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Abstract We introduce the shifted quantum affine algebras. They map homomor-
phically into the quantized K -theoretic Coulomb branches of 3d N = 4 SUSY
quiver gauge theories. In type A, they are endowed with a coproduct, and they act on
the equivariant K -theory of parabolic Laumon spaces. In type A1, they are closely
related to the type A open relativistic quantum Toda system.
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1 Introduction

1.1 Summary

The goal of this paper is to initiate the study of shifted quantum affine algebras'
and shifted v-Yangians. They arise as a tool to write down via generators and

IThey were introduced by B. Feigin in 2010.
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relations the quantized K -theoretic Coulomb branches of 3d N = 4 SUSY quiver
gauge theories (see [10, Remark 3.9(2)]), similarly to the appearance of shifted
Yangians in the study of the quantized Coulomb branches of 3d N = 4 SUSY
quiver gauge theories [10].% Similarly to [24], the shifted quantum affine algebras
carry a coproduct, see Sect. 10 for partial results in this direction. The multiplicative
analogue of the construction [4] equips the equivariant K-theory of parabolic
Laumon spaces with an action of the quantized K -theoretic Coulomb branch for
a type A quiver, and hence with an action of a shifted quantum affine algebra of
type A. Similarly to [24], the unframed case of type A quiver is closely related to
the open relativistic quantum Toda system of type A.

1.2 Outline of the Paper

e In Sect. 2, we give a construction of the completed phase space of the (quasiclas-
sical) relativistic open Toda system for arbitrary simply-connected semisimple
algebraic group G via quasihamiltonian and Poisson reductions. It is a direct mul-
tiplicative analogue of the Kazhdan—Kostant construction of the (nonrelativistic)
open Toda integrable system. We want to stress right away that it depends on a
choice of a pair of Coxeter elements in the Weyl group W of G, via a choice of
Steinberg’s cross-section.” In the case when the two Coxeter elements coincide,
the resulting completed phase space is isomorphic to the universal centralizer 38,
see Sect.2.3. In the case G = SL(n), the universal centralizer is isomorphic to a
natural n-fold cover of the moduli space of centered periodic SU (2)-monopoles
of charge n, see Corollary 2.6.

» The conjectural quantization of the above construction of the completed phase
space of the relativistic open Toda is described in Sect.3.12. We conjecture
that it is isomorphic to the corresponding spherical symmetric nil-DAHA which
is realized as an equivariant K-theory of a twisted affine Grassmannian, i.e.
as a sort of twisted quantized Coulomb branch (the twist is necessary in the
case of non-simply-laced G). The bulk of Sect. 3 is occupied by the review of
Cherednik’s definition of symmetric nil-DAHA, its residue construction, and its
realization as the equivariant K-theory of a twisted affine flag variety. In the
simply-laced case no twist is required, and the spherical nil-DAHA in question
is isomorphic to the convolution algebra K G(O)xC* (Grg) up to some finite
extension. This convolution algebra is defined for arbitrary reductive G. In
case G = GL(n), this convolution algebra is likely to have a presentation
via generators and relations (as a truncated shifted quantum affine algebra of
type A1), see Sect. 9. From this presentation and Proposition 11.21 we obtain a
homomorphism K% (O*C*(Grg) — KLO*C*(Grp) for any Levi subgroup

2We must admit right away that we were not able to prove the desired presentation of the quantized
Coulomb branch for a single quiver.

3The appearance of Coxeter elements in the construction of relativistic Toda lattice goes back at
least to [60].
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L C G = GL(n). We conjecture an existence of such a homomorphism
for arbitrary Levi subgroup L in arbitrary reductive group G, but we have
no clue as to a geometric construction of such a homomorphism. It would be
important for a study of equivariant quantum K -theory of the flag variety B of
G. Its analogue for the equivariant Borel-Moore homology convolution algebra
HEOXC (Grg) — HEO*C(Grp) is constructed in [24]. However, the
construction is not geometric; it uses an isomorphism with the quantum open
(nonrelativistic) Toda lattice.

e Recall that for an arbitrary 3d N = 4 SUSY quiver gauge theory of type
ADE, the non-quantized K -theoretic Coulomb branch is identified with a
multiplicative generalized slice in the corresponding affine Grassmannian [10,
Remarks 3.9(2), 3.17]. These multiplicative slices are studied in detail in Sect. 4
(in the unframed case, they were studied in detail in [25]). In particular, they
embed into the loop group G(z), and it is likely that the image coincides
with the space of scattering matrices of singular periodic monopoles [14]. The
multiplication in the loop group gives rise to the multiplication of slices, which
is conjecturally quantized by the coproduct of the corresponding shifted quantum
affine algebras.

e In Sect. 5, we introduce the shifted quantum affine algebras UZCJr _ and U2, -
(simply-connected and adjoint versions, respectively) for any simple Lie aféébra
g and its two coweights u, ™ (these algebras depend only on = ™t + ™
up to an isomorphism). For u* = u~ = 0, they are central extensions of the
standard quantum loop algebra U, (Lg) and its adjoint version U{j‘d(L 9). These
algebras can be viewed as trigonometric versions of the shifted Yangians Y,
see [10, 24, 45].

An alternative (but equivalent) definition of u;fﬂu* was suggested to us
by B. Feigin in Spring 2010 in an attempt to generalize the results of [7]
to the K-theoretic setting (which is the subject of Sect.12 of the present
paper). In this approach, we consider an algebra with the same generators
and defining relations as Uy(Lg) in the new Drinfeld realization with just
one modification: the relation [e;(z), fj(w)] = % (wlf"(z) - 1//i_(z)) is
replaced by p; (2)[e; (2), fj(w)] = % (¥ (z) — ¥ (2)) for any collection
of rational functions {p;(z)}ics (here I l parametrizes the set of vertices of the
Dynkin diagram of g). For g = sl and ™ = u~ € —N, the algebra utfmr
appeared in [18, §5.2].

We also provide an alternative presentation of the antidominantly shifted
quantum affine algebras with a finite number of generators and defining relations,
see Theorem 5.5 and Appendix A for its proof. We note that this result (and its
proof) also holds for any affine Lie algebra, except for type Agl). In the unshifted
case, more precisely for U, (Lg), it can be viewed as a v-version of the famous
Levendorskii presentation of the Yangian Y (g), see [47]. Motivated by Guay et al.
[33], we also provide a slight modification of this presentation in Theorem A.3.

+ In Sect. 6, we introduce other generators of U4 u which can be encoded by the

generating series {Al.i(z), Bl.jE (2), CijE (2), DijE (2)}ier- We provide a complete list
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of the defining relations between these generators for antidominant u*, u= €
A~ (we use A~ to denote the submonoid of the coweight lattice A spanned by
antidominant coweights), see Theorem 6.6 and Appendix B for its proof. This
should be viewed as a shifted v-version of the corresponding construction for
Yangians of [30]. We note that while some of the relations were established
(without a proof) in loc. cit., the authors did not aim at providing a complete list
of the defining relations. However, a rational analogue of Theorem 6.6 provides
such a list.

We would like to point out that this is one of the few places where it is essential
to work with the adjoint version. In the simplest case, that is of U,'j‘d (Lsly), these
generating series coincide with the entries of the matrices 7% (z) from the RTT
realization of Uf}d(Ls[z), see [17] and our discussion in Sect. 11.4.

e In Sect. 7, we construct homomorphisms

XA, grad +1 +1 T +1 +1
Py uo)ﬂ[zl voen Zy > Agelzy . Zy ]

from the adjoint version of shifted quantum affine algebras to the
(C(v)[zfl, ol Zil]—algebras A;’rac[zfl, el Zil] of difference operators on
multidimensional tori, see Theorem 7.1 and Appendix C for its proof. Here
A = (wj, ..., w;y) is a sequence of fundamental coweights, such that 1 — u
is a sum of simple coroots with coefficients in N, where A := Zi\’: | @i, This
result can be viewed as a v-version of the corresponding construction for shifted
Yangians of [10, Theorem B.15], while the unshifted case of it, more precisely
the case of U, (Lg), appeared (without a proof) in [31]. For g = slp, N = 0and
antidominant shift, the above homomorphism made its first appearance in [18,
Section 6].

e In Sect.8, we consider the quantized K-theoretic Coulomb branch A’ in
the particular case of quiver gauge theories of ADE type (a straightforward
generalization of the constructions of [9, 10], with the equivariant Borel-
Moore homology replaced by the equivariant K-theory). There is a natural
embedding z*(1,) "' AY — fl"[zfl, ceey Zﬁl]. In Theorem 8.1, we show that
our homomorphism CTD%L of Sect.7 factors through the above embedding (with
C[v*!] extended to C(v)), giving rise to a homomorphism

B . qqad £l +1 v
D Up Mz Zy 1 — Afge

This is a v-version of the corresponding result for shifted Yangians of [10,
Theorem B.18].
In Sect.8.3, we add certain truncation relations to the relations defining

. . X
US‘L [Zfl, ey Zﬁl] to obtain the truncated shifted quantum affine algebras Uy

such that the homomorphism 5% factors through the projection and the same
=X

: ad 1%l +1 L P g
named homomorphism 11()#[21 veenZy ] Uy —> Ap

Tk v - : :
®y Uy — Ag,. 1s an isomorphism, see Conjecture 8.9.

We expect that
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In Sect.8.4, we define the shifted v-Yangians i‘d;[zfl, R Zﬁl] C
ugdu [Zli], R Zil] and their truncated quotients .’z}ﬁ C U,ﬁ. We conjecture that

=L . yk v . . .
Dy {Ju — Af,. 1s an isomorphism, see Conjecture 8.13.

One of our biggest failures is the failure to define the integral forms QJ% C ild%
and il% C Ui”j over C[v*!] ¢ C(v) that would (at least conjecturally) map
isomorphically onto A C Ag, .. Only in the case of g = sl,, making use of
the ABC D-generators of Sect. 6, we are able to introduce the desired integral
form in Sect. 9.1 (see also [29] for the integral forms for g = sl,,). It is worth
noting that for arbitrary simply-laced g and any i € I, the images under 5;‘; of
the generators B;rr and ¢; , (resp. C:’ . and f; ;) are the classes of dual exceptional
collections of vector bundles on the corresponding minuscule Schubert varieties
in the affine Grassmannian, see Remark 8.4.

The desired integral forms @% and ilﬁ are expected to be quantizations of a

certain cover 1\7\7%; of a multiplicative slice introduced in Sect. 4.6, see Conjec-
ture 8.14. Here : stands for the involution u +— —wou of the coweight lattice A.
e In Sect.9, we prove the surjectivity of the homomorphism 5(1,“1 in the simplest
case of g = sl and antidominant shifts, see Theorem 9.2. This identifies
the slightly localized and extended quantized K-theoretic Coulomb branch

KI(O;CL (,0)C* (Grgrn)) with a quotient of the localized version of the trun-

cated shifted quantum affine algebra u‘im,loc (where (?Z(n) and C* stand
for the two-fold covers of GL(n), C*; while the localization is obtained by

inverting 1 — v2", 1 < m < n). We reduce the proof of the isomorphism
0 ~ GL(n,0)xC*
uﬂla,loc Kloc
tum resultants in U°,,
describe explicitly a basis of 4l

K SCL (. 0)xC* (Grgr(n)) formed by the classes of irreducible equivariant perverse

coherent sheaves [8].

e In Sect. 10, we discuss generalizations of the classical coproducts on U, (Lg) to
the shifted setting. We start by considering the simplest case g = sl,. We will
denote Ugy',, P simply by Up’, (here b € Z and « is the simple positive coroot).
We construct homomorphisms

(Grgr(ny) to a verification of an identity with quan-
see Remarks 9.6, and 9.12. It would be interesting to

Qna loc Projecting to the “canonical” basis of

. SC SC SC
Apy by Uy, — Ugp,, @ Ugp,

for any b1, by € Z, which recover the classical Drinfeld-Jimbo coproduct for
by = by = 0. Our construction is parallel to the one for shifted Yangians
of [24] and proceeds in two steps. First, we define such homomorphisms in the
antidominant case by, by € Z<, see Theorem 10.5 and Appendix D for its proof.
The proof is crucially based on the aforementioned alternative presentation of the
antidominantly shifted quantum affine algebras with a finite number of generators
and defining relations of Theorem 5.5. Second, we use the algebra embeddings
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Limymy U(an — Uf)fn+m]+m2 (here my, my < 0) to reduce the general case to
the antidominant one, see Theorem 10.10 and Appendix F for its proof. We note
that our proof of injectivity of the shift homomorphisms t, m, m, is based on the
PBW property of the shifted quantum affine algebras of sl,, see Lemma 10.9 and
Theorem E.2 of Appendix E.

In Sects. 10.6 and 10.7, we generalize the aforementioned case of sl to the
case of sl, (n > 2). The idea is again to treat first the case of antidominant
shifts and then deduce the general case. To achieve the former goal, it is essential
to have explicit formulas for the action of the Drinfeld-Jimbo coproduct on the
generators {e; _1, fi.1, hi +1}ier of Uy(Lsl,). This is the key technical result,
stated in Theorem 10.13 and proved in Appendix G. Once this is established,
it is easy to guess the formulas for the homomorphism A, ., : UBC,M i
u;‘f L ® Uff 1 in the case w1, 2 € A~ (antidominant), see Theorem 10.16 and
its proof in Appendix H. In Theorem 10.20 we derive the construction of A, i,
for general w1, up € A by utilizing the algebra embeddings ¢, v, v, : ut“f W
ugfwvm for w € A,vi,v» € A7, see Theorem 10.19 and its proof in
Appendix I (the latter is based on the shuffle realization of U, (Lsl,) of [53, 63]).

Motivated by Finkelberg et al. [24], we expect that our construction of
homomorphisms A, ,, can be generalized to any simply-laced g and its
two coweights w1, u2 € A. However, we failed to achieve this due to a
lack of explicit formulas for the Drinfeld-Jimbo coproduct of the generators
{ei—1, fi.1, hi+1}ier of Uy(Lg) (even for g = sl,, the formulas of Theo-
rem 10.13 seem to be new, to our surprise).

Moreover, we expect that this coproduct extends to

ad . qad +1 +1 ad +1 +1 ad +1 +1
AM’M. uO,u+uz[Zl ..... zN1+N2] — 110#1[21 ..... le] <g>uo’m[leJrl ,,,,, zN1+N2],
hich descends to th dh hismAx 1 Lk g

which descends to the same named homomorphism Ay oo W, o) Wi

©
U,Ajz between truncated algebras, see Conjecture 11.22. We check a particular

case of this conjecture for g = sl in Proposition 11.21, using the RTT realization
of ug‘j‘zb of Theorem 11.11.

e In Sect. 11, we discuss relativistic/trigonometric Lax matrices, the shifted RTT
algebras of sl and their relation to the shifted quantum affine algebras of sls.
This yields a link between two seemingly different appearances of the RTT
relations (both trigonometric and rational).

In Sect. 11.2, we recall the Kuznetsov-Tsyganov [43] local relativistic Lax
matrix L;”O(z) satisfying the trigonometric RTT-relation. The complete mon-
odromy matrix Tnv’o(z) = Lf,’o(z) e L'f’o(z) also satisfies the same relation, and

its matrix coefficient Tnv’o(z) 11 encodes all the hamiltonians of the g-difference
quantum open Toda lattice for GL(n) [19, 56].

We introduce two more local Lax matrices L;’il(z) satisfying the same
trigonometric RTT-relation. They give rise to the plethora of 3" complete
monodromy matrices T]z" (2), ke {—1,0, 1}", given by the length n products of
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the three local Lax matrices in arbitrary order. The matrix coefficient le" @11
encodes the hamiltonians of the corresponding modified quantum difference
Toda lattice; the quadratic hamiltonians are given by the formula (11.8). At
the quasiclassical level, these integrable systems go back to [21]. We show that
among these 3" integrable systems there are no more than 3”2 nonequivalent,
see Lemma 11.6. It is shown in [35] that they are all obtained by the construction
of [56] using arbitrary pairs of orientations of the A,_; Dynkin diagram,
see Remark 11.7.

In Sect. 11.4, we introduce the shifted RTT algebras of sl, denoted by U _,,,

and construct isomorphisms Yo 2, : US‘LZ . - ug}fz , for any n € N, see
Theorem 11.8 and Theorem 11.11. For n = 0, this recovers the isomorphism
of the new Drinfeld and the RTT realizations of the quantum loop algebra
Uf}d(lez), due to [17]. We also identify the ABCD generators of ugf[z 0

of Sect. 6 with the generators of ug}_z,l, see Corollary 11.10.

Viewing the Lax matrix L'])’_l(z) as a homomorphism from ug}fz to
the algebra of difference operators on C* and composing it with Yo _»,
we recover the homomorphism 5‘12 of Sect.7. More generally, among all
pairwise isomorphic shifted algebras {UZ?—Z—bw € Z} only those with
b,—2 — b < 0 admit an RTT realization, i.e., there are analogous iso-
morphisms Yy _2_p: u%"i_z_ p—> U‘,;[f_z_ »- Moreover, recasting the homomor-
phisms EIV)b,_z_b (generalizations of 5‘12 for b = 0) as the homomorphisms
wp',_, — fl’l’, we recover the other two Lax matrices L'f’o(z) (for b = —1)
and LV (2) (for b = —2).

Finally, we use the RTT presentation of Uf,‘d(Ls [>) to derive explicit formulas
for the action of the Drinfeld-Jimbo coproduct on the Drinfeld half-currents,
see Proposition 11.18 and Appendix J for its proof. We also show that the
same formulas hold in the antidominantly shifted setting for the homomorphisms
Ap, b, see Proposition 11.19. As a consequence of the latter, the homomorphism
Ag‘iinlbz is intertwined with the RTT coproduct Aglt;|,2h2’ see Corollary 11.20,
which is used to prove the aforementioned Proposition 11.21 on the descent of
Ag‘})] .2, 10 the truncated versions.

e In Sect. 12, we provide yet another geometric realization of the shifted quantum
affine algebras (resp. shifted Yangians) of sl,, via the parabolic Laumon spaces.

Roughly speaking, this arises by combining our homomorphism 5% of Sect. 8

(resp. 5;‘7 of [10, Theorem B.18]) with an action of the quantized K -theoretic
(resp. cohomological) Coulomb branch A . on the localized equivariant K-
theory (resp. cohomology) of parabolic Laumon spaces, constructed in [4], see
Remark 12.3(c).

For any 7 = (pi1,...,pn) € ZZ,, we construct an action of u(sfu,
the simply-connected shifted quantum affine algebra of sl,, with the shift
n o= Z’};}(p j+1 — pj)wj, on M(s): the direct sum of localized equivariant
K-theory of £y, see Theorem 12.2. Here £, is the type 7w Laumon based



140 M. Finkelberg and A. Tsymbaliuk

parabolic quasiflags’ space, which we recall in Sect. 12.1. In Theorem 12.6,
we slightly generalize this by constructing an action of the shifted quantum
affine algebra of gl, (defined in Sect.12.7) on M (x). In Theorem 12.4, we
establish an isomorphism M (7') ® M(x") —> M (x) (here 1 = ' + 7”) of
ugf u -modules, where the action on the source arises from the formal coproduct

A: ity u ugf @Uffu,,, constructed in Sect. 10.1 (an analogue of the Drinfeld
formal coproduct on U, (Lg)).

The rational counterpart of these results is established in Theorem 12.7, where
we construct an action of Hz (the shifted Yangian of sl,, with scalars extended
to C(h)) on V(xr): the sum of localized equivariant cohomology of 4. The
dominant case (p; < ... < p,) of this result was treated in [7], where the
proof was deduced from the Gelfand-Tsetlin formulas of [27]. In contrast, our
straightforward proof is valid for any r and, thus, gives an alternative proof of the
above Gelfand-Tsetlin formulas. We also propose a v-analogue of the Gelfand-
Tsetlin formulas of [27], see Proposition 12.8.

Our construction can be also naturally generalized to provide the actions of
the shifted quantum toroidal (resp. affine Yangian) algebras of sl,, on the sum
of localized equivariant K-theory (resp. cohomology) of the parabolic affine
Laumon spaces, see Sect. 12.9.

In Sect. 12.10, we introduce the Whittaker vectors in the completions of M (7)
and V (7):

mi= Y [0g,] € M(m)" andv:= Y [Q] € V(7)".
d d

This name is motivated by their eigenvector properties of Proposition 12.11,
Remark 12.12(c).

Motivated by the work of Brundan-Kleshchev, see [12], we expect that the
truncated shifted quantum affine algebras Ugw”‘] of sl, should be v-analogues
of the finite W-algebras W (sly, ex), see [57], where N := > p; and e, € sly
is a nilpotent element of Jordan type 7.

2 Relativistic Open Toda Lattice

2.1 Quasihamiltonian Reduction

Let G D B D T be a reductive group with a Borel and Cartan subgroups. Let
T C B_ C G be the opposite Borel subgroup; let U (resp. U_) be the unipotent
radical of B (resp. B_). We consider the double D(G) = G x G (see, e.g., [2, §3.2])
equipped with an action of G x G: (u1, u2) - (g1, 82) = (ulgluz_l, uzggugl), and
with a moment map ju = (111, t2): D(G) — G x G, (g1, &) = (818287 ' 85
(see [2, Remark 3.2]). The double D(G) carries a (non-closed) 2-form wp =
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%(Adg2 g0, 7o) + %(g]“@, g50 + g;@) whefe (-, -) is a nondegenerate invariant
symmetric bilinear form on g, and 0 (resp. 0) is the left- (resp. right-) invariant
Maurer—Cartan form on G.

We choose a pair of Coxeter elements ¢,c’ € W = Ng(T)/T, and their
representatives ¢, ¢’ € Ng(T). Steinberg’s cross-section Eg C G is defined as
Z%(G) - (U_¢ N ¢U). If G is semisimple simply-connected, then the composed
morphism Eg <~ G — GJAdg = T/W is an isomorphism [58, Theorem 1.4].
For arbitrary G, the composed morphism o: EéG — T/W is a ramified Galois
cover with Galois group 71 (G/ 7%(G)). Furthermore, we consider ECG = Z%G) -
U_¢cU_ D Eg. According to [58, § 8.9] (for a proof, see, e.g., [39]), EéG meets any
U_-orbit (with respect to the conjugation action) on ECG in exactly one point, and
the conjugation action of U_ on ECG is free, so that Eg /Ady_ ~ Eg.

For example, according to [58, Example 7.4b)], for an appropriate choice of
¢, the Steinberg cross-section E§ L) consists of the matrices with 1’s just above

the main diagonal, (—1)"’1 in the bottom left corner, arbitrary entries elsewhere
in the first column, and zeros everywhere else (in our conventions, B (resp. B_)
is the subgroup of upper triangular (resp. lower triangular) matrices in SL(n)).
Hence Eg Lin) consists of matrices with 1’s just above the main diagonal, and zeros
everywhere above that.

Following [26], we define the phase space of the open relativistic Toda lattice as
the quasihamiltonian reduction T3"/"'(G) = M’I(Eg X il’lV(ECé)) /U_ x U_ where
inv: G — G is the inversion g > g~!. The composed projection

N (BS x inv(ES)) — inv(ES) > G — GJAdg = T/W

gives rise to an integrable system @ : 3¢.¢(G) — T /W which factors through
3G) 5 58 L T/W.

Lemma 2.1 [f G is semisimple simply-connected, then TSC/"'(G) is smooth, and wp
gives rise to a symplectic form on 3¢ ¢(G).

Proof The morphism ECG — ZéG = T /W is smooth by [58, Theorem 1.5], so the

y , PR
fibered product E; x7/w Ef; C Eg X B is smooth. But

g PR g
uw: D(G) D M_I(ECG x inv(Eg)) — Bg x inv(Ey) ~ By x Ej

is a submersion onto Eg XT/W E%, hence M = ,u_l(Eg X inV(E’é)) is smooth,
and its quotient modulo the free action of U_ x U_ is smooth as well.

The restriction of wp to M is U_ x U_-invariant, so it descends to a 2-form w on
3¢.¢(G). This 2-form is closed since the differential dwp = —u*(x1 + x2) (see [2,
Definition 2.2(B1)]) where y = é(@, [6, 0]) is the canonical closed biinvariant 3-
form on G, and x; (resp. x2) is its pull-back from the first (resp. second) copy of G.
But the restriction X|Eg vanishes identically since (b_, [b_, b_]) = 0.
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It remains to check the nondegeneracy of w, that is given (g, g2) € M to check
that Kerwp|a(g1, g2) is contained in the span v(n_ @ n_) of tangent vectors at
(g1, g2) arising from the action of U_ x U_. The argument in the proof of [2,
Theorem 5.1] shows that Kerwp|y (g1, g2) C v(g @ g). However, it is clear that
Tg1, oM Nv(@®g) = v(n- dn_).

The lemma is proved. O

2.2 Poisson Reduction

Note that T - ECG = E‘E; -T = AdT(Eg) = B_ -¢- B_ =: C, (a Coxeter Bruhat
cell). One can check that the natural morphism

3¢¢G) = uN(EE x inv(ES))/U- x U — u~'(Cp x inv(C,))/B_ x B_

is an isomorphism. Moreover, the action of B_ x B_ on w1 (Cy x inv(C,)) factors
through the free action of (B_ x B_)/A 7(¢): the quotient modulo the diagonal copy
of the center of G.

The double D(G) = G x G carries the Semenov-Tian-Shansky Poisson
structure [59, Section 2]. Following loc. cit., G x G with this Poisson structure
is denoted by (D4+(G), {,}+), the Heisenberg double. Another Poisson structure
on G x G denoted {,}_ in loc. cit. is the Drinfeld double D_(G). The diagonal
embedding G — D_(G) is Poisson with respect to the standard Poisson structure
on G denoted 7 in [20, § 2.1]. The dual (Semenov-Tian-Shansky) Poisson structure
on G is denoted v in [20, § 2.2].

The Heisenberg double D (G) is equipped with two commuting (left and
right) dressing Poisson actions of the Drinfeld double D_(G). Restricting to the
diagonal G — D_(G) we obtain two commuting Poisson actions of (G, wg) on
D (G). The multiplicative moment map of this action is nothing but u: D4 (G) —
(G, ) x (G, ) of Sect. 2.1 (a Poisson morphism). Now C. C G is a coisotropic
subvariety [20, § 6.2] of (G, 7), and w(Cy x inv(C,)) — D(G)isa coisotropic
subvariety of (D1 (G), {,}+). The action of G x G on (D4 (G), {,}+) is Poisson
if G x G is equipped with the direct product of the standard Poisson-Lie structures
denoted 7 in [20, § 2.1]. Note that B_ x B_ C G x G is a Poisson-Lie subgroup;
its Poisson structure will be denoted 7 X mp .

The characteristic distribution [20, § 6.2] of the coisotropic subvariety w1 (Cox
inv(C.)) C (D4+(G), {,}+) coincides with the distribution defined by the tangent
spaces to the B_ x B_-orbits in wN(Cy x inv(C,)). By [20, Proposition 6.7] we
obtain a Poisson structure on u~'(Co x inv(C,))/(B_ x B_) ~ T3",’°'(G). This
Poisson structure coincides with the one arising from the symplectic form » on
346,
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2.3 The Universal Centralizer

Recall that the universal centralizer [49, Section §] Bg Cc G x Eg is defined as
3G = {(g,x) : gxg7! = x}. Incase ¢ = ¢’ and ¢ = ¢/, we have an evident
embedding Bg = ,u,_l(EE; x inv(Eg;)), and the composed morphism 7: 58 <
n~HES x inv(E)) — 739¢(G). Clearly, the following diagram commutes:

36— 3°(@)

bl
=G

¢
EG

Proposition 2.2 For semisimple simply-connected G, the morphism 1n: Sg —
3:¢(G) is an isomorphism.
Proof First we prove the surjectivity of 7. We use the equality U~ x U- =
(U~ x {e}) x Ay_. Given (g1, g2) € ,u,_l(E“G X inv(Ef'S)) we first act by
(uz,uz) € Ay_: (g1, 82) — (uzgluz_l, uzgzuz_l). We can find a unique u; such
that uzgzuz_l € Eg. Let us denote the resulting (uzgluz_l, uzgzuz_l) by (hy, hy)
for brevity. Now we act by the left shift 421 +— wuih; which takes hlhzhl_l to
ulhlhzhl_lul_l. We can find a unique u such that ulhlhghl_lul_l S Eg. Now both
hy = uzgzugl and ulhlhzhflufl are in E‘G Being conjugate they must coincide,
hence (uhy, hs) € 3.

Now if (g, x) = n(g’, x’), then there is u; € U_ such that uzxuz_l = x/, hence
x =x"and up = e. Then ¢’ = u; g for some u; € U_, and both g and g’ commute
with x, hence ulxul_l = x, hence u; = e, sothat g = g’

So 7 is bijective at the level of C-points. But JB""'(G) is smooth, hence 7 is an
isomorphism. O

Remark 2.3 For arbitrary reductive G the morphism 7 is an affine embedding, but
it fails to be surjective already for G = PGL(2) where the class of (g1, g2) such

that g = (clz _01) and glgzgl_l = <—1a _01> does not lie in the image of n when

a # 0. Similarly, for G = GL(2), the class of (g1, g) such that g, = (clz —Ol> and

g1 gzgl_1 = ( al é) does not lie in the image of 7. It also follows that the natural
projection 3%¢(SL(2)) — 3%¢(PGL(2)) is not surjective.

Remark 2.4 For G semisimple simply-connected, the reduction

(D(G), wp(c)) [ diag(G)

[2, Example 6.1, Remark 6.2] inherits a symplectic structure on its nonsingular
locus. We have a natural morphism Bg — (D(G), wp(c)) /diag(G) which is a
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birational isomorphism (but not an isomorphism: e.g., it contracts the centralizer
of a regular unipotent element). Thus an open subvariety of Sg is equipped with a
symplectic form pulled back from (D(G), wp(c)) /diag(G). This form extends to a
symplectic form on the entire Sg [8, § 2.4]. The isomorphism 7: Bg =5 130.¢(G)
is a symplectomorphism.

2.4 Comparison with the Coxeter—Toda Lattice

We compare ’B‘J’C (G) with the construction of [38]. Throughout this section we
assume G to be semisimple simply-connected. The left action of the center Z(G)
on D(G), & -(g1,g) = (g1, g2) gives rise to the action of Z(G) on 7LSC,*C(G) =
M/U_ x U_ where M = M_I(Eéc/ X inv(E%)) C D(G) = G x G. We consider
an open subset M D M= (U= -T -wp-U- x G) N M given by the condition
that g; lies in the big Bruhat cell C,,, C G. Clearly, M C M is U_ x U_-invariant,
and we define T:.’)C/*C(G) = ]l./I/ U_ x U_, an open subvariety of T30/'C(G). Let
S C M be given by the condition g € T - wp. Then the composed projection
S < M — TBC/’C(G) is an isomorphism. Moreover, the projection pry: S — G is
a Z(G)-torsor over its image £ N Adr (woESwy ") = L N Adr (Uiboc'ig ' U).
Finally, note that the composed projection

EG N Ad7 (Uibgc/ g 'U) = T-U_-¢-U—_-TNT -U ¢y -U-T —
S (T-U_-¢-U_-TNT U -ibgéig" - U - T)/Ady =: G“0¢% ' Ady

is an isomorphism. But according to [38] (see also [34]), Gé”boé,wgl/AdT is the
phase space of the Coxeter—Toda lattice. All in all, we obtain an isomorphism
(respecting the symplectic structures) Z (G)\TBC/’C =5 GEbociy l /Adr.

For example, for an appropriate choice of ¢, ¢’ € SL(n), the slice S is formed by
all the tridiagonal matrices of determinant 1 with 1’s just above the main diagonal,
and with the invertible entries just below the main diagonal (see [34, Introduction]).

We also define an open subset S D S = {(g1,82) €M : g1 €T -wy, g €
U_-T-U}. Itis equipped with a projection pr; : ST wo — T, and with another
projection pr, : S — U_-T-U — T.One can check that (pry, prp): ST xT.
We define an open subvariety T:’)C/’C(G) D T:.’70/'0(G) D T,%C/’”(G) as the isomorphic
image of 3. Thus Tgc/"‘(G) ~TxT.

2.5 Trigonometric Zastava for SL(2)

Recall the degree n trigonometric open zastava 77 for the group SL(2) (see [25]).
This is the moduli space of pairs of relatively prime polynomials (Q = z" +
g1 '+ 4 qu, R=rZ"" 4+ "2+ ... +r,) such that g, # 0. We have a
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morphism ¢ : Sgligg — izn taking a pair (g, x) € Bgi% to (Q, R) where Q is the

characteristic polynomial of x, and R is a unique polynomial of degree less than n
such that R(x) = g. We denote by pr: AN (C*)™ the morphism taking (Q, R)
to the set of roots of Q. . _

Recall that =¢, = Z%(GL(n)) - £, ) = Z(GL(n) x ;) = C* x
EgL(n). We denote by p: Bgfgg — C* the composed projection Bgﬁz; —
Eg Ly C*.

Proposition 2.5 The following square is Cartesian:
sgégn) <, igm

n)

Pl

Cx n Cc*

Thus 3g£$; is an unramified 7./ nZ-cover ofT%”.

Proof Clear from the above discussion. O

Following [1, end of chapter 2], we consider the subvariety TZ’f < 17" formed
by the pairs (Q, R) such that g, = 1 and the resultant of Q and R, denoted

Result(Q, R), equals 1. Note that we have an evident embedding 3?222; s 32222;
. . SL(n) GL(n) . .
Corollary 2.6 The restriction of the morphism ¢ to 3 L) C 3a Lin) 8ives rise to

an isomorphism ¢ : 3?2% = 7Zn.

Proof For (g, x) € BglL‘EZ;, the inclusion x € SL(n) is equivalent to g, = 1, while
we claim that the inclusion g € SL(n) is equivalent to Result(Q, R) = 1. The latter
follows by combining the equalities gx = xg and g = R(x) with the standard
equality Result(Q, R) = [];_; R(§;), where {&}7_, are the roots of Q. Since
{&}!_, are the generalized eigenvalues (taken with corresponding multiplicities)
of x, it is easy to see that {R(&;)}7_, are the generalized eigenvalues of g, hence,

det(g) = [T/_; R(&). .

For a future use we define an unramified Z/2Z-cover 2" — 2" where 2" is
the moduli space of pairs of relatively prime polynomials (Q = qoz" + ¢12" ' +
oot qgn, R=r1z" ' 4rz"24+. .. +r,) suchthat g, - go = (—1)". The projection
f2" — 17" takes (Q, R) to (¢5 ' Q, R).

Finally, there are important embeddings W': izn, iZn < SL(2,Clz]) taking

(Q, R) to a unique matrix (% g) such that deg R<n> deg Q and R(O) =0,
that is R = 7oz + A1z" ' + ... + Fiz. Identifying 77 and 2" with their

images inside SL (2, C[z]), the matrix multiplication gives rise to the multiplication
morphisms T2k x 121 — 1Zk+ 17k x 171 _ 17K+,
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3 Quantum Relativistic Open Toda and Nil-DAHA

Throughout this section (with the exception of Sect. 3.11 dealing with G = GL(n))
G is an almost simple simply-connected complex algebraic group.

3.1 Root Systems and Foldings

Let GV be the Langlands dual (adjoint) group with a Cartan torus 7. We choose a
Borel subgroup BY D TV. It defines the set of simple positive roots {c;, i € I}. Let
g" be the Lie algebra of G¥. We realize gV as a folding of a simple simply-laced Lie
algebra g'V, i.e. as invariants of an outer automorphism o of g’¥ preserving a Cartan
subalgebra 'V C g’V and acting on the root system of (g’V, t'"). In particular, o
gives rise to the same named automorphism of the Langlands dual Lie algebras
g’ D t (note that say, if g is of type By, then g’ is of type Ay,_1, while if g is of
type Cp, then g is of type D,1; in particular, g ¢ g’). We choose a o-invariant
Borel subalgebra t' C b’ C ¢ such that b = (b)?. The corresponding set of
simple roots is denoted by I’. We denote by E the finite cyclic group generated
by o, and d := |E|. Let G’ D T’ denote the corresponding simply-connected Lie
group and its Cartan torus. The coinvariants X,(T'), of o on the coroot lattice
X«(T") of (g',t) coincide with the root lattice of g¥. We have an injective map
a: X«(T"e — X,(T")° from coinvariants to invariants defined as follows: given
a coinvariant o with a representative & € X, (T") we set a(a) := Zses E(@).

To compare with the notations of [36, § 4.4, Remark 4.5], we are in the symmetric
case with Q) = Y 1= X*(T") = X4(T) = X+«(T)y,and Qo C X = X*(T"),
generated by the classes of simple roots of 77 C B’ C G'. Note that Q| is
generated by the classes of simple coroots of 7/ C B’ C G’, and we have a
canonical identification Qo9 = Qj sending a coroot & to the corresponding root
&@'. The Weyl group W of G D T coincides with the invariants (W')° of o
on the Weyl group W' of G’ D T’ (our W is denoted Wy in [36]). The W-
invariant pairing X x Y — Q defined in [36, §4.4] is actually integer valued:
X xY — 7Z,sothat m = 1 (notations of loc. cit.). To compare with notations
of [13, Section 1], P := X, Q := Qp, and the natural pairing P x P — Q
gives rise to the embedding Q = Y — P. We will also need an extended lattice
Yad = X4(Taa) = X«(T}3)s D Y. Note that IT := Yaq/Y = (X«(T,5)/ X+(T"))o.
Also note that the above W-invariant identification Q¢ = Q6 extends to the W-
invariant identification Qg C X = Y9 D QZ). The extended pairing X x Y,q — Qs
no more integer valued in general, and we denote by m,q the maximal denominator
appearing in the values of this pairing. Finally, R C X stands for the set of roots.
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3.2 Affine Flags

We fix a primitive root of unity ¢ of order d = ord(c). We set X = C((t)) D

= C[[t]]. The group ind-scheme G’(X) is equipped with an automorphism ¢
defined as the composition of two automorphisms: a) o on G’; b) t > ¢t. This
automorphism preserves the Iwahori subgroup I' C G'(X). We denote by F¢ the
twisted affine flag space G’(K)S /(I')¢: an ind-proper ind-scheme of ind-finite type,
see [55]. We denote by u C Lie(I')S its pronilpotent radical. The trivial (Tate)
bundle g'(X)¢ with the fiber g’ (X)S over F¢ has a structure of an ind-scheme. It
contains a profinite dimensional vector subbundle u whose fiber over a point b € F¢
represented by a compact subalgebra in g’(X)¢ is the pronilpotent radical of this
subalgebra. The trivial vector bundle g’ (X)$ also contains a trivial vector subbundle
u x F€. We will call u the cotangent bundle of F¢, and we will call the intersection
A :=unN (ux F) the affine Steinberg variety.

To simplify the notations we will write I for (I')$, and K for G’(0)S. The convo-
lution product on the complexified equivariant coherent K -theory K CxINC (7))
is defined as in [9, Remark 3.9(3)] (cf. [8, §7.1] and [64, §2.2, 2.3]). Here the
first copy of C* acts by dilations in fibers of u, while the second one acts by loop
rotations, and K¢, cx (pt) = C[rH!, g*!1.

3.3 DAHA, Symmetric Case

Following [36, § 4.6], we set X =XZs = X*(T") @ Z3§. This is the group of
characters of I x C*. Note that the Picard group Pic(J¢) is canonically isomorphic
to X @ Zwo. The I-orbits on F¢ are parametrized by the affine Weyl group W, =~
Y x W = X, (T")s x W. We denote by A, >~ u the closed subscheme of A: the
preimage of the one-point I-orbit F¢, C F¢. For A = (k, k) € X we denote by
Oa, (A) € KCINCX(A) the (class of the) dlrect image of the structure sheaf of
A, twisted by the character % of I x C*. Let T C W, be the set of one-dimensional
I-orbits on F¢. For i € I we denote by F¢; the corresponding orbit, and by F; its
closure, isomorphic to a projective line. We denote by A; C A the closed subscheme
of A: the closure of the preimage of F¢;. We denote by w,, the (class of the) direct
image (wrt the closed embedding A; <> A) of the inverse image (wrt the smooth
projection A; — F¢;) of the canonical line bundle on F¢; ~ P! equipped with
the natural C* x I x C*-equivariant structure. Finally, we set T; := —1 — twy, €
K(CX xIxC* (A).

Deﬁmtlon 3.1 (Cf. [36, Definition 5.6]) The double affine Hecke algebra (DAHA)
H(W,, X) is the C[¢*', r*!]-algebra generated by X5, Tw A€ X, we W, } with
the following defining relations:

(a) Ty’s satisfy the braid relations of W,;

(b) X;: Xz —X)HFM and X5 = q;
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() (T; —t)(T; + 1) =0 fori € I, where we set T; = Ty ;

) X;Ti = TiX5_,q = (1 = DX5(1+X_g, +...+X’_—gj) where (A, ;) = r > 0.
Theorem 3.2 There is a unique isomorphism ®: H(W,, X) 5 KOOI Q)
such that ®(X5) = ( ), and ©(T;) = T;, foranyi € T

Proof Same as the one of [64, Theorem 2.5.6]. ]

3.4 Nil-DAHA, Symmetric Case

The complexified equivariant K -theory K1*C” (F¢) forms a Clg*!']-algebra with
respect to the convolution. We denote by O, (1) the (class of the) structure sheaf
of the point orbit ¢, € F¢ twisted by a character A € X. We denote by w=; W, the
(class of the) direct image (wrt the closed embedding 3’& < JF¢) of the canonical
line bundle on F¢; equipped with the natural I x C*-equivariant structure. We set
Ti := —1 — g, € K (T0).

Definition 3.3 (Cf. [13, § 1.1]) The nil-DAHA F0{(W, X) is the Clg*']-algebra
generated by {X;, T wlh € X, we W, } with the following defining relations:

(a) Ty’s satisfy the braid relations of W;

(b) X):Xﬂ = XX-HI’ and X5 f q;

() Ti(T;i +1) =0fori € I, where we set T; = Ty;;

() X3T7 = TiX; g, = =X (14X, + o+ XD where (3, ;) = r = 0.

A—rd;

Theorem 3.4 There is a_unique isomorphism ®: f}U-C(Wa,X)—>KI”(C (Fe)
such that ®(X5) = Ogy, (A), and ®(T;) =T, foranyi € T.

Proof Same as the one of [64, Theorem 2.5.6]. |

3.5 Extended Nil-DAHA

We consider the 2maq-fold cover C* — C* of the loop rotation group (see the
end of Sect.3.1), and set T := I x C*. The group of characters of T X Cx
is X = X @ Ligg— 8 The extended affine Weyl group is W, = Yyg x W =

W, x I1. The extended nil-DAHA fHH (W, X ) is the (extended) semidirect product

(}U{(WQ,X) X I ®cpgny (C[qz’”ad] That is, it has generators X:, A € X
and T;, i € I and w € II; with additional relations 77T;w~" = Ty(;), and
nXin_l = Xn(;\)-
Remark 3.5 The definition of [13, § 1.1] is equivalent to our Sect. 3.5: the genera-
tors 7; of loc. cit. correspond to —J; — 1; geometrically, 7; = [a)ﬁi].
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3.6 Residue Construction

I 1
Let A := C[g?md ], and Q := C(g ™). Let O, (T x T) be an A-algebra with gener-

ators [A, ], A, u € X, and relations [A, u]-[A, u'] = pa ey A+, w+ ]
This is the subalgebra of endomorphisms of A[T] generated by multiplications by
X, A € X, and g-shift operators D“f(t) = f(g"t) where we view g" as a
homomorphism C* — T. In other words, D“XA = ¢"MX;. We may and will
view O4 (T x T') as a subalgebra of endomorphisms of the field of rational functions
Q(T) as well. It embeds into the subalgebra C,(T x T) C End(Q(T)) generated
by D!, u € X, and multiplications by f € Q(T). We consider the semidirect
product C, (T x T) x C[W] with respect to the diagonal action of Won T x T.
Inside we cons1der the linear subspace FHHies(We, X ) formed by the finite sums

fo}if‘, Wit q “[wl, Ay, € QT), satisfying the following conditions:

(a) hy,,, is regular except at the divisors Ta’qk ={t:a@) = qk}, a€R, ke,
where they are allowed to have only first order poles.
(b) ResTmfk (hy,u) + ResTa.qfk (hsyw ka+sep) = 0 forany o € R.

The algebra of regular functions C[T x (EX] is embgdded into HH e (W, X ) via
the assignment f +— f -[1]. Furthermore, fori € I C I, we consider the Demagure
operator [13, § 1.3] t; := ﬁ -([si] = [1]) € fH}Creg(We, X),and forig € 1\ I

st - (Ise] - Dy — 1)) €
HH s (W, X ), where 6 € R is the dominant short root, (9 9) =2.
Theorem 3.6

(a) HHyes(W,, )?) is a subalgebra of Cy(T x T) x C[W]. B

(b) The assignment f v+ f -[1I; T; +— v, i € I; I1 2 7w > the
corresponding automorphism of Q(T) = QX ® C*) (arising from the
automorphism of the extended Dynkin diagram), defines an isomorphism
@ HH(W,, X) — HiHes(We, X).

we consider the Demazure operator [13, § 1.3] 7;, =

Proof Same as the one of [5, Theorem 7.2]. O

Remark 3.7 Nil-DAHA HH(W,, X ) is not isomorphic to the degeneration |:||U=0
of [5, Section 6].

3.7 K-theory of Disconnected Flags

We define I,q as the image of I'in G/ (X)¢, and we consider the adjoint version of
the affine flags J¢yq := G;d(9<)5 /Iag. This is an ind-scheme having |IT| connected
components, each one isomorphic to F¢. The isomorphism of Theorem 3.4 extends

to the same named isomorphism HH(W,, X ) = K1(F¢,q). Let us explain why the
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RHS forms an algebra. We consider an algebra K (f\G;d(K)g/T) = Kf(f%ad /TD).
Here we view I[1 = Z(G“A’) as the center of the simply-connected group G’ acting

trivially on F¢,q. Now K I(S"Ead /IT) contains a subalgebra K I(S"Ead /D diag formed
by the classes of bi-equivariant sheaves on F€,q such that the I1-equivariance coin-
cides with the Z (G’ 7)-equivariance obtained by the restriction of I-equivariance.

Finally, KY(FCaa/ M diag =~ K'(Flaq).

3.8 Spherical Nil-DAHA

We define the new generators To= T —1,iel (they correspond to the
generators 7; of [13, Definition 1.1]). Geometrically, ‘j'i = [wﬁi]. They still satisfy
the braid relations of W,. So for any w € W, we have a well-defined element
(product of the generators) ‘fw. We also define ‘}; =7 i+ 1 = =T, 10 € T.
Geometrically, fori € I C IN, we have ‘5; = va[(f)ﬁi]x;vl. These generators also
satisfy the braid relations of W,, so for any w € W, we have a well-defined element
(product of the generators) ‘j“;u

Given a reduced decomposition w = s;, ---s; we have for the class of the
structure sheaf of the Schubert variety [Oﬁw] = [Oﬁi1 ]--- [Oﬁi,] since ﬁw has

rational singularities. Hence, for w € W C W,, we have [Oﬁw] = X;vl ‘j';Uva. In
. . o _ —1 2
particular, for the longest element wg € W we set e := [O%wo] = va ‘J‘;U()va, an
idempotent in HH(W,, X). Indeed, calculating [Oz; ][O5; ] as the pushforward
wo__ v Tho __
of the structure sheaf from the convolution diagram F¢,,, xJ€,,, — Fl,, we get
Oﬁwo since RI"(Fly,, Oﬁwo) =C.

We define the spherical nil-DAHA .’J-Uﬁph(Wa, X) = eF0{(Wq, X)e, and the
spherical extended nil-DAHA HHP!(W,, X) := eHH(W,, X)e.

3.9 Equivariant K-theory of the Affine Grassmannian

We denote by Gryqg the twisted affine Grassmannian G/ ,(X)¢ /G (0)<: an ind-
proper ind-scheme of ind-finite type, see [55]. The complexified equivariant

Cx ’ % 1
coherent K -theory KX¥*C™ (Gr,q) = K9 (@°*C"(Gr,q) forms a (C[qiz’”ad ]-algebra
with respect to the convolution (see Sect.3.7). We have the smooth projection
p: Flag — Gryg, and the natural embedding KK (Gryq) < KIHC (Graq) L,
K (Tta).
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Corollary 3.8 The isomorphism @ of Sect. 3.7 takes the spherical subalgebra

J-U-CSpNh(We, X) < HHLW,, X) isomorphically onto K¥*C"(Gr,) C
KI)“CNX (Flaa). The right_ideal eI0{(W,, X) corresponds to KX*C* (Ft,q) =
(K™ (F )™ € K (Flaa). a

3.10 Classical Limit

The following theorem is proved similarly to [8, Theorem 2.15]:
Theorem 3.9

(a) The algebra K¥(Graq) is commutative.

