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Abstract: We obtain BGG-type formulas for transfer matrices of irreducible finite-
dimensional representations of the classical Lie algebras g, whose highest weight is a
multiple of a fundamental one andwhich can be lifted to the representations over theYan-
gian Y (g). These transfer matrices are expressed in terms of transfer matrices of certain
infinite-dimensional highest weight representations (such as parabolic Verma modules
and their generalizations) in the auxiliary space. We further factorise the correspond-
ing infinite-dimensional transfer matrices into the products of two Baxter Q-operators,
arising from our previous study Frassek et al. (Adv. Math. 401:108283, 2022), Frassek
and Tsymbaliuk (Commun. Math. Phys. 392:545–619, 2022) of the degenerate Lax
matrices. Our approach is crucially based on the new BGG-type resolutions of the finite-
dimensional g-modules, which naturally arise geometrically as the restricted duals of
the Cousin complexes of relative local cohomology groups of ample line bundles on the
partial flag variety G/P stratified by B−-orbits.
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1. Introduction

1.1. Summary. The main results of the present paper are:

• The construction of new BGG-type resolutions of finite-dimensional g-modules
by infinite-dimensional highest weight modules such as parabolic Verma and their
“W -translations”. These resolutions admit an elegant geometric interpretation via
the Cousin complexes of relative local cohomology, similar to the parabolic BGG
resolutions of [L]. The crucial difference from the latter setup, however, is that our
modules are also definedwhen the “dominant integral” condition is lifted, and become
generically irreducible in this setting.

• The explicit expression of the finite-dimensional transfer matrices Ti,t (x) (with i
as in (1.22) and t ∈ N) via the infinite-dimensional transfer matrices. This allows to
analytically continue Ti,t (x) from t ∈ N to the entire complex plane t ∈ C and study
its t-symmetries.
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• The extra symmetry of the rational ABC D-type R-matrices in the first fundamen-
tal representations gives rise to explicit realizations of the aforementioned infinite-
dimensional irreducible highest weight g-representations in the Fock spaces of os-
cillator algebras. This also immediately extends the action of g on these modules to
that of the Yangian Y (g).

• The factorisation of the above infinite-dimensional transfer matrices into two com-
mutingBaxter Q-operators,which arise by realizing the correspondingnon-degenerate
Lax matrices as fusion of two degenerate Laxmatrices.While the latter can be recov-
ered as renormalized limits of the former, they also can be viewed as “W -translations”
of the single one arising from the antidominantly shifted Yangians Y−ωi (g) following
our earlier work [FPT,FT].

1.2. Overview of type A. For gln-type rational spin chains, both T - and Q-operators
can be built within the framework of the quantum inverse scattering method [Fad] from
appropriate solutions of the RTT relation

R12(z − w)L1(z)L2(w) = L2(w)L1(z)R12(z − w) (1.1)

involving the rational R-matrix

R(z) = zIn + P, In =
n∑

i, j=1

eii ⊗ e j j , P =
n∑

i, j=1

ei j ⊗ e ji , (1.2)

where
(
ei j
)

k�
= δk

i δ�
j is the standard basis of gln , satisfying the quantum Yang–Baxter

equation:

R12(z − w)R13(z)R23(w) = R23(w)R13(z)R12(z − w). (1.3)

More precisely, the operators T(z),Q(z) ∈ End(Cn)⊗N (with N being the length of the
spin chain) are then defined as traces in the auxiliary space of the monodromy matrices
(followed by a twist)

M(z) = L(z) ⊗ · · · ⊗ L(z)︸ ︷︷ ︸
N

(1.4)

built from the Lax matrices L(z), i.e. solutions of (1.1), with the product ⊗ denoting the
tensor product in the quantum space and the usual multiplication in the auxiliary space.
The key difference between T(z) and Q(z), however, is that the former correspond to
non-degenerate Lax matrices (with a non-degenerate coefficient of the leading z-power)
while the latter ones are built from the degenerate Lax matrices.

