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1. Introduction

1.1. Summary

Let G be a complex reductive group and let (C, dz) be a complex projective line P 1

with a marked point z = ∞, also equipped with a section dz of the canonical line bundle 
KC whose only singularity is a second order pole at z = ∞. Let 〈·, ·〉 be the Killing form 
on the Lie algebra g of G.

To the data (G, C, 〈·, ·〉, dz) one can associate in the standard way an (infinite-
dimensional) Poisson-Lie group G1(C) of G-valued rational functions on C with fixed 
value 1 at ∞. By the formal series expansion at z = ∞ there is a natural inclu-
sion G1(C) ↪→ G1[[z−1]], where G1[[z−1]] are G-valued power series in z−1 with the 
constant term 1. The group G1[[z−1]] is the Poisson-Lie group whose Poisson struc-
ture is constructed in the standard way from the Lie bialgebra defined by the Manin 
triple (g((z−1)), g[z], z−1g[[z−1]]) and the residue pairing 

∮
∞〈·, ·〉dz. The quantization of 

the Poisson-Lie group G1[[z−1]] produces the Hopf algebra called the Drinfeld Yangian 
Y (g).



R. Frassek et al. / Advances in Mathematics 401 (2022) 108283 3
Let Λ+ be a cone of dominant coweights in the coweight lattice Λ of G. A formal linear 
combination of points of C with coefficients in Λ+ will be called a Λ+-valued divisor D
on C.

The symplectic leaves MD in the Poisson-Lie group G1(C) are classified by Λ+-valued 
divisors D =

∑
x∈P1 λx[x] trivial at infinity [36,12], i.e. with λ∞ = 0. Namely, for a 

given D, the symplectic leaf MD ⊂ G1(C) consists of those elements in G1(C) that are 
regular away from supp(D), the support of D, while having a singularity of the form 
G[[zx]]z−λx

x G[[zx]] in a neighborhood of each x ∈ supp(D), where zx is a local coordinate 
near x vanishing at x and λx ∈ Λ+ is the coefficient of D at x.

The symplectic leaves MD of G1(C) are interesting in many aspects. A symplectic 
leaf MD can be identified with (I):

(1) a moduli space of G-multiplicative Higgs fields trivially framed at z = ∞ [12]
(2) a moduli space of Gc-monopoles on C ×S1 regular at infinity and with Dirac singu-

larities whose projection on C is encoded by the Λ+-valued divisor D, where Gc is 
the compact group associated to the complex reductive group G [7,6]

(3) a Coulomb branch of N = 2 (ultraviolet fixed point) UV conformal quiver gauge 
theory on R3 × S1 if G is of ADE type and the ADE quiver is the Dynkin diagram 
of g [7]

(4) a phase space of an algebraic integrable system known in the quantum field theory 
literature as the Seiberg-Witten integrable system of N = 2 ADE UV conformal 
quiver gauge theory [32]

(5) a classical limit of the GKLO-modules of Y (g) constructed by Gerasimov, Kharchev, 
Lebedev and Oblezin [21]

Let μ ≡ λ∞ ≡ D|∞ denote the coefficient of the divisor D at infinity. In the construc-
tions of the above list it was assumed that μ vanishes. In the constructions (1) and (2), 
the restriction μ = 0 translates to the regularity either of the Higgs field at ∞ ∈ P 1 or 
to the regularity of the monopole configuration on the infinity of R2 × S1. In the points 
(3) and (4), for G of a simple ADE type, μ encodes the UV β-function of an N = 2
supersymmetric quiver gauge theory, and consequently, the restriction μ = 0 translates 
to the condition that the UV β-function of the quiver theory vanishes (cf. [32]).

It is natural to explore what happens with the constructions listed above when the 
restriction μ = 0 is lifted. The natural generalizations for not necessarily vanishing μ
are (II):

(1) a moduli space of G-multiplicative Higgs fields with the framed singularity zμ at 
z = ∞ of the coweight μ

(2) a moduli space of Gc-monopoles on C × S1 with a charge μ at infinity and with 
Dirac singularities whose projection on C is encoded by the Λ+-valued divisor D

(3) a Coulomb branch of N = 2 UV quiver gauge theory on R3×S1 if G is of ADE type 
and the ADE quiver is the Dynkin diagram of g [32] with the UV β-function −μ
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(4) a phase space of the Seiberg-Witten algebraic integrable system of N = 2 supersym-
metric ADE quiver gauge theory with the UV β-function −μ

(5) a classical limit of the analogues of the GKLO-modules [21] but for a shifted Yangian
Y−μ(g) [27,3]

In this paper, we put further details on the construction (5) focusing on G = GLn

and antidominantly shifted Yangians, which in our notations are recorded as Y−μ(gln)
with μ ∈ Λ+. A generalization to other classical BCD types has been carried out in the 
follow-up paper [20].

From the perspective of Coulomb branches of the N = 2 supersymmetric ADE quiver 
gauge theories I (3) and II (3) there is a natural procedure to obtain the asymptotically 
free ADE quiver gauge theory with the non-zero UV β-function −μ with μ ∈ Λ+ from a 
UV conformal ADE quiver gauge theory with the vanishing UV β-function μ = 0. This 
procedure involves:

(I) starting from the UV conformal ADE quiver gauge theory, with β-function given by 
− 
∑

viα
∨
i +
∑

wiω
∨
i = 0 where U(vi) is the gauge group factor of the ADE quiver 

theory attached to the node i, the wi is the number of fundamental multiplets 
attached to the node i, and their masses are xi,1, . . . xi,wi

;
(II) and then switching off some of those fundamental multiplet fields from the La-

grangian. The switching off effect of a quantum field in the QFT can be achieved 
by sending the mass prescribed to that field in the perturbative Lagrangian to the 
infinity: in this way the quantum excitation of that field requires infinite energy, 
and therefore the correlation functions of a QFT in which some quantum fields 
are ascribed infinite masses are equivalent (after renormalization) to the correlation 
functions of the QFT where those fields have been deleted from the Lagrangian.

Therefore we can expect to recover the Coulomb branches and integrable systems associ-
ated to N = 2 supersymmetric asymptotically free ADE quiver gauge theories by taking 
a limit of a suitable UV conformal theory where some of the masses x (corresponding to 
the points of the divisor in our geometrical presentation) are sent to infinity, see [32,41]. 
Indeed, we show explicitly in Section 2.4.2 that our construction satisfies this “normal-
ized limit” property, expected from the physics of N = 2 ADE quiver gauge theories as 
described above.

Generalizing [8,4], we present the isomorphism between the Drinfeld and RTT real-
izations of Y−μ(gln) and both as a consequence and a tool to prove this isomorphism we 
construct GLn Lax matrices TD(z) with prescribed singularities at D for any Λ+-valued 
divisor D (with an additional property that the sum of the coefficients 

∑
x∈P1 λx is in 

the coroot lattice of G).
While in the paper we implicitly assume � = 1 (for simplicity of our exposition) and 

explicitly present only the quantum case, our construction can be naturally generalized 
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to the C[�]-setup: both (antidominantly) shifted Drinfeld and shifted RTT Yangians 
of gln become associative algebras over C[�], � appears in the commutation relations 
between the canonical coordinates on MD as [pi,r, eqj,s ] = δi,jδr,s�e

qj,s , and the rational 
Lax matrices TD(z) obviously generalize to keep track of �. Then, the classical limit 
is recovered in the usual way by sending � → 0 and replacing 1

�
[·, ·] by the Poisson 

bracket {·, ·}.
We conjecture that the classical limit of our construction describes the full family of 

symplectic leaves in the Poisson-Lie group obtained as the classical limit of the shifted 
Yangian Y−μ(g), and for each Λ+-valued divisor D on C we obtain Darboux coordinates 
on the symplectic leaf MD. We leave out for a future work the precise details as well 
as the details of the construction of the moduli space of multiplicative Higgs fields with 
a singularity at the framing point and moduli space of singular monopoles on R2 × S1

(cf. [13,28] for the relevant constructions of singular monopoles and Kobayashi-Hitchin 
correspondence in that context).

The Lax matrices TD(z) can be used to construct explicitly classical commuting 
Hamiltonians of the corresponding completely integrable systems on MD as well as their 
quantizations. The classical commuting Hamiltonians are obtained as the coefficients of 
the spectral curve

det
(
y − g∞TD(z)

)
=

n∑
i=0

yn−i(−1)itrΛi

(
g∞TD(z)

)
. (1.1)

Here, g∞ is a regular semi-simple element of G that defines the coupling constants of 
the respective integrable system or encodes the gauge couplings of the respective quiver 
gauge theory in case when MD is interpreted as a Coulomb branch [32]. For a general G, 
the classical complete integrability can be established from the abstract cameral curve 
construction following [10].

In the quantum case, using that the homomorphism ΨD of Theorem 2.35 factors 
through the quantized Coulomb branch, see [3, Theorem B.18], the construction of Bethe 
subalgebras (see [29, §1.14] or the original paper [31]) that uses a quantum version of the 
spectral curve gives rise to a family of Bethe commutative subalgebras in the quantized 
Coulomb branches. We note that existence of such a construction was suggested to one 
of the authors and Michael Finkelberg by Boris Feigin in 2017. The pre-quantized Hamil-
tonians are represented in the algebra of difference operators with rational coefficients on 
functions of p∗,∗. We do not discuss in this paper the actual quantization (the choice of 
a polarization, the Hilbert space structure, or analytic properties of the wave-functions).

For example, the i = n term in the spectral curve (1.1), the det of the Lax matrix, after 
a quantization is replaced by the quantum determinant and is given by the formula (2.39):

qdet TD(z) =
n∏

i=1

∏
x∈P1\{∞}

(z − x + (i− 1)�)−ε∨i (λx).

The Bethe ansatz for these quantum integrable systems was constructed in [33].
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The origin of the canonical coordinates (p∗, q∗) of the present work goes back to the 
work of Atiyah-Hitchin on the moduli space of monopoles on R3, [1], that identified such 
moduli space with the moduli space of based rational maps from C = P 1 to the flag 
variety G/B.

For example, for G = SL2 the flag variety G/B is P 1, and the based rational maps 
from C to G/B are simply rational functions f(z) vanishing at z = ∞. Given a coset 

representative of a based rational map from C to G/B in the form 
(

A(z) B(z)
C(z) D(z)

)
, the 

respective rational function is f(z) = B(z)/A(z). For the divisor D consisting only of a 
singularity at ∞ ∈ P 1, the coordinates p∗ are the locations of zeros of A(z) (i.e. poles 
of f(z)), while the coordinates eq∗ are the values of B(z) at these zeros. Such canonical 
coordinates in the space of rational functions also appeared in the work of Sklyanin on 
separation of variables. Furthermore, Jarvis in his work on monopoles on R3, [25,26], 
constructed a lift of a based rational map from C to G/B to a rational map from C
to G. The classical limit of the formulas for the rational Lax matrices TD(z) presented 
in this work for G = GLn could be seen as a canonical realization of Jarvis’s lift of 
a based rational map from C to G/B to a rational map from C to G, equipped with 
canonical (p∗, q∗)-coordinates induced from the Atiyah-Hitchin construction for the based 
rational maps to G/B. We provide some more details in Remark 2.98, while referring 
the interested reader to [3, 2(xi, xii, xiii)] for a more detailed discussion.

In the second part of the paper we proceed to the trigonometric case by taking 
C = P 1 = C× ∪ {0} ∪ {∞} equipped with a section dz/z of the canonical bundle KC

that has order one poles at 0 and ∞. Given the Borel decomposition of g, the section of 
KC , and the Killing form on g, one obtains in the usual way the Lie bialgebra structure 
on the loop algebra Lg with the trigonometric r-matrix and the corresponding Poisson-
Lie loop group. The quantization of this Poisson-Lie group gives rise to the quantum 
loop algebra Uv(Lg) (also known as the quantum affine algebra with the trivial central 
charge).

Similar to the rational case, to each Λ+-valued divisor D on C we associate a module 
of a shifted counterpart of Uv(Lg) in a construction analogous to [21,22]. However, in 
the trigonometric case there are two special framing points 0 and ∞ on C. We denote 
the coefficients of D at these framing points by μ− ≡ λ0 = D|0 and μ+ ≡ λ∞ = D|∞, 
respectively. Then, for any Λ+-valued divisor D on C (with an additional property that 
the sum of the coefficients 

∑
x∈P1 λx lies in the coroot lattice of G), we construct a 

homomorphism from the shifted quantum affine algebra U−μ+,−μ−(Lg) to the algebra 
of v-difference operators (see Remark 3.31 and [18]), and using an isomorphism between 
the Drinfeld and the RTT realizations of U−μ+,−μ−(Lgln), μ± ∈ Λ+, we construct and 
present explicitly the corresponding GLn trigonometric Lax matrices TD(z).

Conjecturally, the classical limit of our construction describes the full family of sym-
plectic leaves in the (−μ+, −μ−)-shifted Poisson-Lie loop group obtained as the classical 
limit of the shifted quantum affine algebra U−μ+,−μ−(Lg), where (μ+, μ−) are the 
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coweights encoding the prescribed singularities at ∞ and 0. Conjecturally, each symplec-
tic leaf MD is isomorphic as a symplectic variety to the moduli space of multiplicative 
Higgs bundles on (P 1, dz/z) with Borel framing at 0 and ∞ and with prescribed singu-
larities on D. We leave out the precise definitions and details of this construction for a 
future work.

A subset of GLn rational Lax matrices constructed in [15] are known to be the build-
ing blocks for the transfer matrices of non-compact spin chains and Baxter Q-operators, 
see [2,11] (cf. [37] for a discussion of the trigonometric case). The matrix elements of 
those Lax matrices are realized as polynomials in the Heisenberg algebra generators 
in analogy to the free field realization. The Fock vacuum vector serves as the highest 
weight state and the trace in the transfer matrix construction is taken over the entire 
Fock space. As discussed in Section 2.7, the realization studied in this paper is closely 
related to the Gelfand-Tsetlin bases which are not necessarily constrained to represen-
tations of the highest/lowest weight type. In order to describe the modules that arise 
from the free field realization one has to impose additional conditions on the corre-
sponding Gelfand-Tsetlin patterns. Consequently, we expect that the transfer matrices 
can be defined in terms of the Lax matrices presented in this article by introducing the 
appropriate trace over the Gelfand-Tsetlin oscillator realization. In addition to the con-
struction of transfer matrices from Lax matrices linear in the spectral parameter, this 
approach should allow for the construction of the commuting family of operators with 
Lax matrices of higher degree in the spectral parameter. We leave the precise details of 
this construction as well as generalizations to Lie algebras beyond A-type for a future 
work.

Historically, the shifted Yangians Yν(g) were first introduced for g = gln and dominant 
shifts ν in [5], where their certain quotients were identified with type A finite W -algebras, 
the latter being natural quantizations of type A Slodowy slices. This construction was 
further generalized to any semisimple g but still dominant ν ∈ Λ+ in [27], where it 
was shown that their GKLO-type quotients (called truncated shifted Yangians) quantize 
slices in the affine Grassmannians. The generalization to arbitrary shifts ν ∈ Λ was finally 
carried out in [3, Appendix B], where it was conjectured that their truncations quantize 
generalized slices in the affine Grassmannians introduced in [3]. The latter result was 
recently established in [39].

In contrast to the aforementioned original approach, we consider exactly the opposite 
case, with antidominant shifts, in the current paper (note that any shifted Yangian 
Yν(g) may be embedded into the antidominantly shifted one Y−μ(g), μ ∈ Λ+, via the 
shift homomorphisms of [14]). The main technical benefit is the RTT realization of 
those Y−μ(gln) (respectively U−μ+,−μ−(Lgln)), and as a result a conceptual explanation 
of the coproduct homomorphisms of [14] (respectively of [18]). Also, we note that the 
antidominant case allows to access interesting algebraic integrable systems that appear 
on the Coulomb branches of four-dimensional supersymmetric N = 2 ADE quiver gauge 
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theories of the asymptotically free type [32]; a typical representative of such an integrable 
system is a closed Toda chain.

1.2. Outline of the paper

• In Section 2.1, we introduce the shifted Drinfeld Yangians of gln, the algebras 
Yμ(gln), where μ ∈ Λ is a coweight of gln. These algebras depend only on the 
associated coweight μ̄ ∈ Λ̄ of sln, up to an isomorphism, see Lemma 2.17. They 
also contain the shifted Yangians of sln (introduced in [3]) via the natural embed-
ding ιμ : Yμ̄(sln) ↪→ Yμ(gln) of Proposition 2.19 (generalizing the classical embedding 
Y (sln) ↪→ Y (gln)). Moreover, we have the isomorphism Yμ(gln) 
 ZYμ(gln) ⊗C Yμ̄(sln)
with ZYμ(gln) denoting the center of Yμ(gln), see Corollary 2.24, Lemma 2.26 (general-
izing [29, Theorem 1.8.2] in the unshifted case μ = 0).

In Section 2.2, we introduce the key notion of Λ-valued divisors on P 1, Λ+-valued 
outside {∞} ∈ P 1, see (2.28), (2.29). For each such divisor D satisfying an auxiliary 
condition (2.30) (which encodes that the sum of all the coefficients of the divisor D
lies in the coroot lattice), we construct in Theorem 2.35 an algebra homomorphism 
ΨD : Y−μ(gln) → A, where μ = D|∞ is the coefficient of D at ∞ and the target A is the 
algebra of difference operators (2.32), see Remark 2.33. This construction generalizes the 
An−1-case of [3, Theorem B.15] as the composition ΨD ◦ ι−μ : Y−μ̄(sln) → A is precisely 
the homomorphism Φλ̄

−μ̄ of [3, Theorem B.15] (where λ is the sum of all coefficients of 
D outside ∞).

In Section 2.3, we introduce the (antidominantly) shifted RTT Yangians of gln, the 
algebras Y rtt

−μ(gln) with μ ∈ Λ+ being a dominant coweight of gln. They are defined via 
the RTT relation (2.41) and the Gauss decomposition (2.43), (2.44). We construct the 
epimorphisms Υ−μ : Y−μ(gln) � Y rtt

−μ(gln) for any μ ∈ Λ+, see Theorem 2.52. The main 
result of this section (the proof of which is established in Section 2.4.3), Theorem 2.54, 
is that Υ−μ are actually algebra isomorphisms for any μ ∈ Λ+ (generalizing [8,4] in the 
unshifted case μ = 0 as well as [18] in the smallest rank case n = 2, see Remark 2.55).

In Section 2.4, we construct n × n rational Lax matrices TD(z) (with coefficients in 
A((z−1))) for each Λ+-valued divisor D on P 1 satisfying (2.30). They are explicitly de-
fined via (2.63), (2.64) combined with (2.58), (2.60), (2.62), while arising naturally as 
the image of the n × n matrix T (z) (encoding all the generators of Y rtt

−μ(gln)) under 
the composition ΨD ◦ Υ−1

−μ : Y rtt
−μ(gln) → A, assuming Theorem 2.54 has been estab-

lished, see (2.56), (2.57). As Theorem 2.54 is well-known for μ = 0 and any Lax matrix 
TD(z) is a normalized limit of TD̄(z) with D̄|∞ = 0, see Proposition 2.75 and Corol-
lary 2.78, we immediately derive the RTT relation (2.41) for all matrices TD(z), see 
Proposition 2.79 (hence, the terminology “rational Lax matrices”). Combining the latter 
with the key result of [40], see Theorem 2.80, we finally prove Theorem 2.54 in Sec-
tion 2.4.3. We note that similar arguments may be used to prove the triviality of the 
centers of shifted Yangians Yν(g) for any coweight of a semisimple Lie algebra g, see Re-
mark 2.81. The key property of the rational Lax matrices TD(z) is their regularity (up 
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to a rational factor (2.66)), see Theorem 2.67 (the proof of which is based on a certain 
cancelation of poles reminiscent to the one appearing in the work on q-characters [16]
and qq-characters [30], see Remark 2.72). Finally, we derive simplified explicit formulas 
for all rational Lax matrices TD(z) which are linear in z, see Theorem 2.90. In the small-
est rank n = 2 case, those recover the well-known 2 × 2 elementary Lax matrices for the 
Toda chain, the DST chain, and the Heisenberg magnet, see Remark 2.96. We conclude 
Section 2.4 with Remark 2.98, which is three-fold: comparing the complete monodromy 
matrix (2.99) of the Toda chain for GLN to the degree N rational 2 ×2 Lax matrix TD(z)
with D = Nα[∞], identifying the phase spaces of the corresponding classical integrable 
systems with the SU(2)-monopoles of topological charge N , and generalizing the latter to 
SU(2)-monopoles of topological charge N with singularities, thus providing more details 
to our discussion of Section 1.1.

In Section 2.5, we evaluate explicitly some linear (in z) rational Lax matrices TD(z)
and compare them to the linear rational Lax matrices constructed by the first two authors 
in [15] (actually, we treat all the explicit “building blocks” of [15], the fusion of which 
provides the entire family of the rational Lax matrices Lλ,x,μ(z) of [15]).

In Section 2.6, we construct coproduct homomorphisms on antidominantly shifted 
Yangians. We start by constructing homomorphisms Δrtt

−μ1,−μ2
: Y rtt

−μ1−μ2
(gln) →

Y rtt
−μ1

(gln) ⊗ Y rtt
−μ2

(gln) defined via Δrtt
−μ1,−μ2

(T (z)) = T (z) ⊗ T (z) for any μ1, μ2 ∈ Λ+, 
see Proposition 2.136. Evoking the key isomorphism Y−μ(gln) 
 Y rtt

−μ(gln) of The-
orem 2.54, this naturally gives rise to homomorphisms Δ−μ1,−μ2 : Y−μ1−μ2(gln) →
Y−μ1(gln) ⊗ Y−μ2(gln), and we compute the images of the generators in Proposi-
tion 2.143. The latter, in turn, gives rise to homomorphisms Δ−ν1,−ν2 : Y−ν1−ν2(sln) →
Y−ν1(sln) ⊗Y−ν2(sln) for any dominant sln-coweights ν1, ν2 ∈ Λ̄+, see Proposition 2.146, 
thus providing a conceptual and elementary proof of An−1-case of [14, Theorem 4.8]. 
Finally, we note that Δν1,ν2 with ν1, ν2 ∈ −Λ+ actually give rise to homomorphisms 
Δν1,ν2 : Yν1+ν2(sln) → Yν1(sln) ⊗ Yν2(sln) for any ν1, ν2 ∈ Λ̄, due to [14, Theorem 4.12], 
see Remark 2.150.

In Section 2.7, for any Young diagram λ of size |λ| = n, we show that the 
homomorphism Y rtt

�0
(gln) → A determined by the rational Lax matrix TD(z) with 

D =
∑λt

1
i=1 
n−λi

[xi] −
0[∞] is equal (up to a gauge transformation) to a composition 
of the evaluation homomorphism ẽv : Y rtt

�0
(gln) → U(gln) (2.173) and the homomorphism 

U(gln) → A determined by the type λ parabolic Gelfand-Tsetlin formulas (which arise 
naturally from the gln-action in the Gelfand-Tsetlin basis of the type λ parabolic Verma 
module, see (2.166)–(2.168)), see Proposition 2.175. We note that likewise choosing an-
other standard bases of type λ parabolic Verma modules over gln gives rise to all linear 
rational Lax matrices of [15] with μ = ∅ (cf. [36]), see Remark 2.176.

• In Section 3.1, we introduce the shifted Drinfeld quantum affine algebras of gln, 
the algebras Uμ+,μ−(Lgln), where μ+, μ− ∈ Λ are coweights of gln. These alge-
bras depend only on the associated coweights μ̄+, μ̄− ∈ Λ̄ of sln, up to an iso-
morphism, see Lemma 3.13. They also contain the simply-connected versions of the 
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shifted quantum affine algebras of sln (introduced in [18]) via the natural embed-
ding ιμ+,μ− : U sc

μ̄+,μ̄−(Lsln) ↪→ Uμ+,μ−(Lgln), while their centrally enlarged counterparts 
U ′
μ+,μ−(Lgln) of (3.15) contain the adjoint versions of the shifted quantum affine alge-

bras of sln via ιμ+,μ− : Uad
μ̄+,μ̄−(Lsln) ↪→ U ′

μ+,μ−(Lgln), see Proposition 3.16 (generalizing 
the classical embedding Uv(Lsln) ↪→ Uv(Lgln) of quantum loop algebras). Finally, we 
establish the decomposition U ′

μ+,μ−(Lgln) 
 Z ⊗C(v) U
ad
μ̄+,μ̄−(Lsln), see Lemma 3.22, 

where Z ⊂ U ′
μ+,μ−(Lgln) is an explicit central subalgebra (which conjecturally coincides 

with the center of U ′
μ+,μ−(Lgln), see Remark 3.24).

In Section 3.2, we introduce Λ-valued divisors on P 1, Λ+-valued outside {0, ∞} ∈ P 1, 
see (3.26), (3.27). For each such D satisfying an auxiliary condition (3.28) (which en-
codes that the sum of all the coefficients of the divisor D lies in the coroot lattice), we 
construct in Theorem 3.33 an algebra homomorphism ΨD : U−μ+,−μ−(Lgln) → Ãv

frac, 
where μ+ = D|∞ and μ− = μ|0 are the coefficients of D at ∞ and 0, while 
the target Ãv

frac is the algebra of v-difference operators (3.30), see Remark 3.31. 
This construction generalizes the An−1-case of [18, Theorem 7.1] as the composition 
ΨD ◦ ι−μ+,−μ− : Uad

−μ̄+,−μ̄−(Lsln) → Ãv
frac essentially coincides with the homomorphism 

Φ̃λ̄
−μ̄+,−μ̄− : Uad

−μ̄+,−μ̄−(Lsln) → Ãv
frac of [18, Theorem 7.1] (where λ is the sum of all 

coefficients of D outside 0, ∞), see Remark 3.36.
In Section 3.3, we introduce the (antidominantly) shifted RTT quantum affine 

algebras of gln, the algebras U rtt
−μ+,−μ−(Lgln) with μ+, μ− ∈ Λ+ being dominant 

coweights of gln. They are defined via the RTT relation (3.40), the Gauss decompo-
sition (3.42), (3.43), and an additional invertibility condition (3.44). We construct the 
epimorphisms Υ−μ+,−μ− : U−μ+,−μ−(Lgln) � U rtt

−μ+,−μ−(Lgln) for any μ+, μ− ∈ Λ+, 
similar to [9, Main Theorem], see Theorem 3.49. Modulo a trigonometric counterpart 
of [40, Theorem 12], see Conjecture 3.75, we establish in Theorem 3.51 that Υ−μ+,−μ−

are actually isomorphisms for any μ+, μ− ∈ Λ+ (generalizing [9] in the unshifted case 
μ+ = μ− = 0 and [18] in the rank n = 2 case, see Remark 3.52).