(b) Its spectrum together with the projection onto T /W is naturally isomorphic to
36 5o1yw.

(¢c) The Poisson structure on K K(Grad) arising from the deformation K KxCx (Graq)

corresponds under the above identification to the Poisson (symplectic) structure
of Remark 2.4 on Bg. O

Corollary 3.10

(a) The algebra HP"(W,, 5(\)|q:1 is commutative.

(b) This algebra with the subalgebra C[X Wois naturally isomorphic to (C[Sg] )
C[T/W].

(c) The Poisson structure on ﬂ'U'CSPh(We, X )g=1 arising from the deformation
J-U-CSPh(We, X ) corresponds under the above identification to the Poisson
(symplectic) structure of Remark 2.4 on 38. O

3.11 Nil-DAHA, General Linear Group

Incase G = GL(n) ~ G, the general definition of HH-(W,, X ) takes a particularly
explicit form.

Definition 3.11 The nil-DAHA HH(GL(n)) is the C[¢™! ]-algebra with generators

To, ooy Tnot, XY—LI, e, X,ﬂf], 7%, and the following relations:
(@) Ti’s fori € Z/nZ satisfy the braid relations of the affine braid group of type
Ap_1;
(b) X,.il, i =1,...,n,all commute;

(¢) Ti(T; +1)=0fori € Z/nZ;
(d) nXjmr ' =Xjpifori=1,...,n—1,and X, 7! = ¢X;
(e) nTin~ ' = Ty fori € Z/nZ;
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®) Xip1T; — T;X; = X;, and Xi_l{.]’,' — ‘IiX;ll = Xz_+11 fori=1,...,n—1;
() gX1To — ToXu = Xy, and ¢X; 1T — ToX; ' = X'

(th) Xli] and T; commute for all the pairs i, j not listed in (f,h) above.

Note that X := X; - - - X,, commutes with all the T;’s, while 7 X7 ~! = ¢X. For a
future use we give the following

Definition 3.12 The extended nil-DAHA HH.(GL(n)) is the (C[vil]-algebra,

+1
g= v2, with generators Jo, ..., T,_1, X;—Ll, e, X,jfl, TEl, VX , and relations
(a—fh) of Definition 3.11 plus

() (VXEHZ = XE = X X
G) VXE! commutes with all the X?El and all the T;;
(k) VX = vV/X.

We interpret X;, i = 1, ..., n, as the i-th diagonal matrix entry character of the
diagonal torus 7 C G L(n). It gives rise to the same named character of the Iwahori
subgroup I C GL(n, X). We denote by Oz, (X;) the (class of the) structure sheaf
of the point orbit ¢, C FJ¢ = Flg () (the affine flag variety of GL(n)) twisted
by the character X;. We denote by TR i =0,...,n— 1, the (class of the) direct
image (wrt the closed embedding Fe; —> Flsroy — TLGLm) of the canonical
line bundle on F¢; equipped with the natural I x C*-equivariant structure. We set
T, = —-1-— w3, € KIxC* () as in Sect. 3.4. Finally, note that the fixed point
set Fo7 is naturally identified with the extended affine Weyl group of GL(n), that
is the group of n-periodic permutations of Z: o (k + n) = o (k) + n, and the fixed
point @ corresponding to the shift permutation o (k) = k4 1 is a point I x C*-orbit
Fl.. We denote by @ € KIC* (F¢) the class of the structure sheaf O¢,, -

Theorem 3.13 There is a unique isomorphism ®: HH(GL(n)) —> KT (Fo)
such that ®(X;) = Og¢,(X;), i =1,...,0n,and ®T;) =T;, i =0,....,n — 1,
and ® (7)) = w.

Proof Same as the one of [64, Theorem 2.5.6]. ]
As in Sect. 3.8, we have an idempotent ¢ = [O5; | € KeC (Flsrmy) C
UJO

K™C (Fr) ~ HH(GL(n)), and we define the spherical subalgebras
HPN(GL(n)) = eHH{(GL(n))e, and HCP(GL(n)) := eH0,(GL(n))e. We
also define a two-fold cover G := {(g € GL(n), y € C¥) : det(g) = y2} —
G, K := GL(n,0), K := G(0), and finally C* as the two-fold cover (with
coordinate v) of C* (with coordinate ¢).

Corollary 3.14 The isomorphism ® of Theorem 3.13 takes the spherical subal-
gebra HHPN(GL(n)) C HH(GL(n)) isomorphically onto K¥X*C* (Grgrm) C
KI”CX(EFZGL(,!)). This isomorphism extends uniquely to fHHth(GL(n)) -

KK (Grg 1. (n)) where the right-hand side is equipped with the algebra structure
as in Sect. 3.7. O
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The following theorem is proved similarly to [10, Theorem 3.1, Proposi-
tion 3.18]:

Theorem 3.15

(a) The algebras K K(GrG L), K I~((Gr(; L(n)) are commutative.

(b) The spectrum of K¥(Grg L(n)) together with the projection onto (C*H™ =
Spec(K L) (pt) is naturally isomorphic to ign P (C*M (see Sect. 2.5).

(¢c) The spectrum of K I~((GrG L)) together with the projection onto
SpeC(KK(GrGL(,,))) is naturally isomorphic to izn s ign (see Sect. 2.5).

(d) The Poisson structure on K K(GrG L)) arising from the deformation
K¥XC (Grg L(n)) corresponds under the above identification to the negative of
the Poisson (symplectic) structure of [25, 34] on 171, The Poisson (symplectic)
structure on KK(GrGL(n)) arising from the deformation KKWCX (Grgrm)) is
the negative of the pull-back of the symplectic structure on iz, m}

Corollary 3.16

(a) The algebras fJ-U'CSph(GL(n))|q:1, U'U-Czph(GL(n))H:] are commutative.

(b) The algebra H{PN(G L(n))|y=1 with the subalgebra CIXF', ... XS js
naturally isomorphic to (C[T%"] o C(C*)M1.

(¢c) The Poisson structures on fHHSPh(GL(n))|q:1, U'U{:ph(GL(n))h,:] arising
from the deformations J—U—CsPh(GL(n)), IHH:ph(GL(n)) correspond under the
above identification to the negative of the Poisson (symplectic) structures
of [25, 34] on TZ", T2, O

3.12 Quantum Poisson Reduction

Now again G is an almost simple simply-connected algebraic group. We consider

Lusztig’s integral form U, (g) of the quantized universal enveloping algebra over

(C[qil] with Cartan elements K, A € X.Itis denoted U 4 in [65, § 2.2]. We extend
1

the scalars to C[q%] and consider the integrable representations of U, (g) with
weights in X. We consider the reflection equation algebra O, (G) spanned by the
matrix coefficients of integrable U, (g)-modules (with weights in X); it is denoted
Fy in [65, §2.2]. The corresponding integral form D,(G) of the Heisenberg
double [59, Section 3] (quantum differential operators) is denoted D4 in [65,
§ 2.2]. The quasiclassical limit of D, (G) is D4 (G) with the Poisson structure {,} 1
considered in Sect.2.2. The moment map p: (D4 (G), {,}4+) — (G, 7)) x (G, )
is the quasiclassical limit of ug: U, (9) ® Uy(9) — Dy (G) (see, e.g., [48]). The
Poisson action of (G, ng) X (G, wg) on D4 (G) is the quasiclassical limit of the
comodule structure of D, (G) over O, (G) @ Oy (G).
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Recall the subalgebra U,g (m) C Uy(g) [56, §2.2] associated to a Coxeter
element ¢ (we shall omit its dependence on {n;;}; je; satisfying [56, § 2.2.2]). The
U, (g)-module U, (g)/(Uy(9) - [U; (n), U{; (n)]) is the quantization of the coisotropic
subvariety C. C (G, w) of Sect.2.2. Given a pair of Coxeter elements c, ¢/,
we consider the left ideal J~ . of D,(G) generated by ;Lq([U(;/(n), U;(n)] ®
S [U; (n), U,; (n)]) where S stands for the antipode. The invariants of D, (G)/J .
with respect to the coaction of O4(B-) ® O4(B-) form an algebra denoted

0,(3¢(G)).

Conjecture 3.17 There is an isomorphism HH*M(W,, X) > Oy (39¢(G)) equal
to id+3(‘,r(G) atq =1.

4 Multiplicative Slices

4.1 Asymmetric Definition

We closely follow the exposition in [10, Section 2]. Let G be an adjoint simple
complex algebraic group. We fix a Borel and a Cartan subgroup G D B D T.
Let A be the coweight lattice, and let Ay C A be the submonoid spanned by
the simple coroots «;, i € I. The involution o +— —wpa of A restricts to an
involution of A4 and induces an involution «; — «;= of the set of simple coroots.
We will sometimes write a* := —wgo for short. Let A be a dominant coweight
of G, and u < A an arbitrary coweight of G, not necessarily dominant, such that
o I=A—uU= Zie[ aia;, a; € N. We will define the multiplicative (trigonometric)
analogues %Wﬁ of the generalized slices Wﬁ of [10, 2(ii)].

Namely, %Wlﬁ is the moduli space of the following data:

(a) a G-bundle P on P';

(b) a trivialization o : Pyiy|p1\(;y —> Plp1\(1y having a pole of degree < A at
1 € P!. This means that for an irreducible G-module V** and the associated
vector bundle V)g‘: on P! we have V¥ @ Opt (—(A,2) - 1) C \7)3‘: c V¥ ®
Op1 (—(woA, A7) - 1);

(¢) a reduction ¢ of P to a B-bundle (B-structure ¢ on P) such that the induced
T-bundle ¢” has degree wou, and the fiber of ¢ at co € Pl is B. c G
(with respect to the trivialization o of P at co € P!). This means in particular
that for an irreducible G-module V*  and the associated vector bundle \7)9‘:
on P! we are given an invertible subsheaf £,v C WPV of degree —(wou, A”).
We require ¢ to be transversal at 0 € P! to the trivial B-structure B in Pyiy.
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4.2 Multiplicative BD Slices

Let A = (wj,, ..., w;y) be a sequence of fundamental coweights of G such that
ZN w;, = A. We define TW,% as the moduli space of the following data:

s=1

(a) a collection of points (z1, ..., zy) € (CHV;
(b) a G-bundle P on P!;
(c) a trivialization (a section) o of P on P! \ {21, ..., zy} with a pole of degree

<YV | @i, - z; on the complement;

(d) a reduction ¢ of P to a B-bundle (B-structure ¢ on P) such that the induced
T-bundle ¢” has degree wou, and the fiber of ¢ at oo € P! is B_ C G and
transversal to B at 0 € P! (with respect to the trivialization o).

Remark 4.1 The definition of multiplicative BD slices differs from the definition of
BD slices in [10, § 2(x)] only by the open condition of transversality at 0 € P!. Thus
TW% is an open subvariety in W:\j (and similarly, TW?; is an open subvariety in Wﬁ).
Hence, the favorable properties of the slices of [10] (e.g., the Cohen—Macaulay
property) are inherited by the multiplicative slices.

4.3 A Symmetric Definition

Given arbitrary coweights p_, 4+ such that u_ + u4+ = w, we consider the moduli
space TW%L, .. of the following data:

(a) a collection of points (z1, ..., zy) € (C*)V;
(b) G-bundles P_, P, on Pl

(¢) an isomorphism o : P_[p1\ (5, —> P4lpi\(z,,...zy) With a pole of degree

,,,,, Zy}
< Z?’:l wj, - Zg on the complement;

(d) a trivialization of P_ = P, at oo € P!;

(e) a reduction ¢_ of P_ to a B_-bundle (a B_-structure on P_) such that the
induced T-bundle ¢! has degree —wou_, and the fiber of ¢_ at oo € P! is
B C G;

(f) areduction ¢ of P, to a B-bundle (a B-structure on P) such that the induced
T-bundle gbi has degree wou4, and the fiber of ¢, at co € P! is B_ C G.
We require ¢_ and ¢, to be transversal at 0 € P! (with respect to the
isomorphism o).

Note that the trivial G-bundle on P' has a unique B_-reduction of degree 0
with fiber B at co. Conversely, a G-bundle P_ with a B_-structure of degree 0
is necessarily trivial, and its trivialization at co uniquely extends to the whole of P!
Hence ?W%’ w= TW%.

For arbitrary TW%Lﬂ wy» the G-bundles P_, P, are identified via o on
P\ {z1,...,zy}, so they are both equipped with B and B_-structures transversal
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around 0, oo € P!, that is they are both equipped with a reduction to a 7-bundle
around 0, co € P1. So Py = fPi x T G for certain T-bundles fPi around 0, co € P!,
trivialized at oo € P!. The modified T-bundles ’ iPi = ﬂ’i(wou, - 00) are
canonically isomorphic to PL off co € P! and trivialized at co € P'. We define
'P, as the result of gluing Py and 'PL xT G in the punctured neighborhood of

oo € P! Then the isomorphism o : "P_lpi\foo,zy,nzw) = PHIP\(00.21,.. 20}
extends to P! \ {z|, ..., zy}, and ¢+ also extends from P! \ {oo} to a B-structure
¢ in’P, of degree wou (resp. a B_-structure '¢p_ on’'P_ of degree 0).

This defines an isomorphism TW%L# L TW%‘. Similarly, for the nondeformed

slices we have an isomorphism TW* ~ TWA
T Iz

4.4 Multiplication of Slices

Given A1 > u1 and Ay > up with Ay, Ap dominant, we think of #Wﬁ'l (resp.
TWfﬁz) in the incarnation TWZII’O (resp. ng?ﬂz). Note that P> is canonically
trivialized as in Sect. 4.3, and ‘PL is canonically trivialized for the same reason.

Given (PL,01,¢L) € TW?LI],O’
determined) element of U_ (the unipotent radical of B_) so that the value ¢L (0)
becomes B (while ¢1+(0) remains equal to B_). Now the value ¢! (c0) is not B
anymore; it is only transversal to B_. In order to distinguish the data obtained by the

composition with the above trivialization change, we denote them by ('PL, ‘o1, ‘pL).

Given (fPi, 07, ¢i) € TWézm’ we consider (P!, ‘Pi, or0'01, ‘Pl qb}r) (recall that

'PL = Puiy = P?). These data do not lie in TW,&QT&; since the value @' (c0) is
not necessarily equal to B, it is only transversal to B_. However, we change the
trivialization of P! (c0) = iP%r(oo) by a (uniquely determined) element of U_, so

that the value of ‘@' (c0) becomes B, and we end up in "W} 112 = TWQ;};.

This defines a multiplication morphism "W}, x TW2 — TWillf;fz.

In particular, taking 1 = A2 so that TW% is a point and TW?L'] X TW% = TW?‘}],

we change the trivialization of fPlL by a (uniquely

we get a stabilization morphism TW,ALII — Tijliﬁg.

Remark 4.2 The multiplication of slices in [10, §2(vi)] does not preserve the
multiplicative slices viewed as open subvarieties according to Remark 4.1 (in
particular, it does not induce the above multiplication on multiplicative slices).

4.5 Scattering Matrix

Given a collection (zi, ...,zx) € (C*)V, we define Py(z2) = ]_[;vzl(z —Z) €
Clz]. We also define a closed subvariety TW,%’Z C TW% as the fiber of the latter
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over Z = (21,...,2Zy). We construct a locally closed embedding W : TW%L’Z —
Glz, P~!] into an ind-affine scheme as follows. According to Sect.4.3, we have
an isomorphism ¢ : TW%L’Z = *W%”i = TW%L% We denote (P, 0, ¢+) by
(P, o', ¢L). Note that P_ and P’ are trivialized, and P/, is obtained from P,
by an application of a certain Hecke transformation at co € P!. In particular,
we obtain an isomorphism P |1 L)fP/Jr|A| = Puivlp1- As in Sect.4.4, we
change the trivialization of %/, by a uniquely defined element of U_ so that the
value of ¢’ (0) becomes B. Now we compose this change of trivialization with
the above isomorphism P, |41 — P/ [41 = Puivlp1 and with o: Puiviang =
T_|A1\;L> ?+|A1\z to obtain an isomorphism ?triV|A1\Z;) iPmV|A1\Z, i.e. an
element of Gz, P~!].

Here is an equivalent construction of the above embedding. Given (P4, o, ¢1) €
TW%L_Z py = TW,%’Z, we choose a trivialization of the B-bundle ¢4 |41 (resp. of the
B_-bundle ¢_|,1). This trivialization gives rise to a trivialization of the G-bundle
Pilar (resp. of P_|41), so that o becomes an element of G(z) regular at 0 € P!,
moreover, the value of o (0) lies in the big Bruhat cell B - B_ C G. We require that
0(0) € B C G. Then o is well-defined up to the left multiplication by an element of
B[z] and the right multiplication by an element of B_ 1[z] (the kernel of evaluation
at0 € P': B_[z] — B_), i.e. o is a well-defined element of B[zI\G(z)/B- 1lz].
Clearly, this element of G(z) lies in the closure of the double coset G[z]z22G|z]
where 722 ;= ]_[ivz1 (z — zy)“is . Moreover, it lies in G[z]z~2G[z] N eva] (B). Thus
we have constructed an embedding

W' WEE s BN(GzIEZG Izl Nevy ! (B))/B- 1[z]
If we compose with an embedding G (z) < G((z~')), then the image of W’ lies in
Blz\Ui[[z7 ' NT1[[z~ ' Nz#U-[[z~ "]/ U- 1[z] where Uy [[z~"]] € U[[z~"]] (resp.
Tz~ ' ¢ T[[z_l]]) stands for the kernel of evaluation at co € PL. However, the
projection

Uiz ' Nz MUz~ — Blz\Uz ' Tz A U- [z~ 11/ U= 11z]

is clearly one-to-one. Summing up, we obtain an embedding
W WEE S Uz Tz 124Uz 11 N Glzl22Glz] Nevy ' (B).

We claim that W is an isomorphism. To see it, we construct the inverse map to
ngji: given g(z) € Uillz"'NTillz~ Nz*U-[[z~"11 N Glz1z22G[z] Nevy ' (B)
we use it to glue P, together with a rational isomorphism o : Py = P — Py,
and define ¢ as the image of the standard trivial B-structure in Pyiy under o.
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Remark 4.3 The embedding W%L’Z < G(z) of [10, § 2(xi)] restricted to the open
subvariety TW%[Z C W%;Z does not give the above embedding TW/%Z — G(2).

4.6 A Cover of a Slice

We define a T-torsor TVV,% — TW% as the moduli space of data (a—d) as in Sect. 4.2
plus

(e) a collection of nowhere vanishing sections u;v € (P \ {00}, Lyv) satisfying
Pliicker relations (cf. Sect. 4.1(c)).

The construction of Sect. 4.5 defines an isomorphism

I Ttz _~

W W S U [ Tz N2 U127 11 N Glzle22Glz] Nevy ' (B).

Let Tjp; C T be the subgroup of 2-torsion. For a future use we define a Tjp)-
torsor "W 5 TWh% - "WhZ as follows. The evaluation at 0 € P! gives rise
to a projection pry: G[z]z%2G[z] Nev, '(B) - B — T. The leading coefficient
(at z/) gives rise to a projection pr,: Uilllz~"NTIz Nz#U_[[z711] = T, and
TW;\;’Z is cut out by the equation pry - prog = (—1)*7# € Tj2}, where A = Zévzl wj,,
see Sect.4.2. As z varies, we obtain a Tj)-torsor TW,% > TW,A; — TW%L.

4.7 An Example

This section is parallel to [10, § 2(xii)], but our present conventions are slightly
different. Let G = GL(2) = GL(V) with V = Ce| & Ce,. Let B be the stabilizer
of Ces (the lower triangular matrices), and let B_ be the stabilizer of Ce; (the upper
triangular matrices). Let N,m € N; A be an N-tuple of fundamental coweights
0, 1),and u = (m, N —m), so that wor = (N —m,m). Let O := Op1. We fix a
collection (21, ..., zy) € (C*)V and define Py(z) := [, (z — z;) € Clz]. Then
TW%;Z is the moduli space of flags (O ® V D V D L), where

(a) V is a 2-dimensional locally free subsheaf in O ® V coinciding with O ® V
around 0,00 € P! and such that on A! c P! the global sections of det’V
coincide with P;C[z]e; A e; as a C[z]-submodule of Al det(O,1 ®@ V)) =
Clzler A ea.

(b) L is a line subbundle in V of degree —m, assuming the value Ce; at oo € P!,
and such that the value of £ at 0 € P! is transversal to Cey. In particular,
degV/L =m — N.
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On the other hand, let us introduce a closed subvariety TW%Z in Mat;[z] formed

CD
(=)™, while deg C(z) < m > deg B(z), and B(0) = 0; furthermore, detM =
P, ;(Z).

Then we have a two-fold cover 3: TW5% — "W52: given M € "TW%Z we view
it as a transition matrix in a punctured neighborhood of co € P! to glue a vector
bundle V which embeds, by construction, as a locally free subsheaf into O ® V. The
morphism MO,1e; < O 1 ® V naturally extends to oo € P! with a pole of degree
m, hence it extends to an embedding of O(—m - c0) into V C O ® V. The image of
this embedding is the desired line subbundle £ C V.

by all the matrices M = (A B) such that A(z) = a,, 2" + ... 4+ ap, and a,, - ag =

4.8 Thick Slices

We define thick multiplicative (trigonometric) slices TWH as the moduli space of the
following data:

(a) a G-bundle P on P';

(b) atrivialization o : TterhPﬂ - fP|P1 in the formal neighborhood of co € P!

(¢c) areduction ¢ of P to a B-bundle (B structure ¢ on P) such that the induced
T-bundle ¢” has degree wopu, and the fiber of ¢ at oo € P! is transversal to B
(with respect to the trivialization o of P at oo € P');

(d) a collection of nowhere vanishing sections u;v € I'(P! \ {oo}, £;v) satisfying
Pliicker relations (cf. Sect. 4.1(c)).

The construction of Sect.4.6 identifies TWM with the infinite type scheme
(cf. [24, §5.9])

"W, ~ Uiz Tz AUz~ € G(z™h)). 4.1)

As the inclusion Ui[[z7']] < U((z™")) gives rise to an isomorphism
Uillz”'1 ~ UN\UWz™Y)), we can identify TWM with the quotient
Ulz\U((z""D Tz "1z U_((z"1))/U_ 1[z], and we write 7 for this isomor-
phism. The construction of Sect. 4.5 (resp. of Sect. 4.6) defines a closed embedding
TWﬁ — TWM (resp. TVAVIAL — TWM). We define the multiplication morphism
Myt Wy, x "W, — TWMHLM by the formula m,,, ,,(g1, 82) = 7(g182)-
Then the mu1t1p11cat10n morphism m )2 : YW x W2 — TWHER of Sect. 4.4

Kituo
is the restriction of my, ,,. Similarly, m,, ,, restricts to a multiplication

Al a4 Az N A+Ao
Wﬂl x W Wmﬂtz .
For vy, vy antldomlnant, we define the shift maps 1, v, v, : TWM+V1+U2 - "W,

by g > m(z7"gz™").
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5 Shifted Quantum Affine Algebras

Let g be a simple Lie algebra, h C g be a Cartan subalgebra of g, and (-, -) be
a non-degenerate invariant bilinear symmetric form on g (with a square length of
the shortest root equal to 2). Let {c};c; C b* be the simple positive roots of g

. (O] . . .
relative to ), and ¢;; = ZW—the entries of the corresponding Cartan matrix. Set
NV i
d; = w € Z~o so that djc;j = djcj; forany i, j € I. Let v: h —> b* be the

isomorphism determined by the symmetric form (-, -) so that o; = h; = v~! (@)/d;
are the simple coroots of g.

d
5.1 Algebras W, . and WS

Given coweights u*,u~ € A, set b* = {bFlic; € Z! with bF =
+ . . !
o (u™). Define the simply-connected version of s.hlfted quantum affine algebra,
denoted by U;ﬂ - or UZE, ,—» to be the associative C(v)-algebra generated by
+ + 7_7r€Z,siiZ—bii . . . .
{eir, firs wi’isl_i, (wi’$b;t) l}iel with the following defining relations (for

alli, j € Iande¢, €' € {£}):

i@, vf 1 =0,y - o7 = 07wl =1 U

(z — v, wyei(2)ej(w) = (v;7z — w)e;j(w)e; (2), (U2)
"z —w) fi(2) fj(w) = (z — v;" w) f(w) f; (2), (U3)
(2 — v WYt (Dej(w) = (V72 — w)e; (WYf (2), (U4)
07z — wYf @) f(w) = @ — v w) f; ()Y (2), (US)

i Z _
lei (), fj(w)] = f’v,ls (5) (V") — ¥ (), (U6)

! i

1—cij

1= ¢
Sym Z(—l)r[ rc‘/] ei(z1)---ei(zr)ej(w)ei(zr41) - -~ €i(21-¢;) =0,

21 »“le*Ci,’ r=0

u7)

l—C,‘j
1= ¢
Sym Z(—l)’[ rcj} fiz) -+ fi@) fj(w) fi@rg) -+ fi(Z1—¢;;) =0,
Lo Zl=gyj v;
' (U8)
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. v —v™ ra]l ._ [a=b+1]y--[a]
where v; := v%, [a, bl, := ab — x - ba, [m]y := pa— ’[b]v = e [”v'“fb]v v,
Sym stands for the symmetrization in zi, ..., zs, and the generating series are
4 RRETH s

defined as follows:

ei(z) == Zei,rz_r, fi(@) = Zfi,rz_r, 1/f,-i(Z) = Z W,irzw’ 8(2) 1= er'

rez rez rz—b[i rez

Let us introduce another set of Cartan generators {h; +,}ic, 10 instead of

{1//[ is:t},g] via

W bizi”t) v; (z)—exp(i(vl—v )ZhizﬂF)

r>0

Then, relations (U4, US) are equivalent to the following:

[rcijlv,

+ *cij +
¥, =Cs = Vi ”ej,swi THE [hirs ejs] = “ejs+r forr#£0,  (U4)
? i ? 1

» [rc
Vi fio =00 iUy Wi fis) = =22 i for r 0.
(Us")
Let ujff ujffﬂ_, and USC’O be the C(v)- subalgebras of U}, - generated

_pE .
by { firViEE, {ei}iEF, and {w e (wl ¢bi) l}lE / P" | respectively. The follow-
ing is proved completely analogously to [37 Theorem 2]:
Proposition 5.1
(a) (Triangular decomposition of u;ﬁ - ) The multiplication map
. q(Sc,< sc, 0 sc,> sc
m: uu _® U _® U — W -

is an isomorphism of C(v)-vector spaces.

(b) The algebra Uffj,oﬂ_ (resp. Ufffu_ and WS~ _) is isomorphic to the
_ b
C(v)-algebra generated by (7", .o (V7" ,2) WL Gresp. (£ EE and
{e. VL) ith the deﬁning relations (Ul) (resp. (U3, US) and (U2, U7)). In

iel

particular, u and u _ are independent of u*.
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Following the terminology of [50], we also define the adjoint version of shifted

quantum affine algebra, denoted by u;ﬂ - or UZ‘}r ,—» by adding extra generators

{(¢F)* )ies to W, -, which satisfy the following extra relations:

Wi g™ = @7 T@D™ 7, @)™ - DT =1, [9f.¢51=0, (U9

j—i

/ ! 8ij —€dij
V5 (@) =5 (9], diej(x) = v e (), ¢ i) =0, " fi(2)f,
(U10)
forany i, j € I and e, €’ € {£}.

Both algebras Uf; - and UZCL - depend only on p := put + u” up to an
isomorphism*. Let A* C A be the submonoids spanned by {+w;};c;, that is, A*
(resp. A7) consists of dominant (resp. antidominant) coweights of A. We will say
that the algebras UZ& u— UZdJr - are dominantly (resp. antidominantly) shifted if
p € AT (resp. u € A7). We note that u € A' & b + b = al(n) > 0,
neA” &bl +b =da(n) <0foralli € 1.

Remark 5.2 One of the key reasons to consider UZdJr > hot only Ufer P is to
construct quantizations of the thick slices TWM* of Sect. 4.8 and the multiplicative
slice covers TW%L* of Sect. 4.6, see our Conjecture 8.14. On the technical side, we

also need an alternative set of Cartan generators, whose generating series A?E(z) are

defined via (6.1) of Sect. 6 and whose definition requires to work with UZCL - (see
also Remark 6.7(b)). ’

Remark 5.3

(a) The elements {wl_t b wi_b? }ier (resp. {qbl.‘" &; }ier) and their inverses are central
elements of U;‘; P (resp. UZ‘L M,).

(b) We have ugfo / (wi'fo wi,_o — 1) =~ Uy(Lg), the standard quantum loop algebra of
g, while ug?o/(¢l.+¢; — 1)~ Uf,‘d(Lg), the adjoint version of U, (Lg).

(c) We note that defining relations (U1-US8, U10) are independent of u*, ™.

(d) An equivalent definition of U}, , was suggested to us by Boris Feigin
in Spring 2010. In this definition, we take the same generators as for
Uy(Lg) and just modify relation (U6) by requesting p;(z)[e;(z), fj(w)] =
3ij8(z/w)

P (wi"L (@) — ;" (z)) for any collection {p;(z)};c; of rational functions.

“4For example, there is an isomorphism Ulsf - —=Uuse _ such that f;(z) — fi(2), i (z) >

0,ut+u
bt + br o E
2 ei(2), ¥ (2) = 27 Y (2).
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5.2 Levendorskii Type Presentation of u;clL Jorp € A~
b

In Sect. 10, we will crucially need a presentation of the shifted quantum affine
algebras via a finite number of generators and defining relations. This is the purpose
of this subsection.

Fix antidominant coweights 1t1, 2 € A~ and set it := @1 + pp. Define by ; :=
o (1), bai := & (u2), bj := b1, + by,;. Denote by ﬂm,uz the associative C(v)-
algebra generated by

{eirs fis i) (i) hizali € Lbyi —1<r <0,b1; <5 <1}

and with the following defining relations:

+1 — £l R
(W)™, (i,)*" i x1)ier pairwise commute,

+ 1 + 1 +1 1 (Gl)
(I/Il',()) . (1/[,"0):': = (I//i,b,-) . (I/Ii,b,-)x =1,
D B e 2
Cir+1€js — VUV, €jr€jstl =V; €j5€ir+1 — €js+1€ir, (U2
cij cij ~
vil', fi,r—i—lf/',s - fi,rfj,s—i—l = fj,sfi,r—&-l - vil'] fj,s+lfi,rv (U3)
Cij —_ —Cjj —_
I/fl'J,r()ej,r = v,'ljej,rl/f;rov 1\”,',bl.ej,r =V, ”ej,rl//,',bi: [hi,:i:l, ej,r] = [Cij]v,' C€jrkl,
(U4)
+ —cjj + — cij —
Violis =0 " fis¥io Yip fis =0 FisVips Thixrs fis] = —lcijlo fis+r,
(U5)
vlohi if r+s=1,
wi,_hihi’—l if r+s=0b —1,
Vilo=8b0Viy
leir f1s1=0if i #j and [eir, fis] =" g T 7r+s=0,
—Vi 5 o0
— L T s = by,
v —v;
0 if by <r+s <20,
(Uo)
lei.0. Lei0. - -+ . [ei0. €j.0] i "']v_‘ij—z]v’fij = 0fori # j, 7
i i i
[ﬁ,Oa [ﬁ,Oa Tt [ﬁ,O’ fj,O]v‘_‘ij Tt ]v*c,'j72]v—l?ij = 0 fOI‘i 5& j, (U8)
U i i

[hit, Ui, Thins eiolll = 0, [hi—1. [eipy,—1, [hi—1, fiby, 111 =0, 09)

forany i, j € I and r, s such that the above relations make sense.
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Remark 5.4 One can rewrite relations (U7, U8) in the form similar to (U7, U8) as

I—c;j I—cij

1 —ci; I—c; — i I—¢;
Z(—l)’[ r”} roeioeio =0 (- 1)[ . ”] flofiokie ™ =0
r=0 vi r=0

Define inductively

_ [2]—1 . [hl,11 ei,r—l] if r > 0,
" ki €] ifr<byi—1,

f. — _[2]—1 . {[hi,ls fi,r—l] if r > l,

v; .

"o \lhi—1s firet] if r < by,
+ —1 , 1 0
iy i i i,r—1s Ji, 5

v, (vi —v; ) - [eir—1, fi1] for r >
- ~1
I/Ii,r = (vi - vi) : [ei,r—hl_,’a f‘l’,h]_,’] for r < bi~

Theorem 5.5 There is a unique C(v)-algebra isomorphism ﬂm i —> gy, such
that

ei,r|—>ei,r,ﬁ,ro—>fi,r,1/f ii—)l//‘:ti forzeIrEZs >0,s; = —b;.

==X

This provides a new presentation of Up O via a finite number of generators and
relations. The proof of this result is presented in Appendix A. Motivated by Guay
et al. [33], we also provide a slight modification of this presentation of u*‘f O
Theorem A.3.

Remark 5.6 Theorem 5.5 can be viewed as a v-version of the corresponding result
for the shifted Yangians of [24, Theorem 4.3]. In the particular case u; = pu» = 0,
the latter is the standard Levendorskii presentation of the Yangian, see [47].
However, we are not aware of the reference for Theorem 5.5 even in the unshifted
case ju1 = o = 0.

6 ABCD Generators of U1

b

In this section, we introduce an alternative set of generators of UZCL’ _, which will
be used later in the paper (they are also of independent interest), and deduce the
defining relations among them. While the definition works for any two coweights
ut, u™ € A, the relations hold only for antidominant u™, u~ € A~, which we
assume from now on.
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First, we define the Cartan generators {Al ir}lr E> 10 via
—Cji :I: le 2p
+ [T=i 1,20 A5 ) _
77yt (g) = = with A7 = (¢])", (6.1)

Aii(z)A?E(vi 2)

where we set Ai(z) 20 AljE 27" Using non-degeneracy of the v-version of

the Cartan matrix (c;;) and arguing by induction in > 0, one can easily see that

relations (6.1) for all i € I determine unlquely all Al ,» see Remark B.2 (cf. [30,

Lemma 2.1]). An explicit formula for Al (z) is given by (B.2) in Appendix B.
Next, we introduce the generating series Bl.lL (), C li (2), DijE (z) via

Bl-i(z) = (v; — vi_l)Aii(z)eii(z), (6.2)
CF(2) == (v —v; H [F (AT (2), (6.3)
DF(2) := AF@Vv (@) + (v — v, ) [F (AT ()€ (2), (6.4)

where the Drinfeld half-currents are defined as follows:

i @)= ez, e (@)= ez,

r>0 r<0

@ =Y fird " fT@== fir

r>0 r<0

(6.5)

It is clear that coefficients of the generating series {A?E(z), Bl.lL (2), Cl.ﬂE (2),
Dl.jE (z)}ier together with {¢f}i€ 1 generate (over C(v)) the shifted quantum affine
algebra u;ﬁ P The following is the key result of this section.

Theorem 6.6 Assume ut, u~ € A~ and define {bii},'el via bijE = ot?(ui) as
before.
(a) The generating series AijE (2), BijE (2), Cii (2), Dii (z) satisfy the following rela-

tions:

¢f AS (w) = A (w)f. ¢ DS (w) = DS (w)gf,
(6.6)
o5 BS () = )" BS (). ¢£CS (w) = v; 5w,

[Af(2). AS ()] =0, 6.7)

[Af(2). BS )] = [Af (2). C¢ ()] = [Bf (2). C5 (w)] = 0 fori # .
(6.8)
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[Bf (2), Bf (w)] = [CS(2), Cf (w)] = [Df(z), Df (w)] =0, (6.9)

(z — w)[Bf (w), Af(@)],1 = (i — vl (zAf(z)Bf/(w) - wAf/(w)Bf(z)) ,

(6.10)

(2 = wIAF @), CF )y, = (0 = o7 ) (wCF @)AF () = 2CF AF ()
6.11)

(z = wIB{ (@), € )] = (i = vz (Df WAL @) = Df AT ).

(6.12)

(z = w)Bf ), Df )l = (i =" (wDf ) B () — 2D () Bf (),
(6.13)
(z = w)IDf W), CE @], = (v = o) (2CF @ Df (w) = wCf W) Df (@)
' (6.14)

(z = wIAF @), Df )] = @ = ;") (wCf ) B () — 2C{ @ B ),
(6.15)

Af(z)Df(vi_zz) — vi_le(z)Cf(vi_zz) = 70 l_[ l—[ AG C" 2pz ),
j—i p=1

S (6.16)

(z — v} w) Bf (2) BS (w) — (v 2 — w) B () Bf (2) =

AL By, BS ()] oy + wAS w)lg] B o Bf ()] e fori # j,
i ! (6.17)
07z — w)Ci (2)Cj (w) = (z — ”?ijw)cg' W)Ci ) =

—[Cf (@), CF1871 5 AS (w) — [C5 (w), C}fy 6] i A (@) fori # J.
' (6.18)

Sym {n(vtza - vi_IZb)(Za = 2p)
. G

il a<b

I—cij

— Cjj ’ €l—cjj
Z( 1)[ . ”] B (1) BY (2)BS W) B (1) -+ B, ¥ (@1-c,)) | =0,
vi

(6.19)
Sym il_[(vzzza — v '2) (2 — 2a)-
e ll=ci \a<p
I—cij
— Cij €1 €, €’ €41 6I*Lij
Z( 1) |: , :| Cl' (Zl)"‘cl' (Zr)cj (w)ci (Zr+l)"'ci (11701'_,‘)
(6.20)

foranyi,j el ande,e’,el,...,el_cl.j € {£}.
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(b) Relations (6.6-6.20) are the defining relations. In other words, the

associative C(v)-algebra generated by {¢>ii, A?Eir, Bl+r, B, | Cl+r+1,

G _r,Dliiribi}{g\T with the defining relations (6.6-6.20) is isomorphic
roUrd
T

We sketch the proof in Appendix B. In the unshifted case, more pre-
cisely for Uf}d(Lg), the above construction should be viewed as a v-version
of that of [30]. In loc.cit., the authors introduced analogous generating series
{A;(u), Bi(u), Ci(u), Di(u)}ic; with coefficients in the Yangian Y (g) and stated
(without a proof) the relations between them, similar to (6.7-6.16).> Meanwhile,
we note that adding rational analogues of (6.17-6.20) to their list of relations, we
get a complete list of the defining relations among these generating series.

Remark 6.7

(a) For g = slp, relations (6.7, 6.9-6.15) are equivalent to the RTT-relations
(with the trigonometric R-matrix of (11.3)), see our proof of Theorem 11.11
below.

(b) This construction can be adapted to the setting of Uffmf. First, we redefine the

generating series Ai(z) =1+, i i,z”F’ which have to satisfy

-2
M 1,5 A2,

6.21
Aii(z)AlfJE(vi 2) (621)

bE o+ —1,,+
W@ =
Next, we define Bl.jE (2), Cii (z) via formulas (6.2, 6.3). Finally, we define Dii (2)
via
D (2) := AT @Y @) + vf (v — v, ) £ (AT D)e (2). (6.22)

The coefficients of these generating series together with {(1//e ehg)il}l ol

generate Uff _. For u*t,u= € A~ one can write a complete list of the
defining relatibns among these generators, which look similar to (6.7-6.20).

7 Homomorphism to Difference Operators

In this section, we construct homomorphisms from the shifted quantum affine
algebras to the algebras of difference operators.

SWe note that the relation [D; (1), D; (v)] = 0 was missing in their list.



168 M. Finkelberg and A. Tsymbaliuk

7.1 Homomorphism ;I;%

Let Dyn(g) be the graph obtained from the Dynkin diagram of g by replacing
all multiple edges by simple ones. We fix an orientation of Dyn(g) and we fix
a dominant coweight A € A" and a coweight © € A, such that A — pu =
Zie[ a;jo; with a; € N. We also fix a sequence A = (v, ..., w;,) of fundamental
coweights, such that Z?/:l wi, = A

Consider the associative C[v*!]-algebra AY generated by {Dl.ir1 SW
with the defining relations (for alli, j e I, 1 <r <a;, | <s < dj): ’

+1/2 1<r<a;
}ieI

12 Siides /2

. ) _ 1/2 1724 _ +1 nFl 12, F1/2 )
[Dir, Djsl =W, ,w/S1=0, DE'DF =wi "wi* =1, Di,w/s = v w/iD; .

Let AY be the localization of A® by the multiplicative set generated by

(Wi, — vTWi,S}l.leflrfnfzai U {1 = v" ez (o) (whicAh obvious}y satisfies Ore con-
cEtions). \l\’e also define their C(v)-counterparts Ag . = A’ Q1] C(v) and
‘A?rac = Av ®(C[vj:l] (C(v)

In what follows, we will work with the larger algebra ugdu [ZT] e Zil ], which
is obtained from ugfu [Zf], e Zil] = ugfu ®C@) (C(v)[zf[], e Zil] by adding
extra generators {(¢; )l }fez Ii satisfying relations (U9, U10) with the only change:

[T oz @y, =67 [TepH=r.
Siig=i j—i
We will also work with the larger algebras ﬁ”[zfl, ...,zﬁl] = A ®Crp!]
ClvtzE, .. zEand A2 (75, ..., 25" == A2 ®cw C)zi!, ..., 23],
Define
y ,1_=[: L iz W<()~—la_i[ L T TP sﬁ L Wi
iZ) == Ts i\Z) = - s i,r(Z2) = B s
1<s<N r=1 1<s<a;
R is=i z R aj z A sF#r ;
Zi(z) = IEN (1 - v,-z_y> , Wi@) = ]:[1 (1 - w,~,,>’ Wir(z) = 1(11 (1 - WM).

The following is the key result of this section.

Theorem 7.1 There exists a unique C(v)[zfl, ey Zﬁl]-algebm homomorphism

GE . qqad %l £1 T El £l
Dy Up 2y o zZy 1 — Appelzy - zy |
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such that

—Cji

l—[l—[ c,;/2 X’: <W[,r> ZIV(\(A\/I:Ilrj) l—[ 1—[ W( —C¢ji ZPZ)D;:,

ltl Jj—it=l r=I1 < Jj—i p=1

€i

Wil VIW; i ~¢ji=2p,
v 2 L s (72 s L T o

Vi jeit=1 Jj<ip=l1
+
ci /2 Zi(z) l—[ﬁ —cji—2p
s (Z)H]_[w,,]_[]_[ i e Wi, |
i Wi () Wi (v, Z)]lp1

(¢+)j:1 — HWiI/Z @ ):I:I > (—p;)Tai HW:FI/Z.

t=1 =1

We write y ()T for the expansion of a rational function y (z) in zT", respectively.

In the unshifted case, more precisely for U,(Lg), this result was stated (without
a proof) in [31]. The above formulas simplify for simply-laced g, in which case this
result can be viewed as a v-version of [10, Corollary B.17]. We present the proof in
Appendix C.

7.2 Homomorphism 6,’1 in ABC Generators

Generahzmg the construction of Sect.6, we define new Cartan generators
>0 d +1q -
{A; P of U [Zl v... Zy | via

Ay =@,
Vi@ _ [ T2 AT @ )
Zi(2) Af(z)A;L(vi_zz) ’
Zay(u)l/fii(Z) 1—1] 11_[ le n Cji_sz)
Hs:ixzi(_vizs) : Zi(Z) A (Z)Ai (vl. 22) ’

where we set Aii(z) = Zr>0 A jErzy. We also define the generating series BijE (2),
Cl.jE (z), and DijE (z) via formulas (6.2), (6.3), and (6.4), respectively.
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Lemma 7.2 For antidominant [ € A™, the generating series
AF(2), B (2), CF(2), DF(2) satisfy relations (6.7-6.15).

Proof Let ¢ be the determinant of the Cartan matrix of g. Choose unique Xi*(z) €

Tyt (g2
L4z 'C@)IzE's ..., Z5 Iz "), such that Z;(z) = —cOX WD Ajgo
1—[]_71_ 1—[ I! )L-%—( Cji Z)

1[z11, such that Z; (z)-]_[”s:i(—v,-zs) =

choose A; (z) € (C(vl/c)[ il/c il/c

A (z)k (v*zz)
7217 .
[T 11,2 1)‘ (v, )
Then, the series A (z)"'X(z) for X = A, B,C, D are those of Sect.6.
The result follows from Theorem 6.6(a) (compare with the proof of [44,
Proposition 5.5]). ]

Corollary 7.3 The following equalities hold in uad [Zl s Zil]:
B () = leio. AT @],-1. € (@) = [T AT @), fial, .
B, (2) = lei,—1,2A; @D]v;, C; (2) =[A; (2), fi0l;-
Proof The above formula for BZ.Jr (z) (resp. C l+ (z)) follows by evaluating the terms

of degree 1 (resp. 0) in w in the equality (6.10) (resp. (6.11)) with e = ¢/ = +.
The formulas for B; (z), C; (z) are proved analogously. O

The following result is straightforward.

Proposition 7.4 The homomorphism EIV)% maps the ABC currents as follows:

Af @ []w, " Wi, A7 @ - (- v)“t]"[w‘/2 Wi(2).

t=1 t=1
1/2 /2 u @ZiWi) 1 1 2
+ 71 i,r i ir . —Cji—4p A -1
B (@) = HW 1—[ 1_[ Z Wi (W, ) 1_[ l_[ W](vj Wl*r)Di,V ’
=1 joit=1 LEATLY j—i p=1

—Cji

a cif2 e 2Wir (2) Zi (Wi ) _
B @) = —(-w) ﬂw3/2HH Y o, [T oo

j—it=1 r=1 ’ ’ j—i p=1

(‘I Wtthr( ) -
Cr@) HW, | l—[ /2 ZZW,,(WI j) I1 1—[ Wi 02w ) D

jit=1 Jj<i p=1

a;i A —Cji
; 1/2 cji/2 W',r(Z) —cji—=2p 2
Ci (@) (—v) HW/ 1_[1_[ ’ E mnnwj(vj 0w ) Dy
=1 1

jit=1 r= ’ VO j<i p=1

In particular, all these images belong to AV [ZTI, .. ] - flfmc[z1 v Zy )
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8 K-theoretic Coulomb Branch

8.1 Quiver Gauge Theories

We follow the notations and setup of [10, Appendix A], so that (GL(V),N) is a
quiver gauge theory. As in Sect. 7, we fix a sequence (w;,, . .., w;,) of fundamental
coweights of G which is assumed to be simply-laced for the current discussion.
We choose a basis wy,...,wy in W = @ie[ W; such that wy, € W; . This
defines a maximal torus Ty C ]_[l- GL(W;), and K7y, (pt) = (C[Z?EI, ... ,Zﬁl]. We
consider the (quantized) K -theoretic Coulomb branch with flavor deformation A? =
K (GLW)XTw)oxC* (R - L(v),N) equipped with the convolution algebra structure as
in [9, Remark 3.9(3)]. It is a K¢x 7y, (pt)-algebra; we denote Kcx (pt) = Clg*'1.
We will also need v = ¢'/2, the generator of the equivariant K -theory of a point
with respect to the two-fold cover C* — C*. Recall that GL(V) = [Tic; GL(V)).
We will need its 2/-cover GL(V) = H:el GL(V,) where GL(V) = {(g €
GL(Vi), y € C*) : det(g) = y }. We consider the extended Coulomb branch
AY = K(GLV)xTy)oxC* (ReLv)N) = Al ®KGL(V)><C><(pt) Kﬁ(v)x@ (p). Tt is
equipped with an algebra structure as in Sect. 3.7.