Using the obvious invariance of the R-matrix (1.2) under the action of GLn :

[R(z), G ⊗ G] = 0 ∀ G ∈ GLn, (1.5)

one can multiply the non-degenerate Lax matrix L(z) by a z-independent G ∈ GLn to
bring the coefficient of its leading z-power to the identity matrix In . Such Lax matrices
are governed by the RTT Yangian Y rtt(gln) (the explicit identification of which with
the Drinfeld Yangian Y (gln) was carried out in [BK]). Here, Y rtt(gln) is the associative
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algebra generated by {t (r)
i j }r≥1

1≤i, j≤n subject to the defining relation (1.1), where L(z) has

been replaced by T (z) ∈ End(Cn) ⊗ Y rtt(gln)[[z−1]]:

T (z) =
n∑

i, j=1

ei j ⊗ ti j (z) with ti j (z) = δ
j
i +
∑

r≥1

t (r)
i j z−r . (1.6)

In particular, any Y rtt(gln)-representation V gives rise to the gln-type End(V )-valued
Lax matrix.

The special feature of type A is the presence of the evaluation homomorphism to the
universal enveloping algebra of gln :

ev : Y rtt(gln) → U (gln) given by t (r)
i j �→ δ1r E ji . (1.7)

In particular, given any gln-module σ : gln → End(V ), the matrix
L(z) = zIn +

∑n
i, j=1 ei jσ(E ji ), with E ji denoting the generators of gln , is an End(V )-

valued Lax matrix, i.e. satisfies (1.1). Conversely any such Lax matrix endows V with
a gln-action, since ev of (1.7) admits a right inverse:

ι : U (gln) ↪→ Y rtt(gln) given by Ei j �→ t (1)j i . (1.8)

In contrast, the Q-operators are known to arise from degenerate Lax matrices. As has
been recently realized in [FPT] (cf. [CGY] for an interpretation via the 4d Chern–Simons
theory), under certain antidominance condition, the corresponding Lax matrices are
governed by the antidominantly shifted RTT Yangians Y rtt−μ(gln). The identification of
the latter with the shifted Drinfeld Yangian Y−μ(gln) defined as in [BFN, Appendix B]
goes through the Gauss decomposition of the generating matrix T (z) as in the non-
shifted case [BK], see [FPT, Theorem 2.54]. Using the GLn-invariance (1.5) one can
further obtain other degenerate Lax matrices which do not admit a Gauss decomposition
(and thus are no longer directly related to the shifted Drinfeld Yangians).

According to [BFLMS], see also [Ts1,KLT], there is a whole family of 2n Q-operators
QI (z), labelled by all subsets I ⊆ {1, 2, . . . , n}. However, all of those can be expressed
through n fundamental ones {Qi (z)}n

i=1, due to so-called QQ-relations:

� j,i · QI
i
 j (z)QI (z) = QI
i (z − 1
2 )QI
 j (z + 1

2 ) − QI
 j (z − 1
2 )QI
i (z + 1

2 ),

(1.9)

where the scalar factor� j,i = τ j −τi√
τi τ j

depends only on the twist parameters and the brack-

ets have been suppressed for the one element sets. The two key components in the proof
of (1.9) are: the fusion of the corresponding Lax matrices and the Desnanot–Jacobi–
Dodgson–Sylvester theorem from linear algebra. In particular, fusing all n fundamental
Q-operators, one obtains the transfer matrix T+

λ(z) associated with the non-degenerate
linear Lax matrix corresponding to a gln Verma module:

�{1,...,n} · T+
λ(z) = Q1(z + λ′

1)Q2(z + λ′
2) · · ·Qn(z + λ′

n), (1.10)

where λ ∈ C
n is the highest weight of the Verma module, λ′

i are the components of
the shifted weight λ′ = (λ′

1, . . . , λ
′
n) = λ + ρ with ρ = ( n−1

2 , n−3
2 , . . . , 1−n

2

)
, and

�{1,...,n} =∏1≤i< j≤n �i, j .
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Finally, for a dominant integral gln-weight λ, the finite-dimensional transfer matrix
Tλ(z) can be expressed as an alternating sum of the infinite-dimensional T+

μ(z), due to
so-called BGG-relations:

