to a nonzero multiple of J�(ε̃±, ñ±, c̃±; {yi}) for any

� ∈ λ − ρ − Q+.

Proof. Define ν±
i , ν̃±

i ∈ P via ν±
i := ∑n

k=1 n
±
ikωk and ν̃±

i := ∑n
k=1 ñ

±
ikωk. Due to Theorem

4.7, the pairing J�
β (ε±,n±, c±) depends only on {ν+

i − ν−
i }n

i=1 and {c+
i c−

i }n
i=1 for any fixed

�, β. Hence, as �ε = �̃ε, we may assume ε̃± = ε±, ñ− = n−, c̃− = c−, while γi := ν̃+
i − ν+

i

satisfy

(αi, γj) = (αj, γi) for any 1 ≤ i, j ≤ n. (D1)

In this set-up, we have the following.

Lemma D.2. There exist constants {si}n
i=1 such that

J�
β (ε̃±, ñ±, c̃±) = v

∑n
i=1 si(β,ωi)+ 1

2
∑n

i=1(β,ω∨
i )(β−2�,γi) · J�

β (ε±,n±, c±)

for any � ∈ λ − ρ − Q+, β ∈ Q+.

This essentially follows from [7, (3.8, 3.9)], but let us provide a complete

argument.
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8940 R. Gonin and A. Tsymbaliuk

Proof. Since ε̃± = ε±, ñ− = n−, c̃− = c− and J�
β (•, •, •) is defined via (4.2), it suffices to

prove the following equality:

θ�
β (ε+, ñ+, c̃+) = θ�

β (ε+,n+, c+) · a�,β , (D2)

where

a�,β := v
1
2
∑n

i=1(β,ω∨
i )(β−2�,γi) ·

n∏
i=1

(̃c+
i v

1
2 (γi,αi)/c+

i )(β,ω∨
i ). (D3)

Let θ̃�
β denote the right-hand side of (D2). To prove (D2), it suffices to verify that∑

β∈Q+ θ̃�
β satisfies the defining conditions (4.1) of the Whittaker vector associated with

(ε+, ñ+, c̃+).

First, the equality a�,0 = 1 implies θ̃�
0 = θ�

0 (ε+,n+, c+) = 1.

Second, we note that the equality EiKν+
i
(θ�

β+αi
(ε+,n+, c+)) = c+

i · θ�
β (ε+,n+, c+)

implies EiKν+
i +γi

(θ̃�
β+αi

) = c+
i v(γi,�−β−αi)

a�,β+αi
a�,β

· θ̃�
β . Therefore, it remains to verify

c+
i v(γi,�−β−αi)

a�,β+αi

a�,β
= c̃+

i . (D4)

Recalling the definition of a�,β of (D3), we find

a�,β+αi

a�,β
= c̃+

i

c+
i

v
1
2 (γi,αi) · v

1
2
∑n

j=1{(β+αi,ω
∨
j )(β−2�+αi,γj)−(β,ω∨

j )(β−2�,γj)} =

c̃+
i

c+
i

v
1
2 (γi,αi) · v

1
2 (β−2�+αi,γi)+ 1

2
∑

j(β,ω∨
j )(αi,γj) = c̃+

i

c+
i

v(β−�+αi,γi),

where we used (D1) to evaluate
∑

j(β, ω∨
j )(αi, γj) =∑j(β, ω∨

j )(αj, γi) = (β, γi).

This implies (D4), which completes our proof of Lemma D.2. �

Set

D := exp

(
n∑

i=1

log(Tωi
) log(Tγi

)

2di log(v)
−

n∑
i=1

si log(Tωi
)

)
.

This definition is motivated by the following result.

Lemma D.3. D(J�(ε±,n±, c±; {yi})) is a nonzero multiple of J�(ε̃±, ñ±, c̃±; {yi}) for any

� ∈ λ − ρ − Q+.