Recall from [10] that wzr is the cocharacter of the Lie algebra of GL(V) =
[T GL(V;), which is equal to 0 except at the vertex i, and is (0,...,0,1,0,...,0)
at i. Here 1 is at the r-th entry (r = 1,...,a; = dimV;). We denote the
corresponding coordinates of 7y and T‘y byw;,and D, i € I, 1 <r < a).
The roots are w;, rW_1 (r # s). Furthermore, K (Tv*Tw)oxC* (R, 0) with scalars

extended by v,W £1/2 is nothing but the algebra fl”[zfl, e, Zﬁl] = AY ®ct!)
(C[ ][Z1 e Zy ], where A? was defined in Sect.7. We thus have an algebra
embedding

7 ()Tl AY s AYZE L 2R

Let @; , be the n-th fundamental coweight of the factor GL(V;), i.e., w;“l +
.+ wi’ﬁn = (1,...,1,0,...,0) where 1 appears n times (I < n < qa;). Then

GrG L) is closed and isomorphic to the Grassmannian Gr(V;, n) of n-dimensional

quotients of V;. Let Q; be the tautological rank n quotient bundle on GrG Lvy Its
pull-back to R, , is also denoted by Q; for brevity. Let A”(Q;) denote the class
of its p-th external power in A’. More generally, we can consider a class f(9Q;)
for a symmetric function f in n variables so that A”(Q;) corresponds to the p-th
elementary symmetric polynomial e .

o*

Similarly, we consider @ * —wo@i », where the corresponding orbit GrG L)
is closed and isomorphic to the Grassmanman Gr(n, V;) of n-dimensional subspaces

in V;. Let §; be the tautological rank n subbundle on GrG Ly 1ts pull-back to fR *
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is also denoted by 8;. Now similarly to [10, (A.3), (A.5)], cf. [10, Remark A.8], we
obtain

aj
l_[ H (l—vw,-,,w;i)

Jj<i s=1.
-
7 (f@ @0, )= D fowy )LD — 1o
. Jc{l,...,a;} 1_[ (1 _Wi,swiyr) red
#J=n red,s¢J
(8.1)

(the appearance of v is due to the convention before [9, Remark 2.1]);

A (f(si) ® O%m) =

aj
[T [T a-wwpw)h

j—i  s=I1
> f 2wy [ A - vz e L0EED — 1o
Il ai} rel. l_[ I =wi,W;{) ey
#J=n f=t red,s¢J
(8.2)

where f(v_zwu) means that we substitute {v_zwi,r}rej to f.

Also, for the vector bundles SZZ,“, Qg i,l of p-forms on Grgzl(v), Grgiil(v) we

obtain

77 (24, ® 97 ®0g,,, ) =

u
H 1_][ (l—vw,-yrw;;)
TGS
(,’_p ) J,8)F(,r D:
>oowl > T Twis 0w D i

1<r=<a; Jc{l,....ai\{r} seJ
#J=p SHET

(8.3)
7 ()7 <Qg*l ®87" ® waf‘]> =

aj
1_[ 1_[ (1— ij,sw;rl)
SR
—2p'\P'+P -1 —1 J:8)FEr -1
Z v wy l_[ 1 —vz,w; ) l_[wm — D; ..
l<r<a; tiiy =i J{l,ai\(r) sed l_[(l = WirW; o)
#]=p SF#r

(8.4)
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8.2 Homomorphism 5%

We set Af . = A’ ®cpyzi; C(v). The key result of this section asserts that
the homomorphism 5L of Theorem 7.1 factors through the above embedding
25(1) Afpe = frac[z R Zﬁl], similarly to [10, Theorem B.18].

Theorem 8.1 There exists a unique (C(v)[zfl, e Zil]-algebra homomorphism
A . qrad +1 +1
D) US)M[Zl s Zy 1 — AR

such that the following diagram commutes:

+1
uO/L[ ’ "7ZN]
— I
(I’g \ P
n +1 +1
‘Aﬁrac Z*(L*)—l ‘Aﬁrac[zl yer e ZN

Explicitly, 5% maps the generators as follows:

D%v .
eir > ( ) l—[ l_[W 1/2 (vzsi)®(r+a,) ® wa-*l’

j—it=1

Z i 4j .
fi,r — ( l)) J 1—[ l_[ 1/2 ®( Z/el ® (IJZQj)®r ® O:Rw“ ,

j<it=1

Af, (—1)r]—[w “er((WialLy),

A, = (1) (= z»)“']"[w”2 er(fw; ).

=1
1/2 —1/2
H]_[wlﬁ,qb > (—v)” “'Hw 2,

Proof For X € eir. fir Ajy. 07 li € Lr e Zs € N} con

sider the assignment X > 5)” (X) with the right-hand side defined

as above. Smce z (L*) LAY — A

Lfrac 1crac[zl ,...»Zy | is injective and

<I> U [Z ,...,ZN ] — Afrac[ e, N ] is an algebra homomorphism,
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it suffices to check that z*(1,)~! ( (X)) = 5?7(X) for X as above. This is a
straightforward verification based on formulas (8.1) and (8.2). O
Combining Proposition 7.4 with formulas (8.3) and (8.4), we immediately find

+C+

=
the images of the generators (B, C/\ i eZ,O under ®};.

Corollary 8.2 Forr € N, we have

i1, 2 1/2 —1/2 i—1—
M(Bl—l-r)_( 1)r+a+ rl_[W HHW ( a.*l r®5®r®ojz )
t

j—it=1

/L(Cl r+1)_( l)r—i-l( v) Z/(_Ia/l_[W*]/znl_[W]/Z
t=1

Jj<it=1

1= . a;
(9;, Lol TR g o 1> .

In particular, the images of {A , BT, C;" ¢>.+}TEN under 5A belong to A C

ir> Zir Yior+1 iel
AR oo In fact, the images of {A; .. B; _, |, C;_ &, }lrS\I under CI>M also belong
to A*.

Remark 8.3 (A. Weekes) In the case of shifted Yangians, the images of the generat-
ing series B;(z), Ci(z) [44, Section 5.3] in the quantized (cohomological) Coulomb

branch Aj under the homomorphism 5% of [10, Theorem B.18] are equal to

T4 (Bi(2) = (—=1)%z7 " e(@r, —z71) N [Rpe I,

i1
B (Ci(2) = (i eS8, =2 ) N [Reyy 1,

where ¢(&, z) denotes the Chern polynomial of a vector bundle F. Here we view
Q;, 8; as rank n — 1 vector bundles on R, @ wa, |- respectively, while Q denotes

the vector bundle Q; with the equivariance structure twisted by 7.

*

Remark 8.4 Note that GrGL(V) ~ pa-l ~ GrgiL'l(V), and if we forget the

equivariance, then up to sign, @ M( fir), 1 <r < a;,is the collection of classes of
pull-backs of the line bundles Opa;—1(1 — 3>, a;), ..., Opg-1(ai — 3 ;. ; a;),
while Eﬁ(clfr), 1 < r < g, is the collection of classes of pull-backs of the
vector bundles Q;;il,l (r—>_j;a;). These two collections are the dual exceptional

collections of vector bundles on P4 ~! (more precisely, the former collection is left
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dual to the latter one). In fact, this is the historically first example of dual exceptional
collections, [3]. Similarly, up to sign and forgetting equivariance, 5;‘7 (eir), 0 <
r < a;, are the classes of the exceptional collection of line bundles right dual to the
exceptional collection of vector bundles whose classes are 6,%(3;;), 0<r<a.

Remark 8.5 An action of the quantized K -theoretic Coulomb branch A = of the
type A quiver gauge theory on the localized equivariant K -theory of parabolic Lau-
mon spaces was constructed in [4]. Combining this construction with Theorem 8.1,
we see that there should be a natural action of ugf‘ﬂ[zfl, e, Zﬁl] (with g = sl,,) on
the aforementioned K -theory. We construct explicitly such an action of Uff M in The-
orem 12.2 by adapting the arguments of [61] to the current setting (the adjoint ver-

sion is achieved by considering equivariant K -theory with respect to a larger torus).

8.3 Truncated Shifted Quantum Affine Algebras

We consider a 2-sided ideal Jﬁ of US‘L [ZTI, e, Zil] generated over

(C(v)[zfl, e Zﬁl] by the following elements:
. R - 2a;

Ay, > ap), Ao A e = (CDY A A, — (D", (8.5)

A —viAfL L O<r<a). (8.6)

Definition 8.6 Ui‘j = Ugdu[zfl,...,zﬁl]/ﬂﬁ is called the truncated shifted

quantum affine algebra.
Note that the homomorphism 213% US‘L [Zfl, o Zﬁl] — ﬁ?rac[zfl, A Zﬁl]

+1 +1
frac[zl vee Ly 1,
due to Proposition 7.4. Similarly to [10, Remark B.21], we expect this homomor-
phism to be injective:

factors through the same named homomorphism a)% uﬁ — A?

Conjecture 8.7 5% u/% — ‘/T?rac

+1 +1
[z, ..., zy ]
Remark 8.8 As a first indication of the validity of this conjecture, we note that

the elements {B,Ct ., B~ C_}'=% which belong to Ker(?f)f"j) (due to

ir> i+ Ti,—r—1 Yi,—rliel

Proposition 7.4) also belong to Jﬁ, due to Corollary 7.3 and relation (U10).

Moreover, we expect the following result:

Conjecture 8.9 5,% : Ufj —> Af e
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8.4 Truncated Shifted v-Yangians

Recall that g is assumed to be simply-laced. Recall an explicit identification of
the Drinfeld-Jimbo and the new Drinfeld realizations of the standard quantum
loop algebra U,(Lg). To this end, choose a decomposition of the highest root 6
of g into a sum of simple roots 6 = o + o + ...+ o | such that ¢ =
(T oz?l +.. .—i—ozyk) € Zpforany 1 <k < h—2 (here h is the Coxeter number of
g). We encode a choice of such a decomposition by a sequence i = (i1, ..., i5—1).
Let U,PJ (Lg) denote the Drinfeld-Jimbo quantum group of g (affinization of g) with
a trivial central charge, generated by {E;, F;, Kl.il}i <7 (here I=1U {ip} is the
vertex set of the extended Dynkin diagram), see [50]. The following result is due
to [16] (proved in [41]).

Theorem 8.10 There is a C(v)-algebra isomorphism UPJ(Lg) = Uy(Lg), such
that

+1 £ oo
Ei— eio, Fi— fio, K7 = Y fori el

Ei() = [fih,1,01 [fihfz,()v Y [ﬁz,()’ fil,l]vfl te ]v611*3]v6h*2 : WQ_’
—€. .+
Fio = (—U) 61&9 . [ei]1,1,07 [eihfz,()v Tt [eiz,Os eil,—l]vq te ]v€}1*3]v€h729
+ ¥
Ki0 = ‘”9 ,

+ . + + .
where Y, = Vio Vi 0 €=€+...+€2

In particular, the image of the negative Drinfeld-Jimbo Borel subalgebra
of U,PJ (Lg) generated by {F;, Kl.jt]}ie,~ under the above isomorphism is the
subalgebra U, of U,(Lg), generated by {ﬁ,o,(lﬁi’_o)il,F}iel with F =
lei, 1.0, €, 5.0, ,[€iy0, €1, —1]ve1 - - - Iyen—3 lyen—2. Motivated by this observa-
tion, we introduce the following definition.

Definition 8.11
(@) Fix i = (i1,...,ip—1) as above. The shifted v-Yangian i‘é,’i[zfl, . ..,Zﬁl]
is the (C(v)[zfd,...,Zﬁl]—subalgebra of Ugflu[zfl,...,zil] generated by

{10 Wiy )EY, Flier, where

A

F = [eihfl,b,'h_l s [eihfz,bih_z’ Tt [eiz,biz s eil,bl‘l —l]vel e ]veh*3 ]vehfz
and b; := o (10).
(b) The truncated shifted v-Yangian i‘ji‘j is the quotient of i‘éz [ZTI, e, Zﬁl] by the
2-sided ideal 135 = 75 N YLz Lz



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 177

Remark 8.12 For g = gl,, and n = 0, our definition of the v-Yangian is consistent
with that of the quantum Yangian Y, (gl,,) of [54] (in particular, independent of the
choice of i). The latter is defined via the RTT presentation, see our discussion in
Appendix G, and corresponds to the subalgebra generated by the coefficients of the
matrix 77 (z).

Conjecture 8.13 5,%2 19% —> Afe-

8.5 Integral Forms

If we believe Conjectures 8.9 and 8.13, we can transfer the integral forms A C
Afpe to the truncated shifted quantum affine algebras and the truncated shifted v-
Yangians to obtain the C[v*!]-subalgebras /ﬂ% C uﬁ and ;2)% C 19% Finally,
we define the integral form ’ ilgdu C ugdu as an intersection of all the preimages
of /L[%L|Zl=-~-=ZN=1 under projections US‘L[ZT], R Zil] —» u,% as ) varies, and
Q) = ’ngflu N i’gj}i[zft], oo, Z5lzy=.. —zy=1. Unfortunately, we cannot define
these integral forms by generators and relations in general. In the case of sl
see Sect. 9.1.

Recall that * stands for the involution u +— —wou of the coweight lattice A.
Similarly to [10, Remark 3.17], one can construct an isomorphism from the non-
quantized extended K -theoretic Coulomb branch Spec K (¢L(V)xTw)o(Rs L(V),N)

of Sect. 8.1 to the multiplicative slice cover TW%; of Sect. 4.6. Its quantization is the
subject of the following

Conjecture 8.14

(a) The shifted v-Yangian ’r‘{)ﬂ is a quantization of the thick multiplicative slice
"W« of Sect. 4.8, that is )7 |,=1 =~ C[TW,+].

(b) The truncated shifted v-Yangian 2)% and the truncated shifted quantum affine
algebra’ ilﬁ are quantizations of the multiplicative slice cover T\/A\?ﬁi of Sect. 4.6,
that is )% =1 = 't o1 = CIIWEL].

8.6 An Example

Letg = sl,, w =0, A = (w1,...,w;) (the first fundamental coweight taken
n times). Note that the symmetric group &,, acts naturally on /ﬂ;\j, permuting the

parameters Zi, ..., Z,. This action induces the one on the quotient algebra ’i_l%
by the relation z; - - -z, = 1. Then we expect that the evaluation homomorphism
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Uy(Lsl,) — Uy(sl,) [40] gives rise to an isomorphism (' ﬁ%)en > 40joc, Where
AO is the integral form of the quantum coordinate algebra of SL(N) introduced
in [50, 29.5.2], and 401, stands for its localization by inverting the quantum minors
{cu}ven+, see [42,9.1.10].

9 Shifted Quantum Affine s, and Nil-DAHA for G L (n)

9.1 Integral Form

. . + + + + o
In this section g = slp, whence we denote Ai’r,Bi’r,Ci!r,qﬁi simply by
AL BE C* ¢*. The shift w € A = Z is an integer. Furthermore, A =
(w1, ...,w1) (a collection of N copies of the fundamental coweight). The
corresponding shifted quantum affine algebra is ugdu [Zlil, RN Zﬁl]. We define
a C[v*!]-subalgebra ilgfiu[zfl, R Zﬁl] C ug‘}ﬂ [Zfl, R Zﬁl] generated by
{Air, Br+, B_,_|, C;:_l, c-,, ¢i}reN and its quotient algebra (an integral version
of the truncated shifted quantum affine algebra)
A : A .
s =0 1z Lz @ iz D).

Let V =C", W = CV. According to Corollary 8.2, the homomorphism
DN ot Uyl Zy' 1 — Ab,. = KOOI (R ) Homw.v)) O] C(v)

takes 480y 5 (z7'. .zl W0z zy o AT AR
In particular, we have 118‘,1;\/72,, [Zfl, R Zﬁl] - /ilg“iNfzn [ZTI, L Zﬁl]
(cf. Sect.8.5). We also define a C[v*!]-subalgebra 2)}’\,_%[2?],...,2#] -

"Nfzn [Zfl, R Zﬁl] generated by {AZ,, B CZ,, ¢ }ren. Furthermore,
we define the shifted Borel v-Yangian Q)”N_zn’_[zfl, . ..,Zil] as the C[v*¥!]-

subalgebra of @yvfzn [Zfl, R Zﬁl] generated by {AZ,, C_,, ¢~ },cn. Finally, we

—r—1-

: . A A
have their truncated quotients 2y, _,,, Dy _,, _. We expect that
ad +1 +17 _ /qqad +1 +1
Yov—2alZi s 2y T="Mo y 0nlZy - 2 ],
v +1 1y _ rgyv £1 £1
Dy_onlzi o Zy 1 =" Dy onlzy iz 1
8 _ I s _ Iy
L[N72n - uN72n’ EDN72n - QJNon'
Conjecture 9.1 The natural homomorphisms induce isomorphisms

A ~ (A ~_ qv
EZJN—2n ‘uN—2n A
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From now on, we specialize to the case N = 0, u = —,211. Accogding to Corol-
lary 3.14, the corresponding Coulomb branch A? = KGL(0)xC* (Grgrmy) 1s
nothing but the spherical extended nil-DAHA F0." h(GL(n)). We define C[vE! e

inverting (1 — vy, m = 1,2, ...,n. We extend the scalars to C[vF!]joc to obtain
=0 . (qad GL(n,0)xCx
cI)—2n,loc' uO,—Zn,loc - Kloc (GrGL(”))‘

The following theorem and Proposition 9.8 is a supportive evidence in favor of
Conjecture 9.1.

Theorem 9.2 @° g CLOxCx

. ¢(ad
—2n,loc * ~*0,—2n,loc loc

Proof We must prove that KgCL (,0)xC* (Grgr(ny) is generated by K¢ ) (pt) =

R(GL(n)), and O(a), , O(a)w]*, a € 7.Here w; = (1,0, ..., 0) denotes the first
fundamental coweight of GL(n), and Gr®' ~ P*~! is the corresponding minuscule
orbit, so that Gr”i ~ P!, Finally, Q is the tautological quotient bundle on Gr®",
isomorphic to the ample line bundle O(1) on P"~!, and O(a)g, stands for Q®4,
Similarly, 8 is the tautological line subbundle on Gr1 isomorphic to O(—1) on
P! and (‘_)(a)wl* stands for §¥7%. Note that O(1)4,, O(l)wl* are isomorphic to
the restrictions of the determinant line bundle on Grg »).

Given an arbitrary sequence vy, ..., vy with v; € {oy, ..., @y, @], ..., @},
the equivariant K -theory of the iterated convolution diagram

(GrG L) is surjective.®

KOLOXNCE (G % XGrY)
is isomorphic to

KGL(}’L,O)NCX (Gr KGL(}’L,O)NCX (GrvN).

v ...
) ®KGL(n,O)><1(C>< (pt) ®KGL(n,O)><1C>< (pt)

By the projection formula and rationality of singularities of Gr!++T"~_ the
convolution pushforward morphism

My KGL(n,O)X](CX (Grvl ; o ;GI'UN) N KGL(n,O)Xl(CX (@U[-F...-H)N)

is surjective. Hence in order to prove the surjectivity statement of the theorem, it

GL(n,0)xCx .
suffices to express K . (n,0)x (Gr"), v e {m1,..., @y, @], ..., @}, in terms

of 0(a) g, (‘)(a)wl*, a € Z, and K ) (pt). We will consider v = @, 1 <m <
n, the case of @, being similar. Note that O, is the structure sheaf of a point
GL(n, O)-orbit corresponding to the coweight (1, ..., 1). We argue by induction
in m.

5A stronger version of the theorem (over Z[vE!] as opposed to over (C[vil]loc) is proved
independently in [15, Corollary 2.21, Remark 2.22].
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For v as above, the Picard group of Gr" is Z, and we denote the ample generator
by O(1),. It is isomorphic to the restriction of the determinant line bundle on
Grg (). We start with an explicit expression for me = 0grom, 1 < m < n,
in terms of O(a),, a € Z. Recall that 5(12,,(]?) O(r) e, and <I>_2n (ey) =
(—1ytp2rt2nt]

1—v2

_lv2

O(=r — n)g. We denote adzr vy =[x, ylyr = xy — v yx.

Proposition 9.3 Forany 1 < m < n, we have

2m 2(m— 1) 4
me = (—1 —2)‘[ (adv dv i adl}m73 fm—l)s (91)

Ow _ ( 1)nm+m(m+l)+1 m2 2(1 2) %

m
—2m v*Z(mfl)

—4
ad; €—ntm—1)- 9.2)

a e
€—n+l-m €—n+3—m €—n+m-3

3%, (ad?

Proof We prove (9.1); the proof of (9.2) is similar. We will compare the images of
the LHS and the RHS in Ag . According to (8.1), the image of the LHS equals

s¢J
S TTa=wow H ' T] b 9.3)
#J=mrel reJ
Here J C {l,...,n} is a subset of cardinality m. Let us denote the iterated

2(m— 1)

2m 4
v-commutator ad'/’,-1 d” d’]"n_3 fm—1by F,,. We want to prove

seJ
m(m 1) _
0, (F) = (=D A=) Y [Tad-ww,H ' []Dr. 94)
#J=mrel reJ

The proof proceeds by induction in m. So we assume (9.4) known for an integer

k < n, and want to deduce (9.4) for m = k 4+ 1. We introduce a “shifted”
v-commutator F/ := ad’;  ad’" " ...ad% fx- Then
k- So—k  fa—k Si—2

s&J —1
69%(1:]2):( He-l) 1_v —1,2% Z ern( xj) l_[Dr.

#J=krel red red
Now
%, (Fir1) = D%, (Lf—ks Fllyaarn) = [D%,, (f-r), D%, (F)y2usn) =

s¢J

n 1
DA - )2 | Y (v(Wf') )D” ZHWrn(l_WS> [1o

p=1 I1 #J=krel  rel r reJ
t#p p20k+1)
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First we check that the summands corresponding to p € J vanish. Due to the
symmetry reasons, we may assume p = 1, J = {1,2, ..., k}. Then

(U2W])_k k s>k W -1
7D171_[Wr1_[<1_75> Dy Dy
1_[ (] — %:) r=1 r<k Wr

L1>1 p2(k+1)

2 —k
VW Wi---W
(v°wy) 1 k Dy Dy _

0-30) L0 (- T (-%)

l<r=k s>k I<r<k p2(k+1)

v2(k+1)wl . Wk(vzwl)*kv*Zk

O-E) 020 1,0 3)

DID;--- Dy =0.

s>k l<r<k t>k l<r<k
Therefore,
k(k—1) ~
(=17 (1 =)@, (Fiy1) =
p¢J 2 —k s¢J -1
(v°wp) 2% W
— D, v W, 1—— D
> | s T T (1-32) 112
#i=k | L lip w, rel  rel reJ V204D

We expand this combination of v>**1D_commutators as a sum

Z ¢J(Wls"'7wn)1_[Dr.

#J=k+1 reJ

For the symmetry reasons, it suffices to calculate the rational function ¢, for a single
J={1,...,k+ 1}. We have

¢y(Wi,...,W,)Dy---Diy1 =

2w \—k 2k o
(v°w,) VWY - Wy e Wy —
Dy---D, - Dyyq =

w, W,
r#p<k+l p20+1)
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k+1 _ ~
Z erwl"'Wr"'Wk+l B
w W t>k+1 w 5
T\ 000,008 0 (%)
t>k+1 r#p<k+1 r#p<k+1 r#p<k+1
1,2(/<+1)Wr—kwl W Wit 1
T okl ) Di---Diwi =
7 -2) 1, 0-%),0,0-8)_1,0-%)
r#p<k+1 r r#p<k+1 P/ k1 " rtp<k+1 !
t>k+1 —1
W;
—02®FDw L wgey H (1 - W_> x
r<k+1 r
k+1 wk=l 2+ Dy k=1
Z W, v2w), - w, 2w, Di-- Dy
A0 =) (-me) 0 (=) (- %)
r#p<k+1 r#p<k+1

This is equal to the following expression, by Lemma 9.4 below:

t>k+1 -1 k.2
w (=D"(v"—1)
—02(k+1)W1"'Wk+1 1_[ (1__t> —Dl"'Dk—H:

2(k+1)
rk+l W ’ r<l;[+l W
t>k+1 w —1
=Dfa—v» T] (1 — —’) Dy Dyy1.
W
r<k+1
We conclude that
k(1) gl
0y, (Fip) = (=D 2 A=)~ 37 [Ta-wwH '] D.
#J=k+1reJ reJ
and (9.4) is proved. It remains to check
Lemma 9.4 We have
Iil Wr_k_l v—2(k+1)wr—k—l (_l)k(vz -1
_ — 2 - — 2 = .
— Sl;[r(l W, /W) (1 — v=wy /W) Sl;[r(l W, /W, ) (1 — v=W, /Wy) vz("“)k]f[:Wr
Proof The LHS is a degree —k — 1 rational function of wy, ..., Wiy with poles

at the hyperplanes given by equations W, — Wy, W, — v>Ws, W, (1 < r # s <
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k + 1). One can check Resw,—w, LHS = Res,, _,2, LHS = 0, so that LHS =
f- ]_[lfr k1 Wr_1 for a rational function f € C(v). To compute f, we specialize
Wi — 0 in the equality

k1 kel [T ws v 2D TT wg
f _ l—[ W Z SHEr 1 SEr 1
= . R —
t=1 r=1 l_[ Wy — W) (Wy — v2WS) W 1_[ Wy — W) (Ws — vzwr) W,
- - SEI SFEr

The only summands surviving under this specialization correspond to » = 1, and so
we get

k+1 s K
k+1 [T ws v 2D T wg
_ ) s=2 _ s=2 ke =2k o —2(k+1)

f= an k+1 k+1 = =D v )-

= ek TIwE DF W

s=2 s=2

The lemma is proved. o
The proposition is proved. O

Returning to the proof of Theorem 9.2, we need to prove that

KIE);CL("’OMCX (Gr®m) lies in the image Egzn’loc(ﬂgftzn’loc) forl < m < n.
We know that the class of the structure sheaf O, € Kch (n,0)xC (Gr®m)

lies in 6‘12,1 1oc(ﬂgd_2n loc)- It is also known that KOLOOXC (Grom) a5 a

left Kgrm, 0yxcx(pt)-module is generated by the classes »*(Q) where Q

is the tautological quotient bundle on Gr® ~ Gr(m,n), and X’ is the

polynomial Schur functor corresponding to a Young diagram A with < m rows

(in fact, it is enough to consider A’s with < n — m columns). Given such
s>m —1

A, it suffices to check that Sym (W?‘ oW I1 (1 — a—;) D, Dm) lies
r<m

in 592,1,106(&3‘)172”)1%) (here Sym stands for the symmetrization with respect

to the symmetric group &,). More generally, for a Young diagram p with

sS>m —1
< n rows we will show that Sym <W’fl Cewhn I (1 — m) D -~-Dm)

w,
r<m
lies in 532n,10c(ugﬁ_2nﬁloc). To this end, we use the right multiplication by
KGrm,0yxcx(pY). It suffices to check that the Kz, 0)xcx (P, -bimodule
s>m -1
generated by X, = Sym(ﬂ ( — %) D1~~Dm> contains elements
< r
s>m "_"il
Xrm = Sym (F I (1—\‘%) D1-~-Dm> for any polynomial F €
r<m "
Clwy, ..., wW,]. We can assume that F € C[wy, ...,W,,]G'"XG"*'", where the

symmetric groups act by permuting {wW,, 1 < r < m} and {wg, m + 1 <
s < n}. Note that C[wy, ..., W,]S*Sn=n is generated by C[wy, ..., W,,]%"
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as a left C[wy, ..., w,]%-module. Hence, it suffices to treat the case F €
Clwi,...,Wu1®" = Clpi,..., pml, where pr := "  wk. The latter case
follows from the equality

n
|:ZWI;, XF,mj| =(1- v2k)XFpk,m

r=1

for F € C[wy, ..., Wy;,]Sm.
The theorem is proved. O

Remark 9.5 The end of our proof of Theorem 9.2 is a variation of the following
argument we learned from P. Etingof. We define Clv 10c inverting (1 —v™), m €
Z. We consider a (C[vil]LOC-algebra 2 of finite difference operators with gen-

erators {Wl.il, Dl.il};'=1 and defining relations D;w; = vz‘sif'iji, [D;, D;] =
[w;, w;] = 0. Then the algebra of &, -invariants 2ASn is generated by its subalgebras
Clv* o[ DT, ..., DES and Clot poc[wi, ..., Wil Sn,

Indeed, let B be the C[v*!] oc-algebra generated by wt!, D*! subject to Dw =
v>WD. Then 2 = B®" (tensor product over C[vF!]i ), and ASH = Sym” B
(symmetric power over Clv* 1oc). Now Sym” 95 is spanned by the elements
{b®"} e, and hence Sym” B is generated by the elements {b(1) + . .. + b }pes,
where b)) =1®---®1®b®1®---®1 (b at the r-th entry). Indeed, it suffices to
verify the generation claim for an algebra Clv* Loc[b] Where it is nothing but the
fundamental theorem on symmetric functions.

We conclude that Sym” B is generated by the elements {p,; =
S W"DKY, kez. However, pp i = ¥ — D717 DA S w™] for
m # 0 # k.

Remark 9.6 Motivated by [10, Remark 3.5] we call O, € K9 %C (Grgy )
the quantum resultant. In fact, it is a quantization of the boundary equation for the

trigonometric zastava T%’S‘ L) which is nothing but the resultant of two polynomials.

Note that, up to multiplication by an element of C[v*'], the quantum resultant is
uniquely characterized by the property

own5(12n (Air) = vi(2r7n)6(12n (Air)Own’ Own692n (fp) = l)21769211 (fl’)own'
9.5)

Remark 9.7 Here is a geometric explanation of the equality

O(—k—=1) g %O, —0*FTV Oy 4O (—k— 1)y = (= DF 10?0 2EDO (< 1),
9.6)

established as an induction step during our proof of Proposition 9.3. We have the
convolution morphisms

’
~ m — m ~
Gr?' XGr? — Gr?' TPk — Gr”*XGr!,
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and Gr”1+@ = Gr™1 @k uGr™+!. Let us consider the transversal slice Wit /7% C
Gre@1 ok through the point w4+ = (1,...,1,0,...,0) (k 4+ 1 I’s). It suffices to
check that

My (O(—k — 1), RO, |m—1W”’;+;ﬂ> i (owﬁO(—k — Dy, |m,_lwwi+lmk) —

(—DF(1 = o2y 2w ]

where we view v_z("‘*‘l)wl_1 "'Wk_il as a character of T x C* (T C GL(n) is
w1+

the diagonal Cartan torus). According to [52, Corollary 3.4], Wg, [ is naturally
isomorphic to the slice Wg C Grgp(kt1)x(Cxyn—+-1 where 6 = (1,0,...,0,—1)

is the highest coroot of GL(k + 1). Moreover, the preimages of Wg;jf’k in the

two convolution diagrams are isomorphic to the cotangent bundles 7*P* and TP,
respectively. We will keep the following notation for the convolution morphisms
restricted to the slice:

TPk 2 WY L TPk

Note also that Wg is isomorphic to the minimal nilpotent orbit
closure Oy, C Slg+1.  Finally, O(—k — 1)4 MOy, | Iy and
mn Dk+1

Owkg(‘)(—k — Dy lm/_]Wm/chrlmk are isomorphic to the pull-backs of Opr(—k — 1)
e+

and O, (—k — 1), respectively, but with nontrivial C*-equivariant structures.

Let us explain our choice of the line bundles. According to [8, Proposition 8.2],
the convolutions in question are GL(k 4+ 1) x C*-equivariant perverse coherent
sheaves on O, C sly1. Since dim H¥(T*P¥, Oupi (—k — 1)) = 1, while
H*(T*P*, Opspk(k + 1)) = 0, we have an exact sequence of perverse coherent
sheaves’ on Oy, C sl

0 — 7100, (=k — D[k] = myOppx (=k — 1)[k] — 60 — O,

where j: Opin <> Opi, is the open embedding, and & is an irreducible skyscraper
sheaf at 0 € Q,;, with certain C*-equivariant structure. The same exact sequence
holds for m;OT*ka(—k — 1)[k], but the quotient §p has a different C*-equivariant
structure.

Proposition 9.8 The restriction of 582,, to @QM_ is injective.

Proof Consider an ordering Ay < A < ... < A:n+1 < G, =
< C_

ae1- We set (Aa)’k = ((—vz)’"A:n)k for k > 0. For

7We are grateful to R. Bezrukavnikov for his explanations about perverse coherent sheaves.
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F o= (r,...,rm) € 7Z X N2'—1 we define the ordered monomial my =
(Ag) (AT -+ (AT, )" (Cy )+ - (C2,

Lemma 9.9 The ordered monomials {my} span 23(12,’7_.

Proof According to relations (6.7, 6.9), we have [A;, A] = [C,,C; ] = 0 for
s,t < 0. Due to Remark 8.8, we also have C;” = 0 for s < —n. It remains to prove
that all A;” can be taken to the left of all C; . This is implied by the fact that C; A,
can be written as a linear combination of normally ordered monomials A, C_,. The
latter claim follows from relation (6.11) by induction in min{—#, —s}. The lemma is
proved. O

The following result will be proved in Sect. 9.2:
Lemma 9.10

(a) The ordered monomials {my} form a K¢ (pt)-basis 0f2)(12n’_.
(b) {5‘12}1 (m7)} form a Kcx (pt)-basis of@ﬁzn (2)%2”’_).

The proposition is proved. O

9.2 Positive Grassmannian

Recall the positive part of the affine Grassmannian Grg L C Grgrm) [10,

§3(ii)] parametrizing the sublattices in the standard one. Recall also that

Klgcl‘("’o)xcx (Gr®) = Klgf("’o)xcx (P is generated over K¢y (,)(pt) by the

classes of O(@)w,, —n + 1 < a < 0. The proof of Theorem 9.2 shows that

50 ilgd . KGL(n,(‘))m(CX

oo - o loc loc (Grgr(n)) restricts to a surjective homomor-

fom B0 . Mo GL(n,0)xT* , ~ +
phlsm (D—Zn,loc' 2~]—2n,—,loc - Kloc (GrGL(n))'

ope =0 0 ~ GL(n,0)xCx +
Proposition 9.11 CI>_2n’loc. Q-j—Zn,—,loc —> K¢ (GrGL(n)).

=0 .m0 GL(n,0)x«C* ~ +
Proof We have to check that ®°, | 9%, | = — K " (Gre L ()

is injective. To this end, note that Grg L) is a union of connected components

numbereq by nonnegatiYe integers:.GrJGr Ly = Ll en Grg[(n), where Grgz(n)
parametrizes the sublattices of codimension r in the standard one. The direct

~7 ~x ~7 i
sum decomposition KI(O;CL(”’OM(C (GrgL(n)) = @B,y Kl(jCL("’OMC (Grg’z(n)

is a grading of the convolution algebra. For any connected component,

GL(n,0)xC>
Kloc

d, is the number of T-fixed points in Grg[ .- that is the number of weights of
the irreducible G L (n)-module with the highest weight (r, 0, ..., 0), isomorphic to
Sym” (C"). Note that all the weights of Sym” (C") have multiplicity one; in other
words, d, = dim Sym” (C").

(Grgg(n)) is a free K’G\Z(n,O)XI@X (pt)loc—module of rank d,, where
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According to Lemma 9.9, we can introduce a grading @92,1_10C

@reN Q‘j%n _ Joc: @monomial my has degree r if ry 41 +. .. +7r2, = r. Itis immedi-
ate from the relations between A, , C, -generators that this grading is well-defined.

.. — 0. GL(n,0)xC>
Also, it is clear that ®° Y ontoc D0 —10) € Kige (. OXC Gr GL(H)) Meanwhile,
GL 0)xCx
we know from Theorem 9.2 that ®° “on. loc@] 2 loc) = K. @, 0) (Gr J{;L(n))

On the other hand, we know from Lemma 9.9 that m‘}gn e as a left
K& (n,0)x & (PV), ,-module has no more than d/. generators, where d/. is the number

of compositions of r into n (ordered) summands. Since d, = d/, we conclude
=0 . o0 GL(n,0)xC>
that & 2n loc * QJ 2n,—,loc - K

loc
and @ 2n.—loc 18 @ free left K&z, 9)5@x (pt) loe -module of rank d, = d. This
completes the proof of Proposition 9.11, Lemma 9.10 (and Proposition 9.8). O

(GrG L(n)) must be an isomorphism,

Remark 9.12 One can check that the natural morphism
KGL(I‘I, O) xC* (GrgL(n))[o;l] N KGL(VL, O) xC* (GrGL(n))

is an isomorphism. Now it follows from the proof of Proposition 9.11 and The-
orem 9.2 that in order to check Conjectures 8.7, 8.9 and 8.13 in our case:

Ker($% nloc) = ngn’] oc» it suffices to check the following equality in UO —on/ 392,1:

—2(n—1)

—4
3 S 1)(ade1 L, ade o ead) e ) =1

—v"2’2(1 v2)? (adf1 , ady qu
Remark 9.13 Consider a subalgebra U5 , — C ilg‘?_h generated Dby
{(v — v_l)fs }sez- Ngte that it is independent of n, cf. Proposition 5.1. The image
0, (U5 _p,) in K GL0OXC* (Grgy () is isomorphic to the M-system algebra
U;_l of [18]. In particular, the generators M, s € u;_l of [18, § 2.1] correspond

to scalar multiples of the classes O(—$), € K&("’O)X@X(Gr(;un)), cf. (9.1)
and [18, (2.23)].

10 Coproducts on Shifted Quantum Affine Algebras

Throughout this section, we work mainly with simply-connected shifted quantum
affine algebras. However, all the results can be obviously generalized to the adjoint
versions.

10.1 Drinfeld Formal Coproduct

The standard quantum loop algebra U, (Lg) admits the Drinfeld formal coproduct

A: Uy(Lg) —> Uy(Lg)®Uy(Lg),
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defined in the new Drinfeld realization of U, (Lg) via

Aei(2) = ei(2) @ L+ 7 (2) ® ei(2),
Alfi(@) = i) @ ¥ () +1® fi(2). (10.1)
AW @) =9 @ ¥ (2.

Remark 10.1 Composing A with the C*-action on the first factor, D. Hernandez

obtained a deformed coproduct A;: Uy(Lg) — Uy(Lg) ® Uy(Lg)((¢)), where ¢
is a formal variable, see [37, Section 6].

This can be obviously generalized to the shifted setting.

Lemma 10.2 For any coweights /L?: uzi € A, there is a C(v)-algebra homomor-
phism

sc o use 7’\usc B
[T TN T TR ® nyny
defined via (10.1).
We call this homomorphism a formal coproduct for shifted quantum affine
algebras. Given two representations Vi, V» of Uf} -, U;‘Zr us respectively, we
1M1 202

will use Vi ®V; to denote the representation of U _ on the vector space

~ 1 1
Vi ® V, induced by A, whenever the action of the infinite sums representing
Z(ei,r), Z(f,',r) are well-defined. We will discuss a particular example of this
construction in Sect. 12.6.

10.2 Drinfeld-Jimbo Coproduct

The standard quantum loop algebra U, (Lg) also admits the Drinfeld-Jimbo coprod-
uct

A: Uy(Lg) — Uy(Lg) ® Uy(LY),
defined in the Drinfeld-Jimbo realization of U, (Lg) via
. ~1 +1 +1 +1 . 7
A Ei— EQK,+1QE;, Fi}—>Fi®1+Ki QF;, Ki }—>Ki ®Ki ,iel.
Recall that ] = [ U {ip} is the vertex set of the extended Dynkin diagram

and {E;, F;, Kiil}iej are the standard Drinfeld-Jimbo generators of UIPJ (Lg) ~
Uy(Lg).
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We also denote the Drinfeld-Jimbo coproduct on Uﬁd(L g) by A%: the natural
inclusion Uy(Lg) — Ujd(Lg) intertwines A and A, while Aad(q’)ii) = ¢ii ® ¢ii.

The goal of this section is to generalize these coproducts to the shifted setting.
In other words, given g and coweights ui, u2 € A, we would like to construct
homomorphisms

. SC SC SC
Aprnt Uy 1y — Uopy ® U,

which coincide with A in the particular case u; = puy = 0. We provide such a
construction for the simplest case g = sl in Sects. 10.3 (u, u2 € A7) and 10.4
(general i1, n2). Using the RTT presentation of U,(Lsl,), we generalize this to
obtain A, ,, for g = sl, in Sects. 10.6 (1, u2 € A7) and 10.7 (general i1, ©2).

Remark 10.3

(a) This result is nontrivial due to an absence of the Drinfeld-Jimbo type presenta-
tion of shifted quantum affine algebras.

(b) A similar coproduct for the shifted Yangians has been constructed in [24] for
arbitrary simply-laced g.

(c) Once Ay, ., is constructed, one should be able to immediately extend it to the

: ad . qrad ad ad : ad +y
h(imom(:)trphlsm AN L uo,mm — UO,M ® qum by setting AY |, (¢;) =
b ® 9.

10.3 Homomorphisms Ap, p, for b1, by € Z<p, g = sz
We start this subsection by explicitly computing the Drinfeld-Jimbo coproduct of

Fo
the Drinfeld generators eq, e_1, fo, f1. 1/f5C of Uy(Lsh)and hy) = + ?’_fi‘ , which
generate the quantum loop algebra U, (Lsl>).

Lemma 10.4 We have

Ale)) =@ Vg +1®ep, Ale—) =e_1 @Yy +1®e_1,
A(fo) = fo® 1+ ¥y ® fo, AU = Ai®@ 1+¥f ® fi. AW = v © ¥y,
A1) = hi®1+18h1 =" v 2)eo® fi, Alh-1) = h-1@1+1@h_ 1+ ~v%)e1® fo.
Proof This is a straightforward computation based on the explicit identification

between the Drinfeld-Jimbo and the new Drinfeld realizations of the quantum loop
algebra Uy(Lsly) of Theorem 8.10: e = E;, fo = Fj, w(;t = Kijltl, e_| =

—1
K; " Fiy, fi = Ej K. |
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The key result of this subsection provides analogues of A for antidominantly
shifted quantum affine algebras of sl,. For uy, u2 € A™, we construct homomor-
phisms Ap, p, U?fb.+b2 — Uffbl ® Ufsz, where by := o’ (iu1), by == a’(u2) (so
that by, by € Z<p).

Theorem 10.5 For any by, by € Z<o, there is a unique C(v)-algebra homomor-
phism

Ay byt U4, — Uy, © Upy,
(we will denote A = Ay, p, when the algebras involved are clear), such that
Aer)=1Qer, A(fy)=f; @ 1forby <r <0,b; <5 <0,

Afe)) =eo @ Yy +1®ep, Alep,—1) =e-1 @Yy, +1® ep,1,
A=A ®1+Y) @ fi, Alfn) = fo, @ 1+, ® fo,
AW =D @ WH™, AW, 1)) = W)™ © W)
A(hy) = i @1+1®@h — (> —v 2)eo® f1. Alh_1) =h 1 @1+1Qh_1+ (> —v e 1® fo.

These homomorphisms generalize the Drinfeld-Jimbo coproduct, since we
recover the formulas of Lemma 10.4 for by = by = 0. The proof of Theorem 10.5
is presented in Appendix D and is crucially based on Theorem 5.5 which provides a
presentation of the shifted quantum affine algebras via a finite number of generators
and relations.

Remark 10.6 The similarity between the formulas for Ay 5, of The-
orem 10.5 and Drinfeld-Jimbo coproduct A of Lemma 104 can be

explained as follows. Let U, (resp. U‘(gf;;bz) be the subalgebra of

Uy(Lsly) (resp. U?fbl +p,) generated by {e_1, fo, (¥ yE1), or equivalently,
by {e—r—1, f-r, (Wo_)ilv V_,_ilren (resp. by {epy—1, fb,» (W},_]_;,_hz)il}, or
equivalently, by {ep,—r—1, fb,—r» (wb_lerz)il, wb_H_bz_r_l}reN). Analogously, let
U, (resp. U‘(gf’;li »,) be the subalgebra of Uy(Lsly) (resp. Ug, ;) generated by

{eo, f1, (wJ)i]} in both cases, or equivalently, by {e, fr+1, (W(;r)il, t/f:jrl},EN.
Then, there are unique C(v)-algebra homomorphisms J;‘i by U,,i — ugf;jﬁ by such

that

5y €0 eo, fim fi, WO @H*,

- . —\*£1 - +1
.]bl’bz' e—1 > ep—1, fO = fbp (Wo ) = (wbl+b2) .
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Moreover, the following diagram is commutative:

A
U UreUF
+ = +
b1 bs Io1,0 ® Jo b,
sc,t+ sc,t+ sc,+
Uo by b R, Uo by 0 ® U 0,p,

Remark 10.7 The aforementioned homomorphism A, 5, can be naturally extended
to the homomorphism AZ‘]{ by ug?bl by Ug‘?bl ® ug‘j‘bz by setting A';‘)‘?’ by (¢%F) =
¢ @ ¢*.

10.4 Homomorphisms Ap, p, for Arbitrary by, by € Z, g = sl

In this subsection, we generalize the construction of Ay, ,, of Theorem 10.5
(b1,b2 € Z<p) to the general case by, by € Z. We follow the corresponding
construction for the shifted Yangians of [24, Theorem 4.12].

The key ingredient of our approach are the shift homomorphisms t, m, m, (the
trigonometric analogues of the shift homomorphisms of [24]).

Proposition 10.8 For any n € Z and my,my € Z<o, there is a unique C(v)-
algebra homomorphism ty m m,: Uy, — U(S)°n+ml+m2, which maps the currents
as follows:

e() > (1= H™e(@), f() > (-2 H™f(2), yE@) > Q- HTmmyE(g).

Proof The above assignment is obviously compatible with defining relations (U1-
US). Moreover, we have 4, i, my: ¥ > Vo, ¥, > (—1)mitm ntmi+my O

These homomorphisms satisfy two important properties:
Lemma 10.9
(a) We have bntmy+mym! oy © nmimy = by mytmly, JOr any n- € 7 and

my, ma, my, mh € Z<o.
(b) The homomorphism t, u, m, 1S injective for any n € Z and my, my € Z<y.

Part (a) is obvious, while part (b) is proved in Appendix E and follows from the
PBW property for U?f ,, (cf. Theorem 10.19). The following is the key result of this
subsection.

Theorem 10.10 For any by, by € Z and b := by + by, there is a unique C(v)-
algebra homomorphism

. SC SC SC
Abl,bz' uO,b ’ uO,bl ®uO,bz’
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such that for any m1, my € Z<g the following diagram is commutative:

Ay
sc b1,b2 sc sc
UG, UGy, @ UG,
Lb,ma,my Lhy,0,m1 @ Lhy,ma,0
sSC SC sC
u(),b+m1+m2 u(),b1+m1 @ uO,b2+m2

A51+m1>52+m2

The proof of this theorem is presented in Appendix F and is similar to the proof
of [24, Theorem 4.12].

Corollary 10.11 For any by, by € Z, we have
Apby(h)=h @1 +1Q k1 — (¥ —v e ® fi,
Apy by (ho) =h 1 @ 1+ 1@h_y + (V2 — v He1 ® fo.

Proof In the antidominant case by,by € Z<p, both equalities are due to our
definition of Ay, p, of Theorem 10.5. For general by, by, choose m1,my € Z<g
such that by + my,by + my € Z<p. By the definition of 1, m,, We have

tomym (h1) = hay £ ’Zl_“:',"f Meanwhile, we also have

mi +mjp

ty0m @ thymy 0(he1 @1+ 1@ hst) =ha1 @ 1+ 1@ hay £ ——— =

while (5, 0.m,(e;) = er, thymy,0(fs) = [ for any r,s € Z. The result follows
by combining the formula for Ap, ., py4+m,(h+1) with the commutativity of the
diagram of Theorem 10.10 (we also use injectivity of the vertical arrows, due
to Lemma 10.9(b)). ]

The following result is analogous to [24, Proposition 4.14] and we leave its proof
to the interested reader.

Lemma 10.12 For b = by + by + bz with by, b3 € Z,by € Z<o, the following
diagram is commutative:

Apy b
sc 1,b2+b3 sc sc
UG, s, © Ugh, 40

AVISESY Id @A, by

SC SC sc sc sc
u0751+52 ® uO,bs u0¢b1 ® uo«,bz ® u07bs

Aln by @ Id
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10.5 Drinfeld-Jimbo Coproduct on U,(Lsl,) via Drinfeld
Generators

According to Theorem 5.5, the quantum loop algebra U,(Lsl,) is generated by
the elements {e; o, fi.0, €. -1, fi.1, Wfo, hi +1 }?:_11. The key result of this subsection
provides explicit formulas for the action of the Drinfeld-Jimbo coproduct A on these
generators of Uy(Lsl,). Since ¢;0 = E;, fio = Fi, wlﬁ) = Kl.il (fori e I =
{1,2,.--,n —1}), we obviously have

Aleio) = 1®ei 0+ei0®V;y, Alfi0) = fio®14Y; @ fi0, AW ) = Vi o®Yi.

It remains to compute the coproduct of the remaining generators above.