Tλ(z) =
∑

σ∈Sn

(−1)l(σ )T+
σ(λ+ρ)−ρ(z). (1.11)

Combining (1.11) with (1.10), one finally gets the determinant formula for type A
transfer matrices:

�{1,...,n} · Tλ(z) = det
∥∥∥Qi (z + λ′

j )

∥∥∥
1≤i, j≤n

. (1.12)

1.3. BGG resolutions. Formula (1.11) follows directly from the famous Bernstein–
Gelfand–Gelfand resolution [BGG] of the finite-dimensional g-module Lλ by means
of the infinite-dimensional Verma modules Mμ:

0 → Mw0 ·λ → · · · →
l(w)=2⊕

w∈W

Mw ·λ →
l(w)=1⊕

w∈W

Mw ·λ → Mλ → Lλ → 0. (1.13)

Here, W is the Weyl group of g, equipped with the length function l : W → Z≥0 as
an abstract Coxeter group. Furthermore, we use the dot action of W on the space of
weights, defined via:

w · λ = w(λ + ρ) − ρ ∀w ∈ W, λ∈h∗, (1.14)

with the weight ρ ∈ h∗ defined in the standard way:

ρ = 1
2

∑

α∈�+

α, (1.15)

where �+ denotes the set of positive roots of g. The resolution (1.13) involves the total
of |W | Verma modules and has a length equal to |�+|, with the leftmost nontrivial term
corresponding to

w0 = the longest element of W. (1.16)

The BGG resolution (1.13) can be thought of as a categorification of the Weyl character
formula (expressing the character of the finite-dimensional g-module Lλ via those of
Verma modules Mμ):

chLλ =
∑

w∈W

(−1)l(w) ew(λ+ρ)−ρ

∏
α∈�+(1 − e−α)

=
∑

w∈W

(−1)l(w) chMw ·λ , (1.17)

the character limit of (1.13). Forλ = 0, the formula (1.17) recovers theWeyl denominator
formula:

∑

w∈W

(−1)l(w)ew(ρ)−ρ =
∏

α∈�+

(1 − e−α). (1.18)
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1.4. Generalization to other classical types. Let us now consider the rational spin chains
of types Br , Cr , Dr . The corresponding rational R-matrices R(z) were first discovered
in [ZZ] and take the following form (we use the conventions in mathematics literature,
related to the original formulas of [ZZ] via similarity transformations):

R(z) = z(z + κ)IK + (z + κ)P − zQ (1.19)

with κ = r + 1 for sp2r , κ = r − 1 = K
2 − 1 for so2r , κ = r − 1

2 = K
2 − 1 for so2r+1,

where K = 2r for sp2r and so2r while K = 2r + 1 for so2r+1, and the linear operators
P,Q ∈ End(CK) defined by:

P =
K∑

i, j=1

ei j ⊗ e ji , Q =
K∑

i, j=1

εiε j ei j ⊗ ei ′ j ′, (1.20)

where

i ′ = K + 1 − i for 1 ≤ i ≤ K (1.21)

and ε1 = · · · = εK = 1 for soK while ε1 = · · · = εr = 1, εr+1 = · · · = ε2r = −1
for sp2r .

Similarly to type A, the non-degenerate Lax matrices L(z) of types BC D with the
coefficient of the leading z-power equal to IK are governed by the corresponding extended
RTT Yangians X rtt(g) (whose explicit relation to theDrinfeldYangian Y (g)was obtained
quite recently in [JLM,GRW]).

However, the key difference from type A is in the absence of the evaluation homomor-
phism (1.7). In particular, the action of g on Lλ in general cannot be extended to that
of Y (g), cf. (1.8). Nonetheless, extending the earlier works [SW,Re], a certain fam-
ily of linear and quadratic oscillator-type non-degenerate Lax matrices L(z) is known
[Fr,FT,KK]. These L(z) depend on a parameter t ∈ C and give rise to an action of
X rtt(g) on the parabolic Verma g-modules. That way we also obtain an action of Y (g)
on Ltωi for the fundamental weights ωi classified in (1.22) and all t ∈ N.