In Section 3.4, we construct n ×n trigonometric Lax matrices TD(z) (with coefficients 
in Ãv(z)) for each Λ+-valued divisor D on P 1 satisfying (3.28). They are explicitly defined 
via (3.64), (3.65) combined with (3.56), (3.58), (3.60), while arising naturally as the image 
of the n × n matrices T±(z) (encoding all the generators of U rtt

−μ+,−μ−(Lgln)) under the 

composition ΨD ◦ Υ−1
−μ+,−μ− : U rtt

−μ+,−μ−(Lgln) → Ãv
frac, assuming Theorem 3.51 has 

been established, see (3.53), (3.54). As Theorem 3.51 is well-known for μ+ = μ− = 0
and any Lax matrix TD(z) is a normalized limit of TD̄(z) with D̄|∞ = 0 = D̄|0, see 
Propositions 3.70, 3.71 and Corollary 3.73, we immediately derive the RTT relation (3.40)
for all matrices TD(z), see Proposition 3.74 (hence, the terminology “trigonometric Lax 
matrices”). Combining the latter with the conjectural trigonometric generalization of [40, 
Theorem 12], see Conjecture 3.75, we finally prove Theorem 3.51 in Section 3.4.3. The key 
property of the trigonometric Lax matrices TD(z) is their regularity (up to a rational 
factor (3.67)), see Theorem 3.68. Similar to Theorem 2.67, we also derive simplified 
explicit formulas for all trigonometric Lax matrices TD(z) which are linear in z, see 
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Theorem 3.77. These formulas may be related to the v-deformed parabolic Gelfand-
Tsetlin formulas in spirit of Proposition 2.175, see Remark 3.81. Noticing that all linear 
trigonometric Lax matrices TD(z) are of the form z · T+ − T− with T+, T− being z-
independent matrices, we find a criteria on the matrices T+, T− so that zT+ − T−

satisfies the trigonometric RTT relation (3.82), see Proposition 3.85. Finally, we explain 
how the trigonometric Lax matrices T trig

∗ (z) of Section 3.4.1 may be degenerated into 
the rational Lax matrices T rat

∗ (z) of Section 2.4.1, see Proposition 3.94.
In Section 3.5, we apply Theorem 3.77 to evaluate explicitly all linear trigonometric 

Lax matrices TD(z) for n = 2, thus generalizing the three Lax matrices of [18], see 
Remark 3.104.

In Section 3.6, we construct coproduct homomorphisms on antidominantly shifted 
quantum affine algebras. We start by constructing algebra homomorphisms (see Propo-
sition 3.106)

Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2

: U rtt
−μ+

1 −μ+
2 ,−μ−

1 −μ−
2
(Lgln) −→ U rtt

−μ+
1 ,−μ−

1
(Lgln) ⊗ U rtt

−μ+
2 ,−μ−

2
(Lgln)

defined via Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2
(T±(z)) = T±(z) ⊗ T±(z) for any μ+

1 , μ
−
1 , μ

+
2 , μ

−
2 ∈ Λ+. 

Evoking the key isomorphism U−μ+,−μ−(Lgln) ∼−→U rtt
−μ+,−μ−(Lgln) of Theorem 3.51, 

this gives rise to

Δ−μ+
1 ,−μ−

1 ,−μ+
2 ,−μ−

2
: U−μ+

1 −μ+
2 ,−μ−

1 −μ−
2
(Lgln) −→ U−μ+

1 ,−μ−
1
(Lgln) ⊗ U−μ+

2 ,−μ−
2
(Lgln).

The latter, in turn, gives rise to algebra homomorphisms

Δ−ν+
1 ,−ν−

1 ,−ν+
2 ,−ν−

2
: U sc

−ν+
1 −ν+

2 ,−ν−
1 −ν−

2
(Lsln) −→ U sc

−ν+
1 ,−ν−

1
(Lsln) ⊗ U sc

−ν+
2 ,−ν−

2
(Lsln)

for any dominant sln-coweights ν+
1 , ν−1 , ν+

2 , ν−2 ∈ Λ̄+, see Proposition 3.113, thus recov-
ering and providing a more conceptual and simpler proof of [18, Theorem 10.16]. The 
latter give rise to homomorphisms

Δν+
1 ,ν−

1 ,ν+
2 ,ν−

2
: U sc

ν+
1 +ν+

2 ,ν−
1 +ν−

2
(Lsln) −→ U sc

ν+
1 ,ν−

1
(Lsln) ⊗ U sc

ν+
2 ,ν−

2
(Lsln)

for any sln–coweights ν+
1 , ν−1 , ν+

2 , ν−2 ∈ Λ̄, due to [18, Theorem 10.20], see Remark 3.115.
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2. Rational Lax matrices

2.1. Shifted Drinfeld Yangians of gln

Consider the lattice Λ∨ = ⊕n
j=1Zε

∨
j associated with the standard module of gln, so 

that α∨
i := ε∨i − ε∨i+1 (1 ≤ i < n) are the standard simple positive roots of sln. Let 

Λ = ⊕n
j=1Zεj be the dual lattice so that ε∨i (εj) = δi,j . We will also need its alternative 

Z-basis: Λ = ⊕n−1
i=0 Z
i with 
i := − 

∑n
j=i+1 εj . For μ ∈ Λ, define d = {dj}nj=1 ∈ Zn and 

b = {bi}n−1
i=1 ∈ Zn−1 via

dj := ε∨j (μ), bi := α∨
i (μ) = di − di+1. (2.1)

Fix a gln–coweight μ ∈ Λ. Define the shifted Drinfeld Yangian of gln, de-
noted by Yμ(gln), to be the associative C-algebra generated by {E(r)

i , F (r)
i }r≥1

1≤i<n ∪
{D(si)

i , D̃(s̃i)
i }si≥di,s̃i≥−di

1≤i≤n with the following defining relations (for all admissible 
i, j, r, s, t):

D
(di)
i = 1,

r+di∑
t=di

D
(t)
i D̃

(r−t)
i = −δr,0, [D(r)

i , D
(s)
j ] = 0, (2.2)

[E(r)
i , F

(s)
j ] = −δi,j

r+s−1−di+1∑
t=−di

D̃
(t)
i D

(r+s−t−1)
i+1 , (2.3)

[D(r)
i , E

(s)
j ] = (δi,j+1 − δi,j)

r−1∑
t=di

D
(t)
i E

(r+s−t−1)
j , (2.4)

[D(r)
i , F

(s)
j ] = (δi,j − δi,j+1)

r−1∑
t=di

F
(r+s−t−1)
j D

(t)
i , (2.5)

[E(r)
i , E

(s)
i ] =

r−1∑
t=1

E
(t)
i E

(r+s−t−1)
i −

s−1∑
t=1

E
(t)
i E

(r+s−t−1)
i , (2.6)

[F (r)
i , F

(s)
i ] =

s−1∑
t=1

F
(r+s−t−1)
i F

(t)
i −

r−1∑
t=1

F
(r+s−t−1)
i F

(t)
i , (2.7)

[E(r+1)
i , E

(s)
i+1] − [E(r)

i , E
(s+1)
i+1 ] = −E

(r)
i E

(s)
i+1, (2.8)
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[F (r+1)
i , F

(s)
i+1] − [F (r)

i , F
(s+1)
i+1 ] = F

(s)
i+1F

(r)
i , (2.9)

[E(r)
i , E

(s)
j ] = 0 if |i− j| > 1, (2.10)

[F (r)
i , F

(s)
j ] = 0 if |i− j| > 1, (2.11)

[E(r)
i , [E(s)

i , E
(t)
j ]] + [E(s)

i , [E(r)
i , E

(t)
j ]] = 0 if |i− j| = 1, (2.12)

[F (r)
i , [F (s)

i , F
(t)
j ]] + [F (s)

i , [F (r)
i , F

(t)
j ]] = 0 if |i− j| = 1. (2.13)

Remark 2.14. (a) For μ = 0, this definition recovers the Drinfeld Yangian of gln, see [8]
and [4, Theorem 5.2] (to be more precise, multiplying E(r)

i , F (r)
i , D(r)

i , D̃(r)
i by (−1)r

the relations (2.2)–(2.13) transform into the defining relations (5.7–5.20) of [4], cf. Re-
mark 2.51). We note that the conventions r ≥ 1 instead of r ≥ 0 are in charge of 
perceiving the Yangian as a QFSHA (quantum formal series Hopf algebra) which is re-
lated to a more standard viewpoint of it as a QUEA (quantum universal enveloping 
algebra) via the so-called Drinfeld-Gavarini quantum duality principle.
(b) Similar to [4, Remark 5.3], the relations (2.6) and (2.7) are equivalent to the relations

[E(r+1)
i , E

(s)
i ] − [E(r)

i , E
(s+1)
i ] = E

(r)
i E

(s)
i + E

(s)
i E

(r)
i , (2.15)

[F (r+1)
i , F

(s)
i ] − [F (r)

i , F
(s+1)
i ] = −F

(r)
i F

(s)
i − F

(s)
i F

(r)
i . (2.16)

Let Λ̄ = ⊕n−1
i=1 Zωi be the coweight lattice of sln, where {ωi}n−1

i=1 are the standard 
fundamental coweights of sln. There is a natural Z-linear projection Λ → Λ̄, μ �→ μ̄, 
defined via:

α∨
i (μ̄) = α∨

i (μ) for 1 ≤ i ≤ n− 1.

Equivalently, we have 
̄0 = 0 and 
̄i = ωi for 1 ≤ i ≤ n − 1.
The algebra Yμ(gln) depends only on the associated sln–coweight μ̄, up to an isomor-

phism:

Lemma 2.17. For gln–coweights μ1, μ2 ∈ Λ such that μ̄1 = μ̄2 in Λ̄, the assignment

E
(r)
i �→ E

(r)
i , F

(r)
i �→ F

(r)
i , D

(si)
i �→ D

(si−ε∨i (μ1−μ2))
i , D̃

(s̃i)
i �→ D̃

(s̃i+ε∨i (μ1−μ2))
i (2.18)

gives rise to a C-algebra isomorphism Yμ1(gln) ∼−→Yμ2(gln).

Proof. The assignment (2.18) is clearly compatible with the defining relations (2.2)–
(2.13), thus, it gives rise to a C-algebra homomorphism Yμ1(gln) → Yμ2(gln). Switching 
the roles of μ1 and μ2, we obtain the inverse homomorphism Yμ2(gln) → Yμ1(gln). Hence, 
the result. �
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We define the generating series of the above generators as follows:

Ei(z) :=
∑
r≥1

E
(r)
i z−r, Fi(z) :=

∑
r≥1

F
(r)
i z−r,

Di(z) :=
∑
r≥di

D
(r)
i z−r, D̃i(z) :=

∑
r≥−di

D̃
(r)
i z−r = −Di(z)−1.

The algebras Yμ(gln) slightly generalize the shifted (Drinfeld) Yangians of sln, de-
noted by Yν(sln) in [3, Definition B.2], where ν ∈ Λ̄ is an sln–coweight. Recall that 
the latter is an associative C-algebra generated by {E(r)

i , F(r)
i , H(si)

i }r≥1,si≥−bi
1≤i<n with the 

defining relations of [3, Definition B.1] and H(−bi)
i = 1, where bi := α∨

i (ν). We define the 
generating series

Ei(z) :=
∑
r≥1

E(r)
i z−r, Fi(z) :=

∑
r≥1

F(r)
i z−r, Hi(z) :=

∑
r≥−bi

H(r)
i z−r.

The explicit relation between the shifted Drinfeld Yangians of sln and gln is as follows:

Proposition 2.19. For any μ ∈ Λ, there exists a C-algebra embedding

ιμ : Yμ̄(sln) ↪→ Yμ(gln), (2.20)

uniquely determined by

Ei(z) �→ Ei

(
z + i

2

)
, Fi(z) �→ Fi

(
z + i

2

)
, Hi(z) �→ −D̃i

(
z + i

2

)
Di+1

(
z + i

2

)
.

(2.21)

Remark 2.22. For μ = 0, this recovers the classical embedding Y (sln) ↪→ Y (gln) of 
Yangians.

Proof of Proposition 2.19. As in the μ = 0 case (see Remark 2.22), it is straightforward 
to see that the assignment (2.21) is compatible with the defining relations of Yμ̄(sln), 
giving rise to a C-algebra homomorphism ιμ : Yμ̄(sln) → Yμ(gln). It remains to establish 
the injectivity of ιμ.

To this end, we first note that the coefficients of the series

C(z) = z−d1−...−dn +
∑

s>d1+...+dn

Csz
−s := D1(z)D2(z + 1) · · ·Dn(z + n− 1) (2.23)

are in the center of Yμ(gln), due to the defining relations (2.2), (2.4), (2.5), cf. [4, Theo-
rem 7.2].
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Second, given an abstract polynomial algebra B = C[{D(ri)
i }ri>di

1≤i≤n], define the ele-
ments {Cs}s>d1+...+dn

and {D̄(si)
i }si>di+1−di

1≤i<n of B, respectively via the formula (2.23)
and

D̄i(z) := zdi−di+1 +
∑

s>di+1−di

D̄
(s)
i z−s = Di(z)−1Di+1(z),

where we set Di(z) := z−di +
∑

r>di
D

(r)
i z−r. It is clear that {D̄(si)

i }si>di+1−di

1≤i<n ∪
{Cs}s>d1+...+dn

provide an alternative collection of generators of the polynomial algebra 
B, so that we have:

B 
 C[{Cs}s>d1+...+dn
] ⊗C C[{D̄(si)

i }si>di+1−di

1≤i<n ].

Applying this in our setup, we get the decomposition Yμ(gln) 
 Z ⊗C Y ′
μ(gln), where 

Z is a C-subalgebra generated by {Cs}s>d1+...+dn
and Y ′

μ(gln) is the C-subalgebra gener-
ated by {E(r)

i , F (r)
i , D̄(si)

i }r≥1,si>di+1−di

1≤i<n . Furthermore, the defining relations (2.3)–(2.5)
are equivalent to the subalgebra Z being central (as explained above) and the com-
mutation relations between D̄(s)

i and E(r)
j , F (r)

j exactly matching those of Yμ̄(sln)
through (2.21). Thus, ιμ is injective. �

The above proof implies the shifted version of the decomposition from [29, Theo-
rem 1.8.2]:

Corollary 2.24. There is a C-algebra isomorphism

Yμ(gln) 
 C[{Cs}s>d1+...+dn
] ⊗C Yμ̄(sln). (2.25)

In particular, Yμ̄(sln) may be realized both as a subalgebra of Yμ(gln) via (2.20) and as 
a quotient algebra of Yμ(gln) by the central ideal (Cs − bs)s>d1+...+dn

for any collection 
of bs ∈ C.

The following result provides a shifted version of the remaining part of [29, Theo-
rem 1.8.2]:

Lemma 2.26. (a) The center of the shifted Yangian Yν(sln) is trivial for any shift ν ∈ Λ̄.
(b) The center of the shifted Yangian Yμ(gln) coincides with C[{Cs}s>d1+...+dn

] for any 
μ ∈ Λ.

As we will not use Lemma 2.26 in the rest of this paper, we will only sketch the 
proof of part (a) in Remark 2.81, crucially using the result of [40] discussed below. 
Part (b) follows immediately from (a), the decomposition (2.25), and the centrality of 
Cs established above.
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2.2. Homomorphism ΨD

In this section, we generalize [3, Theorem B.15] for the type An−1 Dynkin diagram 
with arrows pointing i → i +1 for 1 ≤ i ≤ n −2 by replacing Yμ̄(sln) from Theorem B.15 
of [3] with Yμ(gln).

Remark 2.27. While similar generalizations exist for all orientations of An−1 Dynkin 
diagram, for the purposes of this paper it suffices to consider only the above orientation, 
see Remark 2.73.

A gln–coweight λ ∈ Λ will be called dominant, which we denote by λ ∈ Λ+, if the 
corresponding sln–coweight λ̄ is dominant (denoted by λ̄ ∈ Λ̄+), that is α∨

i (λ̄) ∈ N for 
1 ≤ i ≤ n − 1. Thus, 

∑n−1
i=0 ci
i is dominant iff ci ∈ N for 1 ≤ i ≤ n − 1.

A Λ-valued divisor D on P 1, Λ+-valued outside {∞} ∈ P 1, is a formal sum

D =
∑

1≤s≤N

γs
is [xs] + μ[∞] (2.28)

with N ∈ N, 0 ≤ is < n, xs ∈ C, γs =
{

1 if is �= 0
±1 if is = 0

, and μ ∈ Λ. We will write 

μ = D|∞. If μ ∈ Λ+, we call D a Λ+-valued divisor on P 1. It will be convenient to 
present

D =
∑

x∈P1\{∞}
λx[x] + μ[∞] with λx ∈ Λ+, (2.29)

related to (2.28) via λx :=
∑xs=x

1≤s≤N γs
is . Set λ :=
∑N

s=1 γs
is ∈ Λ+. Let {αi}n−1
i=1 ⊂ Λ

be the simple coroots of sln, that is αi = εi − εi+1. Following [3], we make the following

Assumption: λ + μ = a1α1 + . . . + an−1αn−1 with ai ∈ N. (2.30)

Remark 2.31. (2.30) is equivalent to 
∑n

j=1 ε
∨
j (λ + μ) = 0 and 

∑i
j=1 ε

∨
j (λ + μ) ∈ N for 

1 ≤ i < n.

Consider the associative C-algebra

A = C〈pi,r, e±qi,r , (pi,r − pi,s + m)−1〉1≤r 
=s≤ai

1≤i<n,m∈Z (2.32)

with the defining relations

[e±qi,r , pj,s] = ∓δi,jδr,se
±qi,r , [pi,r, pj,s] = 0 = [eqi,r , eqj,s ], e±qi,re∓qi,r = 1.
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Remark 2.33. This algebra A can be represented in the algebra of difference operators 
with rational coefficients on functions of {pi,r}1≤r≤ai

1≤i<n by taking e∓qi,r to be a difference 
operator D±1

i,r that acts as

(D±1
i,rΨ)(p1,1, . . . , pi,r, . . . , pn−1,an−1) = Ψ(p1,1, . . . , pi,r ± 1, . . . , pn−1,an−1).

For 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1, we define

Zi(z) :=
is=i∏

1≤s≤N

(z − xs)γs =
∏

x∈P1\{∞}
(z − x)α

∨
i (λx),

Pj(z) :=
aj∏
r=1

(z − pj,r), Pj,r(z) :=
s 
=r∏

1≤s≤aj

(z − pj,s),

(2.34)

where α∨
0 := −ε∨1 . We also define

a0 := 0, an := 0, P0(z) := 1, Pn(z) := 1.

The following result generalizes An−1-case of [3, Theorem B.15] stated for semisimple 
Lie algebras g (preceded by [21] for the trivial shift and by [27] for dominant shifts):

Theorem 2.35. Let D be as above and μ = D|∞. There is a unique C-algebra homomor-
phism

ΨD : Y−μ(gln) −→ A (2.36)

such that

Ei(z) �→ −
ai∑
r=1

Pi−1(pi,r − 1)Zi(pi,r)
(z − pi,r)Pi,r(pi,r)

eqi,r ,

Fi(z) �→
ai∑
r=1

Pi+1(pi,r + 1)
(z − pi,r − 1)Pi,r(pi,r)

e−qi,r ,

Di(z) �→
Pi(z)

Pi−1(z − 1)
∏

0≤k<i

Zk(z) = Pi(z)
Pi−1(z − 1)

∏
x∈P1\{∞}

(z − x)−ε∨i (λx).

(2.37)

Remark 2.38. Consider a decomposition λ̄ =
∑is 
=0

1≤s≤N ωis and assign zs :=xs − is+1
2 ∈C

to the s-th summand. Identifying A of (2.32) with Ã of [3, §B(ii)] (with zi of [3] specialized 
to complex numbers) via pi,r ↔ wi,r + i

2 and e±qi,r ↔ u∓1
i,r , the (restriction) composition 

Y−μ̄(sln) ι−μ−−→ Y−μ(gln) ΨD−−→ A is just the homomorphism Φλ̄
−μ̄ of [3, Theorem B.15].

Proof of Theorem 2.35. First, we need to verify that under the above assignment (2.37), 
the image of Di(z) is of the form zdi + (lower order terms in z). Let degi denote the 
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leading power of z in the image of Di(z) (clearly the coefficient of zdegi equals 1). Then, 
indeed we have

degi = ai−ai−1−
∑

x∈P1\{∞}
ε∨i (λx) = ai−ai−1−ε∨i (λ) = ai−ai−1−(ai−ai−1−ε∨i (μ)) = di.

Evoking the decomposition (2.25), it suffices to prove that the restrictions of the 
assignment (2.37) to the subalgebras Y−μ̄(sln) and C[{Cs}s>−(d1+...+dn)] determine al-
gebra homomorphisms, whose images commute. The former is clear for the restriction to 
Y−μ̄(sln), due to Theorem B.15 of [3] combined with Remark 2.38 above. On the other 
hand, we have

ΨD(C(z)) =
n∏

i=1

∏
x∈P1\{∞}

(z + i− 1 − x)−ε∨i (λx) =
N∏
s=1

n−1∏
k=is

(z − xs + k)γs . (2.39)

Thus, the restriction of ΨD to the polynomial algebra C[{Cs}s>−(d1+...+dn)] defines 
an algebra homomorphism, whose image is central in A. This completes our proof of 
Theorem 2.35. �
2.3. Antidominantly shifted RTT Yangians of gln

Consider the rational R-matrix Rrat(z) = zId + P , where P =
∑n

i,j=1 Eij ⊗ Eji ∈
(EndCn)⊗2 is the permutation operator. It satisfies the Yang-Baxter equation with a 
spectral parameter:

Rrat;12(u)Rrat;13(u + v)Rrat;23(v) = Rrat;23(v)Rrat;13(u + v)Rrat;12(u). (2.40)

Fix μ ∈ Λ+. Define the (antidominantly) shifted RTT Yangian of gln, denoted by 
Y rtt
−μ(gln), to be the associative C-algebra generated by {t(r)ij }r∈Z1≤i,j≤n subject to the fol-

lowing two families of relations:

• The first family of relations may be encoded by a single RTT relation

Rrat(z − w)T1(z)T2(w) = T2(w)T1(z)Rrat(z − w), (2.41)

where T (z) ∈ Y rtt
−μ(gln)[[z, z−1]] ⊗C EndCn is defined via

T (z) =
∑
i,j

tij(z) ⊗Eij with tij(z) :=
∑
r∈Z

t
(r)
ij z−r. (2.42)

Thus, (2.41) is an equality in Y rtt
−μ(gln)[[z, z−1, w, w−1]] ⊗C (End Cn)⊗2.
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• The second family of relations encodes the fact that T (z) admits the Gauss decom-
position:

T (z) = F (z) ·G(z) · E(z), (2.43)

where F (z), G(z), E(z) ∈ Y rtt
−μ(gln)((z−1)) ⊗C EndCn are of the form

F (z) =
∑
i

Eii +
∑
i<j

fji(z) ⊗Eji, G(z) =
∑
i

gi(z) ⊗Eii,

E(z) =
∑
i

Eii +
∑
i<j

eij(z) ⊗ Eij ,

with the matrix coefficients having the following expansions in z:

eij(z) =
∑
r≥1

e
(r)
ij z−r, fji(z) =

∑
r≥1

f
(r)
ji z−r, gi(z) = zdi +

∑
r≥1−di

g
(r)
i z−r, (2.44)

where {e(r)
ij , f (r)

ji }r≥1
1≤i<j≤n ∪ {g(si)

i }si≥1−di

1≤i≤n ⊂ Y rtt
−μ(gln).

Remark 2.45. (a) For μ = 0, the second family of relations (2.43), (2.44) is equivalent to 
the relations t(r)ij = 0 for r < 0 and t(0)ij = δi,j . Thus, Y rtt

0 (gln) is the RTT Yangian of 
gln of [17].
(b) Likewise, (2.44) is equivalent to a certain family of algebraic relations on t(r)ij , 
which can be best understood in terms of the quasi-determinants (as defined by 
I. Gelfand and V. Retakh in [24]) following [4, (5.2–5.4)]. In particular, we have 
T (z) ∈ Y rtt

−μ(gln)((z−1)) ⊗C EndCn. For example, (2.44) for i = 1 are equivalent to:

t
(−d1)
11 = 1 and t

(r)
11 = 0 for r < −d1, t

(r)
1j = 0 = t

(r)
j1 for r ≤ −d1, 1 < j ≤ n.

(c) If μ /∈ Λ+, then the above two families of relations are contradictive and thus the 
algebra Y rtt

−μ(gln) is trivial, see Remark 2.50.
(d) If μ1, μ2 ∈ Λ+ satisfy μ̄1 = μ̄2 ∈ Λ̄, that is, μ2 = μ1 + c
0 with c ∈ Z, then the as-
signment T (z) �→ zcT (z) gives rise to a C-algebra isomorphism Y rtt

−μ1
(gln) ∼−→Y rtt

−μ2
(gln), 

cf. Lemma 2.17.