Theorem 10.13 Let A be the Drinfeld-Jimbo coproduct on Uy(Lsl,). Then, we
have

A(hi1) =
20 (0 I _ 0 I
hig @1+ 1@hi— @ —v 2)Ei(,i)+1 ® Fi(+)1,i +@-v" Z Ei(-i-)l,l ® Fl(,ilu1+
I>i+1
_ i =0 1 _ _ 0 0 1
@—v HY VFTHEP @ FY + v 2w —v) Y IED L ED s @ B -
k<i I>i+1
_ Liclr(0) = 1
w—v7h Z vt l[Ei(,i)Jrl’ Elii)]tﬁ ® Fi(+)l,k+
k<i
k<i
—1\2 k—i 0) =(0) ©) =) (1)
(v—v) Z v 1<Eil Ey; _Ei+1,1Ek,i+1) ® F s
I>i+1
(10.2)
A(hi—1) =
o (-1 0 _ -1 0
hi1 ®@ 1+ 1@hi 1+ @ —v Z)Ei(,i+)1 ® Fi(+)1,i —@-vh Z Ei(+1,)l ® F(,izH_
I>i+1
_ k1 o (—1) o (0 _ -1 0 0
0T @ Y v Y £ o, RO ot
k=i I>it1
_ 1k (=1 ~0) (0
@—vh) o™ CEG ®TFY F -
k<i
k<i
—1,2 i—k - (—1) 7(0) (0) 7(0) -(0)
@=vH? 37 v E ®(Fi+1,sz,i+1 —Fy Fy )
I>i+1

(10.3)
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Aei ) =1®e 1+e 1@Y,—@—v") Y EFVe R v+

I>i+1
. 0 k<i 0
_ _ i 1
-2 ])ZvlklElgH}I F()‘ﬁ,o (v—v 1) Zv klE( )®F()F(,+1W,0
k<i I>i+1
(10.4)
Afi) = fn @1+ 9@ fir+vw—vh 3 Byl e FP-
i1 i1 i,0 i1 i+1.17i,0 li
I>i+1
0 (1 = 0 0 1
k<i I>i+1
(10.5)
where for 1 < j <i <n we set
O ._y,. . . — . . .
E;7 =leic10.--- . lejr1.0.€j0lp-1 - 1=t = [ [ei-1,0. €i-2,0]p-1. -+ 2 €j0]-1,

0
F-(l) =150 [fic2.0, ficr0lo- - Jo=[--[fj0, fi+1.0lv, -+ 5 fi—1,0l0,
(= 1) . )
E, 7 i=leic10.-- s lejr100€j—1]y-1 - Ty
=[[---[ei-1,0, €i—2,0]p-1, -, €jr1,0ly-1, €j —1]y-1,

F~(~1) =Lfi1: U100 - 5 Lfi2.00 fim1.0lo - Tolo = [ - Lfj15 fi+1.01vs -+ 5 fim1,0]0s

(0)
E;; =leic1.0,-- 5 lejrr0.€j0lo - To = [+ [ei-1.0. €i-2,0lv. -+ s €j0lo,

F(O) [fi00 - [fim2,05 ficr,0lp=1 - - Jy=t = [~ [fj.0, fir1,0lp=1, -5 fim1,0lp-1-
(10.6)

The proof of this result is based on the RTT realization of U,(Lsl,) and is
presented in Appendix G.

Remark 10.14 The right equalities in each of the lines of (10.6) are not obvious and
are established during our proof of Theorem 10.13. They play an important role in
the proof of Theorem 10.16 below.

Let U, (Lg) and Uy (Lg) (resp U, (Lg) and Uy (Lg)) be the C(v)-subalgebras
of Uy(Lg) generated by {e;,}/E% and {e;,, wliié}fglz’sEN (resp. {f;-}7€% and
+ (reZ,seN
Uirs Yixshier” )

Corollary 10.15 Forany 1 <i <nandr € Z, we have
Ahiz1) —his1 ®1 —1®h; 41 € U, (Lsl,) @ Uy (Lsly),
A(ei,r) - 1®ei, € U;(LS[,,) Q U,;S(Lg[n),

A(fir) = fir ® 1 € Uy (Lsl,) ® Uy (Lsly,).
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Proof The claim is clear for A(h; +1), A(ei—1), A(fi.1), due to (10.2-10.5).
Applying iteratively [A(h; +1), Alei )] = [2]v - Aeir+1), [Ahi 1), A(fi)] =
—[2]y - A(fi.r+1), we deduce the claim for A(e; ) and A(f; ). O

10.6 Homomorphisms Ay, ., for p1, n2 € A=, g =sl,

3 3 1 . SC SC
In this subsection, we construct homomorphisms Ay, @ Uy, 1, = Ug,, @

USCM for 1, ua € A, which coincide with the Drinfeld-Jimbo coproduct on
Uy(Lsly) for wy = pp = 0. Set by; := «aj(u1) and by; = a](u2) (so that
bii,by; € Zgo).

Theorem 10.16 For any ju1, (1o € A™, there is a unique C(v)-algebra homomor-
phism

Apypnt uffm-i—uz - uO w ® uO 2
(we will denote A = Ay, ., when the algebras involved are clear), such that
Aeir) =1®eir, Alfis) = fis®1forby; <r <0,b1;i <s =<0,

Aeio) =1Q®eio+eio® 1//,%, Alfinr) = fibr; @1+ Vi3 ® fios

I © -
Aleiy, 1) =1@eipy,1+e 1@, —@®—v"H) Y E;V®F ,)Jrll/fi,hz_i+

I>i+1
k<i
—1 —k—1 p(=1) 7(0) —1\2 i—k—1 - (=1) 7(0) -(0) -
(v—v )Z”l E it ® Fi Vg, —(@=v77) Z v Ey " ®@F F Vi,
k<i I>i+1

AfiD) = i @149 ® fu+v ' 0—v ) Y EQ vl @ FiV -

I>i+1
k<i
_ 0 1 — 0 0 1
(U—U I)ka IE() (+)1k (v_v 1) Z 'Uk i— lEl(ﬁllE()l// ®F‘l(k)7
k<i I>i+1

AW = W) @ W™ AW, 1)) = Wi, )T @, )T
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) =y 1410y — 67— ED @ F + ) B B, @ Rt
I>i+1
= )Y FHED @ FY 4o —v) JUIED, L EY e ® By~
k<i I>i+1
_ —i— 0 = (1
w-v7h Z"k l I[Ez‘<.:')+1’ EQ1s ® Fi+)1,k+
k<i
k<i
—152 k—i 0) =) )  7) (€Y]
@-v"1? ) v l<Eil Eyi _Ei+1,lEk$i+1)®Flk :
e
o (=1 0
Ahi—) =hi1 @1+ 1@hi_1+ W —v HE ) @ FY) -
—1 (=1 0)
(v—v) Z Eif1y®F g~
[>i+1
—1 i—k—1 (=1 (0 2 -1 —1 0 0
(v—v )sz ¢ E/Ei '® Fi(k) —vi(v—v) Z Ei(l '® [Fl(,il-l’ Fi(+)1,i]r3+
k<i I>i+1
-1 i+1—k (=1) 7(0) - (0)
(v—v )Z v Epiv1 ® Wy Fiyy s —
k<i
k<i
—1\2 i—k - (=1) = (0) 0) 7(0) -(0)
@=—vh? 3 v E Ve (Fi+1,kFl,i+l — Fiy B )
I>i+1
where E;(l.)), Eﬁ(i))’ E;l._]), Fl.(jo), I«N’;(j.()), Fl.(jl) are defined as in (10.6).

The proof of this result is similar to our proof of Theorem 10.5, but is much more
tedious; we sketch it in Appendix H.

Remark 10.17 The similarity between the formulas for A, ,,, of Theorem 10.16
and A of Theorem 10.13 can be explained via an analogue of Remark 10.6. To be
more precise, let U be the positive/negative Borel subalgebras in the Drinfeld-
Jimbo presentation of U,(Lsl,), while their analogues useE (subalgebras of

0,01, 112
U‘(‘)Cm 4u,) Will be introduced in Appendix H. There are natural C(v)-algebra
homomorphisms ]uin, ot Uvi — Uf)cif 1y See Proposition H.1. According to

Proposition H.16, the following diagram is commutative:

A
Ut Ut oUF
P = + +
Juape Ju1,0 ® Jo.u2
sc,+ sc,+ sc,+
0,ju1 2 A Uo 0 ® o,

1,2
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10.7 Homomorphisms Ay, ., for Arbitrary juy, p2 € A,
g=sl,

Let us first generalize the shift homomorphisms of Proposition 10.8.

Lemma 10.18 For any n € A and vy, vy € A™, there is a unique C(v)-algebra

: . sSC SC ; .
homomorphism vy, v, : UO’H — UO,M_H]JFVZ, which maps the currents as follows:

Ly ® €i(2) > (1= 27 D)™ e (2), filz) > (1 =27 )40 (),

YEQ@) > (1 — 77 )~ )y gy

Proof The proof is analogous to that of Proposition 10.8. O

The proof of the following technical result is presented in Appendix I and is based
on the shuffle realization of the quantum loop algebra U, (Lsl,), see [53] (cf. [63]).

Theorem 10.19 The homomorphism 1y v, v, IS injective for any pe A and
Vv, vy € AT

Combining this theorem with Corollary 10.15 and our arguments from the proof
of Theorem 10.10, we get the key result of this section.

Theorem 10.20 For any i, 2 € A and ju := | + wa, there is a unique C(v)-
algebra homomorphism

. SC SC sSC
AM,M' uO,u - uO,m ® uO,M’

such that for any v, vo € A~ the following diagram is commutative:

A
sc K142 sc sc
uO,u uO,m ® UOM

Ly vy Ly, 01 @ Lg,va0

sc sc sc
uU,u+V1+V2 uO,m+V1 ® u07H2+1/2

AHH—M 2t

The following is proved analogously to Corollary 10.11:

Proposition 10.21 For arbitrary i1, ua € A, the images Ay, ., (hi +1) are given
by formulas (10.2) and (10.3).



198 M. Finkelberg and A. Tsymbaliuk
10.8 Open Problems

Following [24], we expect that homomorphisms Ay, : U, 40 — U(S)CM ®
USC (spemahzmg to the Drinfeld-Jimbo coproduct for u; = pr = 0) exist for
any s1mp1y laced Lie algebra g and its two coweights 1, w2 € A. Moreover,
their construction should proceed in the same way as for the aforementioned case
g = sl,. To be more precise, for antidominant 1, u» € A~, we expect that the

homomorphism A, ,., is characterized by the following two properties:

(a) Am,uz(ei,r) = 1®ei,r, Am,uz(fi,s) = fi,s@ 1 for Oly(MZ) <r<0, 05?(,“1) <
s <0
(b) an analogue of the commutative diagram of Remark 10.17 holds.

For general pu, up, we expect that the construction of A, ,, should be eas-
ily deduced from the antidominant case with the help of shift homomorphisms
tuvyv (W€ A, v1,vp € A7) as in Theorems 10.10 and 10.20.

The outlined construction of A, ,,, for a general g lacks explicit formulas for the
Drinfeld-Jimbo coproduct of {¢; o, ¢; —1, fi.0, fi.1> Iﬂ, o+ hi.+1}ici—the generators of
Uy(Lg), similar to those of Lemma 10.4 and Theorem 10.13.

11 Ubiquity of RTT Relations

11.1 Rational Lax Matrix

Before we proceed to the frigonometric setting, let us recall the classical relation
between rational Lax matrices and type A quantum open Toda systems, which goes
back to [28].

Let Rra(z) € End(C? ® C?) be the standard rational R-matrix:

h
Ra(z) =1d + — P, where P € End(C? ® C?) is the permutation map.
z

Let le be the associative C[/]-algebra generated by {ul. , w;i}7_, with the defining
relations [u;, u;] = [w;, w;] = 0,uF'uF' = 1,[u;, w;] = &;Au;. Define the
(local) rational Lax matrix

- R
Lz = (Z:u'f)' “6 > e Mat(2, A"[z]) (11.1)

and introduce the complete monodromy matrix Th (z) = L 2 (2) - L? (). Then, the
monodromy matrix Tnh (z) satisfies the rational RTT- relatlon

Rea(z — w)(TM(2) @ D1 @ T (w)) = 1 @ T (w)(T(2) ® 1) Ryt (z — w).



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 199

Due to this relation, the coefficients (in z) of the matrix element Tnh (z)11 generate

a commutative subalgebra of flﬁ, known as the quantum open Toda system of gl,,.
The coefficient of z" 2 equals

1 n 2 1 n n—1
HE =3 (Zw’) S ICED DULRE (112
i=1 i=1 i=1

We recover the standard quantum open Toda hamiltonian of sl,, once we set w; +
.4+ w, =0.
11.2 Trigonometric/Relativistic Lax Matrices

Let Ryig(z) € End(C? ® C2?) be the standard trigonometric R-matrix (see [17,
(3. D

1 0 0 0
z—1  zv—v7hH 0
vy Wl—
Rtrig(z) = vvz_—vv_l UZZ—_vl . (11.3)
T =Y
vz—v vz—v
0 0 0 1

Let flz be the associative C(v)-algebra generated by {\TV?EI, Diil}l’f:1 with the
defining relations [W;, W;] = [D;, D;] = 0, \Tvl.il\TvijF] = D?E]DI?F1 =1, Diw; =
VYW, D;. If we set wl = W2, we see that A2 is a particular example of the

algebras fl;’mc of Sect. 7. Define the (local) relativistic Lax matrix

~—1_1/2 & —1/2 p—1_1/2
v,0 W. 2 W;z Dz
L (2) = ( ! !

—1/2 ;
Dz 12 0 )GMat(Z,Z Az (11.4)

and introduce the complete monodromy matrix T, °(z) := L¥°(z) - - - L'f’o(z).

Lemma 11.1 The monodromy matrix T,,v’o(z) satisfies the trigonometric RTT-
relation:

Ruig(z/w)(T°(2) @ D(1 @ TP (w)) = (1 @ TP Y (w))(T,70(2) ® 1) Ryig (z/w).

Proof Tt suffices to check the above relation for n = 1. The proof in the latter case
is straightforward. O
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Corollary 11.2 The coefficients (in z) of the matrix element P10 (2)11 generate
a commutative subalgebra of A}. The coefficient of z equals

n n—1
HY = ()" "Wy - W, - (Z WPy W, D,»Dl.—+11> . (11.5)
i=1 i=1

This hamiltonian is equivalent to the quadratic hamiltonian of the q-difference
quantum Toda lattice of [19, (5.7)] (see also [56]) once we set Wy - - - W, = 1.

Remark 11.3 The notion of a relativistic Lax matrix goes back to [43]. In particular,
our choice of L;”O(z) is a slight variation of their construction, which is adapted to
a different choice of the trigonometric R-matrix.

Now let us consider two (local) trigonometric Lax matrices

~_1 ~ 1|~ —1
_ . _ . D ~
Loy = (Wi Wi WD) @ Man2, VA, 11.6
;@ ( @Dz W, at2,z7 A, [zD (11.6)
L") = Wiz W WD € Mat(2, A’[z]) (11.7)
i - —VNVi_lDi _\Tvi—l >V n : :

Lemma 11.4 The Lax matrices Ll’.)’jEl (z) satisfy the trigonometric RTT-relation:

Ruig(z/w) (LY (@D (UL (w)) = ALY (w)) (LY (2)®1) Ruig (z/w).

Proof The proof is straightforward. O

11.3 Mixed Toda Hamiltonians

Now we construct 3" Hamiltonians generalizing Hg in spirit of [21, (90)], cf.
also [11, (1.1) and Section 2]. For any k = (ky, ..., k1) € {—1,0, 1}, define the
mixed complete monodromy matrix

TH ) = Ly* @) LV ).

In particular, T6"(z) = T,"°(2). Since all three matrices Ll'.”fl(z), L:.”O(z), Lf’l(z)
satisfy the RTT-relation with the same R-matrix Ryig(z), the same is true for TEU ).
Hence, the coefficients (in z) of the matrix element TI-(?’ (z)11 generate a commutative

subalgebra of flz We have

TP (@ = HX 25 + HAz 1 4 higher powers of z,
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where s = Y7, % Here Hll‘ = (—1)"W; ---W,, while the hamiltonian Hg
equals

n—1 k,'+|:...:/<j,]:l

~ n
Hé = (—1)”_1Vv1...wn.(zvvi2+ZG,‘7,'+1D,'DH_11 + Z Ui’jDiD;l ,
i=1

i=1 I<i<j—1l<n
(11.8)

~ kil ki1~ ~—kj—1
where 0; j (=W, wl.Jr’lJrl ...ij .

Remark 11.5 At the classical level, the bigational Bécklund-Darboux transforma-
tions interchanging various hamiltonians Hé are given in [34, Theorem 6.1].

Lemma 11.6 For any 12 set k' = 0, ky—1,...,k2,0). Then, Hg is equivalent

]‘(’/
to H3 .
Proof Tt is straightforward to see that Hg/ = Ad(F(Wy,..., \Tvn))Hg,
where F(le, o We) o = explhy f-(log(Wy)) + Kk fy(log(wy)))  with
fe@t) = :I:—Zb’g(v) + 5. ]

Remark 11.7 It follows that among the aforementioned 3" mixed Toda hamiltonians

Hé, parameterized by ke {—1,0, 1}", there are no more than 3"~ different up to
equivalence. In [35] these hamiltonians are identified with the modified versions
of the g-Toda hamiltonian in [19, 56], which now depend on a choice of two
orientations of the Dynkin diagram of type A,,_; (equivalently, a choice of a pair of
Coxeter elements). There are 4"=2 guch choices, but some of them are equivalent
leading to exactly 3n=2 inequivalent hamiltonians, which turn out to be equivalent
to the aforementioned H’é. All the g-Toda hamiltonians of [19, 56] correspond to
the pairs of coinciding orientations, i.e. to k= (0, ..., 0), and they share the same
eigenfunction J [22, Section 3], while our mixed Toda hamiltonians do not admit
the common eigenfunctions. We are grateful to P. Etingof for his suggestion to study
the construction of [56] for pairs of different orientations.

11.4 Shifted RTT Algebras of sl

Fix n € N. Following [17] (cf. also Remark G.1), we introduce the (trigonometric)
shifted RTT algebras of sl,, denoted by Uf)‘t_zn. These are associative C(v)-algebras
generated by

m>—n

0L o) 13 [+ 10 15[ L a7y [=m), 1 =m = 11ty [=m], iyl =m — 1+ 8, 01}V

{(;10n~", @y nD ™"
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subject to the following defining relations:
(HIODF EHIODT = 1, G [nD = @ DT = 1, (R1)

Rusig (2/w)(T€ (@)@ AT (w)) = 1T (w))(T*(2) ® 1) Ruig(z/w),  (R2)
qdet Ti(z) =1 (R3)

for all €, ¢’ € {&}, where the two-by-two matrices T*(z) are given by

+ +
o= (7o i) v e D

and the quantum determinant qdet is defined in a standard way as®
qdet T(z) := lelt (Z)T;;(vfzz) —v! Tliz(z)szlt(vfzz).

Note that 7% (z) admits the following unique Gauss decomposition:

w1 0\[(&w@ o0 )(15%))
T(Z)_<fi<z>1)< o #Zw)lo 1 )

where coefficients of the half-currents &+ (z), f*(2), g’?t(z), §§t (z) are elements of
tt

u(r),—Zn‘
To establish the relation between ugt_zn and ugd_zn (adjoint version of the

shifted quantum affine algebra of sly), recall Drinfeld half-currents e*(z), f*(z)
of (6.5).

Theorem 11.8

(a) The currents gli(z), gjﬁ (z) pairwise commute and satisfy
&H@E ) =1

(b) There exists a unique C(v)-algebra homomorphism Yo oy : ugfl_z > ug}_zn,
defined by

F@) - @/ —vh, - R/ -vTh,

vE@D = G @EE @7 @D = @ DT (0)EF = T DT

81t is instructive to point out the difference with [51], where the author uses a different
trigonometric R-matrix given by R:\r/i[g(z/w) = (ng(z/w)’)*' as well as TM*(z) = T#(z)'. For
this reason, the quantum determinant qdet™ of [51, Exercise 1.6] is consistent with our definition of
qdet, that is, qdet™ TM* () := TN (@) TM* (v22) — v 1 T ) TN (v722) = qdet TE(2).
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(c) Forany by, by € Z<, there exists a unique C(v)-algebra homomorphism
ASL 2yt Upap, 12, — Upap, ® Ugay,,
defined by T*(z) — T*(z) ® T*(z).

Remark 11.9 The n = 0 case of this theorem was proved in [17], cf. Remark G.1.

Proof The verification of part (b) is analogous to the one for n = 0, dealt with
in [17]. Once (b) is established, it is easy to see that qdet T+ (2) = g5 (2)g; (v"22),
hence (a). It is clear that Ar;};l 2%, is well-defined on the generators. The compati-

bility of A%} ,, with the defining relations (R1-R3) is checked analogously to the
case n = 0. O

Recall the generating series AT (2), BE(2), CT(2), D*(2) with coefficients in
ugfi_Zn, introduced in Sect. 6.

Corollary 11.10 The homomorphism Yo _2, maps these generating series as
follows:

AT@) = T, Bt () = T5(2), CT(2) & T4 (2), DT (2) = T (2),
AT(2) = (v2)"'T{(2), B™(z) = (v2)"T;(2), C™ (2) = (v2)" T, (z), D™ (z) = (v2)"T,,(2).

Proof Due to Theorem 11.8(a, b), we have

Yo,—on (U E(2) = 1/8F7(2)&E (0 722), To,—2a((¢T)™") = 11101, Yo,—2.((@7) ™) = vt [n].

.. . . + _ 1 _ _ 21 +
Comblnlng this with w (Z) = m, w (Z) = m, and AO =
@571 we get Yo, :(AT@) = & @ = T@. Yo mA () =
(v2)"g; (z) = (v)"T};(z). The computation of the images of the

remaining generating series is straightforward, e.g. Yo _2,(B7(2)) =
(v — v )0, 20 (A7 (2)) Yo,—20 (7 (2)) = (v2)"&] (2)é~ (2) = (v2)" T}, (2). o

The following is the key result of this subsection.

Theorem 11.11 Forn € N, Y _o;: ugflfzn — u&tzn is an isomorphism of C(v)-
algebras.

Proof Due to Theorem 11.8 and Corollary 11.10, it suffices to prove that there exists
a C(v)-algebra homomorphism Ug'_,, — ugf{z ,» such that

U e A Gt 1) e

Tij@ = AY @), Tj3() = BT (@), Ty(@) = CT(2). T(2) = D*(2),

T, (2) = (v2)7"A7(2), T,(2) = (v2)7" B~ (2),

T,,(2) = (v2)7"C™(2), Ty(2) = (v2) "D~ (2).
(11.9)
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This amounts to verifying that the assignment (11.9) preserves defining rela-
tions (R1-R3). Relation (R1) is preserved, due to A5¢* = ¢* AT = 1, while (R3)
is preserved, due to relation (6.16). Finally, (R2) is an equality in End(C2 ® C?) ®
ug(j‘_Zn and thus can be viewed as a collection of 16 relations in ugji_zn for each
choice of ¢, €’ € {=£}. Tt is straightforward to see that 6 of these relations follow from
the rest, while the remaining 10 relations exactly match the 10 relations of (6.7, 6.9—
6.15) under the assignment (11.9). ]

Remark 11.12 The results of this subsection admit natural generalizations to the
case of arbitrary by, by € Z<o such that by + by is even. In other words, one can
define an analogous shifted RTT algebra of sl,, denoted ug;lﬂ by and construct a
C(v)-algebra isomorphism Yp, p, : UZ‘?’ by > ug}lﬂbz. This observation is used in
Remark 11.14 below, where we provide an alternative interpretation of the Lax
matrices L']”_l(z), L'{’O(z), L'l”l(z) from Sect. 11.2.

11.5 Relation Between Two Different Appearances of RTT

Recall the local trigonometric Lax matrix L'l”fl(z) of (11.6). Combining the
equality qdet Li”_l(z) = 1 with Lemma 11.4, we see that L'l”_1 (z) gives rise to
an algebra homomorphism @3}_2: ug'_, — f['l’ defined by T*(z) — L'f’_l(z).
12

Recall the homomorphism 532: U?f‘_z — A'f of Theorem 7.1 (where w!/? = W).

The following is straightforward.
Lemma 11.13 The composition CD(r)t,t—z o Yo,—2 coincides with 592.

Remark 11.14 Let us provide a similar interpretation of the other two Lax matrices
L'l’,O(Z) and L'l”1 (z). Recall that the algebras ugfl_z and u;-f_z_h are. isomorphic for
any b € Z. In particular, one can pull back the homomorphism CIDQ2 to obtain a

homomorphism CAISb,,g,;,: ug‘}_z_ b ﬁ”, explicitly given by

\Tv2+b V~V2 \th v2V~V2
e(z) —~ s|— D7 fo)—~ ) D,
v—ov! Z — 2

1 z
b +

v "Wz £l b/2cEl g —\E] (b/2+1) 7 F1
(@D = o TEWE (0T > —vT wt,

(1-W2/2)(1-v2W?/z)

E@) > (

Due to Remark 11.12, the algebra uz‘}_z_b admits an RTT realization, that is
there is an isomorphism Yp _p_p: ugﬁLH N u;;}fH, only for b = 0, —1, 2.
Analogously to Lemma 11.13, recasting the homomorphisms 5b,_2_b as the
homomorphisms ug;}fzf b fl']’, we recover the Lax matrix L'l)’o(z) (forb = —1)

and L'f’1 (z) (for b = —2). Moreover, this also explains why we had exactly three
Lax matrices in Sect. 11.2.
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Fix n > 1 and consider the complete monodromy matrix T,,”’_l(z) =
LZ’_I(Z)-nL'l”_l(z). Applying iteratively A, of Theorem 11.8(c), we
get AJ: UG, —  (UG'_,)®". Composing it with the homomorphism
(@g}_z)‘@”: (U{)tf_2)®" — AN®" ~ AP, we obtain the homomorphism

cI)&‘_Zn : ug‘"_h — fl,'; The following is straightforward.
Lemma 11.15 We have ®{'_, (T*(2)) = T, (2).

Remark 11.16 Forn > 1, the composition CID(r)"t_Zn o Yo,—2n does not coincide with
the homomorphism 5‘12,1 of Theorem 7.1.

Remark 11.17 The result of Lemma 11.13 admits a natural rational counterpart.
Let Y_» be the shifted Yangian of sl, with the shift —«. Recall the homomorphism
@92: Y, —> A? of [10, Corollary B.17]. Consider a slight modification of it

D5 E@) - —w) uT!, Fo) > —z—w—h)"'u, H@) > (z—w) ' z—w—h)"".

One can also define a (rational) shifted RTT algebra of sl,, denoted by Y™,. This
is an associative C[/i]-algebra generated by {¢t11[r — 1], t12[r], t21[r], t22[r + 1],
(t11[=1)7"},=0 and with the defining relations (t)[—1])*! ()i [—1DF' =1,
T11(2)T2(z — 1) — T2 Ta1(z —h) = 1, Rea(z — w)(T(2) @ N1 @ T(w)) =
(1 ® T(w)(T(z) ® 1)Rrat(z — w), where T(z) = (Tij(z))ijzl with T;;(z) :=
Dot j[r]z~". Consider the Gauss decomposition of T'(z):

T(Z)=<~1 0) (gl(z) 0 )(lé(z)).
f@1 0 £@/\0 1

Analogously to Theorem 11.8(b), there is a C[i]-algebra homomorphism
Y Y, — YU, defined by E(z) +— ¢é(2),F(z) — f(),H@E —

82(2)g1(z)~". Composing Y™ with the homomorphism Y™, — fl}f given by
T(z) — L?(z), we recover ®_» from above.

11.6 Homomorphism Ay, p, (b1, by € Z<g) via Drinfeld
Half-Currents, g = sl,

Recall the currents e®(z), f*(z2), ¥*(z) of (6.5).
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Proposition 11.18 Let A be the Drinfeld-Jimbo coproduct on Uy(Lsly). Then, we
have

A @) =1®c @)+ Y (—v) @—v H7 =)™ @ fF ') v ).

= (11.10)

AT =T @1+ i(_v),,(v — v ) Y F @t (0¥ @ ),
= (11.11)

AW*() = i‘(—l)’[r + 1L — v HY Y@ () © [T () ¥ ().
= (11.12)

These formulas are analogous to those for the Yangian Yj(sly) of [51,
Exercise 3.2]. The proof of this result is based on the RTT realization of U, (Lsl5)
and is presented in Appendix J.

Proposition 11.19 Let by, by € Z<g and b = by + by. Then, the homomorphism
Apy byt Uy, — u§)°bl ®Uffb2 Sfrom Theorem 10.5 also satisfies the formulas (11.10-

11.12), where by abuse of notation e*(z), f*¥(z), ¥ (z) denote the generating
series for each respective algebra.

Proof Our proof is based on the commutative diagram of Remark 10.6:

A

U UreUF
+ + +
Tbi bz Tb1,0 © Jobs
sc,+ sc,+ sc,+
Uo by b Ao U by0® Uo,o,0,

Since ., et (2) = et (@), [T () = [T, ¥T(x) = ¥ (2), we immedi-
ately get the validity of (11.10—11.12) for the currents et (z), f7(z), ¥ T (z) and the
homomorphism Ay, 4, .

Let us now treat the case of e™ (z), f~ (z), ¥~ (z). Combining the commutativity
of the above diagram (in the “—" case) with equality (11.10) yields

Apby (e (@) =10 @+ ) (—v) @—v H7 e @™ f )y (),
r=0

where e (z) = e (2) + Zr_:lbz e,z . Meanwhile, Ay, p,(e,) = 1 ® e, for
by < r < —1. Hence, Ay, p,(e”(2)) is given by the right-hand side of (11.10).
Likewise, we get the validity of (11.11), (11.12) for the currents f~(z), ¥~ (z) and
the homomorphism Ap, p,. O
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Since our proof of (11.10-11.12) in Appendix J is based on the RTT-type

coproduct Ag'), we immediately get

Corollary 11.20 Let by, by € Z<o and b = by + by. The following diagram is
commutative:

uad Aggl'%? uad ® uad
0,2b > U .2m, 0,2by
Tn,%ll IlT[\,zhl ®Y 0,209

rtt rtt rtt
e —— Uy, © Upizs,
2b1,2bg

11.7 Coproduct for Truncated Shifted Algebras, g = sl;

For by, by € Z<p and b = b + by, recall the homomorphism Ag(linlbz: ugfi% —

ug?zbl ® ug‘,isz of Remark 10.7. Consider the truncated versions of the algebras

involved ugb, Ugb , ugb , see Definition 8.6. The goal of this subsection is to prove
1 2

the following result.

Proposition 11.21 For by, by < 0, the homomorphism Ag%l 2, descends to the

same named homomorphism ugb — ugbl ® ugbz.

Proof Define a 2-sided ideal 3 C U3, ®Uf,, viad:=17), @ U, +Us, ®

ngz. It suffices to show that Ag‘;l 25, (X) € T for every generator X of the ideal ng
of (8.5-8.6). To achieve this, recall the commutative diagram of Corollary 11.20.

Case X = A} (s > —b) Applying the aforementioned commutative diagram to the
equality A%, o, (rfiIs]) = Yo U0 sl @ 1 [s2] + 305 U5 1 Is1] @ 15 [s2],

51,52=0 51,52=0
ad +\ S1+852=5 4+ + S1+52=5 p+ + _
we get A% o, (A7) =2 0000 A ®@ AL + 350 L0 By ®@CJ.Fors) +s; =

s > —b, either s1 > —bj or s > —b;. Hence, each summand in the right-hand side

belongs to J, due to Remark 8.8.

Case X = Aa'Afb — (—=1)® As above A%gl,zbz(Atb) = Afbl ® Ai‘bz, where

the notation x = y is used to denote x — y € J. We also have Ag‘;l 2%, (Aa') =
+ + ad + 4+ by — A+ a+ + 4+ b _

Ay ® Ay Thus Ai‘bl’sz(Ao AT, —(=1)7) = AgAT, ® AgAT, —(—=1)” =

(AgAY, — (=DM ® ATAT, + (=D ® (A7AT,, — (=D) = 0. Hence,

Aggl,zbz (AFAT, — (=DM el

Case X = A-, — vbaA* (0O < r < —b) Analogously to the first

r —b—r
: ad + — Tyt =r +
case considered above, we have A3, ,, (AT, ) = ZOfrls—bl AT, . ®
O0=ry=—by
+ ritr=r + +
AT, o+ » t<m<—by Blp—p ® CTyps where the lower bounds on ry, ro

0<ry<—bpy—1
are due to Remark 8.8. Completely analogously, we obtain Ag?msz(A:r) =
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Zrl-i-rz:r A:r] ® A:rz + Zrl-i-rz:r B:r| ® C:rz‘ Hence,

0<r;<—b 1<r1<—b
0<ry<—by 0<rp<—br—1
ri+r=r
d - —b A+ — - - —b g+
Agbl,sz(A—r —v AT, )= Z (As, ®A_, —v A—brrl ® Asz,,z)-i-
O=ri=—b;
0=r=-by
rit+r=r
- - —b p+ +
Z (B—rl ® C7r2 —-v B—bl—rl ® C—bz—rz)'
I<ri<—b;
0<r<—by—1
(11.13)
The first sum of (11.13) belongs to Jas AZ, ® AZ, — v_bA'_Fbl_rl ® Ai_bz—rz =
(AZ,, —v Al _HY®AZ, +o At ® (A, —v At ) el
Completely analogously, B~,, ® C—,, — v_thbl_rl ® Csz_,z = (B, —
v’blebl_”) ®C,, + v’blebl_rl ® ([, — v’bZCsz_rz). To complete the

proof, it suffices to show
- _ o —bip+
B —r v B*bl —r]

c-. —v et

- —by—ry

IA

0
€ j2b1 forl <ri < -by,

(11.14)
€9, for0<r <—by— 1.

To prove the first inclusion of (11.14), recall that B*(z) = [eg, A1 (2)],-1, due to
Corollary 7.3. Likewise (comparing the terms of degree 1 in w in the equality (6.10)
with e = —, €/ = +), we obtain B~ (z) = [e9, A~ (2)],-1. Therefore,

B-. —v P pt = [eo, AZ,, —v AT

0
—r —b1—r] - 7b17r1]v_' € ijl .

Similarly, applying the equalities zC*(z) = [A*(z), fi],-1, we obtain
c-,,—v"ct

—TA™ —by p+ 0
—r by — [A,r2,1 - A,[,z,rz,] s f1lp-1 € j2b2’

which implies the second inclusion of (11.14). Thus, Aggl 25, (AZ,— v’bAJ_’b_r) el.
The cases when X is one of AZ (s > —b), AjA, — (—vz)_b are treated
analogously to the above first two cases. This completes our proof. O

11.8 Coproduct for Truncated Shifted Algebras, General g

Recall the homomorphism Ay, : Uy, — Upy, @ Ug . of Theorem 10.20 (u =

u1 + n2, g = sl,). Given N = N + N, this coproduct extends to

ad . qqad pEl +1 ad +1 +1 ad +1 +1
A Woulzy o Zy T — Ug (27 Zy T UG L [Zh g0 -+ -5 2y ]
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as in Remark 10.3(c). Given two sequences )_L(l) = (wj,..., Wiy, ), &(2) =

(a)iNlH, ..., w;y), we concatenate them to A = (w;;,...,w;,) and consider the
. . Q) @ . ..

corresponding truncated shifted algebras u,%, u%“ , U;\jz as in Definition 8.6.

Conjecture 11.22 The aforementioned homomorphism A2 descends to the

1142
- ad .k KD AP
same named homomorphism A2 Wy — Wy, & Uy, -
We hope that the comultiplication Alaf‘l’ 1, can be defined for arbitrary simply-

laced g (see Sect. 10.8) and descends to the truncated shifted algebras.

12 K-theory of Parabolic Laumon Spaces

12.1 Parabolic Laumon Spaces

We recall the setup of [7]. Let C be a smooth projective curve of genus zero. We fix
a coordinate z on C, and consider the action of C* on C such that v(z) = v—2z. We
have C&* = {0, co}.

We consider an N-dimensional vector space W with a basis wy, ..., wy. This
defines a Cartan torus 7 C G = GL(N) = GL(W). We also consider its 2"V -fold
cover, the bigger torus T, acting on W as follows: for T> t=(t,...,ty) we have
tHw;) = ll-zwi.

We fix an n-tuple of positive integers # = (p1,..., pn) € ZZ, such that
p1+ ...+ ps = N.Let P C G be a parabolic subgroup preserving the flag
0 Cc W = (w,....,wp) C Wo = (wr,....,Wp4p,) C -+ C Wy =
(Wi, ..., Wp 4. 4pyy) C Wy := W. Let B := G/P be the corresponding partial
flag variety.

Given an (n — 1)-tuple of nonnegative integers d = (dy, ..., d,—1) € N1 we
consider the Laumon parabolic quasiflags” space Qg, see [46, § 4.2]. It is the moduli
space of flags of locally free subsheaves

OCWi C---CW,.1CW=W®®O0O¢

such that rank(W;) = p1+...+ p; and deg(W;) = —d;. It is known to be a smooth
connected projective variety of dimension dim B + Z:’;ll di(pi + pi+1), see [46,
§2.10].

We consider the following locally closed subvariety Q4 C Qg (parabolic
quasiflags based at oo € C) formed by the flags

OCWiC---CW,_.1CW=W®Q0Oc¢
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such that W; C W is a vector subbundle in a neighborhood of co € C, and the fiber
of W; at oo equals the span (w1, ..., Wp,4+..4+p;) C W. Itis known to be a smooth

connected quasiprojective variety of dimension Z;’z_]l di (pi + pi+1)-

12.2 Fixed Points

The group G x C* acts naturally on Qg, and the group T x C* acts naturally on
Qq. The set of fixed points of 7 x C* on £y is finite; its description is given in
[7,§4.4].

Let ;_1 be a collection of nonnegative integral vectors 671’ i = (dl.(j]), ceey di(jP / )),
. . [ | Pj
n—1>i>j> 1 suhthatd = Y’ ldyl = Y5, Y0 d", and for

i > k > j we have é"kj > jij, i.e., d,g?) > di(]’.l) forany 1 < a < p;. Abusing
notation, we denote by d the corresponding 7 x C*-fixed point in Qg:

Wi = 0c(—d{} 0w & & Oc(=d}" - 0wy,

Wy = Oc(=d5)  0Owi & -+ @ Oc(—ds]" - 0wy, & Oc(—dsy - Owp 11 @+ &
OC(_ng) “O)Wp;4pss

Wot = 0c(=d", | - Owi & - @ Oc(—dP") | - 0wy, & ---

| .
e OC(_d;Ef)l,nfl “Owp 4. 4p, a1 @ D OC(—d,Yil,L)fl O wp 44, -

Notation Given a collection ;_i as above, we will denote by é + Sff ) the collection
;i’, such that d;;p) = dl.(;’) + 1, while d;((la) = d,i?) for (a, k,1) # (p, i, j).

12.3 Correspondences

Fori e {l,...,.n—1}andd = (dy,...,dy—1), wesetd +i := (dy,...,d; +
1,...,d,—1). We have a correspondence €4; C Qg x Qg4; formed by the pairs
(W, W,) such that W, C 'W; and we have W; = W/] for j # i, see [7, §4.5]. In
other words, €4 ; is the moduli space of flags of locally free sheaves

OCW]C"'CW,‘_lCW;CWiCWi+1C-~-CWn_1CW

such that rank(W;) = p; + ... + p; and deg(W;) = —d;, while rank(W.) =
p1+...+ p;and deg(W;) = —d; — 1. According to [46, §2.10], € ; is a smooth
projective algebraic variety of dimension dim B + Z;’;ll di(pi + pi+1) + pi.

We denote by p (resp. q) the natural projection E4; — Qg (resp. €4, = Qa4i)-
We also have amap s: €4,; — C,

OCW C--CWim1 CW: CW; CWig C--- CWymg CW) > supp(W; /W)).
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The correspondence €4 ; comes equipped with a natural line bundle £; whose fiber
at a point

OCcWyC---CW,; CW; CW,CWipyC---CWy1 CW)
equals I'(C, W;/W,). Finally, we have a transposed correspondence TEQ,,' C
Q¢+i X Qg

Restricting to Q4 C Qg, we obtain the correspondence Eg; C Qg X Qui
together with the line bundle L; and the natural maps p: Eqs; — Qq, q: Eg; —

Quyi, s: Eqi — C\{oo}. We also have a transposed correspondence TEQ,Z' C
Qa+yi x Qq. It is a smooth quasiprojective variety of dimension 27;1] di(pi +
Pi+1) + pi.

12.4 Equivariant K-groups

We denote by "M () the direct sum of equivariant (complexified) K -groups:

‘M) =P KT Q).
d

It is a module over K5, o« (pt) = (C[T x C*] = (C[tlil, A tlj\;l, vE!]. We define
M) == 'M(m) ® Kz, ox (py) Frac(K 7, cx (pt).

It is naturally graded

M(w) = @gM(m)q, where M () = KTX(CX (Qi) ®focx oty Frac(K5  ox (pt)).

According to the Thomason localization theorem, restriction to the T x C*-fixed
point set induces an isomorphism

KT (Qq) ®k;7 o oy Frac(K g, ox (p0) —> KT*C7 Q1) @z v Frac(K o (pL).

The classes of the structure sheaves [QJ of the T x C*-fixed points é
(see Sect. 12.2) form a basis in @4 KTxC (ngcx) ® K, ox (pt) Frac(K 7, cx (p1)).
The embedding of a point é into 9y is a proper morphism, so the direct image in the
equivariant K -theory is well-defined, and we will denote by [Z_i | € M ()4 the direct
image of the structure sheaf of the point é . The set {[cl]} forms a basis of M (7).



212 M. Finkelberg and A. Tsymbaliuk
. v
12.5 Action of U2 on M (w)

From now on, we will denote by U} the shifted quantum affine algebra Up ,, for
g =sl,and p = Z?;%(qu_l — pj)w;. We will also need the characters 7; of
T x C* defined via T; := H;):;l:ﬁpifﬁl tj. Let v stand for the character of
T xC*: (t,v) — v.

For any 0 < i < n, we will denote by W; the tautological (p; + ... + p;)-
dimensional vector bundle on Q4 x C. Let w : Q4 x (C\{oo}) — Qg denote the

standard projection. We define the generating series b; (z) with coefficients in the
equivariant K -theory of Q4 as follows:

bi(2) = A (@ Wile\oo) = 1+ D A (@ (Wileyjoo)) (-2

r>1
We also define the operators

eip = T o427 (V'L)®" @ qF): M(m)g — M(7)g-i. (12.1)

fir =T 0441 g (—L)®P @ 0'L)® @ p*): M(m)g — M (T)asi,

(12.2)
and consider the following generating series of operators on M (7):
o
ei@) =Y e,z M(myg— Mmgillz,z ', (12.3)
r=—00
o
fi =Y fird " Mg — M()ayillz, 211 (12.4)
r=—00

We define 1//l.+(z): M(myg — M(n)i[[z_l]] and V¥, (2): M(m)g —
ZPim Pt M () ¢[[2]] via

_ Ny b; (zv”’z)b-_ (zv™)
+ . 1 d; 2d;+d; — i+1 i—1
: =T. T:pdi+! iTdi—1 - - s 12.5
W, () i+11iV ( b; (Zv—z—z)bi (zv~) ( )

where as before y(z)* denotes the expansion of a rational function y(z) in z ¥,
respectively.

Notation To each ;_1, we assign a collection of T x C*-weights

@
@ ._ 2 —2d
Sij = pitetpji+a?® Y
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Proposition 12.1

(a) The matrix coefficients of the operators f; r, e; r in the fixed point basis {[Z_l]} of
M () are as follows:

a'= (@) ; (a")
l_[/<1 l(l_sa/zal/')
I—[(J a’)#(l 0)(1 _ S(a)/s(a ))

'<i,a <p o

f“[(}a]_T_l di—d;_ 1+l(1 v )—( S(a))p,( (a) l)
if;_l/ :Z_i—i—Si(;‘)forcertainj <i,l<a<pj

_ @ (a)
e. -~ =T~ 1vd1+17(11+2fl(l_vz)fl(s(a)vl+2) I—[J <l+1(1 Sl+1 J /sl] )
i,rld.d'l i+1 ij 1—[(1 ,a#(j, a) _ )/S(a))
i /S

’<1a’<p/

ifd =d 8()f0rcertalnj<t 1l <ac<p,
All the other matrzx coeﬁ?ctents of €irs fi.r vanish.
(b) The eigenvalue 1// (z)|d Ofl//‘ (z) on [d] equals

a=pj 7 lyit2g (a) aspj vis@
7L pdiv1=2di+diy HJ'SH‘](I Sit1 /)l_[/<l 1 Si— ]/)
i+17! azpj 7= 1yit25@y) 7%= Pi i@

iji (1 vit S )l_[]<l —Z UlSl-j )

The proof is straightforward and is analogous to that of [61, Proposition 2.15].
The following is the key result of this section.

Theorem 12.2 The generating series of operators {wii(z), ei (2), fi(z)}l'.’:_l1
of (12.3-12.5) acting on M () satisfy the relations in U2, i.e., they give rise to
the action of UX. on M ().

In the particular case m = 1", we recover [61, Theorem 2.12].

Proof First, note that wﬁ (z) contains only nonpositive powers of z, while ¥, (z)
contains only powers of z bigger or equal to p; — p;4+1 (this follows from
Proposition 12.1(b)). Moreover, the coefficients of z° in ;" (z) and of z/i~Pi+1 in
¥, (z) are invertible operators.

Applying Proposition 12.1, the verification of all the defining relations of U2,
except for (U6), boils down to routine straightforward computations in the fixed
point basis (compare to the proof of [61, Theorem 2.12]). The same arguments
can be used to show that [e;(z), fj(w)] = 0 for i # j. It remains to prove
v —v Hle), filw)] =8 ( ) (1//+(z) 178 (z)). Applying Proposition 12.1(a),
we see that the left-hand side is diagonal in the fixed point basis and its eigenvalue
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on [é ] equals

nﬁT—1¢H‘*w1—v%—Pa(i>x

w
a<pj a'spy @ @y =PI(] g2 @ @)
Z/(_Y(a))p,. V20 [z (V=i /i ) T2 24 i /81 8( z )_
Sij (Ja)#G.a i+2 (@
j<i sz<7 atzjzl,l z(;a/ )/si(f))(l (a)/s(a : "l”Si;‘l

a's 2.(@@) (@) (a) (@)
H/<l+1(l_vsl+1]//s )l_[/<l 1 /sz lj) ( Z )
! (a)
1—1(] a)# (], a) —v sl(]a’)/sl(ja))(l _ si(ja)/si(;l/)) a

/<1a/<p/ l]

To compare this expression with the eigenvalue of w;r (z) =¥, (z) on [é ], it suffices
to apply Lemma C.1 below to the particular case of y(z) chosen to be the rational
function of Proposition 12.1(b).

The theorem is proved. O

Remark 12.3

(a) The above verification of (U6) by applying Lemma C.1 significantly simplifies
our original indirect proof of this relation in [61].

(b) For w = p", this produces the action of the quantum loop algebra U, (Lsl,) on
M (7).

(c) According to [4], there is an action of AP _ on M(m). Its pull-back along

frac
the homomorphism CDH (A = (wp—1,...,wy—1) taken N times) yields essen-
tially the action of U2 on M () established above. In particular, the kernel
Ker(@%) = Ker(aﬁ) acts trivially on M (;r). The first instance of that is the fact
that the generators {Afir :r > p1+...+ pi} of UL (see Remark 6.7(b)) act

trivially on M (7r), due to the observation that the eigenvalue of Al.i(z) on [é]
equals H‘Elp’ (1- (Z_lvisl.(].a))il).

12.6 Tensor Products

Fix two n-tuples 7’ = (p}....,py). 7" = (p{.....p;) € Z", and define
T = (p1...., pp) Via p; == pi+p} € Z-o.LetU?,, UY,, UY be the corresponding

shifted quantum affine algebras of sl, as defined in Sect.12.5. According to
Theorem 12.2, we have natural actions of U2 on M (), of u;;, on M(x'), and
of UY, on M(rr"). The vector spaces M () and M(n") ® M (") have natural

fixed point bases {[é]} and {[é T® [2” 1}, parameterized by ;_1 and pairs (é /, é Z ) with
d,d’, d" satisfying the conditions of Sect. 12.2. The assignment (d’, d") — d' Ud"

@mmwmmwwM” “’www¥m+)

provides a bijection between such pairs (d’ d”) and d. We also 1dent1fy

_d”(b)for1<a<p L<b<p)
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/
tp'1+...+p}_l+a’ Ipit.tpj1+p)+b

~, ~, o~ .
T"' x T"—T via t[71+---+[i_/—1+a

t”, for a, b as above. Finally, we use O to denote the collection of
Pyt +pj 1 +b =

zero vectors. _
Recall the Drinfeld formal coproduct A: U2 — UY,@UY, of Lemma 10.2.