Given a simple Lie algebra g of rank r , one may ask for which indices i ∈ {1, . . . , r} do
the finite-dimensional irreducible g-modules Ltωi (where ωi denotes the i-th fundamen-
tal weight of g) admit a compatible (through the embedding U (g) ↪→ Y (g), cf. (1.8))
action of Y (g) for all t ∈ N. In the classical ABC D types, the answer to this question
has been provided long ago in [KR, §2]:

{
1 ≤ i ≤ r

∣∣∣ g � Ltωi extends to Y (g) � Ltωi ∀ t ∈ N

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i = 1, . . . , r for Ar

i = 1 for Br

i = r for Cr

i = 1, r − 1, r for Dr

.

(1.22)

Let us emphasize that the above Lax matrix approach provides a
constructive existence proof for all these cases. Furthermore, we note that the corre-
sponding values of the index i can be characterized by either of the following two
equivalent conditions:
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• the label of the vertex i in the Dynkin diagram of g is equal to 1
• the i-th fundamental coweight ω∨

i is minuscule (minuscule weight of the Langlands
dual gL )

It has been recently shown in [CGY, Appendix B] by cohomological arguments that
these conditions indeed guarantee the positive answer to the above question in all types.
This also adds Lax matrices in the exceptional types E6, E7, but we presently do not
have explicit formulas for those.

Yet another obstacle to generalize the results of Sect. 1.2 to other types is that even if
Lλ extends to a module over Y (g), it may not be the case for the Verma modules Mw ·λ
featuring in the BGG resolution (1.13). However, as explained above, the Lax matrix
approach does provide a natural Y (g)-action on the corresponding parabolic Verma
modules. We shall now discuss new BGG-type resolutions of Lλ which involve only
those parabolic Verma modules and their “W -translations”.

1.5. New BGG-type resolutions. To state the main results of this subsection, let us first
introduce some more notation. Consider the root decomposition g = h ⊕⊕α∈� Ceα .
Let {αi }r

i=1 ⊂ �+ be the positive simple roots of g. Given a subset S ⊆ {1, . . . , r}, one
defines the standard parabolic Lie algebra pS ⊆ g via:

pS = h ⊕
⊕

α∈�+

Ceα ⊕
⊕

α∈�+
S

Ce−α with �+
S = �+ ∩

⊕

i∈S

Zαi . (1.23)

Let us note that p{1,...,r} = g, while p∅ coincides with the Borel subalgebra b = h ⊕⊕
α∈�+ Ceα . It is well-known that all parabolic subalgebras p satisfying b ⊆ p ⊆ g are

necessarily of that form. Such pS further decomposes into the semidirect product:

pS = l � u with l = h ⊕
⊕

α∈�+
S

Ceα ⊕
⊕

α∈�+
S

Ce−α and

u =
⊕

α∈�+\�+
S

Ceα, (1.24)

of the semisimple part l (the Levi subalgebra) and the nilpotent part u (the nilpotent
radical). Then

�l = �+
l 
 (−�+

l ) with �+
l = �+

S (1.25)

is the root system of l, and the subgroup Wl of W generated by the simple reflections
{sα j } j∈S is the Weyl group of l. In analogy with (1.15), we also define

ρl = 1
2

∑

α∈�+
l

α. (1.26)

Thefinite-dimensional irreducible l-modules are indexedby thedominant integralweights
of l:

P+
l = {λ ∈ h∗ | λ(hα j ) ∈ N ∀ j ∈ S

}
. (1.27)
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For λ ∈ P+
l , let Ll

λ be the corresponding l-module. One makes it into a pS-module by
letting the nilpotent radical u ⊂ pS act trivially. Then, the parabolic Verma module
MpS

λ is defined via:

MpS
λ = IndgpS

(Ll
λ) = U (g) ⊗U (pS) Ll

λ. (1.28)

Let P+
g be the set of dominant integral weights of g (apply (1.27) to S = {1, . . . , r}),

and define

P+
g/l = {λ ∈ P+

g | λ(hα j ) = 0 ∀ j ∈ S
}
, (1.29)

that is, P+
g/l is the set of dominant integral weights λ of g such that dim(Ll

λ) = 1.