Lemma 2.46. For any 1 ≤ i < j ≤ n and r ≥ 1, we have the following identities:

e
(r)
ij = [e(1)

j−1,j , [e
(1)
j−2,j−1, · · · , [e

(1)
i+1,i+2, e

(r)
i,i+1] · · · ]],

f
(r)
ji = [[· · · [f (r)

i+1,i, f
(1)
i+2,i+1], · · · , f

(1)
j−1,j−2], f

(1)
j,j−1].

(2.47)

Proof. The proof is analogous to that of [4, (5.5)] (see also [19, Corollary 2.23]). �
Corollary 2.48. The algebra Y rtt

−μ(gln) is generated by {e(r)
i,i+1, f

(r)
i+1,i, g

(sj)
j }r≥1,sj≥1−dj

1≤i<n,1≤j≤n.
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The following result is proved completely analogously to [4, Lemmas 5.4, 5.5, 5.7]:

Lemma 2.49. The following identities hold:
(a) [gi(z), gj(w)] = 0;
(b) (z − w)[gi(z), ej,j+1(w)] = (δi,j − δi,j+1)gi(z)(ej,j+1(z) − ej,j+1(w));
(c) (z − w)[gi(z), fj+1,j(w)] = (δi,j+1 − δi,j)(fj+1,j(z) − fj+1,j(w))gi(z);
(d) [ei,i+1(z), fj+1,j(w)] = 0 if i �= j;
(e) (z − w)[ei,i+1(z), fi+1,i(w)] = gi(w)−1gi+1(w) − gi(z)−1gi+1(z);
(f) (z − w)[ei,i+1(z), ei,i+1(w)] = −(ei,i+1(z) − ei,i+1(w))2;
(g) (z − w)[ei,i+1(z), ei+1,i+2(w)] = −ei,i+1(z)ei+1,i+2(w) + ei,i+1(w)ei+1,i+2(w) −
ei,i+2(w) + ei,i+2(z);
(h) [ei,i+1(z), ej,j+1(w)] = 0 if |i − j| > 1;
(i) [ei,i+1(z1), [ei,i+1(z2), ej,j+1(w)]] +[ei,i+1(z2), [ei,i+1(z1), ej,j+1(w)]] = 0 if |i − j| = 1;
(j) (z − w)[fi+1,i(z), fi+1,i(w)] = (fi+1,i(z) − fi+1,i(w))2;
(k) (z − w)[fi+1,i(z), fi+2,i+1(w)] = fi+2,i+1(w)fi+1,i(z) − fi+2,i+1(w)fi+1,i(w) +
fi+2,i(w) − fi+2,i(z);
(l) [fi+1,i(z), fj+1,j(w)] = 0 if |i − j| > 1;
(m) [fi+1,i(z1), [fi+1,i(z2), fj+1,j(w)]] +[fi+1,i(z2), [fi+1,i(z1), fj+1,j(w)]] = 0 if |i −j| = 1.

Remark 2.50. If di < di+1 for some 1 ≤ i < n, then the right-hand side of the identity 
in Lemma 2.49(e) contains monomials zdi+1−di and wdi+1−di , while all monomials in 
the left-hand side have negative degrees. Thus, the defining relations of Y rtt

−μ(gln) are 
contradictive unless μ is dominant (see [18, Remark 11.14] for the trigonometric sl2-
counterpart of this conclusion).

Remark 2.51. The right-hand sides in all identities of Lemma 2.49 have opposite signs to 
those of [4, §5], due to a different choice of the R-matrix R(z) = zId − P = −Rrat(−z)
in [4].

Comparing the identities of Lemma 2.49 with the defining relations (2.2)–(2.13) of 
Y−μ(gln) and evoking Corollary 2.48, we immediately obtain:

Theorem 2.52. For any μ ∈ Λ+, there is a unique C-algebra epimorphism

Υ−μ : Y−μ(gln) � Y rtt
−μ(gln)

defined by

Ei(z) �→ ei,i+1(z), Fi(z) �→ fi+1,i(z), Dj(z) �→ gj(z). (2.53)

Our first main result (the proof of which is postponed till Section 2.4.3) is:

Theorem 2.54. Υ−μ : Y−μ(gln) ∼−→Y rtt
−μ(gln) is a C-algebra isomorphism for any μ ∈ Λ+.
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Remark 2.55. (a) For μ = 0 and any n, the isomorphism Υ0 : Y (gln) ∼−→Y rtt(gln) of 
Theorem 2.54 was stated in [8], but was properly established only in [4, Theorem 5.2].
(b) For n = 2 and μ ∈ Λ+, a long straightforward verification shows (see [18, Re-
mark 11.17]) that the assignment

t11(z) �→ D1(z), t22(z) �→ F1(z)D1(z)E1(z) + D2(z),

t12(z) �→ D1(z)E1(z), t21(z) �→ F1(z)D1(z),

gives rise to an algebra homomorphism Y rtt
−μ(gl2) → Y−μ(gl2) (the trigonometric sl2-

counterpart of this result has been properly established in [18, Theorem 11.11]), which 
is clearly the inverse of Υ−μ. Thus, Theorem 2.54 for n = 2 is essentially due to [18].

2.4. Rational Lax matrices via antidominantly shifted Yangians of gln

In this section, we construct n × n rational Lax matrices TD(z) (with coefficients 
in A((z−1))) for each Λ+-valued divisor D on P 1 satisfying (2.30). They are explicitly 
defined via (2.63), (2.64) combined with (2.58), (2.60), (2.62). We note that these long 
formulas arise naturally as the image of T (z) ∈ Y rtt

−μ(gln)((z−1)) ⊗C EndCn under the 
composition ΨD ◦ Υ−1

−μ : Y rtt
−μ(gln) → A, assuming Theorem 2.54 has been established, 

see (2.56), (2.57). As the name indicates, these TD(z) satisfy the RTT relation (2.41), 
which is derived in Proposition 2.79. Combining the latter with the results of [40], see 
Theorem 2.80, we finally prove Theorem 2.54 in Section 2.4.3. We also establish the 
regularity (up to a rational factor (2.66)) of TD(z) in Theorem 2.67, and find simplified 
explicit formulas for those TD(z) which are linear in z in Theorem 2.90.

2.4.1. Construction of TD(z) and their regularity
Consider a Λ+-valued divisor D on P 1, see (2.28), satisfying the assumption (2.30). 

Note that μ := D|∞ ∈ Λ+. Assuming the validity of Theorem 2.54, let us compose 
ΨD : Y−μ(gln) → A of (2.36) with Υ−1

−μ : Y rtt
−μ(gln) ∼−→Y−μ(gln) to obtain an algebra 

homomorphism

ΘD = ΨD ◦ Υ−1
−μ : Y rtt

−μ(gln) −→ A. (2.56)

Such a homomorphism is uniquely determined by TD(z) ∈ A((z−1)) ⊗C EndCn defined 
via

TD(z) := ΘD(T (z)) = ΘD(F (z)) · ΘD(G(z)) · ΘD(E(z)). (2.57)

Let us compute explicitly the images of the matrices F (z), G(z), E(z) under ΘD, which 
shall provide an explicit formula for the matrix TD(z) via (2.57).

Combining Υ−1
−μ(gi(z)) = Di(z) with the formula for ΨD(Di(z)), we obtain:

ΘD(gi(z)) = Pi(z)
Pi−1(z − 1)

∏
Zk(z) = Pi(z)

Pi−1(z − 1)
∏
1

(z − x)−ε∨i (λx). (2.58)

0≤k<i x∈P \{∞}
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Combining Υ−1
−μ(ei,i+1(z)) = Ei(z) with the formula for ΨD(Ei(z)), we obtain:

ΘD(ei,i+1(z)) = −
ai∑
r=1

Pi−1(pi,r − 1)Zi(pi,r)
(z − pi,r)Pi,r(pi,r)

eqi,r . (2.59)

As eij(z) = [e(1)
j−1,j , · · · , [e

(1)
i+1,i+2, ei,i+1(z)] · · · ] due to (2.47), we thus get (cf. [19, (2.29)]):

ΘD(eij(z)) =

−
∑

1≤ri≤ai···
1≤rj−1≤aj−1

Pi−1(pi,ri − 1)
∏j−2

k=i Pk,rk(pk+1,rk+1 − 1)
(z − pi,ri)

∏j−1
k=i Pk,rk(pk,rk)

·
j−1∏
k=i

Zk(pk,rk) · e
∑j−1

k=i qk,rk .

(2.60)

Combining Υ−1
−μ(fi+1,i(z)) = Fi(z) with the formula for ΨD(Fi(z)), we obtain:

ΘD(fi+1,i(z)) =
ai∑
r=1

Pi+1(pi,r + 1)
(z − pi,r − 1)Pi,r(pi,r)

e−qi,r . (2.61)

As fji(z) = [· · · [fi+1,i(z), f (1)
i+2,i+1], · · · , f

(1)
j,j−1] due to (2.47), we thus get (cf. [19, (2.30)]):

ΘD(fji(z)) =∑
1≤ri≤ai···

1≤rj−1≤aj−1

Pj(pj−1,rj−1 + 1)
∏j−1

k=i+1 Pk,rk(pk−1,rk−1 + 1)
(z − pi,ri − 1)

∏j−1
k=i Pk,rk(pk,rk)

· e−
∑j−1

k=i qk,rk . (2.62)

While the above derivation of the formulas (2.58), (2.60), (2.62) is based on yet un-
proved Theorem 2.54, we shall use their explicit right-hand sides from now on, without 
any direct referral to Theorem 2.54. More precisely, let us define A((z−1))-valued n × n

diagonal matrix GD(z), an upper-triangular matrix ED(z), and a lower-triangular ma-
trix FD(z), whose matrix coefficients gDi (z), eDij(z), fD

ji (z) are given by the right-hand 
sides of (2.58), (2.60), (2.62) expanded in z−1, respectively. Thus, we amend (2.57) and 
define

TD(z) := FD(z)GD(z)ED(z), (2.63)

so that the matrix coefficients of TD(z) are given by

TD(z)α,β =
min{α,β}∑

fD
α,i(z) · gDi (z) · eDi,β(z) (2.64)
i=1



R. Frassek et al. / Advances in Mathematics 401 (2022) 108283 23
for any 1 ≤ α, β ≤ n, where the three factors in the right-hand side of (2.64) are deter-
mined via (2.62), (2.58), (2.60), respectively, with the conventions fD

α,α(z) = 1 = eDβ,β(z).

Remark 2.65. We note that TD(z) is singular at x ∈ C if and only if λx �= 0. As FD(z) and 
ED(z) are regular in the neighborhood of x, while GD(z) = (regular part) · (z − x)−λx , 
we see that in the classical limit TD(z) represents a GLn-multiplicative Higgs field on 
P 1 with a framing at ∞ ∈ P 1 (rational type) and with prescribed singularities on D, 
cf. [12].

We shall also need the following normalized rational Lax matrices:

TD(z) := TD(z)
Z0(z)

, (2.66)

with the normalization factor determined via (2.34):

1
Z0(z)

=
is=0∏

1≤s≤N

(z − xs)−γs =
∏

x∈P1\{∞}
(z − x)−α∨

0 (λx).

The first main result of this section establishes the regularity of these matrices:

Theorem 2.67. We have TD(z) ∈ A[z] ⊗C EndCn.

Proof. In view of (2.64), it suffices to prove for any 1 ≤ α, β ≤ n that

1
Z0(z)

min{α,β}∑
i=1

fD
α,i(z) · gDi (z) · eDi,β(z) is polynomial in z, (2.68)

where the factors in the right-hand side are determined via (2.62), (2.58), (2.60), respec-
tively.

The i-th summand in (2.68) is explicitly given by

Z0(z)−1 · fD
α,i(z) · gDi (z) · eDi,β(z) =

−
∑

1≤ri≤ai···
1≤rα−1≤aα−1

Pi+1,ri+1(pi,ri + 1) · · ·Pα−1,rα−1(pα−2,rα−2 + 1)Pα(pα−1,rα−1 + 1)
(z − pi,ri − 1)Pi,ri(pi,ri) · · ·Pα−1,rα−1(pα−1,rα−1)

× e−qi,ri−qi+1,ri+1−...−qα−1,rα−1 · Pi(z)
Pi−1(z − 1) · Z1(z) · · ·Zi−1(z)

×
∑

1≤si≤ai···
1≤sβ−1≤aβ−1

Pi−1(pi,si − 1)Pi,si(pi+1,si+1 − 1) · · ·Pβ−2,sβ−2(pβ−1,sβ−1 − 1)
(z − pi,si)Pi,si(pi,si) · · ·Pβ−1,sβ−1(pβ−1,sβ−1)

× Z (p ) · · ·Z (p ) · eqi,si+qi+1,si+1+...+qβ−1,sβ−1 .

(2.69)
i i,si β−1 β−1,sβ−1
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Moving e−qi,ri−...−qα−1,rα−1 to the rightmost side, we rewrite the right-hand side of 
(2.69) as

1≤si≤ai···
1≤sβ−1≤aβ−1∑

1≤ri≤ai···
1≤rα−1≤aα−1

Q
si,...,sβ−1
ri,...,rα−1(z) · e−qi,ri−...−qα−1,rα−1 · eqi,si+...+qβ−1,sβ−1 .

The coefficient Qsi,...,sβ−1
ri,...,rα−1(z) is a rational function in z with simple poles at:

• {1 + pi−1,s | 1 ≤ s ≤ ai−1} if ri �= si;
• {1 + pi−1,s | 1 ≤ s ≤ ai−1} ∪ {1 + pi,ri} if ri = si.

Thus, the only (at most simple) poles of (2.68) are at {1+pi,r|1≤ i<min{α, β}, 1≤r≤ai}.
The following straightforward result actually shows that the residues at these points van-
ish:

Lemma 2.70. For any 1 ≤ i < min{α, β}, 1 ≤ r ≤ ai, and any admissible collection of 
indices ri+1, . . . , rα−1, si+1, . . . , sβ−1, we have the equality

Resz=1+pi,r

(
Q

si+1,...,sβ−1
ri+1,...,rα−1(z)dz

)
+ Resz=1+pi,r

(
Q

r,si+1,...,sβ−1
r,ri+1,...,rα−1(z)dz

)
= 0. (2.71)

Proof of Lemma 2.70. Applying the explicit formula (2.69), we find

Q
si+1,...,sβ−1
ri+1,...,rα−1(z)e−qi+1,ri+1

= A

z − pi+1,ri+1 − 1 · e−qi+1,ri+1 · Pi+1(z)
Pi(z − 1) · Zi(z) ·

Pi(pi+1,si+1 − 1)
z − pi+1,si+1

and

Q
r,si+1,...,sβ−1
r,ri+1,...,rα−1(z)e−qi+1,ri+1 =

A · Pi+1,ri+1(pi,r + 1)
(z − pi,r − 1)Pi,r(pi,r)

· e−qi,r−qi+1,ri+1

× Pi(z)Pi−1(pi,r − 1)Pi,r(pi+1,si+1 − 1)Zi(pi,r)
Pi−1(z − 1)(z − pi,r)Pi,r(pi,r)

· eqi,r ,

where A is a common (z, pi+1,ri+1)-independent factor (its explicit form is irrelevant for 
us). Hence,

Q
si+1,...,sβ−1
ri+1,...,rα−1(z) = A · Pi+1,ri+1(z)

Pi,r(z − 1)(z − pi,r − 1) · Zi(z) ·
Pi(pi+1,si+1 − 1 + δri+1,si+1)
z − pi+1,si+1 − δri+1,si+1

and
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Q
r,si+1,...,sβ−1
r,ri+1,...,rα−1(z) = A · Pi+1,ri+1(pi,r + 1)

Pi,r(pi,r)
· Pi,r(z)
Pi−1(z − 1)

× Pi−1(pi,r)Pi,r(pi+1,si+1 − 1 + δri+1,si+1)
Pi,r(pi,r + 1)(z − pi,r − 1) Zi(pi,r + 1).

Therefore, the corresponding residues are given by

Resz=1+pi,r

(
Q

si+1,...,sβ−1
ri+1,...,rα−1(z)dz

)
=

A · Pi+1,ri+1(pi,r + 1)
Pi,r(pi,r)

· Zi(pi,r + 1) ·
(
−Pi,r(pi+1,si+1 − 1 + δri+1,si+1)

)
,

Resz=1+pi,r

(
Q

r,si+1,...,sβ−1
r,ri+1,...,rα−1(z)dz

)
=

A · Pi+1,ri+1(pi,r + 1)
Pi,r(pi,r)

· Pi,r(pi,r + 1)
Pi−1(pi,r)

· Pi−1(pi,r)Pi,r(pi+1,si+1 − 1 + δri+1,si+1)
Pi,r(pi,r + 1)

× Zi(pi,r + 1),

thus summing up to zero and implying (2.71). �
This completes our proof of (2.68) and, hence, of Theorem 2.67. �

Remark 2.72. We note that a similar cancelation of poles appeared in the work on q-
characters [16] and qq-characters [30].

Remark 2.73. Similar to [3, Theorem B.15], one can generalize Theorem 2.35 by con-
structing the homomorphisms ΨD : Y−μ(gln) → A for any orientation of An−1 Dynkin 
diagram (so that ΨD ◦ ι−μ = Φλ̄

−μ̄ as in Remark 2.38, while the images of Di(z) are given 
by the same formulas as in (2.37)). However, extending A to its localization Aloc by the 
multiplicative set generated by {pi,r − pi+1,s + m}m∈Z

r≤ai,s≤ai+1
, all such homomorphisms 

are compositions of the one from (2.36) with algebra automorphisms of Aloc. Thus, the 
resulting rational Lax matrices are equivalent to TD(z) constructed above via algebra 
automorphisms of Aloc, cf. Remark 2.27.

2.4.2. Normalized limit description and the RTT relation for TD(z)
Consider a Λ+-valued divisor D =

∑N
s=1 γs
is [xs] + μ[∞]. As xN → ∞, we obtain 

another Λ+-valued divisor D′ =
∑N−1

s=1 γs
is [xs] +(μ +γN
iN )[∞]. We will relate TD′(z)
to TD(z).

If iN = 0, then

TD′(z) = (z − xN )−γNTD(z), (2.74)

due to FD(z) = FD′(z), ED(z) = ED′(z), GD(z) = (z − xN )γNGD′(z) and (2.63).
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Let us now consider the case 1 ≤ iN ≤ n −1 (note that γN = 1), so that (−xN )�iN =
diag(1iN , (−x−1

N )n−iN ) is the diagonal n × n matrix with the first iN diagonal entries 
equal to 1 and the remaining n − iN entries equal to −x−1

N .

Proposition 2.75. The xN → ∞ limit of TD(z) · (−xN )�iN equals TD′(z).

Proof. According to (2.63), TD(z) = FD(z)GD(z)ED(z) and TD′(z) = FD′(z)GD′(z)×
ED′(z) with the three factors determined explicitly via (2.62), (2.58), (2.60). Hence, 
TD(z) · (−xN )�iN has the following Gauss decomposition:

TD(z) · (−xN )�iN = FD(z) · (GD(z)(−xN )�iN ) ·
(
(−xN )−�iN ED(z)(−xN )�iN

)
. (2.76)

The leftmost factor in the right-hand side of (2.76) does not depend on {xs}Ns=1 and 
coincides with FD′(z). As GD(z) = (z − xN )−�iN GD′(z) and limxN→∞

z−xN

−xN
= 1, it is 

clear that the xN → ∞ limit of the diagonal factor GD(z)(−xN )�iN in (2.76) coincides 
with GD′(z). Finally, the matrix coefficients of the upper-triangular factor in (2.76) are 
((−xN )−�iN ED(z)(−xN )�iN )α,β = eDα,β(z) · (−xN )−δα≤iN<β and their xN → ∞ limits 
exactly coincide with eD

′

α,β(z), the matrix coefficients of ED′(z).
This completes our proof of Proposition 2.75. �

Corollary 2.77. TD′(z) is a normalized limit of TD(z).

For D as above, we can pick a Λ+-valued divisor D̄ =
∑N+M

s=1 γs
is [xs], so 
that {xs}N+M

s=N+1 are some points on P 1\{∞} while 
∑N+M

s=N+1 γs
is = μ. Note that 
∞ /∈ supp(D̄), i.e. D̄|∞ = 0.

Corollary 2.78. For any Λ+-valued divisor D on P 1 satisfying (2.30), the matrix TD(z)
of (2.64) is a normalized limit of TD̄(z) with a Λ+-valued divisor D̄ satisfying D̄|∞ = 0.

Evoking Remark 2.55(a), we see that the original definition of TD̄(z) via (2.56), (2.57)
is valid. Hence, TD̄(z) defined via (2.64) indeed satisfies the RTT relation (2.41). As a 
multiplication by diagonal z-independent matrices preserves (2.41), we obtain the main 
result of this section:

Proposition 2.79. For any Λ+-valued divisor D on P 1 satisfying the assumption (2.30), 
the matrix TD(z) defined via (2.63), (2.64) is Lax, i.e. it satisfies the RTT relation (2.41).

2.4.3. Proof of Theorem 2.54
Due to Proposition 2.79 and the Gauss decomposition (2.63), (2.64) of TD(z) with 

the factors defined via (2.58), (2.60), (2.62), we see that TD(z) indeed gives rise to 
the algebra homomorphism ΘD : Y rtt

−μ(gln) → A, whose composition with the epimor-
phism Υ−μ : Y−μ(gln) � Y rtt

−μ(gln) of Theorem 2.52 coincides with ΨD of (2.36). Thus, 
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for μ ∈ Λ+ and any Λ+-valued divisor D on P 1, satisfying (2.30) and D|∞ = μ, the 
homomorphism ΨD does factor through Υ−μ.

This observation immediately implies the injectivity of Υ−μ, due to the following re-
cent result of Alex Weekes (actually, we need its gln-counterpart that follows from (2.25)
and (2.39)):

Theorem 2.80 ([40]). For any coweight ν of a semisimple Lie algebra g, the intersection 
of kernels of the homomorphisms Φ∗

−ν of [3, Theorem B.15] is zero: 
⋂

λ Ker(Φλ
−ν) = 0, 

where λ ranges through all dominant coweights of g such that λ + ν =
∑

aiαi with 
ai ∈ N, αi being simple coroots of g, and points {zi} of [3] specialized to arbitrary 
complex parameters.

This completes our proof of Theorem 2.54.

Remark 2.81. (A. Weekes) Using similar arguments, one can show that the center of the 
shifted Yangian Yν(g) is trivial (thus implying Lemma 2.26(a)) for any coweight ν of 
a semisimple Lie algebra g. Indeed, due to Theorem 2.80, it suffices to show that the 
Φλ

ν -images have no nonconstant central elements. Assuming x is central, one can show it 
is a symmetric rational function in p∗,∗ (as Im(Φλ

ν ) contains all symmetric polynomials 
in p∗,∗), and then show that it is actually p∗,∗-independent (using the commutativity 
with the images of Ei(z), Fi(z)).

The above argument can also be used to identify the image of the central series 
C(z) (2.23) under the isomorphism Υ−μ with the quantum determinant qdetT (z) of 
Y rtt
−μ(gln) defined via:

qdetT (z) :=
∑
σ∈Sn

(−1)�(σ)t1,σ(1)(z+n−1)t2,σ(2)(z+n−2) · · · tn−1,σ(n−1)(z+1)tn,σ(n)(z).

(2.82)

Proposition 2.83. For any μ ∈ Λ+, the series (2.23) and (2.82) are related via

Υ−μ(C(z)) = qdetT (z). (2.84)

Proof. According to (the gln-counterpart of) Theorem 2.80 and (2.39), it suffices to 
verify:

qdetTD(z) =
N∏
s=1

n−1∏
k=is

(z − xs + k)γs (2.85)

for any Λ+-valued divisor D =
∑N

s=1 γs
is [xs] + μ[∞] on P 1 with xs ∈ C, as in (2.28), 
satisfying the assumption (2.30) and D|∞ = μ. According to [4, Theorem 8.6], the 
equality (2.84) holds for μ = 0, and consequently the equality (2.85) holds for those D
such that D|∞ = 0.
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Next, using the notations of Section 2.4.2, we note that the validity of (2.85) for D
implies the one for D′ as follows from the following equalities:

qdetTD′(z) = lim
xN→∞

qdet
(
TD(z) · (−xN )γN�iN

)
=

lim
xN→∞

(
N∏
s=1

n−1∏
k=is

(z − xs + k)γs · (−xN )−γN (n−iN )

)
=

N−1∏
s=1

n−1∏
k=is

(z − xs + k)γs .

Therefore, the validity of (2.85) for any D follows from its special case D|∞ = 0 (estab-
lished above) combined with Corollary 2.78. �

Combining this result with Lemma 2.26(b), we obtain:

Corollary 2.86. For any μ ∈ Λ+, the center of the shifted RTT Yangian Y rtt
−μ(gln) is 

a polynomial algebra in the coefficients of the quantum determinant qdetT (z) defined 
via (2.82).

2.4.4. Linear rational Lax matrices
In this section, we will obtain simplified explicit formulas for all TD(z) that are linear 

in z.
First, let us note that elements of Λ+ may be encoded by weakly decreasing sequences 

λ of n integers λ1 ≥ · · · ≥ λn, which we call pseudo Young diagrams with n rows (in 
mathematical literature, they are also called signatures of length n, following Hermann 
Weyl). Explicitly, such a pseudo Young diagram λ = (λ1, · · · , λn) encodes a dominant 
coweight λ ∈ Λ+ via

λ := −
∑

1≤i≤n

λn−i+1εi = λn
0 +
∑

1≤i≤n−1
(λn−i − λn−i+1)
i. (2.87)

We denote |λ| :=
∑n

i=1 λi. If λn ≥ 0, then λ is a standard Young diagram of length ≤ n.
Fix a pair of pseudo Young diagrams λ, μ. Then, λ +μ is of the form λ +μ =

∑n−1
i=1 aiαi

for some ai ∈ C iff |λ| + |μ| = 0. Let us establish the key properties of ai in the latter 
case:

Lemma 2.88. (a) ai = − 
∑n

j=n−i+1(λj + μj) for any 1 ≤ i ≤ n − 1.
(b) ai ∈ N for any 1 ≤ i ≤ n − 1.
(c) aj − aj−1 = −λn−j+1 − μn−j+1 for any 1 ≤ j ≤ n, where we set a0 := 0, an := 0.