Theorem 12.4 There is a unique collection of Ciar € Frac(K5, cx (pt)) with
55 = L such that the map [d'] ® [d"] — c;, 3, - [d'Ud"] induces an isomorphism
MM (n") —> M (1) of UL -representations.

First let us make sense of the UY-module M (7)®M (x""). The action of
e;(z) in the fixed point basis {[d”]} of M (") can be written as ¢;(z)[d"] =

a< .
stf, 3 5<a>5(s(a) z+2/Z) a" — 81.(]?)] for certain aé"ﬁi(;) € Frac(K5/, cx (pt)).

According to the comultiplication formula (10.1), we have Ale; (z))([é’] ® [Z_l”]) =
ei () ([d'D®[d"1+¥; (2)([d'])®e;(z)([d"]). The first summand is well-defined. To
make sense of the second summand, we just need to apply the formula y (z)d(a/z) =
y(a)cS(a /z) to the rational function y (z) chosen to be the eigenvalue of ¥, (z) on
[d/ 1. The : actlon of f,(z) on M(x’ )®M (") is defined analogously. Fmally, the
formula A(I/f () = w () ® 1// (z) provides a well-defined action of 1# (2).
These formulas endow M () @ M (JT” ) with a well-defined action of UZ.

Proof According to Proposition 12.1(b), the eigenvalue of Z(lﬁf () = 1//1'i () ®
lpl.i(z) on [é’] ® [é”] € M(r') ® M(xt)" equals the eigenvalue of wii(z) on
[d Ud"] € M(w). Hence, the map [d'] ® [d"] — G [d' U d"] intertwines
actions of wi(z) for any Carar € Frac(K 7, cx (pD). o

Consider ¢ @ € Frac(K 7, cx (pt)) such that 5o = = land

. . p i’ //(a) 1(a)
c (a) —
4/*85; " (T )_lvdt;—l —d H] <l+1(1 t+l J’ / ij )
+1 ’ @< ’
Cy 7 a'<p’ 1 /
é/’dﬁ l—[j/Si J (1 _ S[j(/a )/sigla))
d<s, P (12.6)
Chr Gr_s@ A =2l e
4'.d"-3;; = (T-/)_lvdz_dlq . HJ/<1 (-v Sijf /le )
i .
Ch 5 7[7 -
d'.d 2@ @
- H]<z 1(1 v tlj/ij )

The existence of ¢ @ d,, satisfying these relations as well as a verification that [d’ 1®

[d” 1 czgr [d’ d’ '] intertwines actions of ¢; » and f; , are left to the interested
reader. ]

Remark 12.5 In the particular case py = ... = p, = p, this implies the iso-
morphism M (p") ~ M(1")®? of U,(Lsl,)-representations. This isomorphism is
reminiscent of the isomorphism between the action of the quantum toroidal algebra
of gl; on the equivariant K -theory of the Gieseker moduli spaces M (r, n) and the
r-fold tensor product of such representation for r = 1, see [62, Theorem 4.6].
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12.7 Shifted Quantum Affine Algebras of gl,,

Let Uy (ng) be the quantum affine algebra of gl,, as defined in [17, Definition 3.1],
and let Uy(Lgl,) be the quantum loop algebra of gl,, that is, Uy(Lgl,) :=
Uy(gl,)/ (vE¢/2 — 1). This is an associative C(v)-algebra generated by

Xt kT Li=1,...n—1, j=1,... Z, st
{ kj,;sji“ , N . J , N, T €L, s e N}

ir’

and with the defining relations as in [17, (3.3, 3.4)]. There is a natural injective
C(v)-algebra homomorphism U, (Lsl,) < U,(Lgl,), defined by

— i i
X7 (v'2) ﬁ(Z)HXi(vZ)

+ i -1 i
PEra e S G I GG AT

(12.7)

ei(z) =

Form = (p1,..., pn) € Z ), define the shifted quantum affine algebra U}, (g,,)
in the same way as U,(Lgl,) except that now s;.“ > —p; and we formally add
inverse elements {(k;o)_l, (k;f p_,)_l};l'=1 (as we no longer require k;ok;f b = ).

Note that the assignment (12.7) still gives rise to an injective’ homomorphism
o: UL — UL (gl,).
Consider the following generating series of operators on M ():

XF@)=@—v Y02 Mg — M@)atillz, 271,
X7 () :=@—vNe(v2): M(m)g — M(m)a—illz, 21,
k; @) =T 0% v ) b v )T M()g — M(m)allz ™',

K@ =T ™) /b1 o) M()a — 2P M()allz]]
with ¢;(z), fi(2), b;(z) defined in Sect. 12.5.
The following is a simple generalization of Theorem 12.2.

Theorem 12.6 The generating series of operators X li (2), kji (z) acting on M ()
satisfy the relations of U2 (gl,,), i.e., they give rise to the action of U2 (gl,,) on M (1r).

The restriction of this action to the subalgebra U (embedded into UZ (gl,,) via
o) recovers the action of U2 on M () of Theorem 12.2.

90One can prove the injectivity of o by using Proposition 5.1 for both algebras. Indeed, the
homomorphism g is “glued” from three homomorphisms: o~ : U2~ — U2~ (gl,),0~: UD~ —
UZ<(gh,), 0% U0 — U»(gl,). The homomorphisms o>, o< are isomorphisms due to
Proposition 5.1(b), while the injectivity of o? is clear.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 217
12.8 The Cohomology Case Revisited

The above results can be immediately generalized to the cohomological setting. Let
V() be the direct sum of localized T x C*-equivariant cohomology of type &
Laumon parabolic based quasiflags’ spaces:

V() = @ H} cx (Qa) @z Frac(H} o (p).
d

It is a module over Frac(H;XCX(pt)), where H;X(CX (pt) = CI[Lie(T x C*)] =
Clxt, ..., xn, ]
Let HZ = Y ®cn) C(h), where Y, is the shifted Yangian of sl, in the

sense of [10, Appendix B(i)]. It is the associative C(/1)-algebra generated by

{El~(r+1)’ Fi(r+1)’ Hi(r+l+Pi_Pi+l)}i‘EN

\=;i <, With the same defining relations as in the

standard Yangian Y (s(,).
We define the generating series a; (z)with coefficients in the equivariant coho-
mology of Qg as follows:

a;(2) 1= PP (@ (Wil ey oo))s (—2)7H,

where ¢(V, x) denotes the Chern polynomial (in x) of V. We also define the
operators

ESY = po((er(L) +ih/2) - @) Vm)a — V() ai, (12.8)
F'D = (= DPqu((er (L) +ih/2) - p*): V(g — V(T)gei- (12.9)

(r) —r+pi—pit1+1l,—r ;
r>pi—Ppi+1 Hi h o Z - via

We define H;(z) = zPi+17Pi + "

a;1(z — #)ai_l(z — %) * - B
Hi = i - % Pi+1=Piy .
¥ ( ai(z — FHai - 5) (e =2 (m)allz™" 1l
(12.10)

The following result is completely analogous to Theorem 12.2.
+1 +1 (r+1+pi—pit1)
Theorem 12.7 The operators (E{ "D, "™V gt Hr=peoyell o (12.8-
12.10) acting on V (1) satisfy the defining relations of Hz, i.e., they give rise to
the action of‘jﬁ on V().

A slight refinement of this theorem in the dominant case p; < ... <
pn constituted the key result of [7]. In loc. cit., the authors constructed the
action of the shifted Yangian of gl,, denoted by Hf; (gl,), on V(m). There is

L. . (r+1)
a natural (injective) homomorphism Y% — Y%(gl)), such that F," —
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Siso () (35tn) VBT s () (35 el The
pull-back of the action of [7] along this homomorphism recovers the action Hz on
V (7r) of Theorem 12.7.

The proof of [7] was based on an explicit identification of the geometric action
in the fixed point basis with the formulas of [27] for the action of ‘jz (gl,) in the
Gelfand-Tsetlin basis. The benefits of our straightforward proof of Theorem 12.7
are two-fold:

(1) we eliminate the crucial assumption p; < ... < p, of [7],
(2) we obtain an alternative proof of the formulas of [27] (cf. Proposition 12.8
below).

Moreover, we can derive v-analogues of the Gelfand-Tsetlin formulas of [27] via
a certain specialization of the parameters in Proposition 12.1 as explained below.

.o 1 ;
We set 1; = vP for 1 < I < N. To a collection d = (d;;”)éj;fén_l, we
: : 5 (a)\1=a=p; L@
associate a Gelfand-Tsetlin pattern A = A(d) = ()\i;‘ ) <j<i én as follows: )Ln’; =

Bovttpvtatd =L AT = By iy rat = 1= Seta " = 30, which
is independent of d. Note that the vector space M (r) has a basis {[A]} parametrized
by A = 2520 with 29 = 2 and A%, — % € N. Consider a
specialization of {f;}1</<y such that )»5.“) — )»5.'21 e N, while AE“) — )L;b) ¢ 7 if
a # b. Let S be the subset of those A from above such that )»l(]”.) - )‘5?1 j+1 € N
(note that S is finite), while S will denote the set of the remaining Gelfand-Tsetlin
patterns A.
As before, we define

AF@ =k 0 0 ) - ('),
Bii(z) = - v*I)AfE(z)efE(z),
Cl-i(z) = (v — v_l)fl.i(z)Aii(z).

(a) (a)
_)‘ij A

We set A;(2) = ]_[211 (v — v% z71). The next result follows from Proposi-

tion 12.1.
Proposition 12.8

(a) The vector subspace of M (r) spanned by {[A]}, o5 is UL (gl,)-invariant. We
denote by L(r) the corresponding quotient of M (7).
(b) Let {Ep}Yaes be the basis of L(rr) inherited from {[Al}acs. Then, we have:

A,i(viZ)éA = V" i1 (DA (v72) - Ay (02T V)8,
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£ 2(1 )41 +i)
B (v - 2 )SA V" (0 b ))»z+12(v ) Aiript (0 @ )$A+5(“)
4o 20 miy+i—1 5 209 +1) 209 +i-2)
Cr'v7i )Ep = A1, 1 (0T YA 20T Ty e Ay g (0T )6\ s
1]

where mj 1= Zj,zl(j’ — l)pjr and ll.(]l.‘) = )LE?) —j+ 1L
Remark 12.9

(a) In the simplest case 7 = 1", the above homomorphism ‘jfl, — 1j?,(g[n) is the
classical embedding of the Yangian of s, into the Yangian of gl,,.

(b) The injectivity of the above homomorphism Hﬁ — Hf’r (gl,,) follows from the
PBW property for gﬁ‘; (see [24, Corollary 3.15]) and its analogue for Hﬁ (al).

(c) We take this opportunity to correct the sign in [7, (4.2)], where the ‘—’ sign
should be replaced by (—1)7*, that is, f,((rH) = (=DPkqu(c1 (L))" - pP).

(d) We take this opportunity to correct the typos in [23]. First, the formulas for
the eigenvalues of h; («) and a,,; (u) of Theorem 3.20 and its proof should be
corrected by replacing p;sjr ~ i py - Second, the formulas defining ay, (1)
(Section 2.11), a,,; (1) (Section 2.13), a,,,; (1) (Section 3.17) should be modified
by ignoring p., q*.

Remark 12.10 Let e, € gly be a nilpotent element of Jordan type 7. For p; <

. < pn, Brundan-Kleshchev proved that the finite W-algebra W (gly, ez ) is the
quotient of Hg (gl,,) by the 2-sided ideal generated by {d l(r) }r>p1» see [12]. Together
with Theorem 12.7 this yields a natural action of W (gl , e;) on V (7), referred to as
a finite analogue of the AGT relation in [7]. We expect that the truncated version of
U2 (gl,) with A = Nw,_ should be isomorphic to the v-version of the W-algebra
W (gly, ex) as defined by Sevostyanov in [57].

12.9 Shifted Quantum Toroidal s\,, and Parabolic Affine
Laumon Spaces

The second main result of [61] provides the action of the quantum toroidal algebra
Uy, u(s ») (denoted U,,(s ) 1n loc. cit.) on the direct sum of localized equivariant
K -groups of the affine Laumon spaces Py4. The cohomological counterpart of this
was established in [23], where the action of the affine Yangian Y} h/(?[,l) (denoted
Y in loc. cit.) on the direct sum of localized equivariant cohomology of P, was
constructed.

Likewise, the results of Theorems 12.2 and 12.7 can be naturally generalized
to provide the actions of the shifted quantum toroidal algebra UZ* (resp. shifted
affine Yangian }'jﬁ’h/) on the direct sum of localized equivariant K-groups (resp.
cohomology) of parabolic affine Laumon spaces. Here UX" is the associative
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C(v, u)-algebra generated by {e; ,, fi.r, wiiis.iu <i<n,r €7, sl.+ > 0,5, >

pi — pi+1} and with the same defining relations as for U,,,u(?[,,), while HZ*F‘/ is
the associative C(f, /i’)-algebra generated by {El.(rH), Fi(rH), Hi(r+1+pi_pi+')|l <
i < n,r € N} and with the same defining relations as for Yy j (;[,,) (here we set
Pn+1 := p1). On the geometric side, the parabolic affine Laumon spaces of type &

are defined similarly to the case 7 = 1”. We leave details to the interested reader.

12.10 Whittaker Vector

Consider the Whittaker vector

m:= [0q,l € M()",
d

where M ()" =] 4 M(7)a. We also define the operators

=p('L)® @q") = v ki o) e M(m)g —> M()g-i.
Proposition 12.11 For 1 <i <n — 1, we have
/ 2\—1 / /
"i,o(m) =(1—v°)" 'mand e,-yl(m) =...= ei!pi_l(m) =0.

Proof According to the Bott-Lefschetz formula, we have:
() m= Zéaé[é], where a; = HweTéQi(l —w) 1
ayy . .
@ LpA0'L)¥ @4 4 = (L) © P 4y
Set Ci o := (1 — 1)2)_l and C; , ;== 0for 0 < r < p;. It suffices to prove the
equality C; , = qu @G((V'L)® ® p*)Ld+5(a) foranyd andany 1 <i <
n—1,0<r < p; — 1. According to Proposmon 12.1(a), we have

a'=pj (a) , (@)
l—s /s
i) \®r Y L — (1 _ 21 (a)irn’<tl( 111 _
@ (L™ @ PG g0y = (1= D7 (70 [T (1 — 55y~
'<i a’<p/
) a<pi () a'=py . (a) (a)
LA VR (s @iy Mj<iliGiZey —si7)
| — 02 —d<p7 @ ij (a)2G.a), (@) _ (@)
v 1_[]‘/5,'11 ,‘(z;’j/ [1; J'<ia’<pjy (Sij’ = Sij )
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For 1 <r < p; — 1, the sum

asp; aspy . @) (a)
Z(s.(‘_’)vi)r—l [t GiZ =80
L i [[Y-O7G0 (@) _ @)
jsi j'=ia'zpy Vij’ i

. . .. (@), =pj .
is a rational function in {Sij’ }j, <i ’ of degree r — p; < 0 and without poles.

Hence, it is zero. For r = 0, the same arguments imply

<pj a=py (@) (@) <p; a'spy (@)
azp:j(«a)vi)_l My <ilaGicy e = i) _azp:!(y(a)vi)—l M<izisisiy

L Vij 4 OFG (@) @y — £t i [0 (@) @)
J= j'sia'=p; Vij vij J=i j'<ia'<py VWijt Tl

YA . S(a/)
aspj 1—[(1 ,a)y#(j,a) ij’
J=<i j’Si,a’Spf/ (@) _ (@°
IS =i

It remains to compute Y which is a rational

.. n.a'<p; .
function in {sl.(;.l/) }j/<l. 7 of degree 0 and without poles, hence, a constant.

Specializing sl.(ll) — 0, we see that this constant is equal to 1 (note that only
one summand is nonzero under this specialization).
The proposition is proved. O

Remark 12.12

(a) For w = 17, this result was proved in [6, Proposition 2.31].

i —1yip;
y the same arguments, we also find ¢/ (m) = #m, where e/ =
(b) By th Iso find e/ , (m) = “H .
(kiTO)zel/‘,r'
(c) Likewise, one can prove that El.(l)(n) = ... = Efpi_l)(n) =0, El.(pi)(u) =

i~ 'v, where v := > 4[Q4]1 € V(m)". This result was established in [7,
Proposition 5.1]. B

Appendix A Proof of Theorem 5.5 and Its Modification

To prove Theorem 5.5, let us first note that relations (le—fJ9) hold in ugc u Hence,

there exists an algebra homomorphism ¢: ﬂm,m — Uy, such that e,
eirs fis = fiss W) = @I @) = W) ks > i
fori € I,bp; —1 <r < 0,b1; < s < 1. Moreover, the way we defined
€ir, firs lpiir € Uy, u, right before Theorem 5.5, it is clear that e: ¢;,
eir, fir — f,',r,l//l_iisi — I/Iii:tsi fori € I,r € 7Z, sf > 0,5, = —b;. In
particular, ¢ is surjective. Injectivity of ¢ is equivalent to showing that relations (U1-
U8) hold in Uy, ., This occupies the rest of this Appendix until A(iv), where we
consider a slight modification of this presentation, see Theorem A.3 and its proof.



222 M. Finkelberg and A. Tsymbaliuk
A(i) Derivation of Some Useful Relations in U, ,,
First, we note that (Ul, U4, 05) together with our definition of ¢; -, f; ,, wﬁ'r imply:

+ Cij — —Cjj —
vileir =v. ej Ul U e = v, Ve, Thixr gl = lcijly, €t
i,0 i i,0 i,bj i i,bj

(v1)
Wi Sir = v firvite Wi i = Fir Vi, i £ = =lcijlo firtr,
(v2)
+ g+ - o+
Wiy ) = 0, i, Y721 =0 (v3)
foranyi, jel,r e Z,s}" > O,Sj_ > —b;.
Second, combining relations (ﬁl, U4, U5, ﬁ6), we get
lei1. fi0l = leio. fial =¥/ (i — v D),
(v4)

- -1
[ei,hz,iv fi,hl,i—l] - [ei,bzyi—la fi,b]_i] - I'Z/i,bi—l/(vi - vi)-

Note that v, = (v; —v; Dleio, fi.1] = (@i —v; YW/ hi 1. Hence, [hi1, ¥;H1=0.
Combining this further with (v1, v2, v4) and our definition of wi"’ , we obtain

ler. fr0l = lein. fial = leio. finl = ¥ih /(i — v} ). (v5)
Likewise, we also get

— —1
[ei,bzy,’v fl',blv,'—Z] = [e[,bzv,’—la fi,bl‘,'—l] = [ei,bz[—Zv fi,bl_,'] = wi,b,‘*Z/(vi - vi)'
(v6)

Third, let us point out that relation (U9) is equivalent to
(Rt Y51 =0, [hi—1, ¥y 51 =0. 7
According to the above relations, for any 7, j € I we also have

(hj—1, 9,51 =0, [hj1, ¥ 51 =0. (v8)
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Finally, we define elements /; 17 € ﬂ,“, u, as follows:

hia = W) Wik /(v — oY) = (v — v DR /2,

1 1 1 2 (A-D)
hi,—2 = (w;bi)_ 1/’,‘7}71._2/(”; —v;) — (v, — vi)hi,_1/2~
Due to relations (le, v7, v8), for every i, j € I we have
[hi+1, hi+2] =0, [hjF1, hi+2] = 0. v9)

Lemma A.1 Foranyi € I,r € Z, we have

[4]y, (4],
zv e r+2, [hi+2, fir]l=— 2”

[hi+2, €] = - Sirt2-

Proof Due to (IAJZ), we have [e;0,e;, 1], = 0. Commuting this with 4;; and

2,2

applying relation (04), we obtain e; 1e; —| —vie; ) = vl.ze,-,_le,‘,l — el.zo. Commuting

this further with f; | and applying relation (U6), we obtain
w:rzei,fl - v,zlﬂfﬁei,o + ei,lw,ﬁ) - v,'zei,OI/fih - abi,Oei,lw,‘Tbi =
v%ei,—lw;—z - ei,Owiﬁ + vizwfoei,l - IP,T] €0 — v,-25b,-,01ﬁi,_b,. €.
First, note that e; xpifbi = vl.zllfijbi e; 1, due to (IAJ4). Second, we have
eV — vieiov] | = vivihein — v heio. (v10)

Indeed, due to the equality w;’l = (v; — vi_l)tﬁlfoh,-,l and relations (Ijl, vl), we
have

2 2 —1 4 2
Yiheio—vieioy = vi (i — v D2y, - ety = (0 — Deiryy = vivihein — e,
Therefore, we get

+ 2.+ 2 + +
Vihei—1 — vy ei0 = viei 1Y, — €0l (vl1)

Combining the formulas wlfl = (v; — v;l)wlfohi,l, I//Zrz = (v; — v;l)l/fﬁo(hiyz +

i—v7 ! . . A 4]y,
%h%l) with relations (Ul, v1, v11), we finally get [h;2,e;—1] = [;’ei,l.
Commuting this relation with A; +; and using (v1, v9), we obtain [h; 2, ;] =

41y,
%e,‘,rﬂ for any r € Z.
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Likewise, starting from the relation [e; p, ;. €ip,;~1],2 = 0 and commuting it
: [41,

first with /#; —; and then with f;;, ;, we recover [h; —2,€ip,;] = —F€ip,;—2-
. . . 41y,
Commuting this further with h; 4+, we get [h; —2, ¢; ] = %ei,r_z for any r € Z.
4y, .
The proof of [h; +2, fi, ] = _l ;”l - fi.r+2 1s completely analogous. m]

A(ii) Verification of Relations (UI-U6) with i = j for ﬁul,m
A(ii).a Verification of (U2)
We need to prove X (i; r, s) = 0 for any r, s € Z, where

XT(isr,s) = leir+1, €512 + [eist1, €irly2.

Note that X*(i; r, s) = X*(i;5,7), and X*(i; —1, —1) = 0 due to relation (02).

For a € {£1, £2}, we define L; , := a/[2aly, - ad(h; ) € End(Uy, .,). Then,
wehave L o(X*(i:7,9)) = X (i r+a, )+ X (i rs+a). Set L = 5(L? | —
L; +2). Then L?E(X“L(i; r,s)) = XT(i;r £ 1,5 & 1). Applying iteratively L to
the equality X+ (i; —1, —1) = 0, we get X (i;r,7) = O for any r > —1. Since
2XT(i; —1,0) = L 1(XT(; —1, —1)) = 0, we analogously get X" (i; r, r+1) = 0
forr > —1. Fix s € Z-¢ and assume by induction that XT@;r,r+N)=0for any
r>—1,0<N <s.Then X*(i; —1,5) = L 1(XT(; —1,s — 1)) — XT(i;0,5 —
1) = 0, due to the above assumption. Applying (Ll.+)r +1 to the latter equality, we
get XT(i;r,r +s + 1) = 0 for r > —1. An induction in s completes the proof
of XT(i;r,s) = 0 for any r,s > —1. Finally, applying iteratively L;, we obtain
X*(@i;r,s)=0foranyr,s € Z.

A(ii).b Verification of (U3)

This relation is verified completely analogously to (U2).

A(ii).c Verification of (U4)

We consider the case € = + (the case € = — is completely analogous). We need to
prove Y*@;r,s) =0 for any r € N, s € Z, where

;. : + +
Y+(lv r, S) = [wi,r—i-l ’ el‘,S]viz + [ei,S+11 wl,r]v%'

The r = s = 0 case is due to (v10) from our proof of Lemma A.1. Moreover, the
same argument also yields Y 7 (i; 0, s) = O for any s € Z.
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Notethat Y (i; r,s—1)+Y 1 (; s, r—1) = (v; —v_l)[X"’(i r—1,s=1), fi1l =
0 for r, s > 0. The first equality is due to (v1) and our definition of 1//l .» while the
second equality follows from X (i;r — 1, s — 1) = 0 proved above. In particular,
YtG;r,-1)+YT@i;0,r —1) =0forr € N.

Combining the above two observations, we find

Y*(@i;r,—1) =0forany r € N. (v12)

Commuting iteratively the equality YT(i;1,—1) = 0 with hi +1, we get
Y*(i;1,5s) =0forany s € Z, due to (U1, v1, v9).
Next, we prove the following five statements by induction in N € Z,:
(An) [hi1, Wr] =0for0<r<N+1;
(BN) [hi -1, 971 =0for0 <r < N+1;
(Cn) leir, fis]l = 1/f”+$/(v, v, )foranyr,seNWithl§r+s§N+2;
(Dy) Y+(i r,s) =0forany0 <r < N,s € Z;
(En) [¥;,. ¥ 1 =0forany r,s = Owithr +5 < N +2.

Base of Induction (N = 1) The assertions (Aj, By, Dy, E1) have been already
proved above, while (C1) follows immediately from [A; 1, w;fz] = 0 (cf. (v7))
and (v1, v2, v4, v5).

Induction Step Assuming (Ay—Ey) for a given N € Z.o, we prove (Ay4i1—
ENt1)-

Proof of the Induction Step Consider a polynomial algebra B := C(v)[{x,}72,],
which is N-graded via deg(x,) = r. Define elements {h,}7°, of B via

exp ((vi—vi_l)Zfil h,z") = 1+ 372, 5z Then, h, = v—v_l T

pr(x1, ..., x,—1) with polynomials p, satisfying deg(p,(x1,...,x—1)) =r.
Using the above polynomials p,, we define h; 1, ..., hi n+1 € Uy, 4, Via

1.+
hlr:—O/:)z—lplr r((w ) wllv-- (1# ) lw,rl)forlff"SN"‘L
l (A.2)

i

These h; , are well-defined and are independent of the choice of N > r — 1, due to
the assumption (E y) and the aforementioned degree condition on p,. The following
is straightforward: '°

[2”]1),'
[hir,eis] = —— € s4rforl <r <N+1,5s €Z (v13)
r

101 we knew that [w+ 1// »] = Oforany 0 < a,b < N + 1, then (v13) would immediately

follow from (Dy) by the standard arguments. However, every monomial appearing in p, involves

only pairwise commuting ¢+ ’s, due to the degree condition on p, and the assumption (Ey).

Hence, the equality (v13) follows formally from its validity in the aforementioned simpler case
11/:““ Iﬂq =0forany0 <a,b <N +1).
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Validity of (An+1) We need to prove [4; 1, w;rNH] = 0. According to (Cy), we

have 1//fN+2 = (v; —v; )lei N+2—r, fir] for 0 <r < N + 2. Hence,

1

[hit, ¥y 0]/ (0F =772 = [einy3-r. firl—leinsar. firs1]for0 <r < N+2.

(v14)
Adding up these equalities for » = 0, 1 and using Lemma A.l together with the
assumption (Cy), we get

20hix, ¥y o]

s = lein+3. fiol — lein+1. fi]
v —v;
2 20hi2s ¥ify 4]
= — h s P , |i = V—_ .
s (hi2, [ei n+1, fioll —

1 1

Likewise, adding up the equality (v14) for r = 0,1, ..., N and using (v13), we
obtain

N+1 N N+1 (N + Dlhi,n+1, Y75

———hi1 ¥ v ] = o lhin+1, lein, fioll = .
vi2 . v;2 ! i, N+2 [2(N + 1)]vi t t ! v?(N+l) . vi—Z(N-H)

Comparing the above two equalities, we find

v2 -2 v2 — 1)_2
. + _ i i . + _ i i . +
[hl,lv Wi,N+2] = v v'_4 [hl,29 %NH] = v2(N+1) _ v—2(N+1) [hl,N+11 %,2]-
i i i i

(v15)
On the other hand, combining (A.2) with the assumption (Ey ), we get

[hiss Wity ass] = W) T W Wil s/ i — v for 1 <s < N+ 1
Hence,

W) W vl W) T W ]
(i —v; D2l @ —v DN = 1]

(hits Wity 0] = (v16)

Since [2],2 # [=N — 1],2, the second equality of (v16) implies [wlfz, w:’NH] =0.
Hence, [£; 1, I/JZTNH] =0, and (A y41) follows.

Validity of (Bn+1) We need to prove [h; —1, wi+N+2] = 0. This follows from

[, -1, I/f,TNJrz] = (; — v; D2l - (lein, finl — lein+1, fi0]) = O, where we
used (v1, v2) in the first equality and (Cy ) in the second one. Hence, (By 1) holds.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 227

Validity of (Cn+1) According to (Cy), we have wi+N+2 = (v —
v Dleis, finta—r] for any 0 < r < N + 2. Therefore, [h,-,l,w:“NH] =

(”1'2 — vi_2)([e,~,,+1, fin+2—r] — leir, fin+3—r]) due to (v1, v2). The left-hand
side is zero due to (A1) established above, hence

lei.ny3, fiol =leint2, firl = ... =lei1, fins2]l = leio, fins3)

Combining this with our definition I/IiTN+3 = (v,-—vfl)[e,-,NJrz, Sfi1lyields (Cy+1).

Validity of (Dn+1) Due to (Any41) and (Byy1) established above, we have
[hi+1, YT(; N+ 1,5)]=[2ly, - Y(; N+ 1,5 & 1). Combining this with (v12),
we see that YT (i; N 4+ 1,s5) = 0 for any s € Z. Hence, (Dy 1) holds.

Validity of (En+1) We need to prove [w:rr, W:TN+3—r] =O0forany 1 <r < N +
1. Equivalently, it suffices to prove [h; ,, '1”1'+N+37r] =0forl <r < N+ 1.

According to (Cy), we have 1/’ZFN+3—r = (v; — v;l)[e,-,N%,r, fi.ol. Therefore,
2r _ _—2r

i ¥ityas, ] = S0 (lei.n+3. fi0] — [en+3—r. fir]) = 0, due to (v13) and

the assertion (Cy 1) proved above. ]

The induction step is accomplished. In particular, (Dy) completes our verifica-
tion of (U4) withi = j.

A(ii).d Verification of (U5)

This relation is verified completely analogously to (U4).

A(ii).e Verification of (U6)

We need to prove

1 1’”1—,"_1\/ - 8N’08bi’0wi,_bi lf N z 07
[ei,ﬁ fi,Nfr] = ﬁ . _wi,_N + (SN,O(Sbi,oW;—O if N < bl-’
0 if b <N <0.

v; i

Note that given any value of N € Z, we know this equality for a certain value of
r e Z.

Case N > 0 If 0 < r < N, then [e;,, fin—r] = wl:"N/(v,- — vi_l), due to
(Cn). For r < 0, we proceed by induction in |r|. Due to (vl, v2), we have
leirs fin—r] =201 - [lhi—1. €ir1]s fin—r] = 215" Thi—1. Leirr1s fin—r 1]+
leir+1, fin—r—1] = lﬁi-:rN, where in the last equality we used the induction
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assumption and the equality [h; —1, ¥
N —r < 0 is treated in the same way.

1N+]] = 0, due to (By). The case [ :=

Case N <0 We proceed by induction in |N|. For any r € Z, we have
leirs fin—r] = [20, " [hi—1. [eirsr. frn—rIlHleirr1s fin—r—1] = [eirs1. fin—r1],

where we used the induction assumption together with (Ul, vl, v2) and
[Ai,—1,¥; (2)] = O (the latter is proved completely analogously to (Ay)). Hence,
the expression [e; , fi n—r] 1s independent of r € Z. The result follows since we
know the equality holds for a certain value of r.

A(ii).f Verification of (U1)
We consider the case € = + (the case € = — is completely analogous). We need
to prove [1/fl e 1//‘+ 1= [wl e w_ﬂ,] = 0 for any r, s > 0,s; > —b;. This is

clear for r = 0 or s =0, 0rs; = —b;, due to (v3). Therefore, it remains to prove
[h,r,w +] —Oand[h,r,lp_ ]=0forr > 0,5 >0,57 > —b.

Fors > 0, we have W++ = (v, — v_ )[el sho1s fi.1], so that

[2V]vi
r

Ui ¥4 = =2 @i =07 - ey gy fial = ey firs1 D) =0,

where the first equality is due to (v13), while the second equality is due to

relation (U6) with i = j proved above.
For s;” > —b;, we have 1// (v — vi)[ei’_l71 s Jiby ;15 so that

[2r]v,

Ui, V=@ = v e,y oo fomd = L6y firtn D =0,

where the first equality is due to (v13), while the second equality is due to

relation (U6) with i = j proved above.
This completes our verification of relations (U1-U6) with i = j for Uy, u,.

A(iii) Verification of Relations (UI-US8) with i # j for ﬂm, 1
A(iii).a Verification of (U2)
We need to prove X+ (i, j; r,s) = 0 for any r, s € Z, where

XFG, jiros) = leirr1, 5] i +[ejsrt, eir] cij-
1 1
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First, the equality X+ (i, j; —1, —1) = 0 follows from (02). Second, due to (v1) we
have

(hin, XFG, i )] = [eily, - X1 jir+1,9) + leijly - XTG jirs +1),
(hj1. XFG jir )] =[cjilo; - XTGL jir+1,8) 4+ [cjjlo; - XTGL jir s+ D).

Combining these equalities with nondegeneracy of the matrix A;; =
|:[Cii]v,- [cijlv;
[cjilv; [cjjlv;
0, X%, jir,s +1) = 0. Since XT(, j; —1,—1) =0, we get XT(i, j;r,5) =0
for r, s > —1 by induction in 7, s.
A similar reasoning with h; _1,hj 1 used instead of h;1,h; yields the
implication

], we see that XT(, j;r,s) = 0 = XT(@, j;r +1,5) =

X, jir,s)=0= XV, j;r—1,5)=0, XT(@i,jir,s — 1) =0.
Hence, an induction argument completes the proof of X (i, j;r,s) = 0 for any
r,s € 7.

A(iii).b Verification of (U3)
We need to prove X (i, j; r,s) = O for any r, s € Z, where

X~ jir,s) = [fi,r-i—la fj,s]v_*fij + [f/',s+l7 fi,r]v_*fij .
The r = s = 0 case follows from (03). The general case follows from

X (,j;rs) =0—= X" (,j;r£1,5)=0, X @, j;r,sE1)=0
applied iteratively to X ~ (i, j; 0, 0) = 0, in the same vein as in the above verification
of (U2).

A(iii).c Verification of (U6)
We need to prove X (i, j; r,s) = 0 for any r, s € Z, where
X3, jir,s) =leir fis]

First, the equality X (i, j; 0, 0) = 0 follows from (ﬁ6). Second, due to (v1, v2) we
have

[hl’il,X(l,J;r,S)] - [Cii]vi X(l’J;r:tlvs) - [Cij]l); 'X(l.,j;r,S:l: 1)5
(hj+1, XU, jir, )] =lcjilo; - XU, jir £1,8) —[cjjlo; - XU, jir, s £1).



230 M. Finkelberg and A. Tsymbaliuk

Combining these equalities with nondegeneracy of the matrix B;; =
|:[Cii]v,» —[cijlv;

[cjilo; —lcjjlo;
0,X(, j;r,s £1) = 0. Hence, the equality X (i, j;r,s) = O for any r,s € Z
follows from the r = s = 0 case considered above.

i|, we see that X (i, j;r,s) = 0 = X@G,j;r £ 1,5) =

A(iii).d Verification of (U4)

We consider the case € = + (the case € = — is completely analogous). We need to
prove Y*(i, j;r,s) =0forany r € N, s € Z, where

YEG, jirs) =iy el o+ Lejsrts Wi cir
Due to relation (U6) (established already both for i = j and i # j), we have
(Wi = v; Dlleir+1. ¢js) i fiol = W71 sl
i i i,r+1,€j.s vl_t/ > Ji,0 ir+1°€J.s viu s
(vi — vfl)[[ej,3-+1, ei,r]v’fij . fiol = [ejs+1, 1/ff, - 5r,o5b,-,01/f{_bi]vl€ij = lejst1, lﬂ,ﬁ]vfz‘j-

Therefore, Y (i, j;r,s) = (v; — vfl)[XJr(i,j; r,s), fiol = 0, where the last
equality follows from X+ (i, j; r, s) = 0 proved above.

A(iii).e Verification of (U5)

We consider the case € = + (the case € = — is completely analogous). We need to
prove Y (i, j;r,s) = 0forany r € N, s € Z, where

Y_(iy ]; r, S) = [‘(//l,+r+1’ fj,S]v.*Cij + [fj,S+1’ 1/[;]”4'1 .

i

Analogously to our verification of (U4), we have Y (i, j;r,s) = (v; —
v;])[e,-,o, X~ (, j;r,s)]. Thus, the equality Y (i, j;r,s) = 0 follows from
X, j;r,s) = 0proved above.

A(iii).f Verification of (U1)

We consider the case € = ¢/ = + (other cases are completely analogous). Due to
relation (v3), it suffices to prove [4; ,, 1//}%] = 0 forr, s € Z-q, where the elements
{hir}72, were defined in (A.2).

Analogously to (v13), relations (U4, US) imply

[reijly; [rcijlv,;

“ejsyrs Lhir, fis]l= - fjs+r foranyr € Z.o, s € Z.

[hi,ra ej,s] =
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Hence, we have

thi, U1 = @i = Dl lejs, fioll = (0i—v;")

@ . ([ej,s+rv fj,O] - [ej,Ss fj,r]) =0,

where the first and the last equalities follow from (U6) with i = j established above.

A(iii).g Verification of (U7)

In the simplest case ¢;; = 0, we need to prove [e;,,ej ] = 0 for any r,s € Z.
The equality [e; 0, ej,0] = O is due to (fJ7), while commuting it iteratively with
hi+1,hj+1, we get e, ejs] =0,dueto (v1, v2).

In general, we set m := 1 — ¢;;. For any F=(@1,....,tm) € Z" and s € Z,
define
+ . .2 .
273, jir,s) = Z Z( D’ [ :| Cirnty " Cirn)€).5Clrnyt) " Cilaimy
red,, t=0

To check (U7), we need to prove ZT3, j;F,5)=0 for any FeZm s cl.

Let 0 = ©,...,0) € Z". The equahty Z*3, j; O 0) = 0 follows from (U7)
(cf. Remark 5.4). Commutmg Z73, j; O s) with A +1, hj +1, and usmg nondegen-
eracy of the matrix Ajj. we get Zt@,j;0,5) = 0 = ZT(G, j:0,s £1) =
Therefore, Z* (i, j; 0, s) = 0 for any s € Z.

Next, we prove that Z*, ji7,s) = Oforany 7 = (r,...,7,0,...,0) €
7", s € Z by induction in 0 < k < m. The base case k = 0 was just treated
above. For the induction step, note that the commutator [A; ,/, ZT(, j; 7, s)] equals
(mk)r+,[2r/]”"z+(i, Ji(ri,. ...k, r',0,...,0),5) plus some other terms which are
zero by the induction assumption. Hence, Z¥ (i, j; 7, s) = O forany ¥ € Z™", s € Z.

A(iii).h Verification of (U8)
Setm := 1 — ¢;;. For any FeZm" s eZ,define
" m
ANTOESY Z(—l)’H Fiuracty = Fiuraio Fis Fiorainy = St
v;

eSS, t=0

Then, we need to show Z~ (i, j; 7, s) = 0. This is proved completely analogously
to (U7).

This completes our proof of Theorem 5.5.
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Remark A.2

(a) Specializing v — v € C* from the beginning and viewing all algebras as C-
algebras, the statement of Theorem 5.5 still holds as long as v is not a root of
unity.

(b) A slightly different proof can be obtained by following the arguments in [47].

(c) We note that both Theorem 5.5 and its proof are valid also for all affine Lie
algebras, except for the type Ail).

A(iv) An Alternative Presentation of Uf)cﬂ Jorp e A~

Inspired by the recent result [33, Theorem 2.13], we provide another realization of
Uy M (with u € A7) without the defining relation (09). Following the notations of

Sect. 5.2, denote by ﬁm _u» the associative C(v)-algebra generated by
teir, fis: W)™ W) hisili € by —1<r<1b;—1<s<1)

with the defining relations (ﬁl—08). Define inductively ¢; ,, fi.r, wfr as it was done
for ﬂm ., right before Theorem 5.5.

Theorem A.3 There is a unique C(v)-algebra isomorphism ﬁm, g —> ugf w such
that

+ + . + _
eir = er, fir—= firs I/fl, L 1/fl, ot fori € I,r € Z,s;” > 0,s; > —b;.
9 l 9 ‘l'

Proof Due to Theorem 5.5, it suffices to show that (U9) can be derived from (U1—
U8). We will treat only the first relation of (U9) (the second is completely
analogous). -

First, we note that relations (v1-v5) and (U2, U3, U6) with i # j hold in Uy, 5,
since their proofs for the algebra ﬂm, 1, were solely based on relations (U1-06).
Likewise, the equalities Y (i, jir,s) = 0 from our verifications of (U4, U5) for
i # jstill hold forr € {0, 1}, s € Z.

Second, we have

(Wi eiolyz + Leit. w12 = 0, W, fiol,2 + Lfias ¥ih],2 = 0. (v18)

These equalities are proved completely analogously to (v11) from our proof of
Lemma A.1, but now we start from the equality [e; 1, e;0],2 = O rather than

lei0, €i,—1],2 = 0 (commuting it first with 4; ; and then further with f; o).
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Recall £; 2 of (A.1). Analogously to Lemma A.1, we see that (v18) irnpliesll

[4]1),-
2

[4]‘!),'
2

~ej2, [hi2, fiol =— - fio. (v19)

[hio, eio]l =

Likewise, the aforementioned equalities Y ﬂE(i, Jjil,s) =0fori # j,s € Z, also
imply

[2¢ij1v; [2¢ij]v; .
[hio,ejs] = lzj “ejstas Lhin, fis]=— 121 Y fisqafori# j,s € Z.
(v20)
Finally, due to (U7, U8, v1, v2, v19, v20), we also get [¢; », ¢j 51 = [fi.r, fj.s1 =0
if ¢;; = 0and Z%@, j;1,0,5) = ZE(@, j;1,1,5) = 0if ¢;; = —1forr,s €

Z,r" €{0,1,2}.
In the simply-laced case, the rest of the proof follows from the next result.

Lemma A4 Leti, j € I be such that c;j = —1. Then W;Lv W;Tz] =0.

Proof As just proved, we have [f; 1, [ﬁ,l,fj,o]vfl],,, = 0. Commuting this
equality with e; 1 and applying (v4) together with (U6) for i # j, we get
[fi1s [fias 1//?1]”_71],,,. = 0. Combining the latter equality with w]*l = (v; —

v;l)wjohj’l = (v; — vi_l)lp;"ohj,l and using (v2), we find
Ui, Ui hjillyy = 0= [fia, finly = 0= i fial, 2> = 0.
Commuting this further with ¢; ¢, we obtain
(Vi fitl,2 + [fia, Wi, = 0.

Finally, we apply [ei 0, —],-2 to the latter equality. In the left-hand side we get two

summands computed below.

(1) Wehave [e; 0, [fi.2, ¥/ 1,21,2=llei0, fi2l, ¥;'\1,—a+fi2. leio, ¥i 12,2
Due to (U4), [ei0. ;11,2 = 07 = v])eia ¥y = iz leio. ¥, 21,2 =
(v_2 v%)[ﬁ,z, i 1],-4 w:'O. Combining this with (v5), we thus get

; —

leio. Lfi2n ¥ 1,212 = W75, ¥l 1o/ imo D+ 072 =) fia. eia], 7.
(v21)

' Note that we cannot deduce the statement of Lemma A.1 due to the absence of (09).
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2) We have [eio, [¥;5, firl,2l,—> = lleio, Y52, finl,2 +
v W leio. fitll: By (VI8): [eio. wihl,» = =7 W eiol,y =
v 2leit ¥ 1y = 07 2 — o7 Dleit, hialyahy. Hence,

-1 4
[Lei0, 1#,2 -2, Jial, 2= =v; MU v; )lei1hin — vihiein, fi,lhﬁ;ro =

v @i = 07 DWW hialye /i = 07 = @ v Dleit. fi2l,) ¥
Therefore,
[V ¥ihl _ (Wi df;,rl]u;‘
[ei.0, ngg ﬁ’l]”Fz]”Fz = W + (v} — v; Hfi2s ei.1],,i—4 v+ W
(v22)

Substituting (v22) and (v21) into [e; o, [1//:’2, firl 2+ [fi2, 1//:”1]”.,2]”_,2 =
0, we find

1/fl 2 wi—,i_l]vi 1’”1 2 w ] + v wl 2> Ipi—,‘rl]v“ =

_ .6
The left-hand side of this equality equals 1_:”_ 5 - [wi,z’ w 1]. Hence,
VAR

Our next result completes the proof for non-simply-laced g.
Lemma A.5 Ifcij # 0and [Y;, Y551 = 0, then [I/fj » Wz] =0.

2]y
Proof Due to (v1. v2): lhi..eir] = g thjreir). Ui, firl =

[h,»,l,ﬁ,r].Hence[hll,w 1= (vi—v ‘1><[[h1,1,e,,11,f,,l]+[e,»,1,[hf,l,fz,]]])—
2y, /l¢jilv; - Thj1, ¥;5). Therefore, [, ¥ = 0 = [hj1,¢;5] = 0 =
[hj1,hi2] = 0 with the second implication due to (01). Commuting the latter
equality with f; o, we get

[2C1J]v,
0=1[fjo,[hj1,hi2ll = [cjjlo; - [fj1, hipl + —— > [y, fi2l
Commuting this further with ¢, o, we obtain
[2¢ijly;
[cjilv; - [ej0, [fjn, hinll + — lejo,hj1, fj2]1=0. (v23)
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Note that

[2¢ijlv;
2

lej o, [hj1, fi2ll = —lcjilu; - lej, fial + hja, w1/ (v — o7 h),

lejo, fial —lej1 fi2] Cu] [hj,l,[ej,lvfj,l]]z[ij];jl ~[hj,1s¢;f2]/(vj—v;l)

[2611

lej.0, [fj.1s hioll = W), hin) /(v — 07 — Sy ejl = — S0 €0,

Substituting the last three equalities into (v23), we get . C” “[hja, w 2] = 0.
I /

Thus, (.1, 9151 = 0= [¥ ] ¥, =0. o

This completes our proof of Theorem A.3. O

Appendix B Proof of Theorem 6.6

The proof of part (a) proceeds in two steps. First, we consider the simplest case
g = sl. Then, we show how a general case can be easily reduced to the case of sl;.

B(i) Proof of Theorem 6.6(a) for g = sl

First, let us derive an explicit formula for Ai(z). Recall the elements {hir}f‘;l
of Sect. 5, such that ¥ (Wibi)_ll//i(z) = exp (:I:(v —v > a0 hirszr) . For
r # 0, define t, := —h, /(1 + v>"), and set

AE(2) = (D) - exp (d:(v —vh Ztirz]Fr) . (B.1)

r>0

Then, 27" y£(z) =

(I
Relations (6.6) and (6.7) follow immediately from (U10) and (U1), respectively,
while the verification of (6.9-6.16) is based on the following result.

m and A*(z) is the unique solution with A(ﬂf =

Lemma B.1 Forany e, €’ € {&}, we have:

(al) (vz— v 'wW)AS(De(w) = (z — w)e(w)A*(2).

(a2) (vz—v ' 'w)A%(2)e€ (W) — (z — w)e (W)AC(2) = (v — v HwA(2)e ().
(a3) (vz—v~'w)AC(2)e (W) — (z — w)e WA (2) = (1 — v Hwe (v?2) A€(2).
(b]) (z = w)A“(2) f(w) = (vz — v~ 'w) f(W)A“(2).

(62) (z = w)A“(2) € (W) — (vz = v~ 'w) fC WA = (v = 0)zf DA (2).
(b3) (z—w)A (@) f (W) — (vz— v w) f€ (WA (2) = (1 — vH)zA(2) f€ (v72).
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(c) (z—w)le (), e = z(lﬁe (w) —¥(2)/(v—v~ ,

(dl) (z = Vw)e (e w) — (P2 — w)e W)e(x) = zlep, e W)l +
wleo, € (2)],2.

(d2) (z=v?w)ef (2)e (w)— (*z—w)e® (w)e (2) = (1-v)(we  (2)* +z¢ (w)?).

(el) (V’z = w)f @) f° (W) = (@ = VW) f W) f Q) = VL, [ W)y +
vLf1. f€@)],2 ,

(€2) Wz — w)f@f W) = (z = VW) [T W) () = 0 = DEf @) +
wfe (w)?).

(1) =W @ef (w) — @*z—w)e W)P(2) = V2 —vHwy (e (v72).

(12) (2 = vw)Pe () (w) — (72— w)e (W)Y (2) = (I = vHwe (v )P (2).

#) 0’z — WP @QfF W) - @ - VYuf Wy = @ -
v )2y (2) fC (v %), ,

(82) W’z = wY @) [ (W) = = v’w) [ WY@ = 0! = Dzf V)Y (@).