Proof. Evoking formula (4.8), we get

D(yβ−�) = yβ−� · v
1
2
∑n

i=1(ω∨
i ,β−�)(γi,β−�)+∑i si(ωi,β−�).
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Combining this with Lemma D.2, the statement reduces to the β-independence of

1

2

n∑
i=1

(ω∨
i , β − �)(γi, β − �) +

∑
i

si(ωi, β − �) − 1

2

n∑
i=1

(β, ω∨
i )(β − 2�, γi)

2
−

n∑
i=1

si(β, ωi) =

n∑
i=1

(ω∨
i , β)(γi, �) − (ω∨

i , �)(γi, β − �)

2
−
∑

i

si(ωi, �).

The latter follows from
∑n

i=1(ω∨
i , β)(γi, �) =∑n

i=1(ω∨
i , �)(γi, β), due to (D1). �

This completes our proof of Proposition D.1. �

Due to Proposition D.1, DDi(ε
±,n±, c±)D−1 and Di(ε̃

±, ñ±, c̃±) act diagonally in

the basis {J�(ε̃±, ñ±, c̃±; {yi})|� ∈ λ − ρ − Q+} of Wλ with the same eigenvalues, hence,

they coincide for every 1 ≤ i ≤ n. Therefore, conjugation by D is a well-defined

automorphism of Dv(Had) that maps T (ε±,n±, c±) to T (ε̃±, ñ±, c̃±).

This completes our proof of Theorem 3.1. �

E Proof of Theorem 3.24

The proof of Theorem 3.24 is similar to the one of Proposition 3.11 given in Appendix A

and of Theorem 3.2 given in Appendix B, but we provide details as the formulas are

different.

Proof of part (a).

Given a pair of type An−1 Sevostyanov triples (ε±,n±, c±) and �k = (kn, . . . , k1) ∈
{−1, 0, 1}n satisfying ki+1 = ε+

i,i+1−ε−
i,i+1

2 for 1 ≤ i ≤ n − 2, we will prove that there exist

constants {rij, ri}1≤i≤j≤n such that the function F defined in (A1) satisfies the equality

F−1H(ε±,n±, c±)F = H
�k
2. (E1)

We will view this as an equality in An, treating H(ε±,n±, c±) as an element of An.

• First, we note that the terms without Di’s are the same (and equal to
∑n

j=1 w
−2
j )

both in F−1H(ε±,n±, c±)F and H�k
2, independently of our choice of constants {rij, ri}.

• Second, we will match the terms with { Di
Di+1

}n−1
i=1 appearing in F−1H(ε±,n±, c±)F

and H�k
2. Their equality is equivalent to the following system of equations on {rij}:

mij − δj,iki − δj,i+1ki+1

h̄
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

rji − rj,i+1, if 1 ≤ j < i

rij − ri+1,j, if i + 2 ≤ j ≤ n

2rii − ri,i+1, if j = i

ri,i+1 − 2ri+1,i+1, if j = i + 1

(E2)
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and the following system of equations on {ri}:

ri − ri+1 = h̄(ri,i+1 − rii − ri+1,i+1) − h̄−1 log(bi) +
n∑

k=1

(n − k + 1/2)mik. (E3)

Pick any r11, r1. It suffices to show that (E2) admits a solution since (E3) obviously

admits a unique solution with a given r1 for any choice of rij. For a fixed r11, the

constants {rij}1≤i≤j≤n satisfying the 1st, 3rd, and 4th cases of (E2) are determined

uniquely. It remains to verify that they also satisfy the 2nd case of (E2). We prove this

by induction in j − i ≥ 2.