Proof. (c) Follows from the equality∑
1≤j≤n

(aj − aj−1)εj =
∑

1≤i≤n−1
aiαi = λ + μ =

∑
1≤j≤n

(−λn−j+1 − μn−j+1)εj .

(a) Follows by summing the equalities of part (c) for j = 1, . . . , i.
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(b) As −λn −μn ≥ −λn−1 −μn−1 ≥ . . . ≥ −λ1 −μ1, we have an obvious inequality ∑n
j=n−i+1(−λj − μj) ≥ i

n

∑n
j=1(−λj − μj) = −i

n (|λ| + |μ|) = 0. Hence, ai ∈ N by 
part (a). �

Thus, Λ+-valued divisors on P 1 satisfying (2.30) and without summands {−
0[x]}x∈C
may be encoded by pairs (λ, μ) of a Young diagram λ of length ≤ n and a pseudo Young 
diagram μ with n rows and of total size |λ| + |μ| = 0, together with a collection of points 
x = {xi}λ1

i=1 of C (so that xi is assigned to the i-th column of λ). Explicitly, given λ, μ, x
as above, we set D = D(λ, x, μ) :=

∑λ1
i=1 
n−λt

i
[xi] + μ[∞], where λt

i is the height of 
the i-th column of λ.

Due to (2.74), we shall assume that D does not contain summands {±
0[x]}x∈C. 
Thus, λn = 0 so that Z0(z) = 1, and TD(z) = TD(z) is polynomial in z by Theorem 2.67. 
Moreover, TD(z)11 = gD1 (z) is a polynomial in z of degree a1 = −(λn +μn) = −μn ≥ 0. 
Hence, we have −μn ≤ 1 for linear Lax matrices TD(z). If μn = 0, then λi = μi = 0 for 
all i, since |λ| + |μ| = 0, and so TD(z) = TD(z) = In, the identity matrix. Therefore, it 
remains to treat the case when λn = 0 and μn = −1, which constitutes the key result 
of this section.

Remark 2.89. If |λ| +|μ| = 0, λn = 0, μn = −1, then λ and μ̃ = (μ1+1, . . . , μn+1) form 
a pair of Young diagrams of total size |λ| + |μ̃| = n. In that setup, an alternative con-
struction of rational Lax matrices Lλ,x,μ̃(z) was recently proposed in [15]. In Section 2.5, 
we shall compare all explicit Lax matrices Lλ,x,μ̃(z) of [15] to the corresponding Lax ma-
trices TD(z). However, we do not have an interpretation of the “fusion procedure” of [15]
(used to construct all Lλ,x,μ̃(z) from the aforementioned explicit “building blocks”) in 
the present approach.

Theorem 2.90. Following the above notations, assume further that λn = 0 and μn = −1. 
Define m := max{i | μn−i+1 = −1} and m′ := max{i | μn−i+1 ≤ 0}.
(a) The rational Lax matrix TD(z) is explicitly determined as follows:

(I) The matrix coefficients on the main diagonal are:

TD(z)ii =

⎧⎪⎪⎨⎪⎪⎩
z +
∑ai−1

r=1 (pi−1,r + 1) −
∑ai

r=1 pi,r +
∑

x∈P1\{∞} ε
∨
i (λx)x if i ≤ m

1 if m < i ≤ m′

0 if i > m′

.

(2.91)
(II) The matrix coefficients above the main diagonal are:

TD(z)ij = 0 if m < i < j, (2.92)
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TD(z)ij =

−
∑

1≤ri≤ai···
1≤rj−1≤aj−1

Pi−1(pi,ri − 1)
∏j−2

k=i Pk,rk(pk+1,rk+1 − 1)∏j−1
k=i Pk,rk(pk,rk)

·
j−1∏
k=i

Zk(pk,rk) · e
∑j−1

k=i qk,rk

if i ≤ m and i < j.

(2.93)

(III) The matrix coefficients below the main diagonal are:

TD(z)ji = 0 if m < i < j, (2.94)

TD(z)ji =
∑

1≤ri≤ai···
1≤rj−1≤aj−1

Pj(pj−1,rj−1 + 1)
∏j−1

k=i+1 Pk,rk(pk−1,rk−1 + 1)∏j−1
k=i Pk,rk(pk,rk)

· e−
∑j−1

k=i qk,rk

if i ≤ m and i < j.

(2.95)

(b) TD(z) = TD(z) is polynomial of degree 1 in z, and the coefficient of z equals 
∑m

i=1 Eii.

Proof. (a) Combining the explicit formulas (2.64), (2.66) for the matrix coefficients 
TD(z)α,β with their polynomiality of Theorem 2.67, we may immediately determine 
all of them explicitly. The latter is based on the following observations:

• The leading power of z in eDij(z) given by the right-hand side of (2.60) expanded in 
z−1 equals −1, while the coefficient of z−1 is exactly the right-hand side of (2.93)
for any i < j.

• The leading power of z in fD
ji (z) given by the right-hand side of (2.62) expanded in 

z−1 equals −1, while the coefficient of z−1 is exactly the right-hand side of (2.95)
for any i < j.

• The leading power of z in Z0(z)−1gDi (z) = gDi (z) expanded in z−1, cf. (2.58), equals

ai − ai−1 + (ε∨1 − ε∨i )(λ) = (−λn−i+1 − μn−i+1) + (−λn + λn−i+1) = −μn−i+1,

due to Lemma 2.88(c) and the assumption λn = 0. By the definition of m and m′, 
we note that −μn−i+1 is negative if i > m′, is zero if m < i ≤ m′, and equals 
1 if i ≤ m, while the corresponding coefficient of z−μn−i+1 equals 1. Finally, for 
i ≤ m, the coefficient of z0 in Z0(z)−1gDi (z) equals 

∑ai−1
r=1 (pi−1,r + 1) −

∑ai

r=1 pi,r +∑
x∈P1\{∞} ε

∨
i (λx)x.

Part (b) follows immediately from part (a). �
Remark 2.96. Applying Theorem 2.90 for n = 2, we obtain three 2 × 2 rational Lax 
matrices
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(
z − p −eq

e−q 0

)
,

(
z − p −(p− x1)eq
e−q 1

)
,

(
z − p −(p− x1)(p− x2)eq
e−q z + p + 1 − x1 − x2

)
, (2.97)

corresponding to λ = (0, 0) and μ = (1, −1), λ = (1, 0) and μ = (0, −1), λ = (2, 0)
and μ = (−1, −1), respectively (as a1 = 1, we relabeled p1, q1 by p, q). These are the 
well-known 2 × 2 elementary Lax matrices for the Toda chain, the DST chain, and the 
Heisenberg magnet.

Remark 2.98. At this point, it is instructive to discuss higher z-degree Lax matrices 
for n = 2. Fix a positive integer N and let AN denote the algebra A of (2.32) with 
n = 2, a1 = N . To simplify our notations, we shall denote the generators {p1,r, e±q1,r}Nr=1
simply by {pr, e±qr}Nr=1.

Let Lr(z) =
(
z − pr −eqr

e−qr 0

)
, 1 ≤ r ≤ N , be the 2 × 2 elementary Lax matrices for 

the Toda chain, and consider the complete monodromy matrix

TN (z) := L1(z) · · ·LN (z) =
(
AN (z) BN (z)
CN (z) DN (z)

)
. (2.99)

Note that the matrix coefficients AN(z), BN (z), CN (z), DN (z) are polynomials in z with 
coefficients in the algebra A⊗N

1 of degrees N, N − 1, N − 1, N − 2, respectively. For any 
ε ∈ C, the coefficients in powers of z of the linear combination AN (z) + εDN (z) pairwise 
commute and coincide with Hamiltonians of the quantum closed Toda system of GLN , 
due to [38].

Following Remark 2.96 and our construction (2.56), (2.57) of rational Lax ma-
trices T∗(z), we note that local Lax matrices Lr(z) encode the homomorphisms 
Ψα[∞] : Y−α(gl2) → A1 of (2.36), where α := α1 = −
0 + 2
1 is a simple coroot of sl2. 
Furthermore, evoking the coproduct homomorphisms of Propositions 2.136 and 2.143 be-
low, we see that the complete monodromy matrix TN(z) of (2.99) encodes the homomor-
phism Y−Nα(gl2) → A⊗N

1 obtained as a composition of the iterated coproduct homomor-
phism Y−Nα(gl2) → Y−α(gl2)⊗N and the homomorphism Ψ⊗N

α[∞] : Y−α(gl2)⊗N → A⊗N
1 .

On the other hand, consider the rational Lax matrix TD(z) for the Λ+-valued divi-
sor D = Nα[∞] on P 1. According to Theorem 2.67, the matrix coefficients of TD(z)
are polynomials in z with coefficients in the algebra AN . Moreover, evoking formu-
las (2.58), (2.60), (2.62), we find:

TD(z)11 = P (z), TD(z)12 = −
N∑
r=1

Pr(z)
Pr(pr)

eqr , TD(z)21 =
N∑
r=1

Pr(z)
Pr(pr)

e−qr ,

TD(z)22 = 1
P (z − 1) −

∑
1≤r≤N

Pr(z)
(z − pr − 1)Pr(pr)Pr(pr + 1) −∑

1≤r 
=s≤N

Pr,s(z)
Pr,s(pr)Pr,s(ps)(pr − ps)(ps − pr − 1)e

qs−qr ,
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where

P (z) :=
N∏
r=1

(z − pr), Pr(z) :=
s 
=r∏

1≤s≤N

(z − ps), Pr,s(z) :=
t
=r,s∏

1≤t≤N

(z − pt),

cf. (2.34). Due to the RTT relation (2.41) for TD(z), the coefficients in powers of z
of the linear combination TD(z)11 + εTD(z)22 pairwise commute and define a quantum 
integrable system. These commuting Hamiltonians can be constructed by applying (1.1)

to the Lax matrix TD(z) with g∞ =
(

1 0
0 ε

)
, where ε is known as the coupling constant.

The classical limits of the above two quantum integrable systems coincide and recover 
the well-known Atiyah-Hitchin integrable system, see [1] (we note that the identification 
of the corresponding quantum integrable systems was established in [14, Theorem 6.12]). 
Its phase space ZN , known as the space of SU(2)-monopoles of topological charge N , 
consists of degree N based rational maps from P 1 to the flag variety B of SL2 (note that 
B 
 P 1). Explicitly, ZN consists of pairs of relatively prime polynomials of degrees N
and N − 1 (and the former is monic):

ZN =
{
(A(z) = zN+ a1z

N−1+ . . .+aN ,B(z) = b1z
N−1+ . . .+bN ) | gcd(A(z),B(z)) = 1

}
.

To see ZN as the classical limit of the above quantum integrable systems, recall an 
important embedding ZN ↪→ SL(2, C[z]) taking (A(z), B(z)) to a unique matrix (known 

as the scattering matrix of the SU(2)-monopole) 
(

A(z) B(z)
C(z) D(z)

)
such that deg C(z) ≤

N−1 > deg D(z) (such C(z), D(z) exist due to the Euclidean algorithm). Identifying ZN

with its image in SL(2, C[z]), we note that the matrix multiplication gives rise to the 
multiplication homomorphisms

ZN × ZN ′ −→ ZN+N ′
.

From that perspective, the classical limit of the p∗-generators appearing in TD(z) are 
the roots of A(z), while the classical limit of eq∗ -generators are the values of −B(z) at 
these roots.

In the smallest rank n = 2 case, our construction of TD(z) is a generalization 
of the above one as we may add some points xi ∈ C to the support of D. Given 
k ≤ 2N and a collection of points x = {xi}ki=1 on C, consider the Λ+-valued divisor
D :=

∑k
i=1 
1[xi] + (Nα − k
1)[∞]. The phase space ZN

k,x of the classical limit of 
the quantum integrable system determined by TD(z) is known as the space of SU(2)-
monopoles of topological charge N with singularity k. Similar to ZN , it may be identified 
with a closed subvariety of Mat(2, C[z]) consisting of
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M(z) =
(

A(z) B(z)
C(z) D(z)

)
such that

A(z) = zN + a1z
N−1 + . . . + aN , deg B(z) < N > deg C(z), detM(z) =

k∏
i=1

(z − xi).

Let us note that the condition k ≤ 2N guarantees that the matrix multiplication gives 
rise to the multiplication homomorphisms (closely related to [3, §2(vi)] and [14, §5.9])

ZN
k,x × ZN ′

k′,x′ −→ ZN+N ′

k+k′,x∪x′ .

2.5. Examples and comparison to the rational Lax matrices of [15]

In this section, we consider some examples of the Lax matrices TD(z) of Theorem 2.90
and compare them to the corresponding Lax matrices Lλ,x,μ̃(z) (cf. Remark 2.89) of [15].

• Example 1: λ = (0n), μ = (1, 0n−2, −1).
Then a1 = . . . = an−1 = 1 and D = D(λ, ∅, μ) = (
1 + 
n−1 −
0)[∞]. To simplify 

our notations, let us relabel {pi,1, e±qi,1}n−1
i=1 by {pi, e±qi}n−1

i=1 . Due to Theorem 2.90, we 
have:

TD(z) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z − p1 −eq1 −eq1+q2 · · · −eq1+...+qn−2 −eq1+...+qn−1

(p1 + 1 − p2)e−q1 1 0 · · · 0 0
(p2 + 1 − p3)e−q1−q2 0 1 · · · 0 0

...
...

...
. . .

...
...

(pn−2 + 1 − pn−1)e−q1−...−qn−2 0 0 · · · 1 0
e−q1−...−qn−1 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.100)
Let us compare this Lax matrix TD(z) to the Lax matrix Lλ,μ̃(z) of [15, (4.7)] with 

μ̃ = (2, 1n−2, 0) = μ + (1n), cf. Remark 2.89, given by

Lλ,μ̃(z) =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 −e−qn,n

0 1 · · · 0 −p2,n
...

...
. . .

...
...

0 0 · · · 1 −pn−1,n
eqn,n qn,2 · · · qn,n−1 z − pn,n − qn,2p2,n − . . .− qn,n−1pn−1,n

⎞⎟⎟⎟⎟⎠ .

(2.101)
Conjugating (2.101) by the permutation matrix 

∑n
i=1 Ei,n−i+1 (which clearly preserves 

the RTT relation (2.41)), and making the canonical transformation (preserving commu-
tation relations)

qn,n−i = −eqi , pn−i,n = −pie
−qi , eqn,n = −eqn−1 , pn,n = pn−1 for 1 ≤ i ≤ n−2,
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we obtain the following rational Lax matrix:

L̃λ,μ̃(z) =

⎛⎜⎜⎜⎜⎝
z − pn−1 − (p1 − 1) − . . .− (pn−2 − 1) −eq1 · · · −eqn−2 −eqn−1

p1e
−q1 1 · · · 0 0
...

...
. . .

...
...

pn−2e
−qn−2 0 · · · 1 0

e−qn−1 0 · · · 0 0

⎞⎟⎟⎟⎟⎠ .

(2.102)
Thus TD(z) of (2.100) and L̃λ,μ̃(z) of (2.102) coincide upon the canonical transfor-

mation:

qj = q1 + . . .+ qj , pi = pi−pi+1 +1, pn−1 = pn−1 for 1 ≤ i ≤ n−2, 1 ≤ j ≤ n−1.

• Example 2: λ = (02r), μ = (1r, (−1)r), n = 2r.
Then D = D(λ, ∅, μ) = (2
r −
0)[∞] and the coefficients {ai}n−1

i=1 are given by:

a1 = 1, a2 = 2, . . . , ar−1 = r − 1, ar = r, ar+1 = r − 1, . . . , a2r−2 = 2, a2r−1 = 1.

According to Theorem 2.90, TD(z) is a block matrix of the form

TD(z) =
(
zIr − F K̄

K 0

)
, (2.103)

where F, K, K̄ are z-independent r × r matrices, and Ir is the identity r × r matrix.
The first simple property of the matrices F, K, K̄ is:

Lemma 2.104. (a) The matrix elements {Kij}r
i,j=1 of the matrix K pairwise commute.

(b) The matrix elements {K̄ij}r
i,j=1 of the matrix K̄ pairwise commute.

(c) The matrix elements of K commute with the matrix elements of K̄, that is 
[Kij , K̄k�] = 0.
(d) The matrix elements {Fij}r

i,j=1 of the matrix F satisfy the following commutation 
relations:

[Fij , K̄k�] = δj,kK̄i�, [Fij ,Kk�] = −δ�,iKkj , [Fij , Fk�] = δj,kFi� − δ�,iFkj . (2.105)

Proof. It is a direct consequence of the RTT relation (2.41) for TD(z) and the 
ansatz (2.103). �

A much deeper relation between K and K̄ is established in the following result:

Theorem 2.106. We have K · K̄ = −Ir.

Proof. Due to (2.93), (2.95), it suffices to prove the following equality:
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r∑
γ=1

∑
1≤rα≤aα···

1≤rr+γ−1≤ar+γ−1

Pα−1(pα,rα − 1)
∏r+γ−2

k=α Pk,rk(pk+1,rk+1 − 1)∏r+γ−1
k=α Pk,rk(pk,rk)

·eqα,rα+...+qr+γ−1,rr+γ−1×

∑
1≤sβ≤aβ···

1≤sr+γ−1≤ar+γ−1

Pr+γ(pr+γ−1,sr+γ−1 + 1)
∏r+γ−1

k=β+1 Pk,sk(pk−1,sk−1 + 1)∏r+γ−1
k=β Pk,sk(pk,sk)

×

e−qβ,sβ
−...−qr+γ−1,sr+γ−1 = δα,β (2.107)

for any 1 ≤ α, β ≤ r.
To evaluate the sum in the left-hand side of (2.107), we first move eqα,rα+...+qr+γ−1,rr+γ−1

to the right of p∗,∗-terms, then simplify eqι,rι e−qι,sι � 1 once rι = sι, and finally group to-
gether the summands which have the common eq∗,∗-factor. For each such group, pick the 
maximal k (if such exists) such that eqk,∗ does appear. If k exists, then 1 ≤ k ≤ 2r− 2 as 
a2r−1 = 1, while k does not exist if and only if α = β and rι = sι for each α ≤ ι ≤ r+γ−1.

The equality (2.107) follows from the following result:

Proposition 2.108. Pick any of the above groups and consider the associated k (if it 
exists).
(a) If r ≤ k ≤ 2r − 2, then the sum of terms in the corresponding group is zero.
(b) If 1 ≤ k < r, then the sum of terms in the corresponding group is zero.
(c) If k does not exist, then the sum of terms in the corresponding group equals 1.

Proof of Proposition 2.108. (a) Fix any admissible collections rα, . . . , rk and sβ , . . . , sk
with rk �= sk. Then, the terms in the corresponding group are parametrized by k+1 −r ≤
γ ≤ r and all admissible collections rk+1 = sk+1, . . . , rr+γ−1 = sr+γ−1. Ignoring the 
common factor, the total sum of terms in this group equals 

∑r
γ=k+1−r Sγ , where each 

summand is given by

Sγ :=
∑

1≤rk+1≤ak+1···
1≤rr+γ−1≤ar+γ−1

Pk,rk(pk+1,rk+1 − 1) · · ·Pr+γ−2,rr+γ−2(pr+γ−1,rr+γ−1 − 1)
Pk+1,rk+1(pk+1,rk+1) · · ·Pr+γ−1,rr+γ−1(pr+γ−1,rr+γ−1)

×

Pk+1,rk+1(pk,sk + 1)Pk+2,rk+2(pk+1,rk+1) · · ·Pr+γ(pr+γ−1,rr+γ−1)
Pk+1,rk+1(pk+1,rk+1 − 1) · · ·Pr+γ−1,rr+γ−1(pr+γ−1,rr+γ−1 − 1) . (2.109)

It remains to prove 
∑r

γ=k+1−r Sγ = 0. For the latter, we need the following simple 
result:

Lemma 2.110. Fix r < l ≤ 2r − 1 and 1 ≤ rl−1 �= sl−1 ≤ al−1. Then, we have

1 +
∑ Pl−1,rl−1(pl,rl − 1)

Pl,rl(pl,rl)
· 1
1 + pl−1,sl−1 − pl,rl

= 0, (2.111)

1≤rl≤al
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1 +
∑

1≤rl≤al

Pl−1,rl−1(pl,rl − 1)
Pl,rl(pl,rl)

· 1
pl−1,rl−1 − pl,rl

=
Pl−1,rl−1(pl−1,rl−1 − 1)

Pl(pl−1,rl−1)
. (2.112)

Proof of Lemma 2.110. Recall that al = 2r−l, al−1 = 2r−l+1. Without loss of generality, 
we may assume that rl−1 = 2r− l+ 1 and sl−1 = 2r− l. To simplify the formulas below, 
let us relabel {pl,i}2r−l

i=1 by {ci}2r−l
i=1 and {pl−1,i}2r−l+1

i=1 by {bi}2r−l+1
i=1 , respectively.

Then, the left-hand side of (2.111) becomes

1 −
2r−l∑
i=1

(ci − 1 − b1) · · · (ci − 1 − b2r−l−1)
(ci − c1) · · · (ci − ci−1)(ci − ci+1) · · · (ci − c2r−l)

.

This is a symmetric rational function in {ci}2r−l
i=1 without poles (as symmetric functions 

may not have simple poles at ci = cj with i �= j), hence, it is polynomial in {ci}2r−l
i=1 . How-

ever, being of degree ≤ 0, this polynomial must be a constant (depending on {bi}2r−l+1
i=1 ). 

To determine the latter, let c1 → ∞, in which case the sum tends to 0. This completes 
our proof of (2.111).

Likewise, the left-hand side of (2.112) becomes

1 +
2r−l∑
i=1

(ci − 1 − b1) · · · (ci − 1 − b2r−l)
(ci − c1) · · · (ci − ci−1)(ci − ci+1) · · · (ci − c2r−l)

· 1
b2r−l+1 − ci

.

This is a symmetric rational function in {ci}2r−l
i=1 with the only poles (which are at most 

simple) at ci = b2r−l+1 (1 ≤ i ≤ 2r − l). Hence, it is of the form R({bi}2r−l+1
i=1 ,{ci}2r−l

i=1 )∏2r−l
i=1 (b2r−l+1−ci)

for some polynomial R of total degree deg(R) ≤ 2r − l. Due to (2.111), R must be 
divisible by 

∏2r−l
i=1 (b2r−l+1−1 −bi), and thus, for degree reasons, we have R({bi}, {ci}) =

t ·
∏2r−l

i=1 (b2r−l+1−1 −bi) with t ∈ C. Letting b2r−l+1 → ∞, we find t = 1. This completes 
our proof of (2.112). �

Applying (2.112) to simplify Sr−1 + Sr, we find

Sr−1 + Sr =
∑

1≤rk+1≤ak+1···
1≤r2r−2≤a2r−2

Pk,rk(pk+1,rk+1 − 1) · · ·P2r−3,r2r−3(p2r−2,r2r−2 − 1)
Pk+1,rk+1(pk+1,rk+1) · · ·P2r−2,r2r−2(p2r−2,r2r−2)

×

Pk+1,rk+1(pk,sk + 1)Pk+2,rk+2(pk+1,rk+1) · · ·P2r−2,r2r−2(p2r−3,r2r−3)
Pk+1,rk+1(pk+1,rk+1 − 1) · · ·P2r−3,r2r−3(p2r−3,r2r−3 − 1) .

Applying (2.112) once again, we can now simplify the sum of the above expression and 
Sr−2. Proceeding in the same way and applying (2.112) at each step, we eventually get∑

k+1−r≤γ≤r
Sγ = 1 +

∑
rk+1

Pk,rk(pk+1,rk+1 − 1)
Pk+1,rk+1(pk+1,rk+1)

· 1
1 + pk,sk − pk+1,rk+1

= 0,

due to (2.111) as rk �= sk. This completes our proof of Proposition 2.108(a).
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(b) The proof of Proposition 2.108(b) is completely analogous to the above proof of 
part (a) and is crucially based both on Lemma 2.110 and its following counterpart:

Lemma 2.113. Fix 1 < l ≤ r and 1 ≤ rl−1 �= sl−1 ≤ al−1. Then, we have

∑
1≤rl≤al

Pl−1,rl−1(pl,rl − 1)
Pl,rl(pl,rl)

· 1
1 + pl−1,sl−1 − pl,rl

= 0, (2.114)

∑
1≤rl≤al

Pl−1,rl−1(pl,rl − 1)
Pl,rl(pl,rl)

· 1
pl−1,rl−1 − pl,rl

=
Pl−1,rl−1(pl−1,rl−1 − 1)

Pl(pl−1,rl−1)
. (2.115)

Proof. The proof is similar to that of (2.111), (2.112); we leave details to the interested 
reader. �

(c) The proof of Proposition 2.108(c) is completely analogous to the above proofs 
of parts (a,b) and is crucially based both on Lemmas 2.110, 2.113 and their following 
counterpart:

Lemma 2.116. Fix 1 < l ≤ r and 1 ≤ rl−1 ≤ al−1. Then, we have

∑
1≤rl≤al

Pl−1,rl−1(pl,rl − 1)
Pl,rl(pl,rl)

= 0, (2.117)

∑
1≤rl≤al

Pl−1(pl,rl − 1)
Pl,rl(pl,rl)

= 1. (2.118)

Proof. The proof is similar to that of (2.111), (2.112); we leave details to the interested 
reader. �

This completes our proof of Proposition 2.108. �
As Proposition 2.108 implies the equality (2.107), the proof of Theorem 2.106 is com-

pleted. �
It is instructive to compare this Lax matrix TD(z) to the Lax matrix Lλ,μ̃(z) of [15, 

(4.2)] with μ̃ = (2r, 0r) = μ + (1n), cf. Remark 2.89. Conjugating the latter by the 

permutation matrix 
(

0 Ir
Ir 0

)
, we obtain the following rational Lax matrix

L̃λ,μ̃(z) =
(
zIr − F K̄

K 0

)
, (2.119)

where KK̄ = −Ir and K encodes all the q∗,∗-variables via [15, (4.4)].