Proof

(al) According to (U4'), we have [t,,e5] = #eﬁr for r # 0,

r(v—v-1)

s € 7. Combining this with (B.1), we find A*()e(w) =
e(w)Ai(z)vjFl exp (Zr>0 l’ﬁr_l( /z)i’> The latter exponent equals

—w

(1n the “+4” case) or -

(1n the “—" case), hence, (al).

(a2, a3) Flrst we consider the case € = €/ = +. Due to (al), we have vA™

r+1
—1 4+ +
Alesy = eSAr-H

— es+1A; forany r € N, s € Z. Multiplying thls
equality by z7w™*~! and summing over all r, s € N, we find w~!((vz —
v iw) At (et (w) — (z — w)et (w)AT(2)) = [eo, AT (2)],-1. Note that
the right-hand side is independent of w. Substituting either w = z or w =
v2z into the left-hand side, we get the equalities (a2) and (a3) fore = ¢’ =
+, respectively.

Next, we consider the case ¢ = € = —. Due to (al), we have
VA, e — v_lAr_e,SH =esA_, | —esp A foranyr e N,s €
7, where we set A| := 0. Multiplying this equality by —z" w*~! and sum-
ming over all r € N, s € Z-o, we find w™ ' (vz — v 'w)A™ (z)e” (w) —
(z —w)e” (w)A™(z)) = [eo, A” (2)],-1. Note that the right-hand side is
independent of w. Substituting either w = z or w = v’z into the left-hand

side, we get the equalities (a2) and (a3) for € = €’ = —, respectively.

The case €’ # ¢ follows by combining the formula efl(w) = e (w) +
€’e(w) with part (al) and the cases € = €’ of parts (a2, a3), established
above.

(b1-b3) Parts (bl, b2, b3) are proved completely analogously to (al, a2, a3),
respectively.
(c) First, we consider the case ¢ = ¢€’. According to (U6), we have

"
ler, fs] = i’:jl for r > 0,s > 0. For N > 0, we have (z —

w) YN w5V = 2w — z7V). Hence, (z — w)let(z), fT(w)] =
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(dl)

(d2)

(el, e2)
(f1, £2)

(g1, g2)

+ + (o) . .
Y yeozw™ — er)% = z%. Likewise, we have
le—r, f=s] = —:f_‘;j‘l forr > 0,s > 0. For N > 0, we have

@—w) YN 2wV =2 — wV). Hence, (z — w)le™(2), f~(w)] =

Y yeoz(@y —wNy e o @@

V-V V-V
Next, we consider the case € # ¢'. According to (U6), we have

le(z), fw)] = & (yt(z) — v (2) = & ytw) — v (w)).

v—v! P
Taking the terms with negative powers of w, we find [e(z), fT(w)] =

Yo VHOV@ (o _ y)e(r), fHw)] = L@@ while

T—z/w  p—p ! v—v~!
taking the terms with nonpositive powers of z, we find [e™(z), f(w)] =

1 ¢+(w)*lﬂ17(W) = (z — wlet(2), f(w)] = ZM~ Combin-

1-w/z v—v- —

ing these equalities with (z — w)[e™(2), fH(w)] = z% from

above and e (z) = et (z) — e(z), f~(2) = fT(z) — f(z), we obtain the

€ # €’ cases of part (¢).

Comparing the coefficients of 2= w~¢s in both sides of relation (U2),

we find ecp41€¢75 — vzeeree/H] = v2euslerq] — ecst+1€er forany r,s €

7. Multiplying this equality by €€’ - z7¢"w™¢* and summing over r >

Be,—, § = 8, —, we get (dl).

Substituting w = z into the € = €’ case of (d1), we find [eg, ei(z)]vz =

(1 — v3)e*(2). Replacing accordingly the right-hand side of (d1), we

obtain (d2).

Parts (el, e2) are proved completely analogously to (d1, d2), respectively.

Parts (f1, f2) are deduced from relation (U4) in the same way as we

deduced parts (a2, a3) from (al).

Parts (g1, g2) are proved completely analogously to (f1, f2), respectively.
O

Now let us verify relations (6.9-6.16) using Lemma B.1. The idea is first to use
parts (a3, b2) of Lemma B.1 (resp. parts (a2, b3)) to move all the series A®(-) to the
right (resp. to the left), and then to use Lemma B.1(c—g2) to simplify the remaining
part. Since g = sly we will drop the index i from our notation.

B(i).a Verification of the First Relation in (6.9)

We need to prove [B€(z), Be/(w)] = 0, or equivalently, (z — w)[B€(2), BE,(u))] =
0. By definition, B¢(z)B€ (w) = (v — v~ 1)2A(2)ef (2) A€ (w)e€ (w). Applying
Lemma B.1(a2), we see that

(z—w)B€(2) BS (w) = w—v"H2A ()A€ () (v z—vw)ef (2)e€ (w)+(v—v~ Hze (w)?).
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Hence, the equality (z — w)[B€(z), Be/(w)] = 0 boils down to the vanishing of
W'z —vw)e () (W) + (v — v ze® (W) + (0w — v2)e (W)e (2) + (v — v Hwet (2)%,

which is exactly the statement of Lemma B.1(d2).

B(i).b Verification of the Second Relation in (6.9)

We need to prove [C€(z), C€ (w)] = 0, or equivalently, (z — w)[C€(z), C€ (w)] =
0. By definition, C€(z)C€ (w) = (v — v~ )2 fE(2) A€ (2) f€ (w) A€ (w). Applying
Lemma B.1(b2), we see that

@=w)C @)C (w) = W= )2 (z—v ' w) f(2) [ W)+ = 0)2f DDA () AT (w).
Hence, the equality (z — w)[C¢(z), C él(w)] = 0 boils down to the vanishing of

(z—v"'w) FE@) € W)+ =0)2f )2+ w—v"2) £ ) FE@D+ 0T —vwfe ()2,

which is exactly the statement of Lemma B.1(e2).

B(i).c Verification of the Third Relation in (6.9)

The verification of the equality [D€(z), DE/(w)] = 0 is much more cumbersome
and is left to the interested reader.

B(i).d Verification of (6.10)

We need to prove (z — w)[Bf/(w),AS(z)]v—l = (v — v’l)(zAg(Z)BG/(w) —
u)Af,(u))Be (z)). By definition and (6.7), the RHS -equals (v —
v H2A¢(2) A€ (w)(ze€ (w) — we€ (z)). Meanwhile, the LHS equals (v — v~ 1) (z —

w) (A€ (w)e€ (w)A€(z) — v A (2) A€ (w)e€ (w)). We use Lemma B.1(a2) to
replace the first term, so that the LHS equals

(v — v HA()A (w) ((vz — v w)e (w) — (v — v Hwe (2) — vz — w)ef’(w)) :

which exactly coincides with the above formula for the RHS.
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B(i).e Verification of (6.11)

We need to prove (z — w)[A(2), CE (W), = (¥ — v H(WC (W)A¢(z) —
2C€(z) A€ (w)). By definition and (6.7), the RHS equals (v — v~ 1)?(wf€ (w) —
2f€(2))A€(z)A€ (w). Meanwhile, the LHS equals (v — v ')z -

W) (AS(2) € ()A€ (w)—v f€ (w)A€ (w) A€ (2)). We use Lemma B.1(b2) to replace
the first term, so that the LHS equals

=" (2 =07 w) ) + 07! = )2 () — vz — w) W) AT DA (w),

which exactly coincides with the above formula for the RHS.

B(i).f Verification of (6.12)
We need to prove (z — w)[B¢(z),C<(w)] = (v — v Hz(DF (w)A¢(z) —

D (2) A€ (w)). Applying the equality A€(z)e€(z) = v 'e®(v2z)A¢(z), which
follows from Lemma B.1(a2), we see that the LHS equals

v -0 H2—w) (@204 @) 17 @) AT () = £ ) A et 12 A% ).

Applying Lemma B.1(a3, b2) to move both A€(z), A€ (w) to the right and simpli-
fying the resulting expression, we find that the LHS equals

v =02 (02— v w)lef (%), £ )1+
(0 = v/ e 0w) — @ = v Hze (022 £ (2))) A“ DA (w).

Meanwhile, D€(z) = ¥€(2) A€ (z) + v~ (v — v~ )2 f€(2)e (v%22) A€ (z), so that the
RHS equals

=0 (20 @) =y @) + 07 @ =072 e 0w — f1 @ (072)) AT DA (),
Thus, the equality LHS = RHS boils down to proving

V2 (022 — w)lef (v%2), £ ()] — (1 — v )zl (v%2), f<(2)] =

C W w) — Y@,
v

v —

which immediately follows by applying Lemma B.1(c) to both terms on the left.
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B(i).g Verification of (6.13)

We need to prove (z — w)[B(z), D )]y = (v — v~ (WD (w)B* () —
zD(z) B (w)). Combining the aforementioned equality A€(z)e€(z) =
v~ 1e€ (v%2) A€ (z) with Lemma B.1(a3), we find that (w — z) - RHS equals

(v 0= v 2@ w = vy e (020 + 207z — vy e W)+

v 0 — v ) 2w e v w) + ¥ (e (7)) +

v 2 — v )Y w ™ w — v2) £ (w)e (P w)e (@%2) + 207"z — vw) £ ()ef (072)ef (v w))+
02— v (e 0w + £C@ef (172))) A° @ A7 ),

Meanwhile, using Lemma B.1(a3, b2) to move A€(z) to the right of fé/ (w)eg/ (v:w),
we find that (w — z) - LHS equals

v = v THw = ) (= 2P e 0% + (07 = Dy w)et @Pw)+

(2 = e @2y (W) ) A°@ A7 (w)+

2w —vH - (= 0w — 2 £ e W w)et (02) + @2 = Dz(w = 2 f (w)e” @Pw)? -
Wz — v~ w) 7'z — vw)e (072) £ (e (0Pw) — 07! — 1)z 7'z — vw)ef (v72) £€ (@) (W w)—
(z— v~ w) (0 — v Hwe (v22) £ (w)e (v72) — (v — ) (v — v )zwe* (vzz)f%z)ee(vzz)) x

A (A (w).

To check that the above two big expressions coincide, we first reorder some of the
terms. We use Lemma B.1(f1) to move ¥ (w) to the left of e€ (v%z) via

(=2 @2y @) = ¥ ) (7w = 120 0%2) - (072 = vz’ @)

We also use Lemma B.1(c) to move f°(-) to the left of ¢®(-). After obvious
cancelations, everything boils down to proving

(0 z—vw)ef (v22)ef W2w)—(vz—v 'w)et (Wrw)et (v2z) = (v —v)(ze€ (V2w) dwet (v32)?),

which is exactly the statement of Lemma B.1(d2).

B(i).h Verification of (6.14)

This verification is completely analogous to the above verification of (6.13) and is
left to the interested reader.
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B(i).i Verification of (6.15)
We need to prove (z — w)[A€(z), D (w)] = (v — v ) (WC (w)B(z) —
zC€(z) B€ (w)). The LHS equals (v — v~ 1)2(z — w)(A€(2) f€ (w) A€ (w)e€ (w) —

fel(w)Ae/(w)eG’(w)Ae(z)). Applying Lemma B.1(b2) to the first summand and
Lemma B.1(a2) to the second summand, we see that the LHS equals

W — vz — v w) F€ (W) + @' = 0)2fE(2) A (2) A€ (w)e€ (w)—
(=172 W) A (2) A (W) ((vz — v w)e (W) — (v — v Hwes(2) =
W=7 (wfe (W) AT (W) A (2)e (2) — 2 (2) A (2) A (w)eS (w)),

which obviously coincides with the RHS.

B(i).j Verification of (6.16)

We need to prove A€(z)D (v 2z) — v !B ()C (v %2) = 2z, Due
to Lemma B.1(b3), we have f€(v22)A¢(v"2z) = vA¢(v"2z) f€(z). Thus,

A (2)D (v %2) = A A (v 2 (Y (v 22) + v(v — v )P fE(2)ef (v 22)),
BS(2)CE(v22) = v(v — v H)2A%(2)ef () A (v %2) f€ ().

According to Lemma B.1(a2), we have ¢€(2)A€(v™2z) = vA (v "22)e (v 22).
Hence,

BE(2)C (v %z2) = v2(v — v HZAS () A (v 22)e (v 22) F€ (2).

Due to Lemma B.l(c), we have —v(v — v~ 1)2[e* (v "22), f€(2)] = ¥€(z) —
V€ (v27). Therefore, we finally get

AS()D (v %2) — v ' BS(2)C (v %2) = AS (DA (v 2 )Y (v 22—
v(v — v A A (2 (v 22), ()] = A (DA (v )Y E(2) = 2,

which completes our verification of (6.16).

B(ii) Proof of Theorem 6.6(a) for a General g

r>0
iel

of Sect. 5, such that ﬁbf(w;b_i)—lwii (2) = exp (:l:(v,- —ohY L, hi,irz”) .

First, let us derive an explicit formula for Aii(z). Recall the elements {h; +,}
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For r # 0, consider the following / x [ matrix Cy(r):

0 if Cij = 0,
2r
Co(r)ij =11~ i

U/—l)
71

if =i,
Z C]z f(C]z+2P)

if j—i.

Vi—

Set t;, = Zjel(C,,(r)_l)ijhj,r (matrix Cy(r) is invertible, due to Lemma B.3
below). Define

AF(@2) = @5 -exp (:I:(v,- - h Zti,irsz’) . (B.2)
r>0
i j: ji—2p
I, 11,2 2)

These AZTJE(Z) satisfy T wii(z) = as well as A?Eo =

A,i (z)A,i(vl 2)
(¢>l.i)’] . This provides an explicit formula for Al-jE (z), which we referred to in Sect. 6.

Remark B.2 Comparing the coefficients of zt" (r > 0) in the system of equa-
tions (6.1) for all i, we see that A; 4+, are recovered uniquely modulo the values of
A +5(0 < s < r), due to invertibility of Cy(r). Therefore, an induction in r implies
that the system of equations (6.1) has a unique solution {Al.i(z)},-€ 1, hence, given
by (B.2).

Define auxiliary 7 x I matrices By(r), Dy(r) via By(r);; = [rc” ,Dy(r)ij =

—2r _

i (: ST The matrix B,(r) is a v-version of the Cartan matrix of g and it is
r;— j

known to be invertible for any r # 0. The following is straightforward.

Lemma B.3 For r # 0, we have By(r) = Cy(r)Dy(r). In particular, Cy(r) is
invertible.

The following result is an immediate corollary of Lemma B.3 and relations
(U4, U5").

Lemma B.4 For e € {£}, we have:

(a) (viz — vi_lw)Af(z)e,-(w) = (z — wei(w)Af(z), while Af(2)ej(w) =
ej(w)AS(z) for j #1i.

(b) (z — wAS () filw) = (viz — vi_lw)ﬁ(w)Af(z), while Af(z) fj(w) =
fi(w)A$ (z) for j #1i.

Now we are ready to sketch the proof of Theorem 6.6(a) for a general g.

B(ii).a Verification of (6.7) and (6.8)

Relations (6.7, 6.8) follow from Lemma B.4 and relations (U1, U6).
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B(ii).b Verification of (6.9-6.16)

_ +
Let us introduce the series Al-i(z) via 7P I/Iij: (z) = , and define the

1
AF (@A (0722
generating series Eii (), C li (2), L_)l.jE (z) by using formulas (6.2—6.4) but with Aii(z)
instead of Al.i(z). For a fixed i, these series satisfy the corresponding relations (6.9—
6.16) of the sl, case. However, Ali(z)fiii(z)_l is expressed through {A;!:(Z)}ji,',
hence, commutes with ¢ (z), f(z), Af (z), due to Lemma B.4. Relations (6.9-6.16)
follow (this also explains the RHS of (6.16)).

B(ii).c Verification of (6.17)

Analogously to Lemma B.1(d1), relation (U2) implies the following equality:

(@ = v wef () (w) — (v z = w)eS (w)ef (z) = zlei o, €5 W)] iy +wle 0, €f ()] i
for any €,¢’ € {£} (we also note that these equalities for all possible ¢, ¢’
imply (U2)). Multiplying the above equality by (v; — vl._l)(vj - v;l)Af (z)Aj (w)
on the left and using Lemma B.4(a), relation (6.7), and an equality (v; — v;l eio =
¢ B}, we obtain (6.17).

B(ii).d Verification of (6.18)

Analogously to Lemma B.1(el), relation (U3) implies the following equality:

W z—w) ££ ) £f w)—@—v; w) £ W) f£ (@) = =[ff ), il i —Lf£ @), fial i
for any €,¢’ € {£} (we also note that these equalities for all possible ¢, ¢’
imply (U3)). Multiplying the above equality by (v; —vi_l)(vj — v;l VAT (z)A; (w) on
the right and using Lemma B.4(b), relation (6.7), and an equality (v; — v;l Vi1 =
Cf ¢, we obtain (6.18).

B(ii).e Verification of (6.19)

Case c;j = 0 The equality [Bf(z), B;/(w)] = 0 follows immediately from

Lemma B.4(a) and [e] (), ej./(w)] = 0, which is a consequence of the correspond-
ing Serre relation (U7).
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Case cjj = —1 The corresponding Serre relation (U7) is equivalent to
{e{' (z1)e;? (zg)e;, (W) — (v +v; e’ (21)65/(10)852 (z2) +€§/(w)€,-€l (znef* ()} +{z1 < 22} =0

for any €j,€,¢ € {%}. Let us denote the first {---} in the LHS by
JU2€ (21, z2, w). Set

M = (i = ;)2 (0 = v Dzt — v ') (22 — o) 2D AT GDAT (22) AT (w).
Combining the equality

Wiz —v; 2 AP (22)ef! (21) = (22 — 21)ef (21 AT (22) + (v — ] D21 AP (22)e (22)
(see Lemma B.1(a2)) with Lemma B.4(a), we find

(vi — vi_l)ZI

-1
V22 — v,‘ 21

M 161,62,6'( _ M . Jeee _ gy
: 21,22, W) = : (z2, 22, w) + (z2 — z1)(viz1 — V; 22)X

(B (21) B (22) BS (w) — (v; + v ) B (21) BS (w) B (22) + B (w)Bf' (1) B (22)).

The first summand in the RHS is zero as J 62’62’5/(Z2, 72, w) = 0. Therefore,
multiplying J€2€ (z1, 22, w) + J2€ (20,721, w) = 0 by M on the left, we
obtain (6.19).

Case c;j = —2,—3 These cases are treated similarly to ¢;; = -1, but the
corresponding computations become more cumbersome. We verified these cases
using MATLAB.

B(ii).f Verification of (6.20)

This verification is analogous to that of (6.19) and is left to the interested reader.

B(iii) Proof of Theorem 6.6(b)

Part (b) of Theorem 6.6 can be obtained by reversing the above arguments. In
other words, starting from the algebra generated by (A?’EO)’1 and the coefficients
of the currents Aii(z), Bii (2), Cii (2), Dii (z) with the defining relations (6.6—6.20),
we need to show that the elements qbl.i and currents ¢;(z), fi(z), wl.i (z), defined
via (6.1-6.4), satisfy relations (U1-U10).

This completes our proof of Theorem 6.6.
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Appendix C Proof of Theorem 7.1

We denote the images of e; (2), fi (), 1//,-j[(z) under 5?7 by Ei(2), Fi(2), Vi (z)*. It

suffices to prove that they satisfy relations (U1-US), since relations (U9, U10) are

obviously preserved by 5:\7. While checking these relations, we will use LHS and

RHS when referring to their left-hand and right-hand sides. Set ,o;r = 1_,?_2 0 =
r#Et#ES ) l

o Wirn@i= T1 a-59).

1<t<q;

C(i) Compatibility with (UI)

First, we check that the range of powers of z in 1//1.i (2) and W; (2)* agree. Note that
(1=v/2)" =1-v-z7 e Cllz "I (1/(L—v/)t = 14z 0224 e Cli L,
(1=v/)” = —vz~ (1=z/v) € 27l (1/(=v/2)~ = —z/v=22/v*~... € CI[2]].

Therefore, W;(z)™ contains only nonpositive powers of z, while W;(z)~ contains
only powers of z bigger or equal to

—#{s iy =i} + 2a; — Zaj(_cji) = —OI,Y()\) +of(h—p) = —af (W) = _"‘zy(ui) =-b; .
j—i

Moreover, the coefficients of z° in W; (z)1 and of z7b in W; (z)~ are invertible.

The equality [W;(2)¢, ¥; (w)é/] = 0 follows from the commutativity of
i1/2}1§r§a,-

Wi, "“hier

C(ii) Compatibility with (U2)

Case ¢;j = 0 The equality [E;(z), Ej(w)] = 0 is obvious in this case, since Di_r1

k12 . . . _ L E1)2
commute with Wy S/ fork = jork — j, while D j; commute with W r/ for

k=iork—i.

Case c¢jj =2 We may assume g = sl and we will drop the index i from our nota-
tion. We need to prove (z—v?w)E () E(w)/(pT)? = —(w—v?2) EW)E(2)/(p1)>.
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The LHS equals

D24

a a ) -2
2 2 2 . & VW, Z(Wy)Z(v™"W;)
v Ewt c(z—vw) ;8( - )8( ” ) W W W (02w,

-2 a 3 2 Wy Z(W,) Z(W5) .
v EWI (z—vw) - Z 8 ( )8 (;) W (W, ) Wys (W) (1 — v_zwr/ws)Dr D; .

I<r#s<a

Using the equality

G(z, w)s (%) 5 (‘;j) G(v1, 12)8 ( )3 (%) , (C.1)

we see that the first sum is zero, while the second sum equals

W\ o We\  Z(W)Z(Wy) VAW, — vPwy) e
HW" 2 (7>5<I) Wi (W) Wy (W) (1 — W /W) (1 — 02w,y 7 D0 =

I<r#s<a
l—IW Z (&) s <%) Z(Wy)Z(Wy) W, Wy D;ID;I.
1< Z w/ Wi (W) Wig (W) Wy — W,
<r#s<a

Swapping z and w, we see that —(w — v2z) E(w)E(z)/(pT)? equals

W, Wi Z(Wy)Z(Ws) Wi Wy -1p-1
‘HW 2 <E>5<7) W,s(wr)wrs(ws)ws—er’ O

1<r#s<a

Swapping r and s in the latter sum, we get exactly the same expression as for the
LHS.

Case c¢;j < 0 In this case, we can assume I = {i, j} and i — j. We need to
prove (z — v, w)Ei)E,;(w)/(p; p}) = (v;"z — w)E;(w)E;(2)/(p; p]). The
LHS equals

a;
—cjj 1+c /2
v; ”l_[ i HWJ’ z—v T w)x
t=1

t=1

1<s<aj e
Wi Wi s Zi(W;,) 1 Zj(Wj’s) —eii—2p i

ZS(Z>8(U))W- (w; )DWW< (W.)HWt D Tw)D
1<r=<a; ir ir jus s
a; 1 ,
1_[ +cu/ l_[W], Az, w)x
=1 =1
I<s=<a;

() () BB TS e )
l,r(wl,r)Wj,S(Wj,S) J87

2

1<r=<a;

4 w



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 247

i -2
where A(z, w) = v, (g — v Tw) H i ( *:/*217 ) due to (C.1). Likewise,
vl
the RHS equals
al 1 2
1_[ +C:]/ l_[W] . (l} Z _ w)x
t=1 t=1
1<s<a; —cij
Z 8 (W],S)(S (w) Z (Wj S) 1_[ W( Clj—Zp ) 71 Z (Wl r) Dlrl _
1<r<aq; w z Wjs(Wj, S) Wir(W;r) "
“ 1 2
1_[ +Cl]/ l_lel B(Z w)X
t=1 t=1
1<s<a; —Cij —Cij—
35 (i) () AR B0 T Ve T T
1<r<a; z w Wt,r(Wl,r)W/,s(Wj,s) Js

—cij
i

where B(z, w) = (v;"z — w) [] "f( +_2p),dueto(C.1).
v w

The equality LHS = RHS follows from A(z, w) = B(z, w).

C(iii) Compatibility with (U3)

Case c;j = 0 The equality [Fi(z), Fj(w)] = 0 is obvious in this case, since D; ,

:|:1/2 j:1/2

commute with W for

k=iork <i.

for k = jork <« j, while D;; commute with w;,

Case cjj =2 We may assume g = sl; and we will drop the index i from our nota-
tion. We need to prove (v2z—w)F (2) F(w)/(p7)*> = —(vV*w—2)F(w)F(z)/(p7)>.
The LHS equals

VW, v4Wr 1 2
(022 = w) - Z ( ) ( w )vvr<wr>vvr(v2wr>D’+

( 2 ) 8<v2wr>8<vzws> 1 DD
vemw) ), z w ) W W) Wrs (W) (1 — 02w, /wy)

1<r#s<a
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Using equality (C.1), we see that the first sum is zero, while the second sum equals

<vzwr> (vzwx) 1 viw, — viw,
Z 8 8 2 Dy Dy =
Z w Wi (W) Wi (W) (1 — Wy /W) (1 — v=W,- /W)

I<r#s<a

2w, 2w, 1 VIW, W,
dos s D, Dy.
) Z w Wis (W) Wis (Ws) Wy — W,

I<r#s<a

Swapping z and w, we see that —(2w —2)F(w)F(2)/(p7)? equals

2 2 2
w w 1 W, W
- 5(” ’)5(" 3) W% b, D,

| <rs<a w Z Wis (W) Wi (Wg) Wy — W,

Swapping r and s in this sum, we get exactly the same expression as for the LHS.

Case cjj < 0 In this case, we can assume / = {i,j} and i — j. Recall
that v?j = v . We need to prove (v 'z — w)F; @ F;(w)/(p; p; ) = (z —
vjlf"w)Fj(w)F, (2)/(p; p;). The LHS equals

cji/2 cji
HW“/ vj“ z—w)Xx

1 —Cji
= v; Wl r D?ijs 1 g —cji—2p 1
D0 [Twie; " "D, ————Djs =
w Wi (Wi ) i / W s(W;)

1<r<a;

1<s<a; 2 2w . —Cji _‘11_217
v2wW; Wi\ 1,2 Wis(v Z)

l<r<a; < w Wl}"(Wl}")Wj Y(WJS)

v—Z

where A(z, w) = (v;ji —w)[],2 —a ( %), due to (C.1). Likewise, the
v Zz
RHS equals

J
C cji/2 cji
jl | |th/ Z_vjjtw)x

lfsfaj 2ins . 2 —Cji
ViW; ¢ VEW; 1
Yoos( L) s A Dj, ||W(v G D, =
w 4 ”j,s(Wj,s) zr(er)

1<r<a;
1<s<a; —Cj —cji—2p
le/2 " vlzwi,r v?Wj»S 1_[ i Wj Y(v 4 Z)
Hw Bzow)- Y8 . DiDjs,
1<r=a; Z w z,r(Wz,r)W],s(Wj,s)

where B(z, w) = v (7 — v w)]_[ A ( 6—2],) due to (C.1).
v zZ

J

The equality LHS = RHS follows from A(z, w) = B(z, w).
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C(iv) Compatibility with (U4)

Case c¢;j = 0 The equality [W;(z), E;(w)] = 0 is obvious in this case, since D;;
commute with W,fi/z fork =iork—i.

Case c¢;jj = 2 We may assume g = sl and we will drop the index i from our
notation. We need to prove (z — v2w)W () E(w)/pt = v’z — w)Ew)¥(z)/p™.
The LHS equals

Tt ovtwy. 2O Sy (M) 200
EWI . (Z v w) W(Z)W(”_zz) 28 ( w ) Wr(Wr) Dr B

r=1

a

o W, Z()Z(W,) z—vw O
HW’ ' 28 <E> W, (W)W ()W, (v722) (1 —w/2)(1 —w/v22) b

=1 r=1

due to (C.1). Likewise, the RHS equals

o a W\ Z(W,) Z(z2)
v 2]_[wt2 (07 —w) - ZS (—) W) D, WOWw22)
=1 r=1

w
o N (W Z()ZW,) v (0% —w) .
E " 28 ( w ) W, W W, W, (022) (1 — v/ (1 — v 2wjv 2z

The equality LHS = RHS follows.

Case c;j < 0 In this case, we can assume I = {i, j}. There are two situations to
consider: i — j and i < j. Let us first treat the former case. Since vfi'f =v
we need to prove (z — vj.jiw)llli (z)Ej(w)/,o;.r = (v;jfz —w)E;(w)¥; (z)/p;.r. The
LHS equals

a; ) aj P

1+C,'j/ 1+C,‘,‘ Cji
[Twi T Twg ™ e = 05w
=1 =1

—Cji aj —Cij

(o P Wis\ ZiWjs) =20
[T w5 70 30 (M) 2 T i wyp; ! =
p=1 s=1 Js Js =1

Zi(2)
Wi (2)W; (v; *2)
a; aj
[Twir P TTwih " A, wyx
t=1 t=1

. —Cii _.l___2 / —ciji _».I._2
ir? (ijs> Zi@ 2w [Ty Wio, ™ w) [T,2 W™
w

s=1

-1
Wi () Wi (0 22)W (W) ) e
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where A(z, w) = (z — v w) ]_[ e ( — —2p> Likewise, the RHS equals
v

J

a; aj
—cji I+cij/2 I4cji/2 Cji
o [ Tw T T Twp ™ @z —w)x

=1 =1

—cji

aj
W Zj(Wjs) —cij=2p’ 1 Zi(z) —¢ji—2p
s (== ~ Wi, P wy)p; —————— [ W, 2) =
> (500) “(W“)H g w17

s=1

aj

ai
1+C,‘_,‘/2 1+L‘,‘,‘/2
R

t=1 t=1

) i i i—2
J 5(wj,s>z<z)z W) T Wawr 2 ) T, Wy 0 ”z)D_l
i Wi (z)Wi(v; W5 (Wjs) o
— .l. —ci v 2w
where B(z, w) = v, K —w) H 1 W .
it

The equality LHS = RHS follows from A(z, w) = B(z, w).
The case i < j is analogous: W;(z) is given by the same formula, while E; (w)

differs by an absence of the factor [, WC” /2 ]_[PC” Wi(v, 2P w). Tracing
back the above calculations, it is clear that the equality still holds when this factor
is dropped out.

C(v) Compatibility with (U5)

Case ¢;j = 0 The equality [¥;(z), Fj(w)] = 0 is obvious in this case, since D s
commute with Wti/z fork =iork —i.
Case c¢jj = 2 We may assume g = sl and we will drop the index i from our

notation. We need to prove Wz — W)V F(w)/p~ = (z — v*w)F(w)¥(z)/p~.
The LHS equals

T 2o Z@  y vzwr> ! -
EW: vz —w) W(Z)W(vzz)ga( w Wr(Wr)Dr_

- L (vPw, Z(2) vz —w
EW"§5< w )W(w»W(z)W(v 22 (1 —v2w/2)(1 —v2w/v- s
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due to (C.1). Likewise, the RHS equals

P ~ V2w, 1 Z() —
Hw (z = v’w) - Z ( )Wr(wr)DrW(z)W(vzz)_

w

v2w, Z(2) vz(z — vzw)
l_[Wt . ; ( w ) Wr(Wr)Wr(Z)Wr(vizz) (11— w/Z)(l - w/072z)

The equality LHS = RHS follows.

Case c;j < 0 In this case, we can assume I = {i, j}. There are two situations to

consider: i — j and i < j. Let us first treat the former case. Since vl = v;" we
need to prove (vj-“z —w)W; () Fj(w)/p; = (z— vj-” w) Fj(w)W;(2)/p; . The LHS

equals

cii/2 cii
[T T - w0

ZiD) e s (VWi 1
—_ZHWj(Uj / 1)25 Djs=
Wi@Wi(v;"2) =1 v

Wis(Wjs)
aj vZ,WA Z; (Z)H C/: W C]i—2p )
HszHW“/ A(Z, U))Z(S JjoJs Dj’s’
s=1 w Wi(2) Wi (v Z)Wj“g(Wj’S)

-2
'U w
where A(z, w) = —w) ]_[ e ( — = | Likewise, the RHS equals
'Uj Z
aj aj 2
Cji . Cji Cji
v [ Twie [ T3 G = v
t=1 t=1

(Vi) Zi) i
1) Dj,s — 1_[ Wj(vj J 7) =
—l w Wis(Wjs) W[(Z)W,'(I)i 2) p=1

aj 2 . —Cj —cji—2p
i/2 viw;s\ Zi(2) [ (v; 2)
HWHHWCI/ B(z,w)-z8( J JS) i p= l Wi Dy,
s=1

w Wi(2) Wi (v, Z)Wj,s(wj,x)

where B(z, w) = vj-ji (z — c:’ w) [],- et ( ﬁ)
V. Z
J

The equality LHS = RHS follows from A(z, w) = B(z, w).
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The case i < j is analogous: W;(z) is given by the same formula, while F;(w)

. ii/2 —Cjj —cij=2p' . . .
has an extra factor [ 7| Wf{ /2. I1 p:l Wi (v, 7P w). The contributions of this

factor into the LHS and the RHS are the same, hence, the equality still holds.

C(vi) Compatibility with (U6)

Case cijj = 0 The equality [E;(z), Fj(w)] = 0 is obvious in this case, since Di_rl
commute with W,ﬂ,/z fork =i ork < j, while D;; commute with W,fl/z fork =i

ork —1i.

Case c¢jj = 2 We may assume g = slp, and we will drop the index i from our
notation. We need to prove [E(z), F(w)] = v_i),l 8(£) (Y@t —W(z)7). The
LHS equals

o & ) Zey) (aﬂws); __ T
" mw Z5<z)vv,<wr>D’ ;5 w ) Wy _(l*vZVEW’X

r=1
a 2 2 2
Z(a(ﬂ)s(&) Z(w,)i2 _vza(v w,)s(v w,) Z(v w,)2 )+
—1 z w/ W (W)W, (v=2w,) z w W (W) Wy (v-W,)

(w,) (vzws> Z(W,) ( 1 v? ) o ]
Z S| — 1§ - D,~ Dx B
Z w Wis (W) Wi (W) \ Az, w) B(z, w)

1<r#s<a

where A(z, w) = (1—v2w/z)(1—v~%z/v"2w) and B(z, w) = (1 —z/v2w)(1 —
w/z). The second sum is zero as A(z, w) = v 2B(z, w).

To evaluate the RHS, we need the following standard result.

Lemma C.1 For any rational function y(z) with simple poles {x;} C C* and
possibly poles of higher order at z = 0, oo, the following equality holds:

d
Y@ —y@ =)8 (f) Res:—y, () )
' t

Proof Consider the partial fraction decomposition of y (z):

Vt

9
T — Xt

y(@) = P(2) + Z
t
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where P(z) is a Laurent polynomial. Then P(z)* = P(z) = P(z)* — P(z)~ =0.
Meanwhile:

+ 2 - 2
Vy Vy Vi Xt Vi X Vy V¢ ViZ ViZ
< ) :—+—2+ 3t +and< ) :————2——3—,
=X z z z =Xt X X Xt
so that
+ —_
V¢ Vy V¢ Z Z V¢ dZ
< ) a ( > - _8 <_) - 8 <_> . ReSZ:x[—_.
=Xt =X Xt Xt Xt =X Z
The lemma is proved. o

Since W(z) is a rational function in z, which has (simple) poles only at
{w,, vzwr}j‘:1 and possibly poles of higher order at z = 0, co, we can apply
Lemma C.1 to evaluate W(z)t — W (z)~:

+ _ - _ : . - i Z(W;) < Z ) Z(UZWr) )_
YT mvE _EW’ 2(8<w> wowowe 2w o\ 2w, ) W werw ) =

1 £ - W, Z(wW,) o (YW Z(v?w,)
1 —2 EWI ' Z (8 (7) Wr(Wr)Wr(U_2Wr) v ( Zz > Wr(Wr)Wr(vzwr)) '

r=1

Hence, the RHS equals

1 a
(v—v= (1 —2?) 1—[

t=1

a w, W, Z(W,) 2w, 2w, v2Z(W,)
2 ((%)s () ()0 () )
z w /) W (W)W, (v72w,.) z w ) W (W)W, (02w,)

r=1

W; X

As aresult, we finally get LHS = RHS.

Case ¢jj < 0,i — j We may assume I = {i, j}, and we need to check
[Ei(z), Fj(w)] = 0. We have

Ei(2), F; a S Wi\ Zi(wg S [viwj, 1
7[ ’(Z)+ i(w)] =l_[w,»,,. ZS( ”>7’( ir) Dl._rl, s L —Dj,|.
P; pj =1 Z Wi,r(wi,r) ' w vaS(Wj~5)

r=I1 s=1

—1

The latter is obviously zero, since [D; .,

Wj,s] =0= [Dj,Sa Wi,r]-
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Case c¢jj < 0,i <« j We may assume I = {i,j}, and we need to check
Ei(2)Fj(w)/(pp}) = Fj(w)Ei(2)/(p;" py). The LHS equals

a; /2 [I/' /2
—Cij I+cij Cji
v; H Wit l_[w./',r x

t=1 t=1

j —cji— i i =2p

155 Wi v W/s Z (Wl))l_[ C” ]CJ’ ZpZ) 7]1_[ o W( U pw)

Z Sl—)¢ Di r Dj»S =
I<r<a; 4 w r,r(Wz,r) ! J,.s(Wj,s)

u 1 2 ! 2

R

t=1 t=1

j i—2 i ij—2p'

1<Si:al5<wi,’>5 VW \ Zi(wi, r)l_[ | Wis(; “ pZ)H 2 Wi (0, pw)Dle
l<r=a; < w Wi.r (Wz,r)W/.x(W_/,s) br T

h A _ TGy _le 1 v; w —Cij 1 vi_ZZ
where A(z, w) = v, [ Z - = np’=1 T

vj Z Ui w
Likewise, the RHS equals
. 2
Cji +cij Cji
o [ Twe ™ [Twiy ">
t=1 t=1

1 i ij—2 i i =2

sz:aj 5 l)%Wj,s s (Wi.r> l_[ / l Wl( ST v )D Z (Wz r)l_[ L/ L'/ pZ) D71
1<r<a; w Z Wj.S(W/.S) - Wl,r(Wt,r) br

l—i[ 1+c,,/2 l—[Wcj,/Z B(Z, w)x

t=1
1<s<aj —cji (, —2p'
<s=<aj Wi, 2 Wj s Zi (Wl r) l‘[ J Wj r(v J Z) 1—[ s 1 Wz , J w) .
1) ) D;'Dj.
I<r<a; z w Wi.r (Wt,r)Wj.s(Wj.s)
where B(z,w) = o7 [ 9 (1 — —2— ) T].7 (1 - —2—
J =1 o I p'=1 I

J i

The equality LHS = RHS follows from A(z, w) = B(z, w).

C(vii) Compatibility with (U7)

Case cjj = 0 Inthis case, [E;(z), Ej(w)] = 0, due to our verification of (U2).
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Case cjj < 0 To simplify our calculations, we introduce

dir aj Zi( ) —Cjrir
cirir/2 i (W —cir;1—=2p _
o= TTwer T T 22 T TT Wy, i
=1 T ’ Wi’,r(wi’,r) T ’
= Jj =i’ t=1 Jj' =i’ p=1

i’ W7
so that E;/(z) = ,ol-"f Zf’:l 8 (T) Xitr-
The verification of (U7) is based on the following result.

Lemma C.2 The following relations hold:

—268;i6
XioWjs =v; Wi, forl <r <a,1<s<aj,

2 2
(Wi,r1 —; Wi,rg)Xi,rl Xi,rp = (v,' Wi,rl - Wi,rz)Xi,eri,rl for 1 =rn 5& rn <a,
Cij C,‘j
(Wi,r -V Wj,s)Xi,er,s = (v,' Wi, — Wj,s)Xj,in,r forl <r<a,l1<s< aj.

Proof Follows from straightforward computations. O

With the help of this lemma, let us verify (U7) for ¢;; = —1.
The latter amounts to proving [Ei(Zl),[Ei(ZZ),Ej(w)]v]v—l/((p;r)zpj) =
—[Ei(z2), [Ei(z1), Ej(w)]o]y-1/((0;)?p} ). The LHS equals

I<s<a;

a;

Wi r Wi r Wj.s Wi, r
1 — 22 23 Al _— E s 43(4)% . -
( ) < % > Xi.ry ( w Wi — OW;, Xi,ro Xj,s

1<r<a; 2

vl

i -2 -2 2
Wi A VoW w; VW (v — DHw;
8< “>{8< ”>5( ”’)_3< ’*’)5( ”’)} s
Z w 21 2 [ 21 Wi, — 03w Xir Xjss

1<r<a;

Iss=e w w w A( )
i i j 71,22, W
0 — 1) 8 <i> 8 <ﬂ) 8 (i) S Xiry Xiira X5
15)‘1#2"2561[ < 2 v vzWi’rl — Wir, I :
where A( w) = 222G+ HvDw) 444 the Jast equality is obtained b
AL 22, W= T Suy e —vw) quatty 1s. y
treating separately ri = r, and r; # ry cases. The first sum is obviously skew-
symmetric in zp, z2. The second sum is also skew-symmetric, due to the above
relations on ;.
The cases ¢;j = —2,—3 can be treated similarly, but the corresponding
computations become more cumbersome. We verified these cases using MATLAB.
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C(viii) Compatibility with (US8)

The case ¢;; = 0 is obvious. The case ¢;; = —1 can be treated analogously to the
above verification of (U7). The verification for the cases ¢;; = —2, —3 is more
cumbersome and can be performed as outlined in the verification of (U7). Our
verification involved a simple computation in MATLAB.

This completes our proof of Theorem 7.1.

Remark C.3 Theorem 7.1 admits the following straightforward generalization. For
every i € I, pick two polynomials Zi(l)(z), Zl.(z) (z) in z71 such that Z; (z2) =
Zl.(l)(z)Zl.(z)(z). There is a unique (C(v)[zfl, ...,Zil]-algebra homomorphism

w2z = A dzE Lz, such that

a; —Cji

a; aj (1
—V; cii/2 Wi\ Z; (W) —cji—2p 1
oo = o T35 (%) 2% 11 [ w50
- . .

I-v z iy
=1 j—i p=1

i1=1 j—ir=1

—cji

[TTT Wi, "D

j<ip=1

aj a; 2) .2
1 ! cji/2 1)-2Wl'r Z; (v'Wir)
(2) > wéil= ) [ i ik
fi® 1 —v? H 1_[ b ; b4 Wi r (Wi )

Lo jit=1

vE@Q P wi@E @O o [Tw 2 @) e o [ w2

=1 =1

Appendix D Proof of Theorem 10.5

Due to Theorem 5.5, it suffices to check that the assignment A of Theorem 10.5
preserves defining relations (U1-U6, U9). To simplify our exposition, we will
assume that by, bp < 0, while the case when one of them is zero is left to the
interested reader (note that the case b; = b, = 0 has been treated in Remark 10.4).
We will also work with 74y := [2], 54 instead of hy, so that [hi],e,] =
er+1, [h+1, fr] = —frer.

D(i) Compatibility with (U1)

The equalities A((Y)EHA(YHT) = Land A((Y; ) EH Ay, )T = 1 follow
immediately from relation (U1) for both ugfbl and U‘(“sz.

The commutativity of A((l/fa' )£, A((Yry, )£1) between themselves and with
each of A(h4) is due to relations (U1, U4, U5) for both Uffbl and Ufsz.
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It remains to prove [A(fn), A(ﬁ_l)] = 0. The LHS is equal to
MR1+10h —@—v"Deo® fi,h-1 @1 +1®@h_1+(®—v Ne_1 ® fo]l =
W—v D(eo® fo—e-1® fite_1® fi—eo® fo) —(0—v")[e® f1, e—1® fol =
—(v — v ") (eve—1 ® fifo —e—100® fof1) =0.

Here we used (U1, U4, U5) for both ugfbl , ugsz in the first equality, while the

second equality follows from epe_; = vZe_jeo, fifo = v‘zfofl, due to (U2) for
U(Sfbl and (U3) for Ufsz.

D(ii) Compatibility with (U2)

We need to prove [A(e+1),Ales)]l,e + [Ales+1), Ale)],2=0  for
by—1<r,s <-—1.

Case by — 1 < r,s < —1 Then, [A(e,+1), Aes)]2 + [Ales+1), Aler)],2 =1 Q®
(ler+1, eslye + les+1. erl,2) = 0 as the second term is zero in ugsz by (U2).
Caser = s = by — 1 It suffices to show that [A(ep,), Aep,—1)],2 = 0, which
follows from [A(ep,), Alep,—1)]2 = [1 @ ep,, -1 @ Y, + 1 @ ep—1],2 = -1 @
[ep,, pr‘Z]vz +1®lep,, ep,—11,2 = 0. The last equality follows from [ep,, l/fb_z]vz =0
and [ep,, ep,—1],2 = 0'in U(Ssz, due to (U2) and (U4), respectively.

Case r = by — 1,0 — 1 < s < —1 Then, [A(ep,), Ales)],2 +
[Alest1), Alep,-D]2 = 1 ® (leny. e5]p2 +est1,ep-1]2) + e1 ®
[es+1, 1//1:2 1,2 =0. The last equality follows again from (U2) and (U4) for ufsz.
Case r = by — 1,5 = —1 Then [A(ep,), Ale—1)],2 = 1 ® [ep,,e_1],2 and
[Aeo), Alep,—D]y2 = [e0 ® Vi + 1@ e, e—1 ® Yy, T1®ep,—1l2 = €0 ®
Vo s ebr—11y2 + [eo, e—1],2 ® Y5 ¥y, + e—1 @ [eo, ¥y, 1,2 + 1 ® [eo, en,—1],2 =
1 ® [eo, ep,—1],2 as the first three terms are zero, due to (02) for "L[?fbl and (U4) for
U‘(‘sz. The result follows from (U2) for U‘(‘sz.

Case r = s = —1 It suffices to show that [A(ep), A(e—1)],2 = 0, which follows
from [A(eg), Ale—1)],2 = [eo ® lﬁg_ +1®ep, 1 ®@e_1]lp=e® [lﬁg_, e_1ly2 +
1 ® [eg, e—1],2 = 0. The last equality follows again from relations (02, 04) for the
algebra ugsz.

Case r = —1,bp — 1 < s < —1 Then, [A(ep), Ales)],e = [eo ® Iﬂo+ +
1®eo, 1®eslye = 1® [eo, esly2, while [Ales 1), Ale—1)]y2 =1 ® [es41, e-1],2.
The sum of these two terms is zero, due to (U2) for ufsz.
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D(iii) Compatibility with ( U3)

We need to prove [A(f;), A(fs+1) 1,2 +[A(fs), A(fr+1)],2 =0forby <r,s <0.

Case by < r,s < O Then, [A(fy), A(fs+1)]p2 + [A(fc),A(fr+1)]v2 =
(Lfrs fs+1lp2 + [ fs, fre1]2) ® 1 = 0 as the first term is zero in ug'fbl by (U3).
Caser = s = by It suffices to show that [A(fp,), A(f1+p,)],2 = 0, which follows
from [A(fp), A(f146)102 = [foy @ 1+, ® fo, fren, @112 = Loy 14,12 ®
1+ [wb_l, Si+p, 1,2 ® fo = 0. The last equality follows from [ f3,, fi+p,1,2 = 0 =
[wb_l, S145, 142, due to (03, U5) for ugﬁbl.

Case r = by < s < 0 Then, [A(fS). A(fi+p) ]2 = [fss fien e @ 1Aand
[ACfp), A(fs+ D12 = [fpys fs+1]2 @ 1 as [wb‘], fs+1ly2 = 0in u(sfbl by (US).

It remains to use (U3) for Uf)cbl .

Caser = by, s =0 Then [A(fp,), A(fD]y2 = Ufpo fil2 @1+ 1fo ¥ 1,2 ® fi+
[Wy,» £1102® fo+, ¥ ®Lfo, file, and [ACf0), A(fi4p)]y2 = [fo, fi4n,1,2®1.
It remains to use [ fi,, fily2 + [fo, fiee 2 = [for, ¥ 12 = (¥, fil,2 = 0in
Uy, » due (U3) and (U5), and [ fo, fil,2 = 0in U, , due to (U3).

Caser = s = 0 It suffices to show that [A(fp), A(f1)],2 = 0, which follows from
[A(f0). A(fl)],,g = Efo@ LA®L+Y] @ file = [fo. fil e ®L+1fo, ¥ 1,2 ®
f1 =0, due to (U3, U5) for U(Sfb].

Case r = 0,b1 < s < 0 Then [A(fo), A(fs+1)]2 = [fo, fs+1]l,2 ® 1, and
[AUD), AUDLe = [5®1, i®1+1y ® filye = [fs, fil2 @ 1+1f5, Y5 1,2 ® fi.
It remains to apply the equalities [ fo, fs+11,2 + [ fs, fi1l,2 = 0 and [ f;, wg']vz =0
in W, , due to (U3) and (U5).