Let us now state our key mathematical construction: for any parabolic p ⊂ g and
λ ∈ P+

g/l (1.29), the irreducible finite-dimensional g-module Lλ admits the following
truncated BGG resolution:

0 → M ′
l,0w ·λ → · · · →

l(w)=2⊕

w∈lW

M ′
w ·λ →

l(w)=1⊕

w∈lW

M ′
w ·λ → M ′

λ → Lλ → 0 (1.30)

with each term admitting further a resolution by the usual Verma modules:

0 → Mwwl,0 ·λ → · · · →
l(v)=2⊕

v∈Wl

Mwv ·λ →
l(v)=1⊕

v∈Wl

Mwv ·λ → Mw ·λ → M ′
w ·λ → 0.

(1.31)

Here, lW is defined via:

lW = {w ∈ W | w(�+
l ) ⊆ �+}. (1.32)

According to [Kos, §5.13], the set lW can be equivalently described as:

lW = {shortest representatives of the left cosets W/Wl}, (1.33)

and each element w ∈ W admits a unique factorisation:

w = lw wl with wl ∈ Wl,
lw ∈ lW. (1.34)

In particular, the longest elements l,0w ∈ lW andwl,0 ∈ Wl featuring in (1.30) and (1.31)
arise from the decomposition (1.34) applied to the longest element w0 ∈ W of (1.16):

w0 = l,0w wl,0. (1.35)

The above modules {M ′
w ·λ}w∈lW are defined as explicit quotients of the Verma modules

Mw ·λ:

M ′
w ·λ = Mw ·λ/Msing

w ·λ (1.36)

with Msing
w ·λ being the g-submodule of Mw ·λ generated by the singular vectors of weights

sw(α) (w(λ + ρ)) − ρ, α ∈ �+
l . (1.37)
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Here, sw(α) denotes a reflection in the positive root w(α), see (1.32), while the ex-
istence (note that uniqueness is standard) of such singular vectors is guaranteed by
(w(λ + ρ),w(α)) = (ρ, α) ∈ Z>0.

One can think of (1.30, 1.31) as a categorification of the following character equality
expressing the character of the finite-dimensional g-module Lλ via those of the modules
{M ′

w ·λ}, cf. (1.17):

chLλ =
∑

w∈lW

(−1)l(w)ew(λ+ρ)−ρ

∏
α∈�+\w(�+

l )
(1 − e−α)

=
∑

w∈lW

(−1)l(w) chM ′
w ·λ . (1.38)

Main Theorem 1. For λ ∈ P+
g/l, the irreducible finite-dimensional g-module Lλ has a

finite length resolution (1.30), with each term admitting a finite length resolution (1.31)
by Verma modules.

The resolutions (1.30, 1.31) are reminiscent of the well-known Lepowsky’s parabolic
BGG resolutions [L] of any irreducible finite-dimensional g-module Lλ by parabolic
Verma modules {Mp

μ}μ∈P+
l
:

0 → · · · →
l(w)=2⊕

w∈W l

Mp
w ·λ →

l(w)=1⊕

w∈W l

Mp
w ·λ → Mp

λ → Lλ → 0 (1.39)

with each term admitting further a resolution by the usual Verma modules:

0 → Mwl,0w ·λ → · · · →
l(v)=2⊕

v∈Wl

Mvw ·λ →
l(v)=1⊕

v∈Wl

Mvw ·λ → Mw ·λ → Mp
w ·λ → 0.

(1.40)

Here, the indexing subset W l of W is defined as:

W l = {w ∈ W | �+
l ⊆ w(�+)}

= {shortest representatives of the right cosets Wl\W }. (1.41)

Note thatW l = {w−1 | w ∈ lW } and each elementw ∈ W admits a unique factorisation:

w = wlw
l with wl ∈ Wl, wl ∈ W l. (1.42)