• Example 3: λ = (02r+s), μ = (1r, 0s, (−1)r), n = 2r + s with r, s > 0.
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Then D = D(λ, ∅, μ) = (
r + 
r+s −
0)[∞] and the coefficients {ai}n−1
i=1 are given 

by:

a1 = 1, . . . , ar−1 = r− 1, ar = ar+1 = . . . = ar+s = r, ar+s+1 = r− 1, . . . , a2r+s−1 = 1.

According to Theorem 2.90, TD(z) is a block matrix of the form

TD(z) =

⎛⎝zIr − F Q K̄
−P Is 0
K 0 0

⎞⎠ , (2.120)

where F = (Fij)ri,j=1, K = (Kij)ri,j=1, K̄ = (K̄ij)ri,j=1 are r × r matrices, P = (Pij)1≤j≤r
1≤i≤s

is an s× r matrix, Q = (Qji)1≤j≤r
1≤i≤s is an r× s matrix, and all of them are z-independent.

The first simple property of the matrices P, Q, K, K̄ is:

Lemma 2.121. (a) The matrix elements {Kij}r
i,j=1 ∪ {Pij}1≤j≤r

1≤i≤s pairwise commute.
(b) The matrix elements {K̄ij}r

i,j=1 ∪ {Qji}1≤j≤r
1≤i≤s pairwise commute.

(c) We have [Kij , K̄k�] = 0, [Pij , K̄k�] = 0, [Qji, Kk�] = 0, [Pij , Q�k] = δi,kδj,�.
(d) The matrix elements {Fij}r

i,j=1 of the matrix F satisfy (2.105) as well as:

[Fij , Qk�] = δj,kQi�, [Fij , Pk�] = −δ�,iPkj .

Proof. These results follow from the RTT relation (2.41) for TD(z) and the ansatz 
(2.120). �

Similar to Theorem 2.106, there is also a much deeper relation between K and K̄:

Theorem 2.122. We have K · K̄ = −Ir.

Proof. The proof of Theorem 2.122 is completely analogous to the above proof of 
Theorem 2.106. The only extra technical result needed is the following counterpart of 
Lemma 2.113:

Lemma 2.123. For r < l ≤ r + s and 1 ≤ rl−1 �= sl−1 ≤ al−1, both (2.114), (2.115) hold.

We leave details to the interested reader. �
It is instructive to compare the Lax matrix TD(z) of (2.120) to the Lax matrix Lλ,μ̃(z)

of [15, (4.7)] with μ̃ = (2r, 1s, 0r) = μ+ (1n), cf. Remark 2.89. Conjugating the latter by 

the permutation matrix 

( 0 0 Ir
0 Is 0
Ir 0 0

)
, we obtain the following rational Lax matrix

L̃λ,μ̃(z) =

⎛⎝zIr − F̃ Q K̄
−P Is 0
K 0 0

⎞⎠ , (2.124)
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where KK̄ = −Ir and the matrices K, Q encode all the q∗,∗-variables via [15, (4.4, 4.8)].

Remark 2.125. We note that K, K̄ of (2.124) coincide with K, K̄ of (2.119), while K, K̄
of (2.120) are not the same as K, K̄ of (2.103).

• Example 4: λ = (1, 0n−1), μ = (0n−1, −1), x = {x1}.
The corresponding divisor is D = D(λ, {x1}, μ) = 
n−1[x1] + (
1 − 
0)[∞] with 

x1 ∈ C. This example is similar to the above Example 1 since the coefficients ai are the 
same: a1 = . . . = an−1 = 1. To simplify our notations, let us relabel {pi,1, e±qi,1}n−1

i=1 by 
{pi, e±qi}n−1

i=1 . Due to Theorem 2.90, the matrix TD(z) equals:

TD(z) =⎛⎜⎜⎜⎜⎜⎜⎝
z − p1 −eq1 · · · −eq1+...+qn−2 −(pn−1 − x1)eq1+...+qn−1

(p1 + 1 − p2)e−q1 1 · · · 0 0
...

...
. . .

...
...

(pn−2 + 1 − pn−1)e−q1−...−qn−2 0 · · · 1 0
e−q1−...−qn−1 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

(2.126)

Let us compare this Lax matrix TD(z) to the rational Lax matrix Lλ,x1,μ̃(z) of [15, 
(3.1)] with μ̃ = (1n−1, 0) = μ + (1n), cf. Remark 2.89. Conjugating the latter by the 
permutation matrix 

∑n
i=1 Ei,n−i+1, we obtain the following rational Lax matrix:

L̃λ,x1,μ̃(z) =

⎛⎜⎜⎜⎜⎝
z − x1 − qn,1p1,n − . . .− qn,n−1pn−1,n qn,n−1 · · · qn,2 qn,1

−pn−1,n 1 · · · 0 0
...

...
. . .

...
...

−p2,n 0 · · · 1 0
−p1,n 0 · · · 0 1

⎞⎟⎟⎟⎟⎠ .

(2.127)
Thus TD(z) of (2.126) and L̃λ,x1,μ̃(z) of (2.127) coincide upon the canonical trans-

formation:

qn,n−1 = −eq1 , . . . , qn,2 = −eq1+...+qn−2 , qn,1 = −(pn−1 − x1)eq1+...+qn−1 ,

pn−1,n = (p2 − p1 − 1)e−q1 , . . . ,p2,n = (pn−1 − pn−2 − 1)e−q1−...−qn−2 ,

p1,n = −e−q1−...−qn−1 .

• Example 5: λ = (1n−1, 0), μ = (0, (−1)n−1), x = {x1}.
The corresponding divisor is D = D(λ, {x1}, μ) = 
1[x1] + (
n−1 − 
0)[∞] with 

x1 ∈ C. This example is similar to the previous one as a1 = . . . = an−1 = 1, and we 
shall still relabel {pi,1, e±qi,1}n−1

i=1 by {pi, e±qi}n−1
i=1 . Due to Theorem 2.90, the matrix 

coefficients of TD(z) are:
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TD(z)ii =

⎧⎪⎪⎨⎪⎪⎩
z − p1 if i = 1
z + pi−1 − pi + 1 − x1 if 1 < i < n

1 if i = n

,

TD(z)ij =
{
−(p1 − x1)eq1+...+qj−1 if 1 = i < j

−(pi − 1 − pi−1)eqi+...+qj−1 if 1 < i < j
, (2.128)

TD(z)ji =
{

(pj−1 + 1 − pj)e−qi−...−qj−1 if i < j < n

e−qi−...−qn−1 if i < j = n
.

The following is straightforward:

Lemma 2.129. For any 1 ≤ i, j ≤ n −1, we have TD(z)ij = δi,j(z−x1) +TD(z)inTD(z)nj.

Let us compare this Lax matrix TD(z) to the rational Lax matrix Lλ,x1,μ̃(z) of [15, 
(3.1)] with μ̃ = (1, 0n−1) = μ+(1n), cf. Remark 2.89. Conjugating the latter by the per-
mutation matrix E12 + . . .+En−1,n +En,1, we obtain the rational Lax matrix L̃λ,x1,μ̃(z)
with the following matrix coefficients:

L̃λ,x1,μ̃(z)ij = δi,j(z − x1) − qi+1,1p1,j+1 if 1 ≤ i, j < n,

L̃λ,x1,μ̃(z)in = qi+1,1, L̃λ,x1,μ̃(z)ni = −p1,i+1, L̃λ,x1,μ̃(z)nn = 1 if 1 ≤ i < n.

(2.130)

Thus TD(z) of (2.128) and L̃λ,x1,μ̃(z) of (2.130) coincide upon the canonical trans-
formation:

q2,1 = (x1 − p1)eq1+...+qn−1 ,q3,1 = (p1 − p2 + 1)eq2+...+qn−1 , . . . ,

qn,1 = (pn−2 − pn−1 + 1)eqn−1 ,

p1,2 = −e−q1−...−qn−1 , p1,3 = −e−q2−...−qn−1 , . . . , p1,n = −e−qn−1 .

• Example 6: λ = (1r, 0s), μ = (0s, (−1)r), x = {x1}, n = r + s with r, s > 0.
This example naturally generalizes Example 4 (r = 1 case) and Example 5 (s = 1

case) above. The corresponding divisor is D = D(λ, {x1}, μ) = 
s[x1] + (
r −
0)[∞]
with x1 ∈ C. According to Theorem 2.90, TD(z) is a block matrix of the form

TD(z) =
(
zIr − F Q
−P Is

)
, (2.131)

where F = (Fij)ri,j=1 is an r×r matrix, P = (Pij)1≤j≤r
1≤i≤s is an s×r matrix, Q = (Qji)1≤j≤r

1≤i≤s
is an r × s matrix, and all of them are z-independent.

The first simple property of the matrices P, Q is:
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Lemma 2.132. (a) The matrix elements {Pij}1≤j≤r
1≤i≤s pairwise commute.

(b) The matrix elements {Qji}1≤j≤r
1≤i≤s pairwise commute.

(c) The commutation relation between the matrix elements of P, Q is [Pij , Q�k] = δi,kδj,�.
(d) The matrix elements {Fij}r

i,j=1 of the matrix F satisfy the following commutation 
relations:

[Fij , Qk�] = δj,kQi�, [Fij , Pk�] = −δ�,iPkj , [Fij , Fk�] = δj,kFi� − δ�,iFkj .

Proof. These results follow from the RTT relation (2.41) for TD(z) and the ansatz 
(2.131). �

A much deeper relation between P, Q, and F is established in the following result:

Theorem 2.133. We have F = x1Ir + QP .

Proof. The proof of Theorem 2.133 is completely analogous to the above proof of The-
orem 2.106. We leave details to the interested reader. �

Let us compare this Lax matrix TD(z) to the rational Lax matrix Lλ,x1,μ̃(z) of [15, 
(3.1)] with μ̃ = (1s, 0r) = μ + (1n), cf. Remark 2.89. Conjugating the latter by the 
permutation matrix 

∑r
i=1 Ei,s+i +

∑s
i=1 Er+i,i, we obtain the following rational Lax 

matrix

L̃λ,x1,μ̃(z) =
(

(z − x1)Ir − QP Q
−P Is

)
, (2.134)

where P = (pi,s+j)1≤j≤r
1≤i≤s and Q = (qs+j,i)1≤j≤r

1≤i≤s encode all the variables p∗,∗, q∗,∗ of [15].
Thus TD(z) of (2.131) and L̃λ,x1,μ̃(z) of (2.134) coincide upon the canonical trans-

formation:

qs+j,i = TD(z)j,r+i, pi,s+j = −TD(z)r+i,j ,

with TD(z)j,r+i and TD(z)r+i,j evaluated via (2.93) and (2.95), respectively.

2.6. Coproduct homomorphisms for shifted Yangians

One of the crucial benefits of the RTT realization is that it immediately endows the 
Yangian of gln with the Hopf algebra structure, in particular, the coproduct homomor-
phism

Δrtt : Y rtt(gln) −→ Y rtt(gln) ⊗ Y rtt(gln), T (z) �→ T (z) ⊗ T (z). (2.135)

The main observation of this section is that (2.135) naturally admits a shifted version:
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Proposition 2.136. For any μ1, μ2 ∈ Λ+, there is a unique C-algebra homomorphism

Δrtt
−μ1,−μ2

: Y rtt
−μ1−μ2

(gln) −→ Y rtt
−μ1

(gln) ⊗ Y rtt
−μ2

(gln)

defined by

Δrtt
−μ1,−μ2

(T (z)) = T (z) ⊗ T (z). (2.137)

Proof. We need to prove that T (z) ⊗ T (z), the n × n matrix with values in the algebra 
(Y rtt

−μ1
(gln) ⊗Y rtt

−μ2
(gln))((z−1)), satisfies the defining relations of Y rtt

−μ1−μ2
(gln). The first 

of those, the RTT relation (2.41), follows immediately from the fact that both factors 
T (z) satisfy it. Let us now deduce the second relation, the particular form of the Gauss 
decomposition (2.43), (2.44), from μ1, μ2 ∈ Λ+ and the corresponding relations for both 
factors T (z).

We start from the following simple observation. Let C be an associative algebra and 
consider a collection of its elements {f(r)ji , e(r)

ij }r≥1
1≤i<j≤n, which are encoded via a lower-

triangular matrix F(z) =
∑

i Eii +
∑

i<j fji(z) ⊗ Eji with fji(z) =
∑

r≥1 f(r)ji z−r and an 

upper-triangular matrix E(z) =
∑

i Eii +
∑

i<j eij(z) ⊗ Eij with eij(z) =
∑

r≥1 e(r)
ij z−r. 

Then, the product E(z) · F(z) admits a Gauss decomposition

E(z) · F(z) = F̄(z) · Ḡ(z) · Ē(z), (2.138)

F̄(z) =
∑
i

Eii+
∑
i<j

f̄ji(z)⊗Eji, Ḡ(z) =
∑
i

ḡi(z)⊗Eii, Ē(z) =
∑
i

Eii+
∑
i<j

ēij(z)⊗Eij ,

with the matrix coefficients having the following expansions in z:

ēij(z) =
∑
r≥1

ē(r)
ij z−r, f̄ji(z) =

∑
r≥1

f̄(r)ji z−r, ḡi(z) = 1 +
∑
r≥1

ḡ(r)
i z−r

for some elements {f̄(r)ji , ̄e(r)
ij }r≥1

1≤i<j≤n ∪ {ḡ(r)
i }r≥1

1≤i≤n of C.
Moreover, if zd = diag(zd1 , · · · , zdn) with d1 ≥ · · · ≥ dn, then

zdF̄(z)(zd)−1 =
∑
i

Eii +
∑
i<j

f̃ji(z) ⊗Eji with f̃ji(z) =
∑
r≥1

f̃(r)ji z−r = zdj−di f̄ji(z)

(2.139)
and

(zd)−1Ē(z)zd =
∑
i

Eii +
∑
i<j

ẽij(z) ⊗Eij with ẽij(z) =
∑
r≥1

ẽ(r)
ij z−r = zdj−di ēij(z)

(2.140)
for some elements {̃f(r)ji , ̃e(r)

ij }r≥1
1≤i<j≤n of C.
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Finally, let us consider the Gauss decompositions of both factors T (z):

T (z) ⊗ 1 = F (1)(z)G(1)(z)E(1)(z) = F (1)(z)D(1)(z)zμ1E(1)(z),

1 ⊗ T (z) = F (2)(z)G(2)(z)E(2)(z) = F (2)(z)zμ2D(2)(z)E(2)(z),

where zμa := diag(zd
(a)
1 , · · · , zd(a)

n ), D(a)(z) := z−μaG(a)(z) with d(a)
i := ε∨i (μa) and 

a = 1, 2. To obtain the Gauss decomposition of

T (z) ⊗ T (z) = F (1)(z)D(1)(z)zμ1E(1)(z)F (2)(z)zμ2D(2)(z)E(2)(z),

we apply the above general observation with C = Y rtt
−μ1

(gln) ⊗Y rtt
−μ2

(gln) and e(r)
ij = e

(r)
ij ⊗1, 

f(r)ji = 1 ⊗ f
(r)
ji to get the Gauss decomposition of E(1)(z)F (2)(z) first. As conjugating by 

D(a)(z) does not change the leading z-modes, matrix coefficients appearing in the Gauss 
decomposition of T (z) ⊗ T (z) have the desired form, due to (2.139), (2.140).

This completes our proof of Proposition 2.136. �
The following basic property of Δrtt

∗,∗ is straightforward:

Corollary 2.141. For any μ1, μ2, μ3 ∈ Λ+, the following diagram is commutative:

Y rtt
−μ1−μ2−μ3

(gln)
Δrtt

−μ1,−μ2−μ3−−−−−−−−−→ Y rtt
−μ1

(gln) ⊗ Y rtt
−μ2−μ3

(gln)

Δrtt
−μ1−μ2,−μ3

⏐⏐� ⏐⏐�Id⊗Δrtt
−μ2,−μ3

Y rtt
−μ1−μ2

(gln) ⊗ Y rtt
−μ3

(gln) −−−−−−−−−→
Δrtt

−μ1,−μ2
⊗ Id

Y rtt
−μ1

(gln) ⊗ Y rtt
−μ2

(gln) ⊗ Y rtt
−μ3

(gln)

Evoking the key isomorphisms Υ−μ : Y−μ(gln) ∼−→Y rtt
−μ(gln) of Theorem 2.54 for μ =

μ1, μ2, μ1 + μ2, we conclude that Δrtt
−μ1,−μ2

gives rise to the C-algebra homomorphism

Δ−μ1,−μ2 : Y−μ1−μ2(gln) −→ Y−μ1(gln) ⊗ Y−μ2(gln). (2.142)

Proposition 2.143. For any μ1, μ2 ∈ Λ+, the above C-algebra homomorphism (2.142)

Δ−μ1,−μ2 : Y−μ1−μ2(gln) −→ Y−μ1(gln) ⊗ Y−μ2(gln)

is uniquely determined by specifying the image of the central series C(z) of (2.23) via

C(z) �→ C(z) ⊗ C(z), (2.144)

and the following formulas (for any 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n):
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F
(r)
i �→ F

(r)
i ⊗ 1 for 1 ≤ r ≤ α∨

i (μ1),

F
(α∨

i (μ1)+1)
i �→ F

(α∨
i (μ1)+1)

i ⊗ 1 + 1 ⊗ F
(1)
i ,

E
(r)
i �→ 1 ⊗ E

(r)
i for 1 ≤ r ≤ α∨

i (μ2),

E
(α∨

i (μ2)+1)
i �→ 1 ⊗E

(α∨
i (μ2)+1)

i + E
(1)
i ⊗ 1,

D
(−ε∨j (μ1+μ2)+1)
j �→ D

(−ε∨j (μ1)+1)
j ⊗ 1 + 1 ⊗D

(−ε∨j (μ2)+1)
j ,

D
(−ε∨j (μ1+μ2)+2)
j �→ D

(−ε∨j (μ1)+2)
j ⊗ 1 + 1 ⊗D

(−ε∨j (μ2)+2)
j +

D
(−ε∨j (μ1)+1)
j ⊗D

(−ε∨j (μ2)+1)
j +

∑
γ∨∈Δ+

εj(γ∨)E(1)
γ∨ ⊗ F

(1)
γ∨ ,

(2.145)

where the last sum is taken over the set Δ+ = {α∨
a +. . .+α∨

b−1 | 1 ≤ a < b ≤ n} of positive 

roots of sln, and the root generators {E(1)
γ∨ , F

(1)
γ∨ }γ∨∈Δ+ are defined via (cf. (2.47)):

E
(1)
α∨

a +...+α∨
b−1

:= [E(1)
b−1, · · · , [E

(1)
a+1, E

(1)
a ] · · · ],

F
(1)
α∨

a +...+α∨
b−1

:= [· · · [F (1)
a , F

(1)
a+1], · · · , F

(1)
b−1].

Proof. Since Y−μ1−μ2(gln) is generated (as an algebra) by the coefficients of the cen-
tral series C(z) and the elements {E(1)

i , F (1)
i , D

(−ε∨j (μ1+μ2)+1)
j , D

(−ε∨j (μ1+μ2)+2)
j }1≤j≤n

1≤i<n , 
as follows from Corollary 2.24, it suffices to show that (2.142) satisfies the above formu-
las (2.144) and (2.145).

Using the standard arguments (see [29, Corollary 1.6.10] or [4, Lemma 8.1] and the 
references therein), we have Δrtt

−μ1,−μ2
(qdetT (z)) = qdetT (z) ⊗ qdetT (z). Combining 

this formula with Υ−1
−μ(qdetT (z)) = C(z) of Proposition 2.83, we obtain the desired 

formula (2.144).
Following our notations from the above proof of Proposition 2.136, we note that

f̃(1)ji = . . . = f̃(d
(1)
i −d

(1)
j )

ji = 0, f̃(d
(1)
i −d

(1)
j +1)

ji = f̄(1)ji = f(1)ji ,

ẽ(1)
ij = . . . = ẽ(d(2)

i −d
(2)
j )

ij = 0, ẽ(d(2)
i −d

(2)
j +1)

ij = ē(1)
ij = e(1)

ij .

Thus, following the proof of Proposition 2.136, we immediately get

Δrtt
−μ1,−μ2

(f (r)
i+1,i) = f

(r)
i+1,i ⊗ 1 for 1 ≤ r ≤ α∨

i (μ1),

Δrtt
−μ1,−μ2

(f (α∨
i (μ1)+1)

i+1,i ) = f
(α∨

i (μ1)+1)
i+1,i ⊗ 1 + 1 ⊗ f

(1)
i+1,i,

Δrtt
−μ1,−μ2

(e(r)
i,i+1) = 1 ⊗ e

(r)
i,i+1 for 1 ≤ r ≤ α∨

i (μ2),

Δrtt
−μ1,−μ2

(e(α∨
i (μ2)+1)

i,i+1 ) = 1 ⊗ e
(α∨

i (μ2)+1)
i,i+1 + e

(1)
i,i+1 ⊗ 1,

which give rise to the first four formulas of (2.145) by evoking the construction of Υ−μ.
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To deduce the last two formulas of (2.145), it remains to use obvious equalities

ḡ(1)
i = 0, ḡ(2)

i =
∑
j>i

e(1)
ij · f(1)ji −

∑
j<i

f(1)ji · e(1)
ji =

∑
1≤a<b≤n

εi(α∨
a + . . . + α∨

b−1)e
(1)
ab ⊗ f

(1)
ba .

This completes our proof of Proposition 2.143. �
Proposition 2.143 provides a conceptual and elementary proof of [14, Theorem 4.8]:

Proposition 2.146. (a) For any ν1, ν2 ∈ Λ̄+, there is a unique C-algebra homomorphism

Δ−ν1,−ν2 : Y−ν1−ν2(sln) −→ Y−ν1(sln) ⊗ Y−ν2(sln) (2.147)

such that the following diagram is commutative

Y−μ̄1−μ̄2(sln)
Δ−μ̄1,−μ̄2−−−−−−→ Y−μ̄1(sln) ⊗ Y−μ̄2(sln)

ι−μ1−μ2

⏐⏐� ⏐⏐�ι−μ1⊗ ι−μ2

Y−μ1−μ2(gln)
Δ−μ1,−μ2−−−−−−→ Y−μ1(gln) ⊗ Y−μ2(gln)

(2.148)

for any μ1, μ2 ∈ Λ+.
(b) The homomorphism Δ−ν1,−ν2 is uniquely determined by the following formulas:

F(r)
i �→ F(r)

i ⊗ 1 for 1 ≤ r ≤ α∨
i (ν1),

F(α∨
i (ν1)+1)

i �→ F(α∨
i (ν1)+1)

i ⊗ 1 + 1 ⊗ F(1)
i ,

E(r)
i �→ 1 ⊗ E(r)

i for 1 ≤ r ≤ α∨
i (ν2),

E(α∨
i (ν2)+1)

i �→ 1 ⊗ E(α∨
i (ν2)+1)

i + E(1)
i ⊗ 1,

H(α∨
i (ν1+ν2)+1)

i �→ H(α∨
i (ν1)+1)

i ⊗ 1 + 1 ⊗ H(α∨
i (ν2)+1)

i ,

H(α∨
i (ν1+ν2)+2)

i �→ H(α∨
i (ν1)+2)

i ⊗ 1 + 1 ⊗ H(α∨
i (ν2)+2)

i +

H(α∨
i (ν1)+1)

i ⊗ H(α∨
i (ν2)+1)

i −
∑

γ∨∈Δ+

αi(γ∨)E(1)
γ∨ ⊗ F(1)

γ∨ ,

(2.149)

where E(1)
α∨
a +...+α∨

b−1
:= [E(1)

b−1, · · · , [E
(1)
a+1, E

(1)
a ] · · · ] and F(1)

α∨
a +...+α∨

b−1
:= [· · · [F(1)

a , F(1)
a+1], · · · , F

(1)
b−1].

Proof. Follows immediately from the formulas (2.145) of Proposition 2.143 combined 
with the defining formulas (2.21) for the embedding ι−μ : Y−μ̄(sln) ↪→ Y−μ(gln) of Propo-
sition 2.19. �
Remark 2.150. Due to [14, Theorem 4.12], Δ−ν1,−ν2 with ν1, ν2 ∈ Λ̄+ give rise to al-
gebra homomorphisms Δν1,ν2 : Yν1+ν2(sln) → Yν1(sln) ⊗ Yν2(sln) for any sln–coweights 
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ν1, ν2 ∈ Λ̄. However, we note that Δν1,ν2 (ν1, ν2 ∈ Λ) are not coassociative, in contrast 
to Corollary 2.141.

Remark 2.151. We note that [35, §2.4] contains an attempt to construct the simplest 
coproduct homomorphism Y−α(sl2) → Y−α/2(sl2) ⊗ Y−α/2(sl2) from Proposition 2.146.