D(iv) Compatibility with (U4)

The equaliies A(Y;)A(e,) = v?A(e)AWy) and AW, )A(e,) =
v’zA(e,)A(ylrb_) for b — 1 < r < 0 are obvious, due to relations (Ul) and
(U4) for Uy, » U, -

Let us now verify the equality [A (A1), A(e,)] = A(e,41) forby — 1 <r < —1.
Case by <r < —2 Wehave [A(11), Ale)]=[h @1+1Q@h —(v—v ey ®

fil®el =1®e1 — @ —v e ®[fi,er] = 1@ ery1 = Aler41), due
to (U4, U6) for ugsz.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 259

Caser=—1 Asabove, we get [A(h1), Ale_1)]=[h1@1+1®h; — (v—v"De® fi,

N
1Qe_1]=1®eg— (-1 Neo®[ f1, e—1] = 1Qeg+v—v " ep® "’0,1 = A(ep).

v—v

Case r=by—1 We have [A(h1), Aep,—)]=[11®@1+1 ® h — (v—v~ Her® f1,
e_ 1@V, +1®ep,_1] = eo®wl;2+1®eb2—e0®1/fljz—(v—v‘1)[eo®f1, e_ 18V, | =
1 ® ep, = A(ep,), where we used [eg ® f1,e—1 ® lﬂb;] = 0as epe_] = vZe_jeq in

Uffbl, due to (U2), and vy, fi=v*f vy, in U‘(*sz, due to (U3).

Let us now verify the equality [A(ﬁ_l), A(e;)] = A(ey—1) for by <r <0.

Case by<r<0 We have [A(h_1), Ale,)] = [h-1Q1+1®@h_1+(w—v De_1 @ fo,
1®e,]1 = 1Qe, 1+ (w—v" e 1O fo. e-] = 1®e,-1 = Ale,—1), due to (U4, U6)
for Ufsz.

Case r=0 We have [A(h_1), Aleg)]=[h_1®1+1Q@h_1+(w—v e 1® fo,
@Yy +1®e)] = e 1 @Y +1Qe_1+w—v e 1 ®[ fo, eol +(v—v Hle_ 1 ®
fo,e0 ® %+] =1®e_1 = A(e—1), where we used [e_] ® fo,e0 ® wgr] =0as
epe—1 = viege—1 in U, , dueto (U2), and fovry = v*yg fo in U, . due to (U5).

Case r=by We have [A(h-1), Alep)]=[h-1®1+1 ® h_1 + (v—v"e_1® fo,
Vo A(ep,—1), due to (U4, U6)

v—v!

1 ®ep]l = 1Qep,—1+ (v — v_l)e_l ®
for ugcbz.

D(v) Compatibility with (U5)

The equalities A(WA(f,) = v 2Af)AWS) and A@W,)AS) =
va(fr)A(l//,;) for by < r < 1 are obvious, due to relations (Ul) and (ﬁS)
for Uffhl , Ufsz.

Let us now verify the equality [A(h1), A(f,)] = —A(f41) forby <r <0.

Case by <r <0 We have [A(ﬁl), A(f)] = M ®1+1Qh — (v—v"Ney ®
A fr®=—fr1®1=@—=vDleo. f1® fi = —frp1® | = —A(fy41). due
to (U5, U6) for Uffbl.

Caser =0 Asabove, we get [A(h1), A(f)] =[h @1 +1Qh; —(v—v ey ®
fi. fo®ll==fiel—(@w—vDle, fO]® fi =—f1®1—Y; ® fi = —A(f).
Case r = by We have [A(h), A(fy)] = [ @1 +1®@h — (v —v ey ®
Si oy @1+, ® fol=—fiun ® 11—V, @ fi+¥, @ fi—@—v Dle®
J1. 9, ® fol = = fitp, ® 1 = —A(f145,), where we used [e0 ® f1, ¥, ® fo] =0
as ]il fo=v2fyfiin Ufsz, due to (U3), and wb_leo = v_2eolpi; in u;‘fbl, due
to (U4).
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Let us now verify the equality [A(ﬁ_1), A(f)]l = —-A(fr—pforl+by <r < 1.

Case 1 +b; <r <1 Wehave [A(h—1),A(f)] =[h-1®1+1Qh_1 + (v —

v_l)e—l ® fo, fr ®A1] = —fra1®1+(v— v_l)[e—l’ f1® fo=—fir1®1=
—A(fr—1), due to (U5, U6) for Uffbl

Caser =1 Wehave [A(h_), A(f)] =[h-1 @1 +1Q@h_1+ v —v De_; ®
foo ivl+y @ fil=-f®1 -y @ fo+ v ® fo+ w—v Des ®
fo, ¢0+ ® fil=—fo®1=—-A(fo), where we used [e_ 1®fo,lﬁar®f1] =0as
fofi :vzflfoinu 0.5 andwoe | =v?e_ 11//0 muo,,l

Case r = 1+ by We have [A(h—_1), A(firp)] = [h-1 @ 1+ 1@ h_1 + (v —

v e 1 ® fo. firh, ® 11 = —fi, ® L =¥, ® fo = —A(fp,), due to (US, U6) for
u(s)cbl'

D(vi) Compatibility with (U6)

Case by <r <0,b1 <s <0 The equality [A(e;), A(fs)] = 01is obvious.
Caser = s = 0 We need to prove [A(ep), A(fo)] = A(war) This follows

vvl

®
from [A(en), A(fo)] = [eo ® W + 1@ eo, fo & 11 = [eo, fol @ i = L& =
INUN ~
vfﬁ‘ll), due to (U6) for uo,bl
Case r = 0,s = 1 We need to prove [Ap, p,(e0), Ap,.p,(f1)] =

Abl,bz(lﬁg_ )Ap, .b,(h1). This can be easily deduced from the unshifted case
by = by = 0 by applying Remark 10.6. Indeed, [Ap, »,(e0), Ap, 5, (f1)] =
Up 0 ® Jop, (A0, Iy 0 © Jop, (AT = 15 o ® Jop, (Alleo, i) =
T 0 ® Jop, (AW AMR)) = Apy b, () Aby by (1), where the subscripts in
Ap, b, are used this time to distinguish it from the Drinfeld-Jimbo coproduct A.
Caser =0,b1 <s <0 We need to prove [A(ep), A(fs)] = 0. This follows from
[Aleo), A(f5)] = [eo ® Vo +1®eo, f; ® 11 = [eo. fi]® Yy =0as[eq, fs] =0
in Ugy,, by (U6).

Case r = 0,5 = by We need to prove [A(eg), A(fp,)] = 0. This follows from
[ACe0), A(fo)] = [eo ® Yy + 1 ®eo, fio, ® 1+ ¥, ® fol = [eo, fr]1 ® ¥y +

_ U ®Yy | ¥y, 8V _
¥, ®leo, fol = ——— +—— = 0, where we used [eo ® Y , ¥, ® fol =0

as lﬂS—fo = v_ZwaO in Uo’bz, %;eo = v_zeolpb_l in Uafbl.
Caser = —1,s = 1 We need to prove [A(e_1), A(f1)] = - 1A(w ). This
follows from [A(e_1), A(fD] = [1®e_1, i@ 1+ Y ® fil =¥ ®le_1, fil =

Fou At .
lpv"i,f? = v*f(ll) » due to (U6) for Ug,,
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Case b, < r < —1,s = 1 We need to prove [A(e;), A(f1)] = 0. This follows
from [A(e,), A(f)] = [1 ® e, fi® 1 +¥f ® fil = ¥ ®ler, fil = 0as
ler, f1] = 0in AL, by (U6).

Caser = by — 1,5 = 1 We need to prove [A(ep,—1), A(f1)] = 0. This follows

from [A(ep,—1), A(fD)] = [e—1 @V, +1®ep,—1, i@ 1+Vy ® fil = [e—1, f1l®
_ 4 _ 4 Vo OV, Vo OV,

vy, T Yo ®len,—1. fil Hle—1 @Yy . ¥g ® fil = —=* — — == = 0. Here

we used [e_1 ® 1//172, 1ﬁ0+ ® fil =0as 1//1;2]‘1 =2 f 1//1:2 in U(Ssz, due to (U5), and
1/f6r€—1 = vze_up(}L in ugf,,l, due to (U4).

Case r = by — 1,5 = by The proof of [Ap, p,(en,—1), Dpybr (fp)] =
Apy by (Y )Ap by (h—1) can be deduced by applying Remark 10.6 analo-
gously to the case » = 0,s = 1. Indeed, [Ap, p,(en,—1), Dy by (f5)] =

Up.0 @ Jop, (Ale—1)), Iy, 0 ® Jop, (AN = Jp 0 @ Jgp, (Alle-1, fo]))
Tpy.0 ® Jo.p, (AW A1) = Apy b, (Y, ) Dby by (R-1).

Caser = by, s = by We need to prove [A(ep,), A(fp)] = —;A(wb_). This

v—v!
follows from [A(ep,), A(fp)] = [1®ep,, fo, @1+ Y, ® fol = ¥, len,. fol =

Vi ®V, A
- T T Ty

due to (U6) for Ufsz.

Case by < r < 0,s = by We need to prove [A(e,), A(fp,)] = 0. This follows
from [A(e,), A(fs)] = [1 ® er. fi, ® 1+ Y, @ fol = ¥, ® ler, fol = 0 as
[er, fol =0in ugsz by (U6).

Caser = by — 1,1+ b1 <s <0 Weneed to prove [A(ep,—1), A(fy)] = 0. This
follows from [A(ep,—1), A(f)] = [e-1 @ ¥, + 1 @ ep,—1, fs @ 1] = [e—1, ;] ®
‘pb_z =0as[e_1, fsy] =0in u(sfbl.

Case r = by — 1,5 = 1+ by We need to prove [A(ep,—1), A(f14+5,)] =
—;A(wb_). This follows from [A(ep,—1), A(f14p)] = [e-1 ® lﬂb_z +1®

v—v-!

V-V

_ Yy, QY AT N
ehy-t. fisn, ® 11 = [er, fin] ® ¥y, = ——222 = 2] que 10 (U6)
for ugfbl.

D(vii) Compatibility with (U9)
Applying Remark 10.6 as we did above, we see that the equalities

(A, [A(FD, [ARD), Alep)]]] = 0 and [A(h_1), [Alep,—1), [Ath_1), A(fp)]] =0
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follow from the equalities [hy, [ f1, [h1,e0ll]] = [2]y - [A1, [f1,e1]] = [2]y -
[h1, %] = 0in U and [h—y, [e—1, [h-1, folll = =2y - [h—1. [e—1, f1]] =
(21, - [, 5252

This completes our proof of Theorem 10.5.

r]1=01in U, respectively.

Appendix E Proof of Lemma 10.9(b)

E(i) PBW Property for U’

For U, the simply-connected shifted quantum affine algebra of slp, define the

PBW variables to be {e;}sez U {fslsez U (¥, }r>0 U (¥,  hr=0 U {(¥H '} U
(W, )il}. We order the elements in each group according to the decreasing order
of s, r. Any expression of the form

et SV Y W )

WithsfrZ”'z ;,fi ->sb,r1+2~->rt>0 rp <o <r_ <
n, y* €Z, a,b,c* €N, will be referred to as the ordered monomial in the PBW
variables.

The following result is easy to check using defining relations (U1-U6).

Lemma E.1 The algebra ug‘jn is spanned by the ordered monomials in the PBW
variables.

The key result of this section is a refinement of the previous statement.

Theorem E.2 For any n € Z, the algebra u*c satisfies the PBW property, that is,
the set of the ordered monomials in the PBW varlables forms a C(v)-basis of u%

E(ii) Proof of Theorem E.2

We will prove this result in four steps.

Step 1 Reduction to ﬁsc .

Consider the associative C(v)-algebra UO ,» defined in the same way as Uy, but
without the generators (1//0 YL, W)~ ! Note that ugﬁn is the localization of ugfn

by the multiplicative set generated by wa' , ¥, . Since these generators are among
the PBW variables, the PBW property for U, follows from the PBW property for

77sc
uo’n.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 263

Step 2 PBW property for ﬁffo.

It is well-known that the algebra U,(Lsly) satisfies the PBW property with the
PBW variables chosen as {¢;}sezU{ fi}sez UL, }r=0U{Y 2, )0 U{(¥) ! ). Here
the elements in each group are ordered according to the decreasing order of 7, s.

Lemma E.3 There is an embedding of algebras ﬁ‘(‘fo — Uy(Lsl) ®cw) C(v)[z],
such that

es—~> e Qt, fi—> f;®1, Wir’_)w:itr@)t'

Proof The above assignment obviously preserves all the defining relations of ﬁ(sfo.
Hence, it gives rise to a homomorphism ﬁ?)co — Uy(Lsl) ®cw) C)[z].

To prove the injectivity of this homomorphism, let us first note that ﬁ(sfo
is spanned by the ordered monomials in the PBW variables, cf. Lemma E.I.
The above homomorphism maps these monomials to a subset of the basis for
Uy(Lsly) ®cw) C(v)[t], where we used the PBW property for Uy, (Lsly). Hence,
the ordered monomials in the PBW variable for ugfo are linearly independent and
the above homomorphism is injective. O

Our proof of Lemma E.3 implies the PBW property for ﬁffo.
Step 3 PBW property for ﬁ(s)cn, n < 0.

For n < 0, the algebra ﬁffn is obviously a quotient of ﬁ?fo by the 2-sided ideal
Ly = (Yo s ¥y, oo Yyy,) 2—sided-
Let I,i be the left ideal generated by the same elements
L= (g W2 Yo et

Lemma E.4 We have I} = I,.

Proof Tt suffices to show that I! is also a right ideal. According to (U4), we have
V_,es = vizw:r_,_]es—l - es—lw:r_,_] + vfzeslﬁ:r, %_es = vfzes%_,

so that the right multiplication by e; preserves I,ll. Similarly for fs (need to
apply (U5)), while for ¥, _, this is obvious. These elements generate U
hence, the claim. O

Combining the PBW property for ﬁ‘ffo (established in Step 2) with Lemma E .4
and ﬁ%c W ﬁffo /1, we get the PBW property for ?Niffn.
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Step 4 PBW property for ﬁsfn, n > 0.

The proof proceeds by induction in . We assume that the PBW property holds
for Uf,, with m < n and want to deduce the PBW property for Ug,. Consider

the homomorphism 7, _j ¢: ﬁ?fn — ﬁ(sfn_l defined analogously to ¢, _j o of
Proposition 10.8. Explicitly,

Tn,fl,O: es > es —es1, fs > fs, 1//:_ = lﬁj - llfj_l, v, =Y, _1//;_1,

where we set ¥ *, := 0, ¥, := 0 in the right-hand sides. The image of an ordered
monomial in the PBW variables for ﬁacn underT, _1 0 is a linear combination of the
same ordered monomial in the PBW variables for ﬂffn_l with all ¥, replaced by
(=¥,_ ), called the leading monomial, and several other (not necessarily ordered)

monomials in the PBW variables. Based on the equality ege;_1 = v2e,_es (s € Z),
we see that rewriting these extra monomials as linear combinations of the ordered
monomials in the PBW variables, all of them are actually lexicographically smaller
than the leading monomial. Hence, the PBW property for Uffn_l implies the PBW

property for ﬁ(sfn. Moreover, we immediately get the injectivity of 7, _1,0.

This completes our proof of Theorem E.2.

E(iii) Proof of Lemma 10.9(b)

Now we are ready to prove Lemma 10.9(b). Due to Lemma 10.9(a), it suffices to
verify the injectivity of the homomorphisms ¢, 1,0 and ¢, 0,—1. The former follows
from the injectivity of 7, _1 o from Step 4 above, while the latter can be deduced in
the same way.

Appendix F  Proof of Theorem 10.10

The proof of Theorem 10.10 proceeds in three steps. First, we construct Ay, p, (this
construction depends on a choice of sufficiently small m, my, < 0). Then, we
verify that this construction is independent of the choice made. Finally, we prove
the commutativity of the diagram of Theorem 10.10 for any m, ma € Z<o.
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F(i) Construction of Ap, p,

Fix any m1, my € Z<q such that by + my, by + my € Z<o. Consider the diagram

SC sc sc
Ul o'y, © Ugh,
Lb,ma,my Lby,0,m1 @ Lby,ma,0
sc sc sc
uO,b+m1+m2 uO ,b1+my @ u(],b2+m2

A= Abl +ma,ba+ma

where the bottom horizontal arrow A = Ap, {1, 5, +m, 1S defined in Theorem 10.5.
Since the homomorphisms tp, 1, m; and tp,,0,m; ® tpy,m,,0 are injective, the homo-
morphism Ap, 4, b,+m, gives Tise to a uniquely determined homomorphism Ay, 5,
making the above diagram commutative as far as we can prove

A, my.my (UG ) C (thy,0.m1 @ toymy.0)(Ugyp, & U, )- <)

As before, we use U(S)C;, UBC;, ugcbf, u“b/ to denote the C(v)-subalgebras of

gy, generated by {e,}, {ey, I/fisi}, it Afr Iﬂisi}, respectively. For r € Z, we
claim that

Aler) € 18 er + Ui, O Uiy, AU € fr ® 1 Uy, @ Uy,
(e1)

This follows by combining iteratively the formulas for A(e—_1), A(fy), A(hy1) with
the relations [+, e,] = [2]y - €r41, [A+1, fr] = —[2]y - fr+1. We also note that

Uosr @ Ughy C (thy.0.my @ thy.my.0) (UG, @ UG,)). (©2)

According to (¢1), we get

s

-

Althmy.m (€r) € 1® ) :<—1)S< s )er—s+u5°b7+m1 ® Uiy
s=0

The right-hand side is an element of (t5,.0,m; ® thy.m,, 0)(u0 by ® u;‘sz), due to (¢7)
and the equality 1@ "7 (=1 (7" 2Yer—s = (tby,0,m, ®liy,m»,0)(1®e;). Likewise,

.
—m] <
At mamy (f)) € ) j(—l)S( ) )fr_s®1+u?f;f+ml D Ug iy my-
s=0

The right-hand side is an element of (t,,0,m; ® tby,ms, 0)(u0 b ® UO bz) due

to (¢2) and the equahty Z ( 1)* ( ;nl)frfx ®1= (‘bl,O,ml ® Lbz,mz,O)(fr
We also have
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Ay (IHED) = W01 ® thy.ma,0) (Y0) ™' ® (Yo) ™),
Ay (W)5) = (tby.0m; ® thymy. 0) (W, )T ® (¥, ).

Finally, combining the relations wj = (v — v~ Dle,, fol. ¥, = (v’1 —
v)lep—r, fol (r € Z~p) in ugf,,+m]+mz with (¢1) and (©7), we get

+ — sc,> sc, <
A(Wr )» A(lﬁb_,) € u()’},l_;,_ml ® uo,bz-‘rmz - (Lbl,o,ml ® Lbz,mg,o)(u(s)(jbl b2 u(s)(sz)

This completes our proof of (<>).
Therefore, we obtain the homomorphism Ay, 5, for the particular choice of
my, mj.

F (ii) Independence of the Choice of m1, m;

Let us now prove that the homomorphism A, ;, constructed above does not depend
on the choice of my, my. To this end, fix another pair m/lm/2 € Z<o such that
by +m'y, by +m} € Z<o, and set m = my +my, m" = m'} + mj.

Consider the following diagram:

sC sc sc
Ugi Ue's, © UG,
Lb,ma,my Lby,0,m1 @ Lby,ma,0
uSC ) uSC ® uSC
0,b+m Abl i batms 0,b1+m1 0,b2+m2
Lot+m,miy,m Lby+m1,0,m) ® Lbo+ma,mb,0
use use @ Uuse
0.b ' b ! b ;
+m—+m Abﬁ»mﬁ»m’l oo, 0,b1+m1+my 0,b2+ma+mi
According to Lemma 10.9(): tp i my m) © thimpmi = bmytmlymy+m; aNd

(Lb1+m1,0,m’l ® Lb2+m2,m/2,()) © (Lbl,O,ml & Lbz,m2,0) = (tbl,O,ml—&-m/l Y Lbz,m2+m’2,0)'
On the other hand, tracing back the explicit formulas for Ap 4, pytm, and
Ap tm, | byt of Theorem 10.5, it is easy to check that the lower square
is commutative.

The above two observations imply that the maps Ay, 5, are the same for both
(my,m3) and (m; + m}, my + mj). Due to the symmetry, we also see that the
maps Ay, », are the same for both (m, m)) and (m + m/, my + m}). Therefore,
the maps Ay, ;, are the same for both (my, m2) and (m’l, m’z). This completes our
verification.
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F(iii) Commutativity of the Diagram for Any m1, my € Z<g

It remains to prove the commutativity of the diagram of Theorem 10.10. To this end,
choose m, m/, € Z<o such that by + my + m\, by + ma + m, € Z<o. Consider a
diagram analogous to the previous one:

sc sc sc
U U, @ U,

Aty by
Lb,ma,my Lby,0,m & Lby,ma,0

use use ® Use

0,b+m 0,b1+m 0,b2+m

Ab1+m1,b2+m2 ! ! 2

Lb+m7mé7m’l Lb1+m1,0,m’l ® Lb2+m2,mfz,0
sc sc sc
u(),b-%—m-%—m’ uO,b1+m1+m’1 @ u07b2+m2+m’2

Abl +ma+m ba+mat+m)

By our construction, the lower square is commutative. Applying Lemma 10.9(a)
as in Sect.F(ii), we also see that the outer square is commutative. Hence, the
commutativity of the top square follows from the injectivity of the homomorphism
Uoymy 0., © Ly tmy,m)y 05 due to Lemma 10.9(b).

Appendix G Proof of Theorem 10.13

The proof of Theorem 10.13 proceeds in several steps. First, we recall the RTT
presentation of U, (Lsl,), and derive the equalities of the right-hand sides of (10.6).
Then, we compute the RTT coproduct of certain elements g}i‘) from the RTT
presentation, see Theorems G.10, G.13 (this is the most technical part). This allows
us to derive formulas (10.2) and (10.3). Based on these, we deduce (10.4) and (10.5).

G(i) RTT Presentation of U,(Lsl,)

Let Ryig(z/w) € End(C"®C") be the standard trigonometric R-matrix of s, -type:

n
—w
Ruig(z/w) := ) Ei ® Eii+ Y 7y Ty Ll ®Ejit
i=1 1sigjzn 00T 0V
(G.1)

—1 -1
v—0 Z vV—0v w
E (—( _1) Ej,‘®E,’j+—( _1) E,’j®Eﬁ>
— v —0 w v —0 w

1<j<i<n

(for n = 2, this definition coincides with formula (11.3)).
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Define the RTT algebra of sl,,, denoted by U™(sl,,), to be the associative C(v)-
algebra generated by {tl.ﬂ/?[:lzr]}’GN subject to the following defining relations:

1<i,j<n

GEI01GTI0] =1 for 1 < < n, £5[0] = 1;,[0] =0 for j <i, (G.2)

J
erig(z/w)(Te(z)®1)(1®T€/(w)) = (1®T€'(w))(T€(z)®l)ng(z/w), (G.3)
qdet T*(z) =1, (G.4)

for all €, € € {#}, where the matrices T%(z) € Mat,,, (U"(sl,)) are given by

n
T*(@) = ) T;(2)- Eyj with T7(z) =) 1;[+r]7,
i,j=1 r>0

and the quantum determinant qdet is defined in a standard way as

et 75(2) == ) (~0) " OT T35 0 (0770 T, (0772

1e§,

(cf. Sect. 11.4 and a footnote there).

Remark G.1 Let us point out right away that the RTT presentation of U, (3[,,)
(with a nontrivial central charge), given in [17, Definition 3.2], involves only
three out of four relations (G.3), namely for (¢,¢’) = (+,+), (—, —), (—, +).
However, as pointed out in [32, 2.3], if the central charge is trivial, then the
fourth relation for (¢,¢’) = (4, —) is equivalent to the one for (e,¢’) =
(=, +). Indeed, in our notations, this follows from the equalities Ryig(z/ w)~! =
Rt’rig(z/w), PRt’rig(w/z)P_l = Ruig(z/w), where Rt’rig(z/w) is obtained from
Ruyig(z/w) by replacing v with v~ and P € End(C" ® C") denotes the permutation
operator.

Note that 7% (z) admits the following unique Gauss decomposition:
T*@) =F () G*@-E*@
with F¥(z), GE(z), E¥(2) € Maty x, (U™ (sl,)) of the form

Fr@) =) Eit+) f7@-Ej G =) & @ Ei, E*() =) Eit+y &;)-Eji.

Jj<i Jj<i

We endow U™ (sl,,) with the coproduct structure (also known as the RTT coproduct)
via

AT U (sL,) —> U™(sl,) @ UM (sl,) given by A™(T(2)) := TT(2) @ TH(2).
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Theorem G.2 ([17]) There exists a unique C(v)-algebra isomorphism

Y UM (Lsl,) = U™ (sl,),
such that

. . . )
e ,(2) [ (w/2)
+ Joj+l1 + Jj+1lj
ej(Z)H—_l 7f/‘ (Z)H—_l s
v—7 v—7

Vi@ e g5, 0@ )T ¢ e i I010]- - 0] for 1 < j < n.
Moreover;, this isomorphism intertwines the Drinfeld-Jimbo coproduct A* on

U3d(Lsl,) with the RTT coproduct A™ on U™ (s,,).

Remark G.3 Restricting Y to Uy(Lsl,), viewed as a Hopf subalgebra of U{,‘d(len),
we get an embedding U, (Lsl,) < U™(sl,). We will deliberately refer to U™ (sl,)
as an RTT presentation of both algebras Uy, (Lsl,) and U{;‘d(Ls[n).

Let us express the matrix coefficients of F i(z),éi(z) Ei(z) as Taylor
series in zT!l: é;(z) = Zr>0€§1)z r, éj_l.(z) = ZKOéx)z_r, fJ(Z) =

r) _—r —r st ~4 + .
220 f,-y)z "l @ =2 fi(jr) "8 =8+) w0 g,( ") According
to Theorem G.2, we have

T EP L D =w—vej0. YD ) =—0w—v) 0,

=D M (G
YlE D =—vT@—v e, YT ) =v e — v S
The following is the key technical result of this subsection.
Proposition G.4 Forany 1 < j <k <i < n, we have:
~(0) ~(0) ~(0)
(a) Cii = o_ v—l[kl’ ]v
#0 0) 70
w)ﬁ)—vvdﬂ)f”
~(—1 0) ~(—1
Me}’—;Tﬂal()hl
F(1) — F(1) (0)
@) fP = =517 7
Proof
(a) Comparing the matrix coefficients (v; ® vi|---|vx ® v;) of both sides of

the equality Ryig(z/w)(TT(2) ® D1 @ THw) =1 & TTw)(TT(2)®1)
Ruig(z/w), we get

=W THOTE W +@—vTE T () = G=w) T () Tj; (@ +@—v"Hw T )T} ).
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Evaluating the coefficients of z'w? in both sides of this equality, we find

sts© +50) 5450

5T 5+50) -1 -
+@—-vhglere =gle; 8 e,

8 Jj jk g k Cki
Combining this with Lemma G.5 below, we obtain

+~+5 (O) +r~(0) (())]

~(0 ~(0 0 _
w—vhgiere) = gletey e, = &) =12 &1 /v,

(b) Comparing the matrix coefficients (v; ® vi|---|vx ® v;) of both sides of the
equality Ryig(z/w)(T-" @) @ DU QT (w)) = AT (wH(T () ® 1)
Ruig(z/w), we get

(@=w) T T W+@—v" YT ()T ) = E=w)T; )T @+ DT )T ).
Evaluating the coefficients of zw! in both sides of this equality, we find
—Fi8 NG &+ 0= E AP E = =158 e
Combining this with Lemma G.5 below, we obtain
—w—v "% e =17 T & g = TV =11 I =0

(c) Comparing the matrix coefficients (vy ® v;|---|v; ® vg) of both sides of the
equality Ryig(z/w)(TH@) @ DA @ T (w)) = 1@ T-(w)(TH () ® 1)
Ruig(z/w), we get

=) T DT (w)+@—v" YT @ T () = @=w)T;, )T @+@—v" 2T ) T§ ().

Evaluating the coefficients of z'w! in both sides of this equality, we find

450 [ -2 ©) 55D
8K (j + D 8 )

J'<i

(gj jkl) + Z f](]O)g] ﬁ’kl)) gie (0) + - v_l) (g] €ji 0 + Z f(O)g] 85,11)) 8 -
J'<i J'<i

(G.6)

This equation actually implies g,jé,ﬁ?) g;éﬁ; )—§7~5 1)gk e,(c?) +

(v—v~ l)g]_ ;l Dat we prove this by induction in j. For j = 1, this

is just (G.6). In general note that for j/ < j < k < i, the element

f](,) commutes with e() and g + The latter follows from Lemma G.5,

while the equality [ f FO) i ,E(l))] = 0 follows by combining parts (a,b) from
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above with [eq 0, fb,01=0 for a # b. Hence, (G.6) implies A(j, k,i) +
i< ];;](?/)A(j/, k, i) = 0, where we set

0) ~—~ ~—~(—1 0 - 1
AG kD) =gleg g e —gre gty —w—vhg e gl

By the induction assumption A(j’, k,i) = 0 for j' < j, hence, A(j, k, i) = 0.
Combining this with Lemma G.5 below, we obtain

N~~~ ~— o~ 0) ~(—1 0) ~
w—vhg ge ) =g g00ey . ¢ N = d U =160 e /o — 0!

(d) Comparing the matrix coefficients (vx ® v;|---|v; ® vi) of both sides of the
equality Ryig(z/w)(TH(2) @ DA @ T~ (w)) = (1@ T~ (w)(TT(z) ® 1)
Ruig(z/w), we get

G=w) T @O T ) +@—v" 2T @ T (w) = =) Ty W) T @)+ =0 HwT; () Tk ).

Evaluating the coefficients of z0w in both sides of this equality, we find

F(D 5 + Z(1) ~+~(0) FO) 5 (1) ~ 7(1) ~+~(0)
( Z / 18 e/’/) k8 Hlw—v (fu i Z ft/ 8 e/’/) -

J'<i J'<ij

7(0) ~ 75 + (1) =+5(0)
fik & ( Z 8p€j ) .

J'<ij

(G.7)

This equation actually implies f gj fi (ko)g,: +@—-vh f.(l) g]+ g =
fl(ko)gk_ f(l) + . We prove this by induction in j. For j = 1, this is just (G.7).

A ; commutes with

Analogously to part (c) above, we note that the element e
flk and g, for j < j < k < i. Hence, (G.7) implies B(j, k,i) +

> i< BG' K, l)~(0) = 0, where we set
1 0) ~— 1y F(D) s s 0) ~— (1
B(j, k,i) —f() +fz(k)gk + - l)flg )g;’_gk fz(k)gk f() +

By the induction assumption B(j’, k, i) = 0 for j/ < j, hence, B(j, k,i) = 0.
Combining this with Lemma G.5 below, we obtain

1y F() ~—~ 1 0 ~ ~
~-v N g & = T & 8]

— ]E;Sl) — [f(l), fl(O) /(v _ ‘Uﬁl).
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Lemma G.5 Foranyl < j <i <nand1 <a,b <n, we have:

(a) gragb = gb &S forany e, €' € {£}).
(b) gai 50) _ iaﬂi:paﬂjeﬁo)gi
(c) iflSO) v:FBu,iSujf(o)

:t(l) pE8ai Flaj (Uj:
(d) &:e;; el g

1 . . 1
(e) &, fz(/) = vﬁwﬂwfi.(j )ga.

Proof First, we note that tlf[O] = gii. Hence, we have g;—ngF = 1, due to
relation (G.2).

(a) Due to the above observation, it suffices to prove ga gb = g;g; for
a <b. This follows by evaluating the coefficients of z°w! in the equality of
the matrix coefficients (v, ® vp|---|v, ® vp) of both sides of the equality
((vz— v ' W) Ryig (2/w) (T T @)@ DUARTT(w)) = 1T T (w)(TT () ®1)
(vz — v w) Ryig(z/w)).

(b) Due to the above observation, it suffices to prove gre ;(l)) = plai—daj e(o)

1

g

This follows by evaluating the coefficients of zw! in the equality of the
matrix coefficients (v, ® v;|---|v, ® v;) of both sides of the equality ((vz —
v ') Ryig (z/w) (TH@) @ DA T (w) = AR THw) (T () ® (v —
v_lw)Rtrig(z/w)). Note that the cases a < j,a = j,j <a <i,a=1i,a > i
have to be treated separately.

(c) Due to the above observation, it suffices to prove g, fi;()) = pdai—dj fi(jo) g, -
This follows by evaluating the coefficients of z’w! in the equality of the
matrix coefficients (v; ® vq|---[v; ® vg) of both sides of the equality ((vz —
v ') Ryig (z/w) (T~ (@)@ DU T (w) = 1T~ (w) (T~ (2) ® D ((vz —
v_lw)Rtrig(z/w)). Note that the cases a < j,a = j,j <a <i,a=1i,a > i
have to be treated separately.

(d) Due to the above observation, it suffices to prove ga /z

1

1
R 79

This follows by evaluating the coefficients of z!w! in the equality of the
matrix coefficients (v, ® v;|---|v, ® v;) of both sides of the equality ((vz —
v W) Ruig (2/w) (TT @@ DU T (w) = (1T~ (w))(TT(2) ® 1)((vz —
v_lw)ng(z/w)). Note that the cases a < j,a = j,j <a <i,a=1i,a > i
have to be treated separately.

Let us emphasize that this case is less trivial than part (b), due to the fact that

Iy p— _ ~—~( 1) 7(0) ~ —~( 1)
[w ]Tj,' (w) = g/ ji + Z fjj ]/e]/, .
i'<i

Hence, the proof proceeds by induction in j, while we also use part (c) from
above. y
(e) Due to the above observation, it suffices to prove g, fi(jl) = plai—daj f (1) g .

This follows by evaluating the coefficients of z’w® in the equality of the
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matrix coefficients (v; ® vy ---|vj ® vg) of both sides of the equality ((vz —
V') Ruig (z/w) (TH @) @ DA T (w) = AT~ (w)(TT(2) ® ) ((vz —
v’lw)ng(z/w)). Note that the cases a < j,a =j,j <a <i,a=1i,a > i
have to be treated separately.

Analogously to part (d), this case is less trivial than part (c), due to the fact
that

_ 1 1 0
T = 78 +Zfl§) e,

8j€yi
J'<j
Hence, the proof proceeds by induction in j, while we also use part (b) from
above. O
The following explicit formulas follow immediately from Proposition G.4.

Corollary G.6 Forany 1 < j <i <n, we have:

~(0) _ v~ 1i—i+1150 ~(0) 5(0) 0 _
eji =- )j ! [e, 117[91 2,i— ]7"'7[ej+]’j+27 +1] —1- 1] =
—1yj—i+1 ~(0) (0 A

(R i | IR e Liv€i—i—tlots €y ol “+1]v 1
(G.8)

FO) _ +1 7(0) 7(0) 7(0) 7(0) —

fij - )] ' f,+1/ fJ+2J+1"' f, 1,i— 2:fl 1]v ]v]v—

- i+ 7(0) 7(0) 7(0) 7(0)
(v I))] l f]+1]’fj+2j+1]v’“ Jie Li— 2"’fu 1
(G 9)
s(=1) —1yj—i+1750) ~(0) ~(0) sCD
e =@—v) N Liv € g1 L€y s ”+1]v N P
—1yj—i+1 ;0 50 Y ;D

(—v )/ [ i—1,i€i— 21—1]1)""" €jt1, ]+2]v b ]]-H]v*l’
(G.10)

F( _ i+1 7(1) 7(0) 7(0) 7(0) _

fij =" — v/ Uip o Ui Wit s o - Tole =

+1 7(1) 7(0) 7(0) 7(0)

(v~ v)J ' f/+1 i fj_;,_zj_;,_l]vy" f, Li— 2Jvs f,"l'_l]v‘

(G.1D)

Recall elements £, FY ESY FI e Uy(Lsly) of (10.6). Combining
Corollary G.6 with (G.5), we get the following result.

Corollary G.7
(a) We have
T—l(éﬁ.‘?) = (v— v—l)E;?), T—l(fl.;())) - —(v— v_l)Fi(jO),
T_l(éj.;])) = —v_j(v — v_l)E;;I), T_l(fl.(j])) = vj(v — v_l)Fi(jl).
(G.12)
(b) The right equalities in each of the first four lines of (10.6) hold.
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To derive the right equalities of the last two lines of (10.6), we introduce

+ . s—1~ (0) ~(0)
Aji T Z Z =1y €iijn " Clsiser

s=1 j=ji<..<jJsp1=i

- . s—1 7(0) 7(0)
Aij T Z Z =D fjwruc o f]zjl

s=1 j=ji<..<js41=i

(G.13)

for 1 < j <i < n. These elements will play an important role in Sect. G(ii) below.

Lemma G.8 Foranyl < j <i <n, we have

+ _ —l i+1p~(0) ~(0) ~(0) ~(0) —
A= @), 8% Y e el =
—1\j—i+1 ~(0) ~(0) ~(0) ~(0)
(v_v )'] ! [[ [ l—]l’ l 21_1]07"' ]+1 ]+2]v» j+]]vs
(G.14)
- 1r 7(0) 7(0) 7(0) 7(0)
A,‘j =" U)J i Lf; JESWE LS JH2 [fifl,i72’ fi,ifl]v_' ce -l =
1 7(0) 7(0) 7(0)
( v)J i+ fj+1j’f+2j+1]v*1"’ f—ll 21) Ly ftt—l]v 1.
(G.15)

Proof We prove (G.14) by induction in i — j. The result is obvious fori — j = 1.

To perform the induction step, note that A+, = e;?) > j<k<i (O) A+ Applying
the first equality of (G.8) together with the 1nduct10n assumptlon We get

—1Ni—j—1 + ;0 (0) A ;0
(—v" )AL = e 0y o 16 g 1 g JJ+1]v“"']v“]v“_
-1 5(0) (0) ~(0) 5(0) 5(0)
@=v") D180 e 8 e //+1]v v ot L8 s [ s G o o
Jj<k<i

Rewriting [e 11, X],+1 as e(o)1 X —otlx . él.(g)l’i and using the equality

[él(g)] i El((})ﬁ] = 0 for any I < i — 2 (due to the quadratic Serre relations in

U,‘j‘d (Lsly,)), we immediately find

—1i—j—1 4+ _ | 500) ~(0) (0) -1
(v—v) Aji_|:z Lio &y [e/+1]+2v j,j+1]v""']v’l_(v_v ):
) ©) ~(0) ~(0) ~(0) _
Z ey 18 /+1 j+2 j,j+1]v" R P I Chc SN PR AW TS S PR M B
Jj<k<i—1 v
~(0) —1\i—j—2 + ) ©0) (0)
[e, I,v(v ) = A 1]11—[3, 1,,[€l 2,i—1°""" s le €it1,j+2 jj+1]v“']v]v~

Note that the last equality follows from the induction assumption applied to A;f i1

To prove that AJT. also equals the rightmost commutator of (G 14), we apply

5(0)

+ —
similar arguments to the equality A =ej;

=Y ki Ak &Y. We evaluate the
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right-hand side by applying the rightmost expression of (G 8) to the terms eﬁ?), e,((?)
and the induction assumptlon to AJr Rewriting [X, & j+1]vi1 as X - (Ojﬂ —

pE! (.0;. - X and taking ¢ ej j 4 to the leftmost or the rightmost sides, we get the

result.’
The proof of (G.15) is completely analogous and is left to the interested reader.
O

The following result follows by combining Lemma G.8 with formula (G.5).
Corollary G.9
(a) We have

T A =@-v HEY. v 4 =—@w—v HED. (G.16)

(b) The right equalities in the last two lines of (10.6) hold.

G(ii) Computation of A™(§*")

Given a Laurent series F(z), we use [z ]F (z) to denote the coefficient of 7" in F(z).
In this subsection, we compute explicitly Am(g,.(i” ), see Theorems G.10 and G.13.

Theorem G.10 For1 <i < n, we have

~(1 ~(1 1 0 1
At =g et +it g+ &) © [+

I>i

s5ts ~(0) ~(0) F() ~+
Z Z (=1g e juiz " Clissa ® fijl 8 T (G.17)

s>1 j1<..<Js1=i

+5 ~(0) ~(0) ~(0) (1) ~+
ZZ Z (=1’g¢; €ii €l ® flu 8 -

[>i s>1 ji<..<jsy1=i
Proof Our starting point is the equality

_ 1 (1 0
@ =5+ £Vg e (G.18)
j<i
We also note that [z_l]TJ(z) fé]) + Z/ <j flil)g;"eﬁ) for any i > j.

Rewriting this as fi;”g;r = [z —I]Tij(z) =< figl)g;"eﬁz and applying this
formula iteratively, we finally get

D DD DI Vi (C 1510 LR SR L)

s>1 ji<..<js=j
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Combining formulas (G.18) and (G.19), we get

g =@ = Y (17 @) - A (G.20)
j<i
where A;‘i was defined in (G.13).

Thus, it remains to compute explicitly Am([z_l]Ti;r(z)), Am([z_l]Tl-}r(z)),
+ . . . . 71 . +
A™(A jl.) for i > j. Evaluating the coefficients of z=' in A™(7.(z)) =

S T () ® T, (2), we find

_ 1 0 (1 0 0
AT @) = ) fE e EE) + 3 e o8+

j<i Jji<j<i
1 1 (1 0 ~ ~ ~(1 0
gles e ey +) fi e o5 +) 8 e f g e+
j<i j<i
~(0) ()~ + (0) (1) st ~(0)
Zgl €1 ®fl +Zgz € gj ji’
I>i I>i

(G.21)
where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases a < i,a =i, and a > i, respectively.

Evaluating the coefficients of z~! in Am(TJ. @)=Y THo® T; (2), we

a=1
find
ttro—lyp+ _ F() ~+ o ~+(0) ()~ + ~(0) s ~(0)
AT @) = ) f 8 @85 + Z fiehel, @ ghel+
J'<i J<j'<j
7(1) ~ (1) ~+~(0) (1) 7(1) ~ + ~(0)
f,, g/ ®g, + qu //eJ’J®g/ —i—g, ®f +Zg, ®f J’eJ’1+
J'<i i'<i
~+~(0 1 0 1 0
Z+() f() +Zg+()®fl()jr’e§’;’
[>i [>i
(G.22)

where the first, second, and third lines in the right-hand side correspond to the
contributions arising froma < j,a = j or i, and a > i, respectively. Note that
for j < a < i both T+(z) T+(z) contain only negative powers of z and hence do
not contribute above.

Finally, let us compute the coproduct of A;’:

Lemma G.11 We have

s+1

" gt IGO0 @i0 G0 gty
AMATY =D Y e ) e ) @D

szl j=j1<..<Js41=i r=1
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Proof We prove this by induction in i — j. The base of induction i = j + 1

follgws frgm the equality A;’ i+l = éj.(?} 41 and Lemma G.12 below. To perform
the induction step, note that
+ _ 50 ~(0) 4+
AL =e = ) &AL (G.23)
j<j'<i
~(0)

Next, we compute the coproduct of e ji -

Lemma G.12 We have

~(0 ~(0 ~(0 ~y—1~ ~(0 ~dy—1~+~(0
AtE =10 +eY e @h e + Y. & e@h e

j<a<i

Proof First, let us note that §].+ = [zO]T;jr.(z). Thus,
n
A™Eh =121 (Z TH@)® T;@) =[1TH e TH) =8l ®f.
a=1
We also note that [zO]Tj*l.' (2) = gjé;?)' Hence, we have

At = 1] (T; @RTIO+T@QOTI@+ ) TH@® T;(Z)) -

j<a<i

st o 5t50 , 5+50) o =+ +50) o =+50)
8; ®gje; tg;¢; ®g + Z 8j€iqa ®8acy; -

j<a<i

Note that in the first equality we used [zo](TjJ; (2)®T,f(z)) =0fora < jora > i.

Evaluating Am(ég?.)) = Am(g';')_lAm(g;'éﬁ.?)) via these formulas completes

our proof. O

Combining (G.23) with Lemma G.12 and applying the induction assumption to
Am(A;'/l.), we immediately get the formula for Am(A;) of Lemma G.11. O

Combining (G.20-G.22) with Lemma G.11, we get (G.17) after tedious compu-
tations. o

Theorem G.13 For 1 <i < n, we have

~(—1 ~(—1 ~— ~— ~(—1 ~—~(—1 ~(0) ~—
AT =gV eg +ar @ V) g Ve e +

I>i

55D o 7O FO) o
2 2 CDEE e S gt (G.24)

szl ji<..<js41=i

(1) o 70 20 7(0) ~—
0 Y g e F i &

>0 s>1 ji<..<js41=i
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Proof Our starting point is the equality

- ~(—1 #(0) ~— ~(—1
[T @ =8"+ ) 7P, (G.25)
j<i
We also note that [2]7;; (z) = gj—~§l Do S f(O) §e j/l ) for any i > j.

Rewriting this as g] e = = [2T};(2) — Z; < f](;))gj eﬁ,ll) and applying this
formula iteratively, we ﬁnally get

~J_~§l ! Z Z =D lff(voj) "'fj(zoj)'l ' ([Z]TJU(Z)) (G-26)
szl ji<..<js=]
Combining formulas (G.25) and (G.26), we get
g =@ =Y A5 (177 @). (G27)

j<i

where Ai_j was defined in (G.13).

Thus, it remains to compute explicitly A™([z]7}; (2)), A™([2]T}; (2)), Am(Afj)
fori > j. Evaluating the coefficients of z' in A™(T; (z)) = Y i, T, (2) ®T,; (2),
we find

_ #(0) ~ 0)~— o 7O —1
Artt([Z]Tii (@) = Zfig')gj ®g1 Jl )+ Z fti) fj(j) /’e/’t )+

j<i ji<j<i
s— o (=D | =(=D (0) —~( b 0) —~(—=1)
8 ®; —i—gl ®g +Zgz j 8j¢ji +qu g€ Jt ®8 +
j<i j<i
~(=1) 7(0) ~— 0) s—5(=1) 7(0) ~—
th €1 ®flt 8i +th/ gj /l ®fl 8i
I>i I>i

(G.28)

where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases ¢ < i,a =i, and a > i, respectively.

Evaluating the coefficients of z! in Am(Tj; (@) =>"_, T,,(2) ® T, (2), we
find

— 7(0) ~— ~—~(—1 0) ~— 0 -1
AT @) =Y fi e 8¢5+ Y FE ® fing e+

J'<J J'<i'<ij
5= = 7(0) ~—~(=1) 2D (0) ~—~(—=1)
®g1 Ji +Zg] fu gjef’z +gJ Jji ®8& +qu gjej,l ®8 +
J'<i J'<j

~~(—1) 7(0) ~— Z 7(0) ~—~(—1) 70) ~—
: :g]ejl ®fll 8i + f]j g] j’l ®fll 8i»
I>i I>i

(G.29)
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where the first, second, and third lines in the right-hand side correspond to the
contributions arising froma < j,a = j ori, and a > i, respectively. Note that
for j < a < i both T;,(2), T, (2) contain only positive powers of z and hence do
not contribute above.

Finally, let us compute the coproduct of A;

Lemma G.14 We have

s+1
g Cvsels sl 7O FO) o FO) FO)
AMAD =Y Y X EDT G @ T F s T

s>1 j=j1<.<jsy1=i r=1

Proof We prove this by induction in i — j. The base of induction i = j + 1

follows from the equality A~ =7 @ and Lemma G.15 below. To perform

; ) J+Lj J+LJ
the induction step, note that

— 0 ——
Ay =Ty — Z_Aij’f./’/' (G.30)

Next, we compute the coproduct of fi(jo).

Lemma G.15 We have

70 70 S — (0 Z(0) ~—  mey— =0
AN = o1+ @) TR+ Y fla @) e fy

j<a<i

Proof First, let us note that gj— = [ZO]TJ; (z). Thus,
n
A™g) =121 (Z T,(2)® Ta;(z)> = [1T;@®T;@) =8 ®%; -
a=1
We also note that [ZO]TZ-; (z) = figo) gj—. Hence, we have

AP =TT+ T; @@ T+ Y T, ®T, () | =
j<a<i
FE @8 + & ®f 8+ ) fl i @18
j<a<i
Note that in the first equality we used [zo](Ti; () ® Ta; (z)) =0fora < jora >1i.