(a) If j = i + 2, then ri,i+2 − ri+1,i+2 = (ri,i+1 − 2ri+1,i+1) + (2ri+1,i+1 − ri+1,i+2) −
(ri,i+1 − ri,i+2) = h̄−1(mi,i+1 − ki+1 + mi+1,i+1 − ki+1 − mi+1,i). Hence, it remains to prove

(mi,i+1 −mi,i+2)− (mi+1,i −mi+1,i+1) = 2ki+1. The left-hand side is equal to n−
i,i+1 −n+

i,i+1 −
n−

i+1,i + n+
i+1,i = bi,i+1(ε−

i,i+1 − ε+
i,i+1) = ε+

i,i+1 − ε−
i,i+1 = 2ki+1, due to the choice of ki+1.

(b) If j > i + 2, then rij − ri+1,j = (ri,j−1 − ri+1,j−1)+ (ri+1,j−1 − ri+1,j)− (ri,j−1 − rij) =
h̄−1(mi,j−1+mj−1,i+1−mj−1,i). Hence, it remains to prove (mi,j−1−mij)−(mj−1,i−mj−1,i+1) =
0. The left-hand side is equal to bi,j−1(ε−

i,j−1 − ε+
i,j−1) = 0 as bi,j−1 = 0.

Thus, we have determined a collection of constants {rij, ri}1≤i≤j≤n satisfying

(E2, E3).

• Finally, it remains to verify that for F of (A1) with the constants rij, ri chosen as

above the terms with Di
Dj

(j > i+1) in F−1H(ε±,n±, c±)F and H�k
2 do coincide. First, we note

that the conditions ε±
i,i+1 = . . . = ε±

j−2,j−1 = ±1 and ki+1 = . . . = kj−1 = 1 are equivalent

under our assumption. Pick j > i + 1 such that either of these equivalent conditions

is satisfied. Then the compatibility of the terms with Di
Dj

is equivalent to the following

equality:

F(w1, . . . , vwi, . . . , v−1wj, . . . ,wn)

F(w1, . . . ,wn)
=

n∏
k=1

w
∑j−1

s=i msk+δk,i+δk,j

k ·
j∏

p=i

w
−kp−1
p ·

j−1∏
s=i

b−1
s · vi+1−j+∑i≤a<b≤j−1(n−

ab−n+
ab)+∑n

k=1
∑j−1

s=i
n+1−2k

2 msk .

(E4)

This equality is proved by induction in j − i, factoring the left-hand side as in (A6) and

noticing that the j = i + 1 counterpart of (E4) is just the compatibility of the terms with
Di
Di+1

, established in the previous step.

Thus, the function F defined via (A1) with the constants {rij, ri}1≤i≤j≤n

determined in our 2nd step satisfies the equality (E1). This completes our proof of

Theorem 3.24(a).
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Proof of part (b).

Let us write

Tv
�k(z)11 = (−1)nw1 · · ·wnzs

(
1 − H

�k
2z + H

�k
3z2 − . . . + (−1)nH

�k
n+1zn

)
,

where s = ∑n
j=1

kj−1
2 . For 1 ≤ r ≤ n, let H̄�k

r+1 ∈ T �k be the image of H�k
r+1 in Ān. Consider

the summands in H̄�k
r+1 without Di’s and let H̄

�k;0
r+1 denote their sum. Tracing back the

definition of Tv
�k(z), we get H̄

�k;0
r+1 = σr({w−2

j }): the r-th elementary symmetric polynomial

of {w−2
j }n

j=1.

Thus, the image of H̄�k
r+1 under the anti-isomorphism Ān → Dv(Had

sln
) of

Section 3.9 is an element of D≤
v (Had

sln
) whose action on Wλ (see Appendix B) is

upper-triangular with the same diagonal matrix coefficients as in the action of

Dr ∈ T (ε±,n±, c±). Thus, the argument of Proposition B.1 can be applied to show that

the function F of part (a), which conjugates H(ε±,n±, c±) into H̄�k
2 also conjugates the

preimage of Dr in Ān into H̄�k
r+1 for all 1 ≤ r ≤ n. Therefore, conjugation with F is an

automorphism of Ān that maps T̃ (ε±,n±, c±) to T �k.

This completes our proof of Theorem 3.24. �
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