2.7. Relation to Gelfand-Tsetlin bases of parabolic Verma modules of gln

Evoking the setup of Section 2.4.4, assume μ = ((−1)n) while λ is a Young diagram 
of size n and length < n, i.e. |λ| = n and λn = 0, and consider the corresponding Λ+-
valued divisor on P 1: D =

∑λ1
k=1 
ik [xk] −
0[∞] with xk ∈ C (note that ik = n − λt

k). 
In this section, we show that the homomorphism ΘD : Y rtt

�0
(gln) → A of (2.56) may be 

viewed (up to a gauge transformation) as a composition of the evaluation homomorphism 
ẽv : Y rtt

�0
(gln) → U(gln) and the homomorphism U(gln) → A determined by the parabolic 

Gelfand-Tsetlin formulas.
Let us recall the explicit formulas for the matrix coefficients TD(z)i,i, TD(z)i,i+1, 

TD(z)i+1,i of Theorem 2.90 (note that TD(z) = TD(z) in the present setup):

TD(z)i,i = z +
ai−1∑
r=1

(pi−1,r + 1) −
ai∑
r=1

pi,r −
∑

k:ik≤i−1

xk, (2.152)

TD(z)i,i+1 = −
ai∑
r=1

∏ai−1
s=1 (pi,r − 1 − pi−1,s)∏s 
=r

1≤s≤ai
(pi,r − pi,s)

·
∏

k:ik=i

(pi,r − xk) · eqi,r , (2.153)

TD(z)i+1,i =
ai∑
r=1

∏ai+1
s=1 (pi,r + 1 − pi+1,s)∏s 
=r

1≤s≤ai
(pi,r − pi,s)

· e−qi,r . (2.154)

Consider the following factor

S =
∏n−2

i=1
∏s≤ai+1

r≤ai
Γ(pi,r − pi+1,s + 1) ·

∏n−1
i=1
∏ai

r=1
∏

k:ik≤i−1 Γ(pi,r − xk + 1)∏n−1
i=1
∏r 
=s

1≤r,s≤ai
Γ(pi,s − pi,r)

,

(2.155)
where Γ(·) denotes the classical Gamma function. Then, Ad(S) is a well-defined auto-
morphism of A, which shall be referred to as the gauge transformation with respect to S. 
Applying Ad(S) to TD(z) partially described by the formulas (2.152), (2.153), (2.154), 
we obtain

Ad(S)TD(z)i,i = z +
ai−1∑
r=1

(pi−1,r + 1) −
ai∑
r=1

pi,r −
∑

k:ik≤i−1

xk, (2.156)

Ad(S)TD(z)i,i+1 =
ai∑
r=1

(−1)ai+ai−1

∏ai+1
s=1 (pi,r − pi+1,s)∏s 
=r

1≤s≤ai
(pi,r − 1 − pi,s)

∏
k:ik≤i

(pi,r − xk) · eqi,r ,

(2.157)
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Ad(S)TD(z)i+1,i

=
ai∑
r=1

(−1)ai+ai−1−1
∏ai−1

s=1 (pi,r − pi−1,s)∏s 
=r
1≤s≤ai

(pi,r + 1 − pi,s)

∏
k:ik≤i−1

1
pi,r − xk + 1 · e−qi,r .

(2.158)

We also consider the factor

U :=
n−1∏
i=1

ai∏
r=1

(
(−1)λn−i+1pi,r · e−iqi,r

)
, (2.159)

so that Ad(U) is a well-defined automorphism of A which maps

pi,r �→ pi,r + i, eqi,r �→ (−1)λn−i+1eqi,r .

Applying this automorphism to (2.156), (2.157), (2.158), we obtain

Ad(US)TD(z)i,i = z +
ai−1∑
r=1

pi−1,r −
ai∑
r=1

pi,r + i(ai−1 − ai) −
∑

k:ik≤i−1

xk, (2.160)

Ad(US)TD(z)i,i+1 =
ai∑
r=1

(−1)βi

∏ai+1
s=1 (pi+1,s − pi,r + 1)∏s 
=r
1≤s≤ai

(pi,s − pi,r + 1)

∏
k:ik≤i

(xk − pi,r − i) · eqi,r ,

(2.161)

Ad(US)TD(z)i+1,i =
ai∑
r=1

∏ai−1
s=1 (pi−1,s − pi,r − 1)∏s 
=r
1≤s≤ai

(pi,s − pi,r − 1)

∏
k:ik≤i−1

1
xk − pi,r − i− 1 · e−qi,r ,

(2.162)
where βi := ai−1 + ai+1 + 1 + λn−i + λn−i+1. Evoking ai − ai−1 = 1 − λn−i+1, we see 
that βi is odd. Thus, the formulas (2.160), (2.161), (2.162) may be written as follows:

Ad(US)TD(z)i,i = z +
ai−1∑
r=1

pi−1,r −
ai∑
r=1

pi,r + i(λn−i+1 − 1) −
∑

k:ik≤i−1

xk, (2.163)

Ad(US)TD(z)i,i+1 = −
ai∑
r=1

∏ai+1
s=1 (pi+1,s − pi,r + 1)∏s 
=r
1≤s≤ai

(pi,s − pi,r + 1)

∏
k:ik≤i

(xk − pi,r − i) · eqi,r , (2.164)

Ad(US)TD(z)i+1,i =
ai∑
r=1

∏ai−1
s=1 (pi−1,s − pi,r − 1)∏s 
=r
1≤s≤ai

(pi,s − pi,r − 1)

∏
k:ik≤i−1

1
xk − pi,r − i− 1 · e−qi,r .

(2.165)

Let us now relate formulas (2.163), (2.164), (2.165) to the parabolic Gelfand-Tsetlin 
formulas. Let p ⊆ gln be a parabolic subalgebra with the Levi factor l 
 glλt

1
⊕glλt

2
⊕· · ·⊕

glλt
λ1

embedded block-diagonally into gln. For y = (y1, . . . , yλ1) ∈ Cλ1 , let Cy be the
1-dimensional p-module obtained as a pull-back (along the natural projection p � l) 
of the 1-dimensional l-module with glλt-factor acting via yitr. We also assume that 
i
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yi − yj /∈ Z for i �= j. Consider the parabolic Verma module My := Indgln
p Cy. 

It has a distinguished basis {ξΛ}, called the Gelfand-Tsetlin basis, parametrized by 
Λ = (Λi,j)1≤j≤i≤n subject to the following conditions:

(a) Λn,λt
1+...+λt

i−1+a = ya for 1 ≤ a ≤ λt
i;

(b) Λi+1,j − Λi,j ∈ N;
(c) if Λi,j − Λi+1,j+1 ∈ Z, then actually Λi,j − Λi+1,j+1 ∈ N.

Note that the conditions (b,c) imply Λi,k = ya if λt
1 + . . .+λt

a−1 < k ≤ λt
1 + . . .+λt

a −
(n − i). We call such coordinates (i, k) frozen. For 1 ≤ i ≤ n − 1, let Ji ⊂ {1, · · · , i}
denote the set of non-frozen coordinates among {(i, ∗)}. It is easy to see that |Ji| = ai. 
Set li,j := Λi,j − j + 1.

Then, the classical Gelfand-Tsetlin formulas [34] (corresponding to the case l 
 gl
⊕n
1 ) 

give rise to the parabolic Gelfand-Tsetlin formulas for the action of gln in the basis ξΛ
of My:

Ei,i(ξΛ) =

⎛⎝∑
k∈Ji

li,k −
∑

k∈Ji−1

li−1,k +
∑

a:λt
a≥n−i+1

(y′a − i) + (i− 1)

⎞⎠ · ξΛ, (2.166)

Ei,i+1(ξΛ) = −
∑
k∈Ji

∏
m∈Ji+1

(li+1,m − li,k)∏
m∈Ji\{k}(li,m − li,k)

∏
a:λt

a≥n−i

(y′a − li,k − i− 1) · ξΛ+δi,k , (2.167)

Ei+1,i(ξΛ) =
∑
k∈Ji

∏
m∈Ji−1

(li−1,m − li,k)∏
m∈Ji\{k}(li,m − li,k)

∏
a:λt

a≥n−i+1

1
y′a − li,k − i

· ξΛ−δi,k , (2.168)

where y′a := ya − (λt
1 + . . . + λt

a) + (n + 1) and Λ ± δi,k is obtained from Λ by adding 
±1 to its (i, k)-th entry (if Λ ± δi,k does not satisfy (b) or (c), then the corresponding 
coefficient in front of ξΛ±δi,k in (2.167) or (2.168), respectively, is actually zero).

These formulas naturally give rise to the algebra homomorphism � : U(gln) → A with

Ei,i �→
∑
k∈Ji

pi,k −
∑

k∈Ji−1

pi−1,k +
∑

a:λt
a≥n−i+1

(y′a − i) + (i− 1), (2.169)

Ei,i+1 �→ −
∑
k∈Ji

eqi,k

∏
m∈Ji+1

(pi+1,m − pi,k)∏
m∈Ji\{k}(pi,m − pi,k)

∏
a:λt

a≥n−i

(y′a − pi,k − i− 1) =

−
∑
k∈Ji

∏
m∈Ji+1

(pi+1,m − pi,k + 1)∏
m∈Ji\{k}(pi,m − pi,k + 1)

∏
a:λt

a≥n−i

(y′a − pi,k − i) · eqi,k , (2.170)

Ei+1,i �→
∑
k∈Ji

e−qi,k

∏
m∈Ji−1

(pi−1,m − pi,k)∏
m∈Ji\{k}(pi,m − pi,k)

∏
a:λt

a≥n−i+1

1
y′a − pi,k − i

=

∑
k∈J

∏
m∈Ji−1

(pi−1,m − pi,k − 1)∏
m∈Ji\{k}(pi,m − pi,k − 1)

∏
t

1
y′a − pi,k − i− 1 · e−qi,k . (2.171)
i a:λa≥n−i+1
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Remark 2.172. We note that the algebra A acts on the bigger space M̃y parametrized by 
Λ = (Λi,j)1≤j≤i≤n satisfying only the condition (a) via pi,k : ξΛ �→ li,kξΛ, e±qi,k : ξΛ �→
ξΛ±δi,k . Meanwhile, the same formulas actually define the action of the subalgebra 
Im(�) ⊂ A on My, composing which with � recovers the action of U(gln) on My de-
fined via (2.166), (2.167), (2.168).

Consider the evaluation homomorphism ẽv : Y rtt
�0

(gln) → U(gln) such that

T (z)i,i �→ z − (Ei,i + 1), T (z)i,i+1 �→ Ei,i+1, T (z)i+1,i �→ Ei+1,i. (2.173)

Remark 2.174. ẽv is a composition of the isomorphism Y rtt
�0

(gln) ∼−→Y rtt
0 (gln) given by 

T (z) �→ zT (z) of Remark 2.45(d), the evaluation homomorphism ev : Y rtt
0 (gln) → U(gln)

given by tij(z) �→ δij − Eijz
−1, and the isomorphism U(gln) ∼−→U(gln) determined by 

Eii �→ Eii + 1, Ei,i±1 �→ −Ei,i±1.

The key result of this section is:

Proposition 2.175. The homomorphism Ad(US) ◦ ΘD : Y rtt
�0

(gln) → A (the gauge trans-
formation of ΘD) coincides with the composition � ◦ ẽv : Y rtt

�0
(gln) → A, under the 

identification xk = y′k for 1 ≤ k ≤ λ1.

Proof. The proof immediately follows by comparing the formulas (2.163), (2.164), (2.165)
with the formulas (2.169), (2.170), (2.171) via (2.173) (as well as recalling that ik =
n − λt

k, hence, for example 
∑

k:ik≤i−1 xk of (2.163) coincides with 
∑

a:λt
a≥n−i+1 y

′
a

of (2.169)). �
Remark 2.176. Choosing a basis of a Lie subalgebra n− ⊆ gln such that gln 
 p ⊕ n−, 
yields another standard basis of My via the vector space isomorphisms My 
 U(n−) 

S(n−), which similar to Proposition 2.175 gives rise to the rational Lax matrices 
Lλ,x,μ̃=∅(z) of [15, §3.2].

3. Trigonometric Lax matrices

In this section, we generalize previous results to the trigonometric case.

3.1. Shifted Drinfeld quantum affine algebras of gln

For a pair of gln–coweights μ+, μ−∈Λ, define d±={d±j }nj=1∈Zn, b±={b±i }n−1
i=1 ∈Zn−1

via

d±j := ε∨j (μ±), b±i := α∨
i (μ±) = d±i − d±i+1. (3.1)

Then, we define the shifted Drinfeld quantum affine algebra of gln, denoted by 
Uμ+,μ−(Lgln), to be the associative C(v)-algebra generated by
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{Ei,r, Fi,r}r∈Z1≤i<n ∪ {ϕ±
i,±s±i

, (ϕ±
i,±d±

i

)−1}s
±
i ≥d±

i

1≤i≤n

with the following defining relations (for all admissible i, j and ε, ε′ ∈ {±}):

[ϕε
i(z), ϕε′

j (w)] = 0, ϕ±
i,±d±

i

· (ϕ±
i,±d±

i

)−1 = (ϕ±
i,±d±

i

)−1 · ϕ±
i,±d±

i

= 1, (3.2)

[Ei(z), Fj(w)] = (v − v−1)δi,jδ
( z
w

)(
(ϕ+

i (z))−1ϕ+
i+1(z) − (ϕ−

i (z))−1ϕ−
i+1(z)

)
, (3.3)

ϕε
i(z)Ej(w) =

(
z − w

v−1z − vw

)δi,j+1 ( z − w

vz − v−1w

)δi,j

Ej(w)ϕε
i(z), (3.4)

ϕε
i(z)Fj(w) =

(
v−1z − vw

z − w

)δi,j+1 (vz − v−1w

z − w

)δi,j

Fj(w)ϕε
i(z), (3.5)

Ei(z)Ej(w) =
(
vz − v−1w

v−1z − vw

)δi,j ( z − w

vz − v−1w

)δi,j−1 (v−1z − vw

z − w

)δi,j+1

Ej(w)Ei(z),

(3.6)

Fi(z)Fj(w) =
(
v−1z − vw

vz − v−1w

)δi,j (vz − v−1w

z − w

)δi,j−1 ( z − w

v−1z − vw

)δi,j+1

Fj(w)Fi(z),

(3.7)

[Ei(z1), [Ei(z2), Ej(w)]v]v−1 + [Ei(z2), [Ei(z1), Ej(w)]v]v−1 = 0 if |i− j| = 1, (3.8)

[Fi(z1), [Fi(z2), Fj(w)]v]v−1 + [Fi(z2), [Fi(z1), Fj(w)]v]v−1 = 0 if |i− j| = 1, (3.9)

where [a, b]x := ab − x · ba and the generating series are defined as follows:

Ei(z) :=
∑
r∈Z

Ei,rz
−r, Fi(z) :=

∑
r∈Z

Fi,rz
−r, ϕ±

i (z) :=
∑
r≥d±

i

ϕ±
i,±rz

∓r, δ(z) :=
∑
r∈Z

zr.

(3.10)
We will also need Drinfeld half-currents E±

i (z), F±
i (z) defined via

E+
i (z) :=

∑
r≥0

Ei,rz
−r, E−

i (z) := −
∑
r<0

Ei,rz
−r,

F+
i (z) :=

∑
r>0

Fi,rz
−r, F−

i (z) := −
∑
r≤0

Fi,rz
−r,

(3.11)

so that Ei(z) = E+
i (z) − E−

i (z) and Fi(z) = F+
i (z) − F−

i (z).

Remark 3.12. For μ+ = μ− = 0, we have U0,0(Lgln)/(ϕ+
i,0ϕ

−
i,0 − 1) 
 Uv(Lgln)–the 

standard quantum loop (the quantum affine with the trivial central charge) algebra of gln
as defined in [9, Definition 3.1]. More precisely, the generating series X−

i (z), X+
i (z), k±j (z)

of [9] correspond to Ei(z), Fi(z), ϕ∓
j (z) of (3.10), respectively.
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Similarly to Lemma 2.17, the algebra Uμ+,μ−(Lgln) depends only on the associated 
sln–coweights μ̄+, μ̄− ∈ Λ̄, up to an isomorphism:

Lemma 3.13. For gln–coweights μ+
1 , μ

−
1 , μ

+
2 , μ

−
2 ∈ Λ such that μ̄+

1 = μ̄+
2 , μ̄

−
1 = μ̄−

2 in Λ̄, 
the assignment

E
(r)
i �→ E

(r)
i , F

(r)
i �→ F

(r)
i , ϕ±

i,±s±i
�→ ϕ±

i,±s±i ∓ε∨i (μ±
1 −μ±

2 ) (3.14)

gives rise to a C(v)-algebra isomorphism Uμ+
1 ,μ−

1
(Lgln) ∼−→Uμ+

2 ,μ−
2
(Lgln).

Let U ′
μ+,μ−(Lgln) be the associative C(v)-algebra obtained from Uμ+,μ−(Lgln) by 

formally adjoining n-th roots of its central elements ϕ± := ϕ±
1,±d±

1
ϕ±

2,±d±
2
. . . ϕ±

n,±d±
n
, 

that is,

U ′
μ+,μ−(Lgln) := Uμ+,μ−(Lgln)

[
(ϕ+)±1/n, (ϕ−)±1/n

]
. (3.15)

The algebras U ′
μ+,μ−(Lgln) slightly generalize the shifted (Drinfeld) quantum affine al-

gebras of sln, denoted by U sc
ν+,ν−(Lsln) (the simply-connected version) and Uad

ν+,ν−(Lsln)
(the adjoint version) in [18, §5], where ν+, ν− ∈ Λ̄ are sln–coweights. Recall that 
the latter, the algebra Uad

ν+,ν−(Lsln), is an associative C(v)-algebra generated by 

{ei,r, fi,r, ψ±
i,±s±i

, (φ±
i )±1}r∈Z,s±i ≥−b±i

1≤i<n with the defining relations [18, (U1–U10)], where 

b±i := α∨
i (ν±i ). Define the generating series

ei(z) :=
∑
r∈Z

ei,rz
−r, fi(z) :=

∑
r∈Z

fi,rz
−r, ψ±

i (z) :=
∑

r≥−b±i

ψ±
i,±rz

∓r.

The explicit relation between the shifted Drinfeld quantum affine algebras of sln and 
gln is:

Proposition 3.16. For any μ+, μ− ∈ Λ, there exists a C(v)-algebra embedding

ιμ+,μ− : Uad
μ̄+,μ̄−(Lsln) ↪→ U ′

μ+,μ−(Lgln), (3.17)

uniquely determined by

ei(z) �→
Ei(viz)
v − v−1 , fi(z) �→

Fi(viz)
v − v−1 ,

ψ±
i (z) �→ (ϕ±

i (viz))−1ϕ±
i+1(v

iz), φ±
i �→ (ϕ±

1,±d±
1
. . . ϕ±

i,±d±
i

)−1 · (ϕ±)i/n.
(3.18)

Restricting to U sc
μ̄+,μ̄−(Lsln) ⊂ Uad

μ̄+,μ̄−(Lsln), this gives rise to a C(v)-algebra embedding

ιμ+,μ− : U sc
μ̄+,μ̄−(Lsln) ↪→ Uμ+,μ−(Lgln). (3.19)
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Remark 3.20. For μ+ = μ− = 0, this recovers (an extension of) the classical embedding 
Uv(Lsln) ↪→ Uv(Lgln) of quantum loop algebras.

Proof of Proposition 3.16. The proof is completely analogous to that of Proposi-
tion 2.19. �

Define the generating series

C±(z) :=
∑

s≥d±
1 +...+d±

n

C±
±sz

∓s = ϕ±
1 (z)ϕ±

2 (v2z) · · ·ϕ±
n (v2(n−1)z). (3.21)

The coefficients C±
±s are central elements of both Uμ+,μ−(Lgln) and U ′

μ+,μ−(Lgln), due 
to the defining relations (3.2), (3.4), (3.5). We also note that C±

±(d±
1 +...+d±

n ) = ϕ±.
The following result provides a trigonometric version of the decomposition (2.25):

Lemma 3.22. There is a C(v)-algebra isomorphism

U ′
μ+,μ−(Lgln) 
 C[{C±

±s± , (ϕ
ε)±1/n}ε∈{+,−}

s±>d±
1 +...+d±

n
] ⊗C(v) U

ad
μ̄+,μ̄−(Lsln). (3.23)

In particular, Uad
μ̄+,μ̄−(Lsln) may be realized both as a subalgebra of U ′

μ+,μ−(Lgln)
via (3.17) as well as a quotient algebra of U ′

μ+,μ−(Lgln) by the central ideal (C±
±s±−b±±s± ,

(ϕε)±1/n − (bε)±1) with ε ∈ {+, −}, s± > d±1 + . . . + d±n for any collection of b±±s± ∈ C

and bε ∈ C×.

Remark 3.24. We expect that the trigonometric version of the key result of [40], see Theo-
rem 2.80 and Conjecture 3.75, holds. Then, the arguments similar to those of Remark 2.81
would yield the triviality of centers of the shifted quantum affine algebras Uad

ν+,ν−(Lg)
for any coweights ν+, ν− of a semisimple Lie algebra g. Combined with (3.23) this would 
imply that the center of U ′

μ+,μ−(Lgln) coincides with C[{C±
±s± , (ϕ

ε)±1/n}ε∈{+,−}
s±>d±

1 +...+d±
n
]

for any μ+, μ− ∈ Λ.

3.2. Homomorphism ΨD

In this section, we generalize [18, Theorem 7.1] for the type An−1 Dynkin diagram with 
arrows pointing i → i + 1, 1 ≤ i ≤ n − 2, by replacing Uad

μ̄+,μ̄−(Lsln) of [18, Theorem 7.1]
with Uμ+,μ−(Lgln).

Remark 3.25. While similar generalizations exist for all orientations of An−1 Dynkin 
diagram, for the purposes of this paper it suffices to consider only the above equioriented 
case, see Remarks 2.27, 2.73.
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A Λ-valued divisor D on P 1, Λ+-valued outside {0, ∞} ∈ P 1, is a formal sum

D =
∑

1≤s≤N

γs
is [xs] + μ+[∞] + μ−[0] (3.26)

with N ∈ N, 0 ≤ is < n, xs ∈ C×, γs =
{

1 if is �= 0
±1 if is = 0

, and μ+, μ− ∈ Λ. We will write 

μ+ = D|∞ and μ− = D|0. Note that if μ+, μ− ∈ Λ+, then D is a Λ+-valued divisor on 
P 1. It will be convenient to present

D =
∑

x∈P1\{0,∞}
λx[x] + μ+[∞] + μ−[0] with λx ∈ Λ+, (3.27)

related to (3.26) via λx :=
∑

s:xs=x γs
is . Set λ :=
∑N

s=1 γs
is ∈ Λ+. Following [18], we 
make the following

Assumption: λ + μ+ + μ− = a1α1 + . . . + an−1αn−1 with ai ∈ N. (3.28)

Consider the associative C[v, v−1]-algebra

Ãv = C〈D±1
i,r ,w

±1/2
i,r , (wi,r − vmwi,s)−1, (1 − vl)−1〉1≤r 
=s≤ai

1≤i<n,m∈Z,l∈Z\{0} (3.29)

with the defining relations

Di,rw1/2
j,s = vδi,jδr,sw1/2

j,s Di,r, [Di,r, Dj,s] = 0 = [w1/2
i,r ,w1/2

j,s ],

D±1
i,rD

∓1
i,r = 1 = w±1/2

i,r w∓1/2
i,r .

We also define its C(v)-counterpart

Ãv
frac := Ãv ⊗C[v,v−1] C(v). (3.30)

Remark 3.31. The algebra Ãv can be represented in the algebra of v-difference 
operators with rational coefficients on functions of {w̃i,r}1≤r≤ai

1≤i<n with the conven-
tions w̃±1

i,r = w±1/2
i,r by taking D±1

i,r to be a v-difference operator D±1
i,r acting via 

(D±1
i,rΨ)(w̃1,1, . . . , w̃i,r, . . . , w̃n−1,an−1) = Ψ(w̃1,1, . . . , v±1w̃i,r, . . . , w̃n−1,an−1).

For 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1, we define

Zi(z) :=
is=i∏

1≤s≤N

(
1 − v−ixs

z

)γs

=
∏

x∈P1\{0,∞}

(
1 − v−ix

z

)α∨
i (λx)

,

Wj(z) :=
aj∏(

1 − wj,r

z

)
, Wj,r(z) :=

s 
=r∏ (
1 − wj,s

z

)
,

(3.32)
r=1 1≤s≤aj
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where α∨
0 = −ε∨1 as before. We also define

a0 := 0, an := 0, W0(z) := 1, Wn(z) := 1.

The following result generalizes An−1-case of [18, Theorem 7.1] stated for semisimple 
Lie algebras g:

Theorem 3.33. Let D be as above and μ+ = D|∞, μ− = D|0. There is a unique C(v)-
algebra homomorphism

ΨD : U−μ+,−μ−(Lgln) −→ Ãv
frac (3.34)

such that

Ei(z) �→ z−α∨
i (μ+) ·

ai∏
t=1

wi,t

ai−1∏
t=1

w−1/2
i−1,t ·

ai∑
r=1

δ

(
viwi,r

z

)
Zi(wi,r)

Wi,r(wi,r)
Wi−1(v−1wi,r)D−1

i,r ,

Fi(z) �→ −v−1
ai+1∏
t=1

w−1/2
i+1,t ·

ai∑
r=1

δ

(
vi+2wi,r

z

)
1

Wi,r(wi,r)
Wi+1(vwi,r)Di,r,

ϕ±
i (z) �→

ai∏
t=1

w−1/2
i,t

ai−1∏
t=1

w1/2
i−1,t ·

⎛⎝zd
+
i · Wi(v−iz)

Wi−1(v−i−1z)
∏

0≤k≤i−1

Zk(v−kz)

⎞⎠±

=

ai∏
t=1

w−1/2
i,t

ai−1∏
t=1

w1/2
i−1,t ·

⎛⎝zε
∨
i (μ+) · Wi(v−iz)

Wi−1(v−i−1z)
∏

x∈P1\{0,∞}
(1 − x/z)−ε∨i (λx)

⎞⎠±

.