Evaluating A™( fig.o)) = AMY( figo) gj_)Am(gj_)_1 via these formulas completes
our proof. O
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Combining (G.30) with Lemma G.15 and applying the induction assumption to
Am(Al.;,), we immediately get the formula for Am(Ai_j) of Lemma G.14. O

Combining (G.27-G.29) with Lemma G.14, we get (G.24) after tedious compu-
tations. O

For 1 <i < n, define H; +1 € U™(sl,) via H; 41 := (g,.i)*‘g;i“. Recall the
elements A; and Ai_j of (G.13). Combining Theorems G.10, G.13 with Lemma G.5

and the formula Am(gii) = gli ® gii, we get the following expressions for
A™(Hj 11).

Corollary G.16 We have

Jj<i
- ~(0 71 ~(1 ~(0 ~(1
A™(H; 1) = Hy®1+10H 1 +v7! Y e e f v Y atef =) &) atef),
I>i j<i I>i

(G.31)

Jj<i
~(—1 #(0 - ~(—1 — ~(—1 — 70
Am(H,'.,l) = H,',,1®1+1®H,-_,1+v2efl )®ftE‘ )—v ! ZEL )®Aij_265'l )®Aijfli' )-
I>i j<i I>i

(G.32)

G(iii) Proof of Formula (10.2)

Recall the Hopf algebra embedding Y : U, (Lsl,) < U™(sl,) of Theorem G.2 (see
also Remark G.3). It is easy to see that

Hiy11— Hi

T(hi,l) = m

Combining Corollaries G.7, G.9 with formula (G.31) and the fact that Y intertwines
A and A™, we immediately get

Ahi) —hi1®1—1Qhi1=v (v—v ") "x

i —152 ) (D —1,2 k+17(0) (D
(vl(v - Z Ei1 1 ®F iy —@—v") Z VT E i ® Fipi
I>i+1 k<itl1

—1,\3 k -(0) =) 1) i—1 —1\2 (0) 1
—v") Z VE B @ By =0T (v -0 ZE,-, ® F; '+

k<i+1<l I>i
_ ~(0 1 - 0) (0 1
(v—v I)ZkaHE,(a.) ® F,.(k) +@w—v" Z vkEl.(l)Elgi) ® Fl(k)) .
k<i k<i<l

(G.33)
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This formula implies (10.2) after the following simplifications:

k -(0) 7=(0) (1) (O] (1)
Zinl Ei ®Fy = Z CEL) B} i ® Fyl =

i+1,1
k<i<l k<i+1<l
k<i
ko (0) "‘(0) ©) () (1) k0 =00) (l) 0 70 (1)

Z VE By —Ei B DO +Z” Ejl By ©F )~ Z Ei B ®F;
I>i+1 k<i [>i+1

-1 (0) (1) -1 0) (0) ) _

v ZEil ®F; — (- )ZEH—H Ein®F, =

I>i I>i+1

v ©) () -2 (0) 1)
Ell+1 ®F1+11 +v Z [E11+1ﬂ l+1 l]v%®Fh 5
I>i+1

0 1) - 0 0 1
_ ka+1 lE(z)+1®F(1k+("_” I)ka IE(1)+1E()®F1(+)11<
k<i+1 k<i

(0) (1) k—i—1p (0) 0) (1)
_szz+ Ft+11 Zv - [E t+l’Ek1 1y3 ®Fl+1k’

k<i
where in the second and third equalities we used

(0) = [E! O O

£ ©) (0) (0)
vt iyl Ep iy = LE; I

k,i+1 — i, 1+1’

G(iv) Proof of Formula (10.3)

The proof of (10.3) is completely analogous and is based on the formula

H; 1 —Hiy1,

T =S Ty

Combining this with Corollaries G.7, G.9, formula (G.32) and the fact that Y
intertwines A and A™, one derives (10.3). The computations are similar to the above
proof of (10.2) and are left to the interested reader.

G(v) Proof of Formula (10.4)
Recall that [h; —1, e; 0] = [2]y - €i,—1, so that

Aei—1) =121 [AG 1), Alei)] =121, [AG 1), 1 ® ei0 + ei0 @ Pl

Applying formula (10.3) to A(h;—1;) and using Lemma G.17 below, we
recover (10.4).
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Lemma G.17 Fork <iandl > i + 1, the following equalities hold:

1
ElilJr)l,el()] -1 =0.

E;7Y eiol =0.

(7)
(k)

Proof Recall that [ f} 0, ¢; 0] = p— 1(l/flo w 0)-
Parts (a, b) are obvious as e¢; commutes with fi+1.05 .-, fi—1,0 and

(a) [F[((l):_],ei,o] =0.
(b) [F, ei0] =0.
(c) [Fz(zO)’ eiol = _Fl((l)irlw,_O'
(d) [F, Jr1,(,61()]—1) IF(O)W,O
(e) [[Fz(?iul’Fz(ﬁ)lz] 3.0l = 11; 574F1(?)+1¢,0 v 1(?lullﬂ
) [[Fl(/?)’Fl(—(I)—)lz] 5, ei0] = 1= F(O)l/f,o — F(O)lﬁ
(g) [E,(Hl,, eioly = vE( b,
(h) 1E; V. eioly = vE,gllgl
(i) [Ey ", eiol,1 = 0.
[
[

fe0 -+ fiz1,0. Combining (a, b) with equalities F\;” = [fi0.F, v\ lo and

=0 0 Vio—Vi 0 0

Fi(-i-)l k= l(k)’ fl 0]1) 1, we get [Fl(l )’ eiol = [ uO v 10’ F;:l—l]” - l(l:—ll//t 0
_ 7O Yio—¥io W;o o 1R(0), — .

and [F +1 ol = [F ==l = v F ¢, which proves parts (c, d).

Parts (e, f) also follow 1mmed1ately from (a, b).

(g) Due to the quadratic Serre relations e; o commutes with ¢;42.0, ..., €/—1,0,

hence, also with ES +)2 ;- Meanwhile, we have [ej1+1,-1,¢i0lv
-1
vleis10.¢io1l,1,  due  to (U2).  Thus, [E), eioly =
0 0 -1
[[E,-(Jr)zyl, eit1,—1ly-1,€0ly = [E,-(+)2,1, v[eit1,0, €i,—11y-11y-1 = vE,-(, ).
-1 -1 1
(h) We have [E,Ei ), ei.olyv = —vlei 0, E,ﬁi )]v_| = —vE,E z+)l
(i) Note that [[ei41,0, €, —11y-1, € 0l,-1 = v [ej41,-1, €,0]v, €i,0]y-1 = 0, due
to (U2) and (U7). Since also ¢; o commutes with ¢;42.0, ..., €10, we get
(=1
[E ,ei0ly,-1 =0.

(G) Asin (i), [Ek :+1’ ei.0l,—1 = 0 follows from [[e; o, €;—1,0],-1. €i.0],-1 =0, due
to (U7).
(k) Comparing the matrix coefficients (v; ® vi|---|vi+1 ® v;) of both sides of

the equality Ryig(z/w)(TT (@) @ D1 @ T~ (w) = (1@ T~ (w)(TT(2) ® 1)
Ririg(z/w), we get

@ —w T @OT; ) + @ — v T T (w) =

(z— w)Tk?(w)ﬂﬁH(Z) +@w—v" )wTk]H(w)Y}T(Z)-
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Evaluating the coefficients of z!w! in both sides of this equality, we find

Spo0) s FOg-50 D)
(8 € iv1- 8k ekl "‘Z I=0.
j<k

Hence, by induction in k, we find [e((i)H,ekl ])]

1
[ES Y, eiol = 0.

= 0, which implies

O

This completes our proof of (10.4).

G(vi) Proof of Formula (10.5)

Recall that [£; 1, fi, 0l = —[2]v - fi,1, so that

Afin) =121 [AGi), A(fi0)] = =211 [AG). fio® 149, ® fiol.

Applying formula (10.2) to A(h;;) and using Lemma G.18 below, we
recover (10.5).

Lemma G.18 Fork <iandl > i + 1, the following equalities hold:

(@) [E, ). fiol = 0.

(b) [EY, fiol=0

(c) [El(,O), fiol = v_lE(O)1 ”y

(@ 1EY, . fiol = ~EQw,

(€) TE, 1 By s fuol = 35220 B il = 355 L Vi
() MES, . B, fiol = 2= ;"1 E<°)1p . ule(O)l/f, .

(¢) [F . fiolo = —F".

h) 1FQ, fioly = F, .

(i) LF", fioly1 = 0.

G) F 4 froly1 =0,

(k) [F, fiol =0.

This lemma is proved completely analogously to Lemma G.17. The details are
left to the interested reader.

This completes our proof of Theorem 10.13.
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Appendix H Proof of Theorem 10.16 and Homomorphisms

+
J’LI’ILZ

Our Eroof of Theorem 10.16 proceeds in three steps. First, we introduce subalgebras

SC sSC . :l: . .
Uy i of Uy, i and construct homomorphisms j; ,, which we referred to in

Remark 10.17. Then we prove Theorem 10.16, reducing some of the verifications
to the case of U,(Lsl,) via the aforementioned j ;—Ll e Finally, we verify the
commutativity of the diagram from Remark 10.17.

Throughout this section, we assume (1, 42 € A~.

H(i) Homomorphisms J’:LEI, 1

First, we introduce subalgebras U5 /ﬁ o U“C 4, To this end, recall the explicit
identification of the Drinfeld- Jlrnbo and the new Drinfeld realizations of Uy (Lsl,)
from Theorem 8.10:

Eiv eio. Fi> fio. K o (W)™ =yl =@ )T forl <i<n—1,
(Ki)™ = Wity 0F
Eig> (=) (o w 07 L L faoles o fas 10l

Fiy = (=v)" - [en—1,0, -, [e20, e1,—11p-1 -+ 1, Iﬁlo VA 1.0°

Hence, the images U, and U, of the Drinfeld-Jimbo Borel subalgebras
are the subalgebras of U,(Lsl,) generated by {e; o, (w )jEl F (1)} and

{fi0, W)=, ECV)] respectively.
L1kew1se let W' and U™~ be the C(v)-subalgebras of U

0, /01,142 0,701,142 0, 114412 gener—
ated by the elements {e; 0, (7)™, F\ "Y'= and {fi, . @7 )= EC Dy
Y i,0, nl i,byi» i,b1,;+b2; =1’
respectively, where as before bii = o(u),bi = o (/1,2) b =
bi1; + by;. Here, the elements {E;i_l)}j<,- are defined via E?:l) =
[ei—l,bzwi,p [ei—z,bzwi,zy Tt [ej+l,b2’j+1 s ej,bz_j—l]v—l e ]v—l]v—l .
Proposition H.1

(a) There is a unique C(v)-algebra homomorphism ]m w0 (U — Ugcﬂ“‘ iy such
that e, 0 €, 0, (w ):tl — (w )Ztl F(l) F(l)

(b) There is a unique (C(v) -algebra homomorphtsrln Tyt ]U — UO i such
that fio > fiy, Uil e W )EL B o ELD.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 285

Proof

(a) Converting the defining relations of the positive Drinfeld-Jimbo Borel sub-
algebra into the new Drinfeld realization, we see that U,  is generated by

{ei o, (w )ﬂEl F (1)} with the following defining relations:

W™ - Wil =1 vy = viovih (H.1)

Uhheio = vVej oWty vl Ey = vt Dy (H.2)
lei0 [ei,0, €i+1,0]v],-1 = 0, [ei0,€j0] =0ifc;; =0, (H.3)
leio, FP1=0for1l <i<n-—1, (H4)

le1,0. [e1.0, Fn(})]]v—z =0, [en—1.0,[en—1.0, F,ﬂ)]],,—z =0, (H.5)
[V IES eroll,e = 0, [F),IFY, en-1.0]l,2 = 0. (H.6)

Thus, it suffices to check that these relations are preserved under the specified
assignment ¢; o — ¢, (1// )jEl — (lp )il Fn(i) > Fn(}) The validity
of (H.1-H.4) is obvious.

To verify the first equality of (H.5), we note that [wfl, foly = (v2 —

D f1 1//?: o» due to (US). Combining this with (U6), we get

le1,0, F( )] =@-v ). [wfﬁ, S2.0lvs s fu—1.0ly = VF, 1)1//1 0

Hence, [e1.0, [e1.0. F\ 1,2 = vler o, g ifoly2 = vlero, FY' W, =0,
due to (U6).
The verification of the second equality of (H.5) is similar and is based on

[[---Lfras f2.0le o fa—2.0l0, ¥, 10 =00y

1
len-10. F\}'1= ;
vV—0v

m
F llwn 1,0°

Due to the above equality [e1 0, F), a )] =oF (1)% 0 and (U4), the verification

of the first equality of (H.6) boils down to the proof of [Fn(}), F(l)],, = 0.
This is an equality in U~ However, Uy~ ~ U <(Ls[ ), due to

M1+ 0,1+
Proposition 5.1(b). Hence it suffices to check this equahty in Uy(Lsl,). The

latter follows immediately from the validity of (H.6) for U,'.
Due to [e,—1.0, F(l)] vF(l)1 11/fn+ 1.0 from above and (U4), the verifica-

tion of the second equality of (H.6) boils down to the proof of [ F),; ) Frf 1)] =
0. Analogously to the previous verification, the latter follows from the same
equality in U,

(b) The proof of part (b) is completely analogous and is left to the interested
reader. O
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This completes our construction of the homomorphisms jli up’ Uf —

U(S)Cﬁ 2 which we referred to in Remark 10.17. The following results are needed

for the next subsection.

Lemma H.2

() E(O) F.(.l) c et

<7j | < ; :
(a) Forany 1 < j <i <n, we have Eﬂ ECLF; 012"

(b) Foranyl < j <i <n, define

HE.0)
Em = U Jirton e lotts - fim 1oy Tt

£E.(0) p(=1) s¢,—
We have Fi;"", E; " € Uy o

Proof

+1

. 0) =0 .
(a) Since E;i), Eﬁi) are expressed via v™ -commutators of ex o € Uf)c;: 1wy e

obviously get the first two inclusions. The last inclusion is clear for (i, j) =

(n, 1). Applying iteratively [ex o, Fk(}r)l,l] = —ka(]l)wlio, [er.0, Fi(ll)] =
”Fi(,}ilwzfo’ we get Fi(jl) e Uy, ,, forany j <i.

(b) The inclusions I:“i’(o) € u;cu‘l up Are obvious. It remains to prove E;l._l) €

(s)cl;l e This is clear for (j, i) = (1, n). To deduce the general case, it remains

to apply the equalities [ fi—1.5,,_,. Eii_l)] = Ele_)lllff_l,b,-_lv 161, El(,»_l)] -

—E5y) Vi o

The proof of the following result is straightforward.

Lemma H.3 Forany 1 < j <i < n, we have:

0 0) 7= (0 1 1
‘]ljlsMZ: Eﬁl) = E;’i)a Ejl) = E;l‘)a F;(j) = Fi(j')’ ﬁ,l = ﬁ,lshi,l = hi,ls

- 0 A+.(0) (0 A= (0) (-1 (=1
Jugn F,(,) = o, Fi_(,«) — F; o Eﬁ, ) EEZ )7611,71 > €ibyi—1, hi—1 > i 1.

H(ii) Proof of Theorem 10.16

Due to Theorem 5.5, it suffices to check that the assignment A of Theorem 10.16
preserves defining relations (J1-09). To simplify our exposition, we will assume
that w1, uo are strictly antidominant: by ;,by; < O for any 1 < i < n. This
verification is similar to the n = 2 case (carried out in Appendix D) and we only
indicate the key technical details, see Lemmas H.4—H.15 (their proofs are similar
to that of Lemma G.17 and therefore omitted). For 1 < a < b < n, we define
Ay p =y ta,  +.. o
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H(ii).a Compatibility with (01)

* The equalities A((Y;) D A(Y;})TH = Tand Ay, )TH AW, )T =1

follow immediately from relation (Ul) for both UBC o ugc o

e The commutatwlty of {A(l// 0)s A(I[/l by )}11 11 between themselves and with
{A(h;, i])} 1s due to relatlons (U1, U4, U5) for both Uy 0.1 Uy 0pta-

e Finally, we venfy [Ahi), Ahjs)] = O0forrs € {:i:l} To this end, recall
the homomorphism 10,0,; ® 10,15,0: Ugp ® Uy — Up,, ® Uy, - The key

N
observation is that 10.0,,; ® t0,1,,0(Ah; ) = A(h;,) + % for any

i € I,r € {£1} (cf. proof of Corollary 10.11), where by abuse of notation we
use A(h; ) to denote elements of both U§, ® USCO and USCH ® Uy 0. . Hence,
it suffices to prove [A(h; ), A(hj )] = O in U%CO U(S)CO The latter follows
immediately from the corresponding result for U,(Lsl,), in which case the
assignment A of Theorem 10.16 coincides with the Drinfeld-Jimbo coproduct,
due to Theorem 10.13.

H(ii).b Compatibility with (02)

We need to prove [A(e;,y1), Alej )], + [Alejst1), Alei )]sy = 0 for
bz,i—lfl”f—l,bz,j—lfsf—l.

Caseby; —1 <r < —1,byj —1 <5 < —1 In this case, the above sum equals
1 ® ([eir+1, €5l + lejs+1,€irlya) = 0, due to relations (02) and (U4) for

SC
uO na

Caser =by; —1,by j —1 <5 < —1 Note that [ej 511, fa,0] = 0 for any 1

IA

a < n, due to (U6) for U?)CM. As aresult, we have [e; 11, Flgg)] =lejst1. F N(O)]

0forany 1 < a < b < n. Combining this with (U2) and (U4) for ugcm

get [A(eip, ), Alej )]y + A s41) Aleipy,—D)]yeii = 1@ ([€iny;, €5y +
[ej.s+1, €ip,;—11,) = 0 as above.

uSC

Caser =by; —1,s = by j — 1 Due to relation (U4) for both UsC Otz

Ot , we get

[ACe)by ;) Aleiny,—D]yii = 1@ [ejn, ;s €iby—11yci5 —
- 1 0 _ - i—k— 1 0),, —
@=v"") 3 ETV ®lejin FpalVip, + @ —v )Y v EGD @ lejn, B W, ~
I>i+1 k<i

k<i

— 1 0
(v—v I) Z yik= IE( )®[€Jb2/ F()F(Hrl]'//zbv,
I>i+1



288 M. Finkelberg and A. Tsymbaliuk

Using this formula and Lemma H.4 below, it is straightforward to check that
again we obtain [A(e; b, ,), Aej by ;—1)]yij + [A(e) by ), Aeiby;~1)]yii = 1®
([ei,bzy,'a ej,bzwj—l]v"ij + [ej,bz_j7 ei,bzy,‘—l]vcij) =0.

Lemma H4 Foranyl <k <i,i+1 <[ <n, 1 <j <n, the following holds in

U,
(a) [ej,bzyj, l((l))+1]:8ji+lFl((l))+2wj_h2 wherewesetFl(Jr)zl+2 = __,,171-

(b) [e]hzj,F(O)] _1811 1F(0)1 kwjbz wherewesetF(O)ll L= v:::—l'
Case r = by; — 1,5 = -1 Clearly, [A(eip,;), Alej—1D]si = 1 ®
leiby;»ej -1l and [Alejo), Aleip,;~D]y; = [1 ® ejo + ejo ®

w;:O’A(eiva,i—l)]vuij' We claim that as in the previous cases, one gets
[ACeipy ;) Alej -]y + [Alej0), Aleipy—1)]pii = 1 & ([€ihy;5€j 1105 +
lej0:€ipy;—11y;) = 0. To this end, we note that the computations of
[1 ® ejo, Aleip,;—1)],c; and [ej o0 ® wxo, A(ei b, ;—1)]ye; are straightforward
and are crucially based on Lemmas H.5 and H.6 below, respectively.

Lemma H.5 Foranyl <k <i, i+ 1 <1l <n, 1< j < n, the following holds in

SC .
uo NN
o © 0) -1
(a) lejo, Fj ;] =—v8j 11 F H_l‘ﬁ] o Where we set Fi 7y ;== So= .
0 0
(b) [ej 05 F( )] = 8 F( )-'r]w] 0 where we set F[(,' : = v—irl

Lemma H.6 Foranyl <k <Il—1 <n, 1 <j < n, the following holds in UO u”

. (=D _ 3. ) (=D
lej0, Ey ]ijva{k,,_”) = 511Ek,1+1 —Sjk-1E_y -

H(ii).c Compatibility with (U3)

We need to prove [A(fi,r+1)a A(fj,s)]v*fij + [A(fj,H_]), A(fi,r)]v*fij = 0 for
bii<r=<0,b;<s5=<0.

Case by; < r < 0,b;; < s < 0 In this case, the above sum equals
(Lfirs1s S, S]vfc,-j + [fjs+1 f,-,,]vfc,-j) ® 1 = 0, due to relations (U3) and (U5)

SC
for UO o

Caser =0,b1j <s <0 Notethat[f;,es0]l =0forany 1 <a < n,dueto (U6)
for ug‘jm. As aresult, we have [ f; s, E (0)] =fis. E ((l),)] =0forany 1l <a <b <
n. Combining this with (U3) and (U5) for U(S)C we get [A(fi1), A(fjs)],-e; +

[A(fjs+1), Afio)l,—a; = (Lfins fisly—; + f, s+15 fi0l,~;)® 1 =0as above.
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u§C

Caser =0, s =0 Due to relation (U5) for both U 0110

0,111 we get

(A0 A0y = L. £r0ly-a @ 1+ @ — v o~V S ESD, | fiolyify @ FPV -

I>i+1
k<i
— () ( — —cij —i— 0 7 1
o B vy - v e 3 B vty
k<i [>i+1

Using this formula and Lemma H.7 below, it is straightforward to check that
we obtain [A(fi.1). A(fj.0)],- + [AFD). A -y = [fits fFroly-as +
Lfj1: fi,O]v—Cij) ®1=0.

Lemma H.7 Foranyl <k <i, i+ 1 <1 <n, | <j < n, the following holds in

SC .
uoul

—lg .. 0) + 0 v
(a) [ H—ll’fl =v 8]l+1EH_211ﬂ/0,wherewesetEl+2!+2 p—

0 —
(b) [E, f1.01 = =8ji1Ep)_ o where we set E\”, ;| = —L

Caser =0,s = by, j Clearly, [A(fjp, ;+1)s Afi,0)]y=; = [fjby j+15 fi.0l,~; ®
Land [A(fi1), Afjoy Dyaj = (AU, fib; @ T+, - ® fiol,—
We claim that as in the prev10us cases, one gets [A(fi 1), A(f] b ) 1y —I—

[A(.f‘],bl,.,-f—]) A(fz,O)] —Cij - ([.fl,]a fj,b]yj —Cij + [f],bld-ﬁ-l’ fz,O] "t}) ® 1 =
0. To this end, we note that the computations of [A(fi1), fj,b.,j ® 1]v—c,-j and

[A(fi1), 1//j_,b1,- ® f j,o]v—cij are straightforward and are crucially based on Lem-
mas H.8 and H.9 below, respectively.

T-

Lemma H.8 Foranyl <k <i,i+1 <[ <n, 1 <j <n, thefollowing holds in

SC .
uO nre
- (0) 1
(a) [E H” Sib 1= =8ji- 1E1+1 ]wj,bl where we set E i = 5o
EO - 7O . _ -1
(0) 1Ey, fib 1= v8]kEj+1 ll/fj’bl,j, where we set E;;” = o

Lemma HY9 Foranyl <k <Il—1 <n, 1 < j < n, the following holds in U(Sfuz;

(1 1)
[Eye s fiol T 1]>—‘5/l +1k_51k 1sz 1

H(ii).d Compatibility with (04)

Due to relations (U1, U4, U5) for both uo uy? U%CM we immediately obtain
the equalities A(I/f D Aej ) = viA(ey, r)A(I/f 0)s A(‘/’ijbi)A(ej,r) =
v Ci A(e/,,)A(lﬁi’b[) for byj—1<r=<Q0.

Let us now verify [A(h; 1), Aej )] = [cijlv- Alej 1) forby j —1 <r < —1.
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Case by j < r < —1 The verification in this case follows immediately from
relation (U4) for Uy . combined with Lemma H.10 below.

Lemma H.10 Foranyl <a <b <mn, by j <r < —1, we have [F}fi), ejr]=0
in UBCM

Case r = —1 Due to relation (U4) for U , we get

0,u2°

(A1), Alej—)] = [eijlo - 1®ejo — 07 = v DED, ®F]) 1 ej1]+

_ 0 0 1
w—v" Y EQ ®F ) eial+@—v )Y FTHEY @ FY e i1+

I>i+1 k<i
_ _ 0 0
v 2w —v ) Y IED L ED e @ 1F . ej 11—
I>i+1
0 0 1
(v—v 1)ka - 1[Ez(z)+1’ E/Ei)]:ﬁ ® [Fz(+)1 K €j—11+
k<i
k<i
_ —i 2 (0) (O 0 0
@—vh? 37 TEPE - D EDL ) @ LF e ).
I>i+1

Using this formula and Lemma H.11 below, it is straightforward to check that we
obtain [A(h; 1), Alej )] =lcijlv - (1 ®ejo+ejo® l/f;fo) = [cijlv - Alej0).

Lemma H.11 For any 1 < a < b < n, we have [Fif;),ej,_ﬂ =

o v—lajaajb 11ﬂ ()mu()u2

Case r = by — 1 According to the next step, we have Af(e;, by 1)

[Ah; 1), A(
M . Apply the Jacobi identity to get [2]y - [A(h;1), Ale;, sz,l)]

[A(hy, 71) [AChi ), Alejp, ) — [ACe) by ), [A(hi 1), A(hj,—1)]]. The second
summand is zero as [A(h; 1), A(hj —1)] = 0 by above. Due to the r = by ; case
considered above, we have [A(h; 1), A(ej,bz‘j)] = [cijlv - A(ej’bz,j{»l). It remains
to apply [A(hj 1), A(ej,bzd,ﬂ)] =1[2]y - A(ej,bz‘j) as proved below.

Let us now verify the equality [A(h; —1), A(ej )] = [cijlv- Alej—1) forby ; <
r<0.

Case by j < r < 0 The verification in this case follows immediately from
relation (U4) for U(sf e combined with Lemma H.12 below.

LemmaH.12 For 1 < a < b < n,by; < r < 0, we have [sza)’ejyr] =
0 .
[Fy. el = 0in U,

Case r = by ; Fori = j, the verification of [A(h; 1), A(ej,bz_j)] = 2],

A(ejp, —1) coincides with our proof of formula (10.4) from Appendix G. To
prove the claim for i # j, we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j. To achieve
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the latter, we apply the Jacobi identity to get [2], - [A(hi—1), Alejp, )] =
[AG).—1D). [AGi—1). Aejby <D = [Aej by +1). [A(hi—1). A(hj 1]l The
second summand is zero as [A(h; —1), A(hj,—1)] = 0 by above. Due to the
r = by j + 1 case considered above, we have [A(h; —1), A(ejp, ;+1)] = [cijlv -
A(ej,p, ;)- It remains to apply the aforementioned equality [A(hj —1), A(ejp, ;)] =
2]y - A(ej iy j—1)-

Case r = 0 The verification of [A(h; —1), A(ej0)] = [cijlv - 1 ® e _1 is similar
to our proof of formula (10.4) from Appendix G. To this end, we note that the
computations of [A(h; —1), I®ej ol and [A(h; —1),ej0® Ip;.fo] are straightforward
and are crucially based on the above Lemmas H.5 and H.6.

H(ii).e Compatibility with (U5)

Due to relations (U1, U4, U5) for both ugcm,ugCM, we immediately obtain

the equalities AW )A(fj,) = v UASIAW Y, AW LIAS) =
vUA(fj AW, forby j <1 < 1.

Letus now verify [A(h; —1), A(fj)] = —lcijlv-A(fjr—1) forby j+1 <r < 1.

Case by +1 < r < 1 The verification in this case follows immediately from
relation (U5) for U(sf i combined with Lemma H.13 below.

Lemma H.13 Foranyl <a <b <mn, b j+1<r <1, we have [E;;D, firl=

. SC
0in UO’M.

Caser = by j + 1 Due to relation (U5) for U(S)C upe Ve have

(A1), Afj.py 401 = ~lciflo - fron, ® 1+ @ = v DE D fio,+1]® FO) i~

_ —1 . 0 — i—k— —1 =
W= D IEC) fin 1@ By — 0= ) Y o EGY, fip 1@ B -
I>i+1 k<i

_ - 0 0
CHCEE Z (£ ", Jibr+11® [Fl(,i)+1’ Fi(+)1,i]r3+
1511

-1 i+1—k -1 = 0
(v—v )Z v [EIE,H»)I’ Fibj+11® [Fi(k)’ Fi(+)1,i]r3—
k<i

k<i
—152 i—ky(=1) 7(0) (0) 7(0) -(0)
v—o") Z VTE, S fib 1] © (B g Fiy — Fie B -
I>i+1

Using this formula and Lemma H.14 below, it is straightforward to check that we
obtain [A(h; —1), A(fj b+ = —lcijlv- (fjp ; ®1 +1ﬂj_,b1~j ® fj0) = —lcijlv-
A(fjb )
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Lemma H.14 For any 1 < a < b < n, we have [Ei;l),fj,bl_j_,_l]
—8iabjbol — e e
vjfv]—b' le»bl.j n u(g)c»ul'

Case r = 1 According to the next step, we have A(f;1) = —[2],,_1 .
[A(hj1), A(fj0)]. Apply the Jacobi identity to get [2], - [A(h; 1), A(fj1)] =
[Ahj 1), [AChi,—1), Afj01] — [A(fj0), [Ahi,—1), A(hj,1)]]. The second sum-
mand is zero as [A(h; —1), A(hj,1)] = 0 by above. Due to the r = 0 case considered
above, we have [A(h; 1), A(fj0)] = —lcijlv - A(fj,—1). It remains to apply
[A(hj 1), A(fj,—1D] = —[2]v - A(f}0) as proved below.

Let us now verify [A(h; 1), A(fj)] = —[cijlv - A(fjr+1) forby j <r <0.

Case by,j; < r < 0 The verification in this case follows immediately from
relation (U5) for Uy " combined with Lemma H.15 below.

LemmaH.15 For | < a < b < n,bi; < r < 0, we have [ES), f,] =
(Egp- fir)=0in U, .

Case r = 0 For i = j, the verification of [A(h;1), A(fj0)] = —[2]v -
A(f},1) coincides with our proof of formula (10.5), sketched in Appendix G. To
prove the claim for i # j, we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j. To achieve
the latter, we apply the Jacobi identity to get —[2], - [A(h; 1), A(fj0)] =
[AG.D. [AGiD). ACf5.-DT = [A(fj.—1). [A(;1), A j1)]]. The second sum-
mand is zero as [A(h; 1), A(hj1)] = 0 by above. Due to the r = —1 case
considered above, we have [A(h; 1), A(fj,-1)] = —lcijlv - A(f},0). It remains to
apply the aforementioned equality [A(h; 1), A(fj0)] = —[2]y - A(f},1)-

Case r = by ; The verification of [A(h; 1), A(fj,bl,j)] = —[cijlv - fj,bl,/-+1 Q1
is similar to our proof of formula (10.5), sketched in Appendix G. To this end, we

note that the computations of [A(h; 1), fj,bl.,- ® 1] and [A(h;1), ‘/’/,blj ® fj0l are
straightforward and are crucially based on the above Lemmas H.8 and H.9.

H(ii).f Compatibility with (U6)

We need to verify

AWYAM) s =1,
A(Wi,_b;)A(hi,—D if r+s=b —1,

AW .
[Aleir), A(fjs)] = dij - v_v;°1 if r+5=0,
=AW )
vlﬁ?‘ if r+s5=>0b;,
V—v

0 otherwise,
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forby; —1 <r <0, by j <s <1, where we set b; := by ; + by ; as before.

Casesby; —1 <r <0,b;; <s < 1 Obviously follows from (U4, U5, U6) for

sC SC
both U, UK, .

Case by; < r < —1,s =1 In this case, we get [A(e; ), A(fj1)] = 0, due to
Lemma H.10.

Caser = —1,s5s = 1 Applying Lemma H.11 from above, it is straightforward to
8ij 8ij

see that we get [A(e;—1), A(f;,0] = =iy ® ¥y = T2 AW

Case r = by; — 1,5 = 1 According to relation (04) verified above, we

have A(ejp,;—1) = [2];l - [A(hi—1), Aeip,;)]- Applying the Jacobi iden-

tity, we get [2]y - [A(eip,,—1), A(fj,0] = [A(hi-1), [Aleip, ;). Afj0] —
[Aeip,;), [AChi—1), A(fj,1)]]. However, both summands in the right-hand side

are zero, due to the above cases and relation (GS) established above.

Caser =by;—1,b; j+1 <s <1 Inthis case, we get [A(e; p, ;1) A(fj )] =0,
due to Lemma H.13.

Case r = by; — 1,5 = by + 1 Applying Lemma H.14 from above, it is

straightforward to see that we get [A(e; b, —1)s A(fj,bl,ﬁ])] = _%V/i,_b” ®
_ 8ij _ ’
1/jllbz,i = _v—_rj*'A(wi,bi)'

Case r = 0,5 = 1 Consider the homomorphism ];1’0 ® ]&“M: Uureu, —

ug‘jgl’o ® ug‘ijM. Comparing the formulas of Theorems 10.13, 10.16 and applying
Lemma H.3, we get

(A 12 (60,005 Dy (FD1 = 101 10 ® Sy (BCE0.0))s 11, 0 ® oty (A1) =

I 0® Jg s (1800, A1) = 18 0 ® I G AT AR D) = 8ij Dy i (W71 Dyay o (i 1),

where the subscripts in A, ., are used this time to distinguish it from the Drinfeld-
Jimbo coproduct A on Uy, (Lsl,).

Caser = by; — 1,5 = b1; Consider the homomorphism ]M_l 0 ® ]0_,/12: U, ®
Uy — Ug 0 ® Upp ., Comparing the formulas of Theorems 10.13, 10.16 and

applying Lemma H.3, we get
(A2 ity i —1)s Ay o (Fion ) = 10,4, 0 ® o, (Alei 1)), 1, 0 ® Jg, (A(Sj0)] =
1010 © Jo, (A, —1), AFj0]) = T, .0 ® Jo 1, Gij AW ) Alhi —1)) =

8ij Ay (wijbi)AMlqMZ (hi,—1).
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H(ii).g Compatibility with (07)

Utilizing the homomorphism ; © (® 4", : Uf ®U," — Uf)fﬁ’o@llgc,bfﬂz as above,
we get

[Aul,uz(ei,O), [A;Ll,,le (ei,O)» Tty [A,u,l,uz(ei,O)7 A;Ll,u,z (ej,O)]v"ii ce ]v*C;j*Z]v*"ij =

J,fl_o ® joJ_rM([A(ei,o), [A(ei0), -+, [ACei,0), Alej )]y -+ 1 ~cj-21,-a;) =

v

IE 0 ® Ui, (Alleio, [eio, - eio, €j.0)yeis -+ 1 ~ej-21,-4;)) =0,

where the last equality is due to the Serre relation in U, (cf. Remark 5.4).

H(ii).h Compatibility with (U8)

Due to relation (U8) for Uy up We have

[AMlvV-Z (fi,0), [Am,uz(fi,O)v R [Aul,uz(ﬁ‘,ﬂ)v Aun»uz(fj,())]v"‘f o ']v‘”i/“z]v“‘ij =

Lfi0. [fi,0. -+ L0, fiolyeis -1 —c-21,-; ® 1 =0.

H(ii).i Compatibility with (IAJ9)

Applying the homomorphisms ‘];Ltl 0® ]&E 1> WE see that it suffices to prove the
equalities:

(i, [firs Thins eiolll = 0 in Uy, [hi—1, lei 1, [hi—1, fi0lll =0 in U, .

These follow from [A; +1, ¥;",] = 0 in U,

This completes our proof of Theorem 10.16.

H(iii) Relation Between A and A, .,

The following result completes our discussion of Remark 10.17.

Proposition H.16 The following diagram is commutative:

A
UE UfoUF
+ + +
Jp iz Juir,0 ® J0, 412
sc,+ sc, & sc, &
U juy A Uo 0 ® Uoo

1,12
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Proof To simplify our computations, we will assume that py, uy are strictly
antidominant.

(a) To prove the commutativity of the above diagram in the ‘4’ case, it suf-
fices to verify that ;! o ® ji, (A)) = Ay (X)) for X e

{ei o, (lﬂi—j_o)il , Frfi )}?:_11. The only non-obvious verification is the one for X =
)
nl *
The computation of A(F,fp) is based on the computation of A™( fn(l)).
Comparing the coefficients of z~! in the equality

AT =TT+ T, T @+ Y. T,/ T (),
l<i<n
we get Am(f,f})gf) = fn(}’gwf ® gi + g ® fn({)gf, so that Am(fn(ll)) =
(1)®1+§,T(§fr)_1®fﬂ). Applying Y~! of Theorem G.2 and formula (G.12),

nl

we finally find
1 1 1
A(Frgl)) = Frfl) ®1+ ‘/’14?0 T W;—l,o ® Frfl)'

I 1 I
Therefore, ;!\ ® Jo,, (AFA) = F @ L4y v, (@ FL.
On the other hand, we have A, ., (JljlyMZ(FVS}))) = Am’uz(Fn(i)) and

Ay FDY = T Ty s (P15 Bty (2,005 5 Aty o (Fae1.0) 1o

Let us first note that [Eé(l)), Srol = v Eg?)wjo, where we set Eég) = v_':),l .
Combining this with relation (U5) and the formula

— _ 0 1
Aurgn(A) = fi1® 1+ 9@ fii+v ' w—v) Y EPy e F,
[>2

we find

(A (1D Ay (2010 = L1 frolo®@1+0~ =07 S EL v v @ F.
[>2

Further v-commuting this with A, ,,(f3,0), ..., Auy,up (fa—1,0), we finally
obtain

(n) (n + + (n
Aprn (B ) = F @1+ -9, 0 ® Fy.

This completes our verification of ]:[] 0o ® ]&' M(A(Fﬁ)))

(eY)
Api (‘]lj—l a2 (Fa1 )
(b) The proof of the commutativity in the ‘—’ case is completely analogous. O
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Appendix I Proof of Theorem 10.19

Our proof of Theorem 10.19 proceeds in three steps. First, we reduce the problem
to its unshifted counterpart, see Theorem I.1. To prove this theorem, we recall the
shuffle realization of U, , see Theorem 1.3. In the last and final step, we apply a
simple result Proposition [.4.

I(i) Reduction to an Unshifted Case

Given i € A and vy, v € A, recall the shift homomorphisms ¢, v, v, @ U, —

Q . . . . O’M
o Ji+vi+v, troduced in Lemma 10.18. Note that ¢, ,,,,, gives rise to the homo-

morphisms (restrictions)
sc,> SC,> sc, < sc, < 0 scO sc,0
u Vvt uO m uO v l# Vi,V u uO pAvive byt u u() PVt
Moreover, evoking the triangular decomposition of Proposition 5.1(a) for both alge-

bras W' and Uy, ., o\, we see that ¢y, is “glued” from the aforementioned
< 0

three homomorphlsms TR M "

to the injectivity of these restrictions ¢

Hence, Theorem 10.19 is equivalent

(< 0

v Yivrves buvy v, The injectivity of

?w1 v, 18 clear. On the other hand, according to Proposition 5.1(b), we have
sc>~ > s> 8C, < < ~ e > <
Uy U, Uy P UO U, UO T where U, U, denote

the correspondlng subalgebras of U v(Lsl, ) As such, the mJecthlty of Lvp,v, (TSP
Livy.y) 18 equivalent to the injectivity of ¢ : U, — U, (resp. (5,0 Uy — Uy)
given by (2 > (1 — =) M6, 2) (resp. £ > (1 — ) ) fi ) for
iel.

Thus, we have reduced Theorem 10.19 to its unshifted counterpart:
Theorem I.1

(a) The homomorphism
(b) The homomorphism

o Uy — Uy is injective for any v € A™.
voor Lo _
5 Uy — U isinjective forany v € A™.
Our proof of part (a) is crucially based on the shuffle realization of U, , which
we recall next (the proof of part (b) is completely analogous).

I(ii) Shuffle Algebra (of Type An—1)

Consider an N’-graded C(v)-vector space S = b Sk, where
k=(ky,....ky—1)eN!
Stky....k,_;) consists of []Sg,-symmetric rational functions in the variables

1<r<k

{xir}jc;— - We also fix an [ x [ matrix of rational functions (¢; ()i, jer €

—cji

Mat;,;(C(z)) by setting ¢; j(z) = Z_Z"_l L where (Ci/‘)z;; is the Cartan matrix
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of sl,, as before. Let us now introduce the bilinear » product on S: given F € Sy and
G €Sy, define F x G € Sgyq by

n—1
(FxG)YX1 1, oo XUyl -3 X1 1y« e s Xn—1 kg 41,1) i= 1_[1._1 kil 1i!x
. <k , i'el r/>ki/
1<r<k; g<r' <k 4L/
Sympye, ., | Fxiric = DG Wi, =7 - TT TT G /xins)
iel r<k;
Here and afterwards, given a function f € C({x; 1, ..., Xim, }icr), we define
1
Syml—[&m (f) := l_[ — Z S UXioi(1)s - Xioy(mp) Yiel)-

] i-
iel (01,...,an,1)66,,11 x..‘XGmnil

This endows S with a structure of an associative unital algebra with the unit
1 € S,...,0)- We will be interested only in a certain subspace of S, defined by the
pole and wheel conditions:

* We say that F € Sy satisfies the pole conditions if and only if

f(xl,lv cee xn—l,k,lfl)

= -2 <k
[ToiTL & G = Xigr)

, where f € ((C(v)[xij,[rl];eflrSki)neki'

* We say that I € Sy satisfies the wheel conditions if and only if
F({x;,}) =0once x; ,, = vxXjje; = vle-,r2 for some ¢, i, ry, 12, [,

where e € {£1}, i,i+eel, 1 <ri,rp <k, 1 <l <kjte.

Let S C S be the subspace of all elements F' satisfying these two conditions

and set § := P Si. It is straightforward to check that the subspace S C S is
keN!
*-closed.

Definition 1.2 The algebra (S, *) is called the shuffle algebra (of A,—_1-type).

The following key result, identifying this algebra with U, is due to [53]'% (see
also [63]).

~

Theorem 1.3 There is a unique C(v)-algebra isomorphism V : U, — S such that
eir > xj foranyi € l,r € Z.

12To be more precise, [53, Theorem 1.1] establishes such a shuffle realization for the half of the
quantum toroidal algebra of sl,,. Since the latter naturally contains U, as a subalgebra, we get the
claimed result.
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I(iii) Proof of Theorem 1.1(a)

The following result is straightforward:
Proposition 1.4

(a) For any v € A~, there is a unique algebra homomorphism (,,: S — S such
that f({xi, 4,5 =) > TS5 = x H7 O f ({555 forany f €

iel iel
Stivka-n- / o
(b) The homomorphisms i, and v, are compatible: 1;,(\V (X)) = V(i (X)) for any
XeU;.

(c) U, is injective.
Combining Theorem 1.3 and Proposition [.4 immediately yields Theorem I.1(a).

This completes our proof of Theorem 10.19.

Appendix J Proof of Proposition 11.18

Consider the n = 0 case of Sect. 11.4. Let é*(2), f*(2), §7°(2), & (2) be
the currents entering the Gauss decomposition of T*(z), and set &i(z) =
§§E (2) (g“f_L (z))~L. According to [17] (see also Theorem G.2) there is a C(v)-algebra
isomorphism

Y UM (Lsh) —> UG /(1] 1014 [0] — 1),
defined by

fE2)

v—ov L’

et (vz)

-, V@) B T (02), ¢F - 110]
v—ov!

J.1)
(a slight modification of Yy o). The isomorphism Y intertwines coproducts A™ :=
A(r)‘fo and A%, In particular, the restriction of the pull-back of A™ to the subalgebra

Uy (Lsly) of U,’;‘d(Lﬁlg) recovers the Drinfeld-Jimbo coproduct A on Uy (Lsls).

@)~

et (2) >

J(i) Computation of A(e*(z)) and A(f*(2))

The verification of formulas (11.10) and (11.11) is based on the following result.

LemmaJ.l We have Tj[(2)"'T5(2) = vff0%), T5@T[@Q7 =
v 1eE(v27).



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 299

Proof Comparing the matrix coefficients (v; ® va| - - - |[v; ® vy) of both sides of the
equality Ryig(z/w)(T*@)@ DI QTF(w)) = (1QTFw))(T*(2) @ 1) Ryig(z/w),
we get

(@ — W@ T W) + 0 — v )T T (W) = (vz — v 'w) T (W) T (2).
Plugging w = v’z into this identity, we obtain the first equality:
TE ()T () = vIE () TE0%2) 7 = v fE (%),

Likewise, comparing the matrix coefficients (vi ®uv1| - - - |[v; ®v2), we get the second
equality. O

+ We have &*(z) = (T5(2)) "' Tj5(2). Hence,
AT = (TFQOTEQ+TE@ 0 T () (TH@ @ T + T5() ® TE () =

-1
(1+7 @' e e T ') (1860 +F 08 T T5() =

(Z(v)féi@)’ ® f*wzz)’) (180 +&F@ ® 0/ 000 + 5 @ '5F @) =

r=0

1@& @+ ) (-0 & @™ e f*0’) v @),
r=0

where we used Lemma J.1 twice in the third equality. Applying Y~!, we
recover (11.10).

+ We have f*(z) = T55(2)(T5(z))~". Hence,

A ) = (TE@ O TE@ + Th @ ® Th () (TH@ O TE @) + TE@ 9 T () =
~ ~ ~ —1
(Foe1+TEOTH0™ 6 /o) 1+ TEETHO ™" @ f£0) =

(F@ 81+ 07 £ 0% + & 0i @™ e f40) x

(Z(v)’éi(vzz)’ ® f*(z)’) =fF @1+ ) (v @0’y ® ff@) T

r=0 r=0

where we used Lemma J.1 twice in the third equality. Applying Y~!, we
recover (11.11).
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J(ii) Computation of A(¥*(z))

We have y*(2) = §5()7'5 @ = T 'T5@) — vfF©?2)e* (), due
to Lemma J.1. Evaluating Am(lelE (z)_szjZE(z)) as before, we get the following
formula:

Artt('&i(Z)) — Z(—l)r_HUr+2éi(2)r[éi(Z), f:t('UZZ)] ® fj:(v2Z)r+lé:t(Z)+

r=0

Z(—l)r(vr+léi(Z)r¢i(Z) _ Ul_r&i(v2Z)éi(v4Z)r) ® f:l:(IJZZ)r+lE:|:(Z)+

r=0

D =D TE ), R0 R) © fF ) TR+
r=0
D =DV ER T ® ) I )+

r=0

Z (_1)r+S+1v*F‘l’S“rl&i(vzz)éi(vé‘vz)réi(z)sﬁ’l ® fi(vzz)}"hi‘l’l&i(z).
r,s=0
J.2)

To simplify the right-hand side of this equality, we need the following result.
Lemma J.2 We have:

(@) [6%2), fEw)] = S22 (@) — vt w).
(b) [*(2), fE(0?2)] = M
(€) (z = VWP (@)e*(w) = (V*z — w)e" (W)Y () £ w - [e0. P (@] 2.
~ ~ i + + +
(d) wi(Z)éi(sz) S e:l:(v Z)wi(Z) F@y (f_);;‘/f (z)e (Z)
(e) (z — vw)e*(2)e(w) — z - [ep, e (w)],2 = (vPz — w)eF(w)eF(z) + w -
€0, €5 (2)],2.
(f) e (v*2)? — (1 +vH)eE (et (v?2) + v2e*(2)? = 0.
Proof Parts (a, c, e) follow from the corresponding relations for
et (2), f£(2), ¥ (z), established in Lemma B.1(c, f1, d1), respectively.
Part (b) is obtained by specializing w = v2z in (a). Part (d) is obtained by
comparing the specializations of (c) at w = v?z,w = v %z, and w = z. Part
(f) is obtained by comparing the specializations of (e) at w = v?z and w = z. O
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The first two sums of (J.2) add up to zero, due to Lemma J.2(b, d). Applying
Lemma J.2(b) to the third sum of (J.2) and Lemma J.2(d) to the last sum of (J.2), we
get

A" @) =D (1) AR ® [P P (R) (1.3)

r=0

with

4@ =@V @+ @@ @+ +E @I @ @ I @R
Finally, a simple induction argument based on Lemma J.2(d, f) yields the equality
A7) = U@ %) A+v 2 +v 4. . v ) = v r+ 1Y T () et (v%2) .

Plugging this into (J.3) and applying Y !, we recover (11.12).

This completes our proof of Proposition 11.18.
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