(3.35)

We write γ(z)± for the expansion of a rational function γ(z) in z∓1, respectively.

Remark 3.36. Let Ãv,ext
frac be the associative C(v)-algebra obtained from Ãv

frac by for-
mally adjoining n-th roots of v, xs, and ΨD : U ′

−μ+,−μ−(Lgln) → Ãv,ext
frac be the extended 

homomorphism. Then, the (restriction) composition

Uad
−μ̄+,−μ̄−(Lsln)

ι−μ+,−μ−−−−−−−→ U ′
−μ+,−μ−(Lgln) ΨD−−→ Ãv,ext

frac

coincides with the composition of the natural isomorphism

Uad
−μ̄+,−μ̄−(Lsln) ∼−→Uad

0,−μ̄+−μ̄−(Lsln)

and the homomorphism

Φ̃λ̄
−μ̄+−μ̄− : Uad

0,−μ̄+−μ̄−(Lsln) −→ Ãv,ext
frac

of [18, Theorem 7.1].
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Proof of Theorem 3.33. First, we need to verify that under the above assignment (3.35), 
the images of ϕ+

i (z) (resp. ϕ−
i (z)) contain only powers of z which are ≤ d+

i (resp. ≥ −d−i ), 
and the corresponding coefficients of zd+

i (respectively of z−d−
i ) are invertible. The claim 

is clear for ϕ+
i (z), while its validity for ϕ−

i (z) follows from the equality

−ai + ai−1 + ε∨i (μ+) + ε∨i (λ) = −ε∨i (μ−),

due to (3.28).
Evoking the decomposition (3.23), it suffices to prove that the restrictions of the as-

signment (3.35) to the subalgebras Uad
−μ̄+,−μ̄−(Lsln) and C[{C±

±s}s>d±
1 +...+d±

n
] determine 

algebra homomorphisms, whose images commute. The former is clear for the restriction 
to Uad

−μ̄+,−μ̄−(Lsln), due to Theorem 7.1 of [18] combined with Remark 3.36 above. On 
the other hand, we have

ΨD(C±(z)) = A ·
n∏

i=1

∏
x∈P1\{0,∞}

(
1 − v−2(i−1) x

z

)−ε∨i (λx)
= A ·

N∏
s=1

n−1∏
k=is

(
1 − v−2k xs

z

)γs

,

(3.37)
where A :=

∏n
i=1(v2(i−1)z)ε∨i (μ+).

Thus, the restriction of ΨD to the subalgebra C[{C±
±s}s>d±

1 +...+d±
n
] defines an algebra 

homomorphism, whose image is central in Ãv
frac. This completes our proof of Theo-

rem 3.33. �
3.3. Antidominantly shifted RTT quantum affine algebras of gln

Consider the trigonometric R-matrix Rtrig(z, w) = Rv
trig(z, w) given by

Rtrig(z, w) := (vz − v−1w)
n∑

i=1
Eii ⊗ Eii + (z − w)

∑
i
=j

Eii ⊗Ejj +

(v − v−1)z
∑
i<j

Eij ⊗ Eji + (v − v−1)w
∑
i>j

Eij ⊗ Eji,

(3.38)

cf. [9, (3.7)]. It satisfies the Yang-Baxter equation with a spectral parameter:

Rtrig;12(u, v)Rtrig;13(u,w)Rtrig;23(v, w) = Rtrig;23(v, w)Rtrig;13(u,w)Rtrig;12(u, v).
(3.39)

Fix μ+, μ− ∈ Λ+. Define the (antidominantly) shifted RTT quantum affine algebra of 
gln, denoted by U rtt

−μ+,−μ−(Lgln), to be the associative C(v)-algebra generated by

{t±ij [±r]}r∈Z1≤i,j≤n ∪ {(g±
i,∓d±

i

)−1}ni=1

subject to the following three families of relations:
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• The first family of relations may be encoded by a single RTT relation

Rtrig(z, w)T ε
1 (z)T ε′

2 (w) = T ε′

2 (w)T ε
1 (z)Rtrig(z, w) (3.40)

for any ε, ε′ ∈ {+, −}, where T±(z) ∈ U rtt
−μ+,−μ−(Lgln)[[z, z−1]] ⊗C EndCn are de-

fined via

T±(z) =
∑
i,j

t±ij(z) ⊗ Eij with t±ij(z) :=
∑
r∈Z

t±ij [±r]z∓r. (3.41)

Thus, (3.40) is an equality in U rtt
−μ+,−μ−(Lgln)[[z, z−1, w, w−1]] ⊗C (EndCn)⊗2 for 

any ε, ε′.
• The second family of relations encodes the fact that T±(z) admits the Gauss decom-

position:

T±(z) = F±(z) ·G±(z) · E±(z), (3.42)

where F±(z), G±(z), E±(z) ∈ U rtt
−μ+,−μ−(Lgln)((z∓1)) ⊗C EndCn are of the form

F±(z) =
∑
i

Eii +
∑
i<j

f±
ji (z) ⊗Eji, G±(z) =

∑
i

g±i (z) ⊗Eii,

E±(z) =
∑
i

Eii +
∑
i<j

e±ij(z) ⊗Eij ,

with the matrix coefficients having the following expansions in z:

e+
ij(z) =

∑
r≥0

e
(r)
ij z−r, e−ij(z) =

∑
r<0

e
(r)
ij z−r,

f+
ij (z) =

∑
r>0

f
(r)
ij z−r, f−

ij (z) =
∑
r≤0

f
(r)
ij z−r,

g+
i (z) =

∑
r≥−d+

i

g+
i,rz

−r, g−i (z) =
∑

r≥−d−
i

g−i,−rz
r,

(3.43)

where {e(r)
ij , f (r)

ji }r∈Z1≤i<j≤n ∪ {g±
i,±s±i

}s
±
i ≥−d±

i

1≤i≤n ⊂ U rtt
−μ+,−μ−(Lgln).

• The third family of relations is just:

g±
i,∓d±

i

· (g±
i,∓d±

i

)−1 = (g±
i,∓d±

i

)−1 · g±
i,∓d±

i

= 1. (3.44)

Remark 3.45. (a) For μ+ = μ− = 0, the second family of relations (3.42), (3.43) is 
equivalent to the relations t+ij [r] = t−ij [−r] = 0 for all i, j and r < 0 as well as t+ji[0] =
t−ij [0] = 0 for 1 ≤ i < j ≤ n. In this case, adjoining the inverses of g±i,0, cf. (3.44), is 
equivalent to adjoining the inverses of t±ii [0]. Thus, U rtt

0,0(Lgln) is the RTT quantum loop 
algebra of gln of [17], or more precisely, its extended version U rtt,ext

v (Lgln) of [23, (2.15)].
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(b) Likewise, (3.43) is equivalent to a certain family of algebraic relations on t±ij [r]. In 
particular, T±(z) ∈ U rtt

−μ+,−μ−((z∓1)) ⊗C EndCn. For example, (3.43) for i = 1 are 
equivalent to:

t+11[r] = 0 for r < −d+
1 , t−11[−r] = 0 for r < −d−1 ,

t+1j [r] = 0 for r < −d+
1 , j > 1, t−1j [−r] = 0 for r ≤ −d−1 , j > 1,

t+j1[r] = 0 for r ≤ −d+
1 , j > 1, t−j1[−r] = 0 for r < −d−1 , j > 1.

(c) If μ+
1 , μ

−
1 , μ

+
2 , μ

−
2 ∈ Λ+ satisfy μ̄+

1 = μ̄+
2 and μ̄−

1 = μ̄−
2 in Λ̄, that is, μ+

2 = μ+
1 + c+
0

and μ−
2 = μ−

1 + c−
0 with c+, c− ∈ Z, then the assignment T±(z) �→ z±c±T±(z)
gives rise to a C(v)-algebra isomorphism U rtt

−μ+
1 ,−μ−

1
(Lgln) ∼−→U rtt

−μ+
2 ,−μ−

2
(Lgln), cf. 

Lemma 3.13.

Lemma 3.46. For any 1 ≤ i < j ≤ n and r ∈ Z, we have the following identities:

e
(r)
ij = (v − v−1)i−j+1[e(0)

j−1,j , [e
(0)
j−2,j−1, · · · , [e

(0)
i+1,i+2, e

(r)
i,i+1]v−1 · · · ]v−1 ]v−1 ,

f
(r)
ji = (v−1 − v)i−j+1[[[· · · [f (r)

i+1,i, f
(0)
i+2,i+1]v, · · · , f

(0)
j−1,j−2]v, f

(0)
j,j−1]v.

(3.47)

Proof. The proof is analogous to that of [19, Corollary 3.22]. �
Corollary 3.48. The algebra U rtt

−μ+,−μ−(Lgln) is generated by

{e(r)
i,i+1, f

(r)
i+1,i, g

±
j,±s±j

, (g±
j,∓d±

j

)−1}r∈Z,s±j ≥−d±
j

1≤i<n,1≤j≤n.

The following result is a shifted version of [9, Main Theorem] and a trigonometric 
version of our Theorem 2.52:

Theorem 3.49. For any μ+, μ− ∈ Λ+, there is a unique C(v)-algebra epimorphism

Υ−μ+,−μ− : U−μ+,−μ−(Lgln) � U rtt
−μ+,−μ−(Lgln)

defined by

E±
i (z) �→ e±i,i+1(z), F±

i (z) �→ f±
i+1,i(z), ϕ±

j (z) �→ g±j (z). (3.50)

Modulo a trigonometric counterpart of [40], see Conjecture 3.75, the following result 
is proved in Section 3.4.3:

Theorem 3.51. Υ−μ+,−μ− : U−μ+,−μ−(Lgln) ∼−→U rtt
−μ+,−μ−(Lgln) is a C(v)-algebra iso-

morphism for any μ+, μ− ∈ Λ+.
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Remark 3.52. (a) For μ+ = μ− = 0 and any n, the isomorphism Υ0,0 of Theorem 3.51
was established in [9, Main Theorem] (more precisely, Υ0,0 is an isomorphism between 
the extended versions of both algebras featuring in the Main Theorem of [9]).
(b) For n = 2 and μ+, μ− ∈ Λ+, a long straightforward verification shows that the 
assignment

t±11(z) �→ ϕ±
1 (z), t±22(z) �→ F±

1 (z)ϕ±
1 (z)E±

1 (z) + ϕ±
2 (z),

t±12(z) �→ ϕ±
1 (z)E±

1 (z), t±21(z) �→ F±
1 (z)ϕ±

1 (z),

gives rise to a C(v)-algebra homomorphism U rtt
−μ+,−μ−(Lgl2) → U−μ+,−μ−(Lgl2) (the 

sl2-counterpart of which is due to [18, Theorem 11.11]), which is clearly the inverse of 
Υ−μ+,−μ− . Thus, Theorem 3.51 for n = 2 is essentially due to [18].

3.4. Trigonometric Lax matrices via antidominantly shifted quantum affine algebras of 
gln

In this section, we construct n ×n trigonometric Lax matrices TD(z) (with coefficients 
in Ãv(z)) for each Λ+-valued divisor D on P 1 satisfying (3.28). They are explicitly defined 
via (3.64), (3.65) combined with (3.56), (3.58), (3.60). We note that these formulas arise 
naturally by considering the images of T±(z) ∈ U rtt

−μ+,−μ−(Lgln)((z∓1)) ⊗CEndCn under 
the composition ΨD ◦Υ−1

−μ+,−μ− : U rtt
−μ+,−μ−(Lgln) → Ãv

frac, assuming Theorem 3.51 has 
been established, see (3.53), (3.54) and Proposition 3.63. As the name indicates, (TD(z))±
satisfy the RTT relation (3.40), which is derived in Proposition 3.74. Combining the 
latter with the conjectured generalization of [40], see Conjecture 3.75, we finally prove 
Theorem 3.51 in Section 3.4.3.

We also establish the regularity (up to a rational factor (3.67)) of TD(z) in Theo-
rem 3.68, and find simplified explicit formulas for those TD(z) which are linear in z in 
Theorem 3.77. Finally, we show how to degenerate these trigonometric Lax matrices into 
the rational Lax matrices of Section 2.4.1, see Proposition 3.94.

3.4.1. Construction of TD(z) and their regularity
Consider a Λ+-valued divisor D on P 1, see (3.26), satisfying the assumption (3.28). 

Note that μ+ := D|∞ ∈ Λ+ and μ− := D|0 ∈ Λ+. Composing ΨD : U−μ+,−μ−(Lgln) →
Ãv

frac of (3.34) with the isomorphism Υ−1
−μ+,−μ− : U rtt

−μ+,−μ−(Lgln) ∼−→U−μ+,−μ−(Lgln)
(assuming the validity of Theorem 3.51), we obtain an algebra homomorphism

ΘD = ΨD ◦ Υ−1
−μ+,−μ− : U rtt

−μ+,−μ−(Lgln) −→ Ãv
frac. (3.53)

Such a homomorphism is uniquely determined by two matrices

T±
D (z) ∈ Ãv

frac((z∓1)) ⊗C EndCn

defined via
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T±
D (z) := ΘD(T±(z)) = ΘD(F±(z)) · ΘD(G±(z)) · ΘD(E±(z)). (3.54)

Remark 3.55. Actually T±
D (z) ∈ Ãv((z∓1)) ⊗C EndCn, due to the formulas (3.56), 

(3.58), (3.60).

Let us compute explicitly the images of the matrices F±(z), G±(z), E±(z) under ΘD, 
which shall provide an explicit formula for the matrices T±

D (z) via (3.54).
Combining Υ−1

−μ+,−μ−(g±i (z)) = ϕ±
i (z) with the formula for ΨD(ϕ±

i (z)), we obtain:

ΘD(g±i (z)) =

ai∏
t=1

w−1/2
i,t

ai−1∏
t=1

w1/2
i−1,t ·

⎛⎝zε
∨
i (μ+) Wi(v−iz)

Wi−1(v−i−1z)
∏

x∈P1\{0,∞}
(1 − x/z)−ε∨i (λx)

⎞⎠±

.
(3.56)

Combining Υ−1
−μ+,−μ−(e±i,i+1(z)) = E±

i (z) with the formula for ΨD(E±
i (z)), we obtain:

ΘD(e±i,i+1(z)) =
ai∏
t=1

wi,t

ai−1∏
t=1

w−1/2
i−1,t·

ai∑
r=1

(
(viwi,r)−α∨

i (μ+)

1 − viwi,r/z

)±
Zi(wi,r)Wi−1(v−1wi,r)

Wi,r(wi,r)
D−1

i,r .

(3.57)
As e±ij(z) = (v − v−1)i−j+1[e(0)

j−1,j , · · · , [e
(0)
i+1,i+2, e

±
i,i+1(z)]v−1 · · · ]v−1 due to (3.47), we 

thus get (cf. [19, (4.6)]):

ΘD(e±ij(z)) = (−1)i−j+1 ·
aj−1∏
t=1

wj−1,t

j−2∏
k=i

ak∏
t=1

w1/2
k,t

ai−1∏
t=1

w−1/2
i−1,t ×

∑
1≤ri≤ai···

1≤rj−1≤aj−1

⎧⎨⎩
(

(viwi,ri)−α∨
i (μ+) · · · (vj−1wj−1,rj−1)−α∨

j−1(μ
+)

1 − viwi,ri/z

)±

×

Wi−1(v−1wi,ri)
∏j−2

k=i Wk,rk(v−1wk+1,rk+1)∏j−1
k=i Wk,rk(wk,rk)

j−1∏
k=i

Zk(wk,rk) · wi,ri

wj−1,rj−1

·
j−1∏
k=i

D−1
k,rk

}
.

(3.58)

Combining Υ−1
−μ+,−μ−(f±

i+1,i(z)) = F±
i (z) with the formula for ΨD(F±

i (z)), we obtain:

ΘD(f±
i+1,i(z)) = v−1

ai+1∏
t=1

w−1/2
i+1,t ·

ai∑
r=1

(
1

1 − z/vi+2wi,r

)± Wi+1(vwi,r)
Wi,r(wi,r)

Di,r. (3.59)

As f±
ji (z) = (v−1 − v)i−j+1[[[· · · [f±

i+1,i(z), f
(0)
i+2,i+1]v, · · · , f

(0)
j,j−1]v due to (3.47), we thus 

get (cf. [19, (4.7)]):

ΘD(f±
ji (z)) = (−1)i−j+1vi−j ·

j∏ ak∏
w−1/2
k,t ×
k=i+1 t=1
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∑
1≤ri≤ai···

1≤rj−1≤aj−1

{(
1

1 − z/vi+2wi,ri

)± Wj(vwj−1,rj−1)
∏j−1

k=i+1 Wk,rk(vwk−1,rk−1)∏j−1
k=i Wk,rk(wk,rk)

×

wj−1,rj−1

wi,ri

·
j−1∏
k=i

Dk,rk

}
. (3.60)

While the above derivation of the formulas (3.56), (3.58), (3.60) is based on yet un-
proved Theorem 3.51, we shall use their explicit right-hand sides from now on, without 
any direct referral to Theorem 3.51. More precisely, let us define Ãv((z∓1))-valued n ×n

diagonal matrix G±
D(z), an upper-triangular matrix E±

D(z), and a lower-triangular matrix 
F±
D (z), whose matrix coefficients g±;D

i (z), e±;D
ij (z), f±;D

ji (z) are given by the right-hand 
sides of (3.56), (3.58), (3.60) expanded in z∓1, respectively. Thus, we amend (3.54) and 
define

T±
D (z) := F±

D (z)G±
D(z)E±

D(z), (3.61)

so that the matrix coefficients of T±
D (z) are given by

T±
D (z)α,β =

min{α,β}∑
i=1

f±;D
α,i (z) · g±;D

i (z) · e±;D
i,β (z) (3.62)

for any 1 ≤ α, β ≤ n, where the three factors in the right-hand side of (3.62) are deter-
mined via (3.60), (3.56), (3.58), respectively, with the conventions f±;D

α,α (z) = 1 = e±;D
β,β (z).

Proposition 3.63. The matrix coefficients of the matrices T+
D (z) and T−

D (z) are the ex-
pansions of the same rational functions in z−1 and z, respectively.

Proof. This result follows immediately from the defining formula (3.62), since f+;D
α,i (z)

and f−;D
α,i (z) (as well as e+;D

i,β (z) and e−;D
i,β (z), or g+;D

i (z) and g−;D
i (z), respectively) are 

expansions of the same rational functions in z−1 and z. �
Thus, T±

D (z) = (TD(z))± for an Ãv(z)-valued n × n matrix TD(z). Explicitly, TD(z)
is defined via its Gauss decomposition

TD(z) := FD(z)GD(z)ED(z), (3.64)

so that the matrix coefficients of TD(z) are given by

TD(z)α,β =
min{α,β}∑

fD
α,i(z) · gDi (z) · eDi,β(z) (3.65)
i=1
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for any 1 ≤ α, β ≤ n, where the three factors in the right-hand side of (3.65) are the 
rational functions of (3.60), (3.56), (3.58), respectively, with the conventions fD

α,α(z) =
1 = eDβ,β(z).

Remark 3.66. We note that TD(z) is singular at x ∈ C× if and only if λx �= 0. As FD(z)
and ED(z) are regular in the neighborhood of x, while GD(z) = (regular part) ·(z−x)−λx , 
we see that in the classical limit TD(z) represents a GLn-multiplicative Higgs field on 
P 1 with partial (Borel) framing at 0, ∞ ∈ P 1 (trigonometric type) and with prescribed 
singularities on D.

We shall also need the following normalized trigonometric Lax matrices:

TD(z) := zε
∨
1 (λ+μ−)

Z0(z)
TD(z), (3.67)

with the normalization factor determined via (3.32):

zε
∨
1 (λ+μ−)

Z0(z)
= zε

∨
1 (μ−)

is=0∏
1≤s≤N

(z − xs)−γs = zε
∨
1 (μ−)

∏
x∈P1\{0,∞}

(z − x)−α∨
0 (λx).

The first main result of this section establishes the regularity of these matrices:

Theorem 3.68. We have TD(z) ∈ Ãv[z] ⊗C EndCn.

Proof. First, we claim that TD(z) is regular at z = 0. Since fD
∗,∗(z), eD∗,∗(z) are clearly 

regular at z = 0, it remains to show that zε∨1 (λ+μ−)

Z0(z) gDi (z) is regular at z = 0 for any 

1 ≤ i ≤ n. However, the minimal power of z in ( z
ε∨1 (λ+μ−)

Z0(z) gDi (z))− equals

−ai + ai−1 + ε∨i (μ+) + ε∨i (λ) + ε∨1 (μ−) = ε∨1 (μ−)− ε∨i (μ−) = (α∨
1 + . . .+ α∨

i−1)(μ−) ≥ 0.

Hence, the rational function z
ε∨1 (λ+μ−)

Z0(z) gDi (z) is indeed regular at z = 0 for any 1 ≤ i ≤ n.
The rest of the proof is completely analogous to our proof of Theorem 2.67. �

3.4.2. Normalized limit description and the RTT relation for TD(z)
Consider a Λ+-valued divisor D =

∑N
s=1 γs
is [xs] + μ+[∞] + μ−[0]. As xN → ∞, we 

obtain another Λ+-valued divisor D′ =
∑N−1

s=1 γs
is [xs] + (μ+ + γN
iN )[∞] + μ−[0], 
while as xN → 0, we obtain yet another Λ+-valued divisor D′′ =

∑N−1
s=1 γs
is [xs] +

μ+[∞] +(μ−+γN
iN )[0]. We will now relate the corresponding matrices TD′(z), TD′′(z)
to TD(z), defined via (3.64), (3.65).

If iN = 0, then

TD′(z) = (z − xN )−γNTD(z), TD′′(z) = (1 − xN/z)−γNTD(z), (3.69)
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due to the defining formula (3.64) and the equalities FD(z) = FD′(z) = FD′′(z), ED(z) =
ED′(z) = ED′′(z), GD(z) = (z − xN )γNGD′(z) = (1 − xN/z)γNGD′′(z).

Let us now consider the case 1 ≤ iN ≤ n − 1 (note that γN = 1).

Proposition 3.70. The xN → 0 limit of TD(z) equals TD′′(z).

Proof. We note that FD(z) = FD′′(z) by (3.60), the xN → 0 limit of GD(z) equals 
GD′′(z) by (3.56), and the xN → 0 limit of ED(z) equals ED′′(z) by (3.58). This implies 
the result, due to the defining formulas (3.64), (3.65). �

To treat the case xN →∞, let us recall the notation (−xN )�iN = diag(1iN , (−x−1
N )n−iN ).

Proposition 3.71. The xN → ∞ limit of TD(z) · (−xN )�iN equals TD′(z).

Proof. The proof is completely analogous to our proof of Proposition 2.75. �
Corollary 3.72. (a) TD′′(z) is a limit of TD(z).
(b) TD′(z) is a normalized limit of TD(z).

For D as above, we can pick a Λ+-valued divisor D̄ =
∑N+M

s=1 γs
is [xs], so that 
{xs}N+M

s=N+1 are some points on P 1\{0, ∞} while 
∑N+M

s=N+1 γs
is = μ+ + μ−. Note that 
0, ∞ /∈ supp(D̄), that is, D̄|∞ = 0 and D̄|0 = 0.

Corollary 3.73. For any Λ+-valued divisor D on P 1 satisfying (3.28), the matrix TD(z)
is a normalized limit of TD̄(z) with a Λ+-valued divisor D̄ satisfying D̄|∞ = 0 = D̄|0.

Evoking Remark 3.52(a), we see that the original definition of T±
D̄

(z) via (3.53), (3.54)
is valid. Hence, T±

D̄
(z) defined via (3.61), (3.62) indeed satisfies the RTT relation (3.40), 

and so is TD̄(z). As a multiplication by diagonal z-independent matrices preserves (3.40), 
we obtain the main result of this section:

Proposition 3.74. For any Λ+-valued divisor D on P 1 satisfying the assumption (3.28), 
the matrix TD(z) defined via (3.64), (3.65) is Lax, i.e. it satisfies the RTT relation (3.40).

3.4.3. Proof of Theorem 3.51
Due to Proposition 3.74 and the Gauss decomposition (3.64), (3.65) of TD(z) with the 

factors defined via (3.56), (3.58), (3.60), we see that TD(z) indeed gives rise to the algebra 
homomorphism ΘD : U rtt

−μ+,−μ−(Lgln) → Ãv
frac, given by T±(z) �→ (TD(z))±, whose 

composition with the epimorphism Υ−μ+,−μ− : U−μ+,−μ−(Lgln) � U rtt
−μ+,−μ−(Lgln) of 

Theorem 3.49 coincides with the homomorphism ΨD of (3.34). Thus, for μ+, μ− ∈ Λ+

and any Λ+-valued divisor D on P 1 satisfying (3.28) and D|∞ = μ+, D|0 = μ−, the 
homomorphism ΨD factors through Υ−μ+,−μ− .

The latter observation immediately implies the injectivity of Υ−μ+,−μ− once the fol-
lowing trigonometric counterpart of Theorem 2.80 is established:
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Conjecture 3.75. For any coweights μ+, μ− ∈ Λ, the intersection of kernels of the ho-
momorphisms ΨD of (3.34) is zero: 

⋂
D Ker(ΨD) = 0, where D ranges through all 

Λ-valued divisors on P 1, Λ+-valued outside {0, ∞} ∈ P 1, satisfying (3.28) and such that 
D|∞ = μ+, D|0 = μ−.

This completes our proof of Theorem 3.51 modulo Conjecture 3.75, left to a future 
work.

3.4.4. Linear trigonometric Lax matrices
In this section, we will obtain simplified explicit formulas for all TD(z) that are linear 

in z.
Following Section 2.4.4, let us fix a triple of pseudo Young diagrams λ, μ+, μ−. They 

give rise to λ, μ+, μ− ∈ Λ+ via (2.87). Then, λ + μ+ + μ− is of the form λ + μ+ + μ− =∑n−1
i=1 aiαi for some ai ∈ C iff |λ| + |μ+| + |μ−| = 0. Moreover, due to Lemma 2.88, 

we have:

Lemma 3.76. (a) ai = − 
∑n

j=n−i+1(λj + μ+
j + μ−

j ) for any 1 ≤ i ≤ n − 1.
(b) ai ∈ N for any 1 ≤ i ≤ n − 1.
(c) aj − aj−1 = −λn−j+1 − μ+

n−j+1 − μ−
n−j+1 for any 1 ≤ j ≤ n, where we set a0 := 0, 

an := 0.

Thus, Λ+-valued divisors on P 1 satisfying (3.28) and without summands {−
0[x]}x∈C×

may be encoded by triples (λ, μ+, μ−) of a Young diagram λ of length ≤ n and a pair 
of pseudo Young diagrams μ+, μ− with n rows and of total size |λ| + |μ+| + |μ−| = 0, 
together with a collection of points x = {xi}λ1

i=1 of C× (so that xi is assigned to the i-th 
column of λ). Explicitly, given λ, μ+, μ−, x as above, we set

D = D(λ, x,μ+,μ−) :=
λ1∑
i=1


n−λt
i
[xi] + μ+[∞] + μ−[0].

Due to (3.69), we can actually assume that D does not contain summands 
{±
0[x]}x∈C. Thus, λn = 0 = μ−

n , so that Z0(z) = 1, ε∨1 (λ + μ−) = −λn −μ−
n = 0, and 

TD(z) = TD(z) is polynomial in z by Theorem 2.67. Moreover, TD(z)11 = gD1 (z) is a 
polynomial in z of degree ε∨1 (μ+) = −μ+

n ≥ 0. Thus, we have −μ+
n ≤ 1 for linear Lax 

matrices TD(z). If μ+
n = 0, then λi = μ+

i = μ−
i = 0 for all i, and so TD(z) = TD(z) = In. 

Therefore, it remains to treat the case when λn = 0, μ−
n = 0, μ+

n = −1, which constitutes 
the key result of this section.

Theorem 3.77. Following the above notations, assume further that λn=0, μ−
n =0, μ+

n =−1.
(a) The trigonometric Lax matrix TD(z) is explicitly determined as follows:
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(I) The matrix coefficients on the main diagonal are:

TD(z)ii = z · δμ+
n−i+1,−1 ·

ai∏
t=1

w−1/2
i,t

ai−1∏
t=1

w1/2
i−1,t +

δμ−
n−i+1,0

·
ai∏
t=1

w1/2
i,t

ai−1∏
t=1

w−1/2
i−1,t

(−vi)ai

(−vi+1)ai−1

is≤i−1∏
1≤s≤λ1

(−xs),
(3.78)

where is := n − λt
s.

(II) The matrix coefficients above the main diagonal are:

TD(z)ij = z · δμ+
n−i+1,−1(−1)i−j+1 ·

aj−1∏
t=1

wj−1,t

j−2∏
k=i

ak∏
t=1

w1/2
k,t

ai∏
t=1

w−1/2
i,t ×

∑
1≤ri≤ai···

1≤rj−1≤aj−1

(viwi,ri)−b+i · · · (vj−1wj−1,rj−1)−b+j−1∏j−1
k=i Wk,rk(wk,rk)

×

Wi−1(v−1wi,ri)
∏j−2

k=i Wk,rk(v−1wk+1,rk+1)∏j−1
k=i Wk,rk(wk,rk)

j−1∏
k=i

Zk(wk,rk) · wi,ri

wj−1,rj−1

·
j−1∏
k=i

D−1
k,rk

, (3.79)

for i < j, where the constants b+r are defined via b+r := μ+
n−r − μ+

n−r+1.
(III) The matrix coefficients below the main diagonal are:

TD(z)ji = δμ−
n−i+1,0

(−1)i−j+1vi−j+1 ·
j∏

k=i−1

ak∏
t=1

w−1/2+δk,i

k,t

(−vi)ai

(−vi+1)ai−1

is≤i−1∏
1≤s≤λ1

(−xs)×

∑
1≤ri≤ai···

1≤rj−1≤aj−1

∏j−1
k=i+1 Wk,rk(vwk−1,rk−1)Wj(vwj−1,rj−1)∏j−1

k=i Wk,rk(wk,rk)
·
wj−1,rj−1

wi,ri

·
j−1∏
k=i

Dk,rk (3.80)

for i < j.
(b) TD(z) = TD(z) is polynomial of degree 1 in z.

Proof. (a) Combining the explicit formulas (3.65), (3.67) for the matrix coefficients 
TD(z)α,β with their polynomiality of Theorem 3.68, we may immediately determine all 
of them explicitly. As eD∗,∗(z), fD

∗,∗(z), 
gD
i (z)
z are regular at z = ∞ (for the latter, note that 

ε∨i (μ+) − 1 = −μ+
n−i+1 − 1 ≤ 0), each matrix coefficient TD(z)α,β is a linear polynomial 

in z, due to Theorem 3.68.
The computation of the coefficients of z1 is based on the following observations:

• The z → ∞ limit of eDij(z) equals the right-hand side of (3.58) with 1
1−viwi,ri

/z

disregarded.
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• The z → ∞ limit of fD
ji (z) equals 0.

• The z → ∞ limit of g
D
i (z)
z equals δμ+

n−i+1,−1 ·
∏ai

t=1 w−1/2
i,t

∏ai−1
t=1 w1/2

i−1,t.

The computation of the coefficients of z0 is based on the following observations:

• The z → 0 limit of eDij(z) equals 0.
• The z → 0 limit of fD

ji (z) equals the right-hand side of (3.60) with 1
1−z/vi+2wi,ri

disregarded.
• The z → 0 limit of gDi (z) equals δμ−

n−i+1,0
·
∏ai

t=1 w1/2
i,t

∏ai−1
t=1 w−1/2

i−1,t
(−vi)ai

(−vi+1)ai−1 ×∏is≤i−1
1≤s≤λ1

(−xs).

Part (b) follows immediately from part (a). �
Remark 3.81. In the particular case when μ− = (0n), μ+ = ((−1)n), and λ is a Young 
diagram of size n and length < n, the Lax matrices TD(z) of Theorem 3.77 are closely 
related to the v-deformed parabolic Gelfand-Tsetlin formulas (cf. [18, Proposition 12.8]), 
thus providing a v-deformed version of Section 2.7.

We note that the trigonometric Lax matrices of Theorem 3.77 have the form 
z ·T+−T−. Here, T+ is an upper-triangular and T− is a lower-triangular z-independent 
n ×n matrices, with some of their diagonal entries being zero as prescribed by the pseudo 
Young diagrams μ±.

We conclude this section by deriving the conditions on a pair of n ×n matrices T+, T−

(with values in an associative algebra D) which are equivalent to T (z) := z · T+ − T−

satisfying the trigonometric RTT relation

Rtrig(z, w)T1(z)T2(w) = T2(w)T1(z)Rtrig(z, w). (3.82)

To this end, let us recall the (finite) trigonometric R-matrix R = Rv given by

R = v−1
∑

1≤i≤n

Eii ⊗Eii +
∑
i
=j

Eii ⊗Ejj + (v−1 − v)
∑
i>j

Eij ⊗Eji. (3.83)

It satisfies the Yang-Baxter equation:

R12R13R23 = R23R13R12. (3.84)

The final result of this section is:

Proposition 3.85. Matrix T (z) = zT+ − T− satisfies the trigonometric RTT rela-
tion (3.82) if and only if (T+, T−) satisfy the following three finite trigonometric RTT 
relations:
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RT+
1 T+

2 = T+
2 T+

1 R, RT−
1 T−

2 = T−
2 T−

1 R, RT−
1 T+

2 = T+
2 T−

1 R. (3.86)

Proof. Recall the following relation between the trigonometric R-matrices (3.38)
and (3.83):

Rtrig(z, w) = (z − w)R + (v − v−1)zP,

where P =
∑n

i,j=1 Eij ⊗Eji as before. Thus, the relation (3.82) on T (z) may be written 
as (

(z − w)R + (v − v−1)zP
)
(zT+

1 − T−
1 )(wT+

2 − T−
2 ) =

(wT+
2 − T−

2 )(zT+
1 − T−

1 )
(
(z − w)R + (v − v−1)zP

)
.

(3.87)

To prove the “only if” part, we compare the coefficients of z1w2, z0w1, z0w2, and z2w0

in (3.87) to recover the equalities RT+
1 T+

2 = T+
2 T+

1 R, RT−
1 T−

2 = T−
2 T−

1 R, RT−
1 T+

2 =
T+

2 T−
1 R, and R̃T+

1 T−
2 = T−

2 T+
1 R̃, respectively, where R̃ := R + (v − v−1)P .

To prove the “if” part, we note that multiplying the last equality of (3.86) by R−1

both on the left and on the right, and conjugating further by the permutation operator 
P , we get (PR−1P−1)T+

1 T−
2 = T−

2 T+
1 (PR−1P−1), which together with PR−1P−1 = R̃

finally implies

R̃T+
1 T−

2 = T−
2 T+

1 R̃. (3.88)

Combining this with (3.86) and R̃ = R+(v−v−1)P , the equality (3.87) is equivalent to

(v − v−1)z2w(PT+
1 T+

2 − T+
2 T+

1 P ) + (v − v−1)z(PT−
1 T−

2 − T−
2 T−

1 P )−
(v − v−1)zw(PT−

1 T+
2 − T+

2 T−
1 P ) + zw(RT+

1 T−
2 − T−

2 T+
1 R) = 0.

In the above left-hand side, the first two summands are clearly zero as PT+
1 T+

2 = T+
2 T+

1 P

and PT−
1 T−

2 = T−
2 T−

1 P , while the sum of the latter two equals

zw
(
(R + (v − v−1)P )T+

1 T−
2 − T−

2 T+
1 (R + (v − v−1)P )

)
= zw

(
R̃T+

1 T−
2 − T−

2 T+
1 R̃
)

= 0,

due to (3.88).
This completes our proof of Proposition 3.85. �

Remark 3.89. The above proof is identical to the verification of the fact that the as-
signment T+(z) �→ T+ − z−1T−, T−(z) �→ T− − zT+ gives rise to the (evaluation) 
homomorphism U rtt

v (Lgln) → U rtt
v (gln). In particular, if it was not for (3.42), (3.43), we 

would get homomorphisms from shifted quantum affine algebras to the corresponding 
contracted algebras of [37].
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3.4.5. From trigonometric Lax matrices to rational Lax matrices
In this section, we explain how the trigonometric Lax matrices T trig

∗ (z) of Section 3.4.1
may be degenerated into the rational Lax matrices T rat

∗ (z) of Section 2.4.1 (here, the 
superscripts trig, rat are used to distinguish between the trigonometric and the rational 
setups). Given a Λ+-valued divisor D =

∑N
s=1 γs
is [xs] + μ+[∞] + μ−[0] on P 1 (with 

xs ∈ C×), we consider another Λ+-valued divisor D̂ =
∑N

s=1 γs
is [xs] + (μ+ + μ−)[∞]
on P 1.

Let us make the following change of variables:

v � eε/2, z � eεx, xs � eεxs ; (3.90)

wi,r � eε(pi,r− i
2 ) = eεwi,r , where wi,r := pi,r − i/2 as in Remark 2.38; (3.91)

Di,r � −e−qi,rεsi , where si := ai − ai+1 = −ε∨i+1(λ + μ+ + μ−). (3.92)

We also consider the diagonal z-independent matrix

ε−μ+−μ−
:= diag(ε−d1 , ε−d2 , · · · , ε−dn) with di := ε∨i (μ+ + μ−) = d+

i + d−i . (3.93)

The main result of this section is:

Proposition 3.94. lim
ε→0

(
T trig
D (z) · ε−μ+−μ−

)
= T rat

D̂
(x).

Proof. Recall the Gauss decomposition T trig
D (z) = F trig

D (z)Gtrig
D (z)Etrig

D (z) of (3.64) with 
all three factors determined explicitly via (3.56), (3.58), (3.60). Then, T trig

D (z) · ε−μ+−μ−

has the following Gauss decomposition:

T trig
D (z) · ε−μ+−μ−

= F trig
D (z) ·

(
Gtrig

D (z)ε−μ+−μ−
)
·
(
εμ

++μ−
Etrig

D (z)ε−μ+−μ−
)
. (3.95)

On the other hand, we also have the Gauss decomposition

T rat
D̂

(x) = F rat
D̂

(x) ·Grat
D̂

(x) · Erat
D̂

(x) (3.96)

of (2.63) with all three factors determined explicitly via (2.58), (2.60), (2.62).
It remains to note that upon the above change of variables (3.90)–(3.92), the ε → 0

limit of each of the three factors in (3.95) exactly coincides with the corresponding factor 
in (3.96):

• For the diagonal factors, this immediately follows from

ε−aiWi(v−iz) → Pi(x), ε−ai−1Wi−1(v−i−1z) → Pi−1(x− 1),

ε−α∨
k (λ)Zk(v−kz) → Zk(x)

as ε → 0, combined with the equality
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ai − ai−1 +
i−1∑
k=0

α∨
k (λ) − di = ai − ai−1 − ε∨i (λ) − ε∨i (μ+ + μ−)

= ai − ai−1 − ε∨i (λ + μ+ + μ−) = 0;

• For the upper triangular factors, this follows from

ε−ak+1Wk,rk(v−1wk+1,rk+1) → Pk,rk(pk+1,rk+1 − 1),

ε−ak+1Wk,rk(wk,rk) → Pk,rk(pk,rk),

ε−ai−1Wi−1(v−1wi,ri) → Pi−1(pi,ri − 1), ε

1 − viwi,ri/z
→ 1

x− pi,ri

as ε → 0, combined with the equality

ai−1 − aj−1 +
j−1∑
k=i

α∨
k (λ) −

j−1∑
k=i

sk + di − dj =

ai−1 − ai − aj−1 + aj + (ε∨i − ε∨j )(λ + μ+ + μ−) = 0;

• For the lower triangular factors, this follows from

ε−ak+1Wk,rk(vwk−1,rk−1) → Pk,rk(pk−1,rk−1 + 1),

ε−ak+1Wk,rk(wk,rk) → Pk,rk(pk,rk),

ε−ajWj(vwj−1,rj−1) → Pj(pj−1,rj−1 + 1), ε

1 − z/vi+2wi,ri

→ −1
x− pi,ri − 1

as ε → 0, combined with the equality aj − ai +
∑j−1

k=i sk = 0.

This completes our proof of Proposition 3.94. �
3.5. Six explicit linear trigonometric Lax matrices for n = 2

In this section, we apply Theorem 3.77 to obtain explicitly all linear trigonometric 
Lax matrices TD(z) for the smallest rank n = 2, corresponding to a triple of pseudo 
Young diagrams

λ = (λ1, 0), μ+ = (μ+
1 ,−1), μ− = (μ−

1 , 0)

with λ1 ≥ 0,μ+
1 ≥ −1,μ−

1 ≥ 0 and λ1 + μ+
1 + μ−

1 = 1.

We shall also compute their quantum determinant qdet TD(z), defined via

qdet TD(z) := TD(v2z)11TD(z)22 − v−1TD(v2z)12TD(z)21. (3.97)
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Note that a1 = −(λ2 +μ+
2 +μ−

2 ) = 1 manifestly, due to Lemma 3.76(a). To simplify the 
formulas below, we relabel D±1

1 , w±1/2
1 by D±1, w̃±1, respectively.

• Case λ1 = 0, μ+
1 = −1, μ−

1 = 2.
We have

TD(z) =
(
z · w̃−1 − vw̃ z · w̃D−1

−vw̃D z · w̃

)
(3.98)

and its quantum determinant is qdetTD(z) = v2z2.

• Case λ1 = 0, μ+
1 = 0, μ−

1 = 1.
We have

TD(z) =
(
z · w̃−1 − vw̃ z · v−1w̃−1D−1

−vw̃D 0

)
(3.99)

and its quantum determinant is qdetTD(z) = z.

• Case λ1 = 0, μ+
1 = 1, μ−

1 = 0.
We have

TD(z) =
(
z · w̃−1 − vw̃ z · v−2w̃−3D−1

−vw̃D −v−3w̃−1

)
(3.100)

and its quantum determinant is qdetTD(z) = v−2.

• Case λ1 = 1, μ+
1 = −1, μ−

1 = 1.
We have

TD(z) =
(
z · w̃−1 − vw̃ z · w̃(1 − v−1x1/w̃2)D−1

−vw̃D z · w̃

)
(3.101)

and its quantum determinant is qdetTD(z) = v2z(z − v−2x1).

• Case λ1 = 1, μ+
1 = 0, μ−

1 = 0.
We have

TD(z) =
(
z · w̃−1 − vw̃ z · v−1w̃−1(1 − v−1x1/w̃2)D−1

−vw̃D v−3w̃−1x1

)
(3.102)

and its quantum determinant is qdetTD(z) = z − v−2x1.

• Case λ1 = 2, μ+
1 = −1, μ−

1 = 0.
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We have

TD(z) =
(
z · w̃−1 − vw̃ z · w̃(1 − v−1x1/w̃2)(1 − v−1x2/w̃2)D−1

−vw̃D z · w̃ − v−3w̃−1x1x2

)
(3.103)

and its quantum determinant is qdetTD(z) = v2(z − v−2x1)(z − v−2x2).

Remark 3.104. The first three Lax matrices (3.98), (3.99), (3.100) first appeared in [18]
(up to a normalization factor, they coincide with those of [18, (11.4, 11.6, 11.7)] having 
qdet = 1).

3.6. Coproduct homomorphisms for shifted quantum affine algebras

A crucial benefit of the RTT realization is that it immediately endows the quan-
tum affine algebra of gln with the Hopf algebra structure, in particular, the coproduct 
homomorphism

Δrtt : U rtt
v (Lgln) −→ U rtt

v (Lgln) ⊗ U rtt
v (Lgln), T±(z) �→ T±(z) ⊗ T±(z). (3.105)

The main observation of this section is that (3.105) naturally admits a shifted version:

Proposition 3.106. For any μ±
1 , μ

±
2 ∈ Λ+, there is a unique C(v)-algebra homomorphism

Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2

: U rtt
−μ+

1 −μ+
2 ,−μ−

1 −μ−
2
(Lgln) −→ U rtt

−μ+
1 ,−μ−

1
(Lgln) ⊗ U rtt

−μ+
2 ,−μ−

2
(Lgln)

defined by

Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2
(T±(z)) = T±(z) ⊗ T±(z). (3.107)

Proof. The proof is completely analogous to our proof of Proposition 2.136 with the only 
minor update of the general observation we used in loc.cit. To be more precise, we either 
need to add the generators e(0)

ij so that eij(z) =
∑

r≥0 e(r)
ij z−r or to add the generators f(0)ji

so that fji(z) =
∑

r≥0 f(r)ji z−r. In both cases, the product E(z) ·F(z) still admits the Gauss 
decomposition (2.138) with either ēij(z) =

∑
r≥0 ē(r)

ij z−r and f̄ji(z) =
∑

r≥1 f̄(r)ji z−r, or 
ēij(z) =

∑
r≥1 ē(r)

ij z−r and f̄ji(z) =
∑

r≥0 f̄(r)ji z−r, respectively. �
The following basic property of Δrtt

∗,∗,∗,∗ is straightforward:

Corollary 3.108. For any μ+
1 , μ

−
1 , μ

+
2 , μ

−
2 , μ

+
3 , μ

−
3 ∈ Λ+, the following equality holds:

(Id⊗Δrtt
−μ+

2 ,−μ−
2 ,−μ+

3 ,−μ−
3
) ◦ Δrtt

−μ+
1 ,−μ−

1 ,−μ+
2 −μ+

3 ,−μ−
2 −μ−

3
=

(Δrtt
+ − + − ⊗ Id) ◦ Δrtt

+ + − − + − .
−μ1 ,−μ1 ,−μ2 ,−μ2 −μ1 −μ2 ,−μ1 −μ2 ,−μ3 ,−μ3



R. Frassek et al. / Advances in Mathematics 401 (2022) 108283 71
Evoking the key isomorphisms Υ−μ+,−μ− : U−μ+,−μ−(Lgln) ∼−→U rtt
−μ+,−μ−(Lgln) of 

Theorem 3.51 for (μ+, μ−) being either of the three pairs (μ+
1 , μ

−
1 ), (μ+

2 , μ
−
2 ) and 

(μ+
1 + μ+

2 , μ
−
1 + μ−

2 ), we conclude that Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2

of (3.107) gives rise to the 

C(v)-algebra homomorphism

Δ−μ+
1 ,−μ−

1 ,−μ+
2 ,−μ−

2
: U−μ+

1 −μ+
2 ,−μ−

1 −μ−
2
(Lgln) −→ U−μ+

1 ,−μ−
1
(Lgln) ⊗ U−μ+

2 ,−μ−
2
(Lgln).
(3.109)

Since the algebra U−μ+
1 −μ+

2 ,−μ−
1 −μ−

2
(Lgln) is generated by{

Ei,0, Fi,0, ϕ
±
j,∓ε∨j (μ±

1 +μ±
2 ), (ϕ

±
j,∓ε∨j (μ±

1 +μ±
2 ))

−1, ϕ±
j,∓ε∨j (μ±

1 +μ±
2 )±1

}1≤j≤n

1≤i<n
(3.110)

and the coefficients of the central series C±(z) of (3.21), as follows from Lemma 3.22, 
the homomorphism Δ−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2

is uniquely determined by the images of these 
elements:

• the images of the finite set of the generators (3.110) under Δ−μ+
1 ,−μ−

1 ,−μ+
2 ,−μ−

2
were 

computed explicitly in [18, Appendices G, H], cf. [18, Theorems G.10, G.13];
• in a complete analogy to (2.144), the images of the central series C±(z) are given by

Δ−μ+
1 ,−μ−

1 ,−μ+
2 ,−μ−

2
(C±(z)) = C±(z) ⊗ C±(z). (3.111)

The proof of (3.111) follows from the standard formulas

Δrtt
−μ+

1 ,−μ−
1 ,−μ+

2 ,−μ−
2
(qdetT±(z)) = qdetT±(z) ⊗ qdetT±(z)

combined with the trigonometric version of Proposition 2.83:

C±(z) = Υ−1
−μ+,−μ−(qdetT±(z)).

Here, the quantum determinant qdetT±(z) of U rtt
−μ+,−μ−(Lgln) is defined via (cf. (3.97)

for the smallest rank n = 2 case):

qdetT±(z) :=
∑
σ∈Sn

(−v)−�(σ)t±1,σ(1)(v
2(n−1)z)t±2,σ(2)(v

2(n−2)z) · · · t±n−1,σ(n−1)(v
2z)t±n,σ(n)(z).

(3.112)
Moreover, the homomorphisms (3.109) have natural sln–counterparts:

Proposition 3.113. For any ν±1 , ν±2 ∈ Λ̄+, there is a unique C(v)-algebra homomorphism

Δ−ν+
1 ,−ν−

1 ,−ν+
2 ,−ν−

2
: U sc

−ν+
1 −ν+

2 ,−ν−
1 −ν−

2
(Lsln) −→ U sc

−ν+
1 ,−ν−

1
(Lsln) ⊗ U sc

−ν+
2 ,−ν−

2
(Lsln)

such that the following diagram is commutative
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U sc
−μ̄+

1 −μ̄+
2 ,−μ̄−

1 −μ̄−
2
(Lsln)

Δ−μ̄
+
1 ,−μ̄

−
1 ,−μ̄

+
2 ,−μ̄

−
2−−−−−−−−−−−−−−→ U sc

−μ̄+
1 ,−μ̄−

1
(Lsln) ⊗ U sc

−μ̄+
2 ,−μ̄−

2
(Lsln)

ι−μ
+
1 −μ

+
2 ,−μ

−
1 −μ

−
2

⏐⏐� ⏐⏐�ι−μ
+
1 ,−μ

−
1
⊗ ι−μ

+
2 ,−μ

−
2

U−μ+
1 −μ+

2 ,−μ−
1 −μ−

2
(Lgln)−−−−−−−−−−−−−−→

Δ−μ
+
1 ,−μ

−
1 ,−μ

+
2 ,−μ

−
2

U−μ+
1 ,−μ−

1
(Lgln) ⊗ U−μ+

2 ,−μ−
2
(Lgln)

(3.114)
for any μ+

1 , μ
−
1 , μ

+
2 , μ

−
2 ∈ Λ+.

Evoking the defining formulas (3.18) for the embedding ι−μ+,−μ− : U sc
−μ̄+,−μ̄−(Lsln) ↪→

U−μ+,−μ−(Lgln) of Proposition 3.16, one obtains explicit formulas for the
Δ−μ̄+

1 ,−μ̄−
1 ,−μ̄+

2 ,−μ̄−
2
-images of the finite generating set, following the proof of [18, The-

orem 10.13] presented in [18, Appendix G]. The resulting formulas coincide with the 
explicit long formulas of [18, Theorem 10.16], thus providing a simpler and more con-
ceptual proof of [18, Theorem 10.16].

Remark 3.115. Due to [18, Theorem 10.20], Δ−ν+
1 ,−ν−

1 ,−ν+
2 ,−ν−

2
with ν±1 , ν±2 ∈ Λ̄+ give 

rise to algebra homomorphisms

Δν+
1 ,ν−

1 ,ν+
2 ,ν−

2
: U sc

ν+
1 +ν+

2 ,ν−
1 +ν−

2
(Lsln) −→ U sc

ν+
1 ,ν−

1
(Lsln) ⊗ U sc

ν+
2 ,ν−

2
(Lsln)

for any sln–coweights ν±1 , ν±2 ∈ Λ̄. However, we note that Δν+
1 ,ν−

1 ,ν+
2 ,ν−

2
(ν±1 , ν±2 ∈ Λ̄) are 

not coassociative, in contrast to Corollary 3.108.
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