While theBGG resolution (1.13) and consequently the Lepowsky-BGG resolution (1.39)
were originally constructed algebraically, we are presently not aware of the algebraic
construction of (1.30): the key difficulty is that non-simple reflections are involved in
the definition of M ′

w ·λ. Instead, we shall construct (1.30) by interpreting its restricted
dual as a Cousin complex of relative local cohomology groups of the corresponding
line bundle on the partial flag variety X = G/P stratified by B−-orbits. Here, B ⊂ P
are the Borel and parabolic subgroups of the Lie group G with Lie(B) = b, Lie(P) =
p, Lie(G) = g, and B− is the opposite Borel subgroup of G. A similar geometric
interpretation of (1.13) goes back to [Ke,Br], while the analogous treatment of the
parabolic BGG resolutions (1.39) was presented in [MR] by considering instead the
complete flag variety Y = G/B stratified by P-orbits. However, let us point out that
[MR] was not self-contained as it used some algebraic properties established in [L] (and
also contained two substantial inaccuracies which we fix in our Remark 2.60).
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1.6. BGG-relations for transfer matrices of classical types. Despite the aforementioned
similarity between our resolution (1.30) and the Lepowsky-BGG resolution (1.39), they
have several major differences. First of all, the latter is constructed for any choice of the
parabolic subalgebra p ⊂ g independent of λ ∈ P+

g and consists only of the parabolic

Verma modules {Mp
μ}μ∈P+

l
(though dim(Ll

μ) > 1 in general). But an even more striking
difference is the fact that our modules M ′

w ·λ admit an analytic continuation in λ to the
domain

Pg/l = {λ ∈ h∗ | λ(hα j ) = 0 ∀ j ∈ S
}
. (1.43)

Indeed, onemay apply the construction (1.36, 1.37) for any λ ∈ Pg/l to define g-modules
M ′

w ·λ of the highest weight w · λ, see (1.14). Furthermore, the resulting highest-weight
g-modules {M ′

w ·λ}w∈lW are generically irreducible for λ ∈ Pg/l (in particular, they are
irreducible for λ ∈ −P+

g/l ⊂ Pg/l) as follows from the classical description [J,S] of the
weights of singular vectors in the Verma modules.

We note that the module M ′
λ = M ′

id·λ coincides with the parabolic Verma module Mp
λ ,

and all other modules {M ′
w ·λ}w∈lW can be thought of as “W -translations” of

M ′
λ = Mp

λ , as follows from (1.38). In the particular case λ = tωi with the label of
vertex i equal to 1 (equivalent to (1.22) in the classical types, see Sect. 1.4), the cor-
responding parabolic Verma g-modules M

p{1,...,r}\{i}
tωi

, t ∈ C, can be extended to the
modules over Y (g), cf. [CGY, Appendix B], and so should all other M ′

w·tωi
. Thus,

our resolution (1.30) can be actually regarded as a resolution of Y (g)-modules, giving
rise to the desired BGG − relation expressing the finite-dimensional transfer matrix
Ti,t (z) = TLtωi

(z) via:

Ti,t (z) =
∑

w∈lW

(−1)l(w)TM ′
w·tωi

(z), ∀ t ∈ N, (1.44)

cf. (1.11). The length N = 0 case of (1.44) recovers back the character formula (1.38).

To make this even more feasible in the classical types, let us recall that in each case
of (1.22), the resulting action of the Yangian Y (g) on the parabolic Verma module
M

p{1,...,r}\{i}
tωi

is given by an explicit oscillator-type Lax matrix, as has been emphasized
in Sect. 1.4. Utilizing further the Weyl group symmetry of the rational R-matrices
(1.2, 1.19) combined with the appropriate particle-hole automorphisms of the corre-
sponding oscillator algebra A (in order for our g-modules to be in the category O of
[BGG]) one obtains a family of Lax matrices parametrized by the same set lW . This
gives rise to Y (g)-modules {M+

w·tωi
}w∈lW explicitly realized in the Fock representation

F of the algebrasA. As g-modules, they have the same characters as {M ′
w·tωi

}w∈lW and
furthermore the Fock vacuum |0〉 ∈ F is a highest weight vector of the highest weight
w · tωi . Thus, if M ′

w· tωi
is irreducible, then M+

w·tωi
� M ′

w·tωi
and the corresponding

transfer matrices T +
w,tωi

(z) = TM+
w·tωi

(z) and TM ′
w·tωi

(z) coincide. Combining this with

the above observation that M ′
w·tωi

are generically irreducible for t ∈ C and the fact
that both transfer matrices depend continuously on the parameter t ∈ C, we obtain the
uniform equality of the corresponding transfer matrices:

T +
w,tωi

(z) = TM ′
w·tωi

(z) ∀ t ∈ C, w ∈ lW, (1.45)
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even though for w �= id the g-modules M+
w·tωi

and M ′
w·tωi

may be non-isomorphic at
some t ∈ N (that are exactly the values featuring in (1.30)). The equality (1.45) allows
us to recast (1.44) as:

Main Theorem 2. For a classical rank r Lie algebra g, 1 ≤ i ≤ r as in (1.22), t ∈ N,
we have:

Ti,t (z) =
∑

w∈lW

(−1)l(w)T +
w,tωi

(z), (1.46)

expressing the finite-dimensional transfer matrix Ti,t (z) as an alternating sum of the
infinite-dimensional transfer matrices T +

w,tωi
(z) of the Y (g)-modules M+

w·tωi
explicitly

realized in the Fock A-module F.

We refer the reader to our Theorems 4.37, 5.41, 6.46, 7.43 for a case-by-case treatment
presented in the way that highlights the combinatorial description of lW (1.32, 1.33) in
each case of (1.22).

In type D, this establishes the key assumption from [FFK] (the joint work of the first-
named author with G. Ferrando and V. Kazakov) essential for the study of the entire
Q Q-system in loc.cit.

Let us note that the BGG-relation (1.46) allows to analytically continue the transfer
matrices Ti,t (z) of the finite-dimensional representations Ltωi , t ∈ N, to the entire
complex plane t ∈ C. With this in mind, we establish the t-symmetries of the resulting
family of endomorphisms Ti,t (z), see Propositions 5.59, 6.52, 7.58, by crucially utilizing
the Q Q-factorisation which we discuss next.

1.7. Factorisations. The infinite-dimensional transfer matrices T +
w,tωi

(z) factorise into
products of Q-operators. This factorisation can be traced back to the factorisation of
oscillator-typeLaxmatrices used to construct the transfermatrices. In the case ofUq (ŝl2),
such factorisation formula was initially proposed in [BLZ], see also [KT]. Here, the Lax
matrix entering the definition of the infinite-dimensional transfer matrix factorises into
the product of two degenerate Laxmatrices that are used to construct Baxter Q-operators.
The degenerate Lax matrices employed in the factorisation are solutions of (1.1) with
degenerate coefficients of the leading term, which are no longer related to quantum
groups. They have a long history, going back to [IK,KSS]. The relation to Q-operators
is discussed for Uq(ŝl2) and Y (sl2) in [AF,BLZ,RW,Kor,BLMS], and for higher rank
cases in [BHK,BT,BGKNR,BFLMS,Ts3], while cases beyond A-type were first found
in [Fr,CGY,FT].

By now, the role of the degenerate Lax matrices, arising from the shifted Yangians and
viewed as certain normalized limits of the non-degenerate ones (as some of the represen-
tation labels tend to infinity), is well understood. However the actual factorisation that
relates Lax matrices of different kinds remains yet to be understood. For a discussion
of A-type we refer the reader to [FP] (which also indicates an intriguing relation to the
cluster structures). For completeness of our exposition, we also refer the reader to the
slightly different approach [DM1,DM2,DM3] going back to [GP].

Let us summarize the thirdmain result of this paper that factorises the infinite-dimensional
transfermatrices T +

w,tωi
(z) from the previous subsection into the product of two commut-

ing Q-operators (in type D, this was first observed in [Fr,FFK], while an interpretation of
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this factorisation in terms of the 4d Chern–Simons theory for general types has appeared
very recently in [CGY, §16]):

Main Theorem 3. For a classical rank r Lie algebra g, an index 1 ≤ i ≤ r as in (1.22),
a scalar t ∈ C, and the element w ∈ lW as in (1.32, 1.33) for the standard parabolic
p{1,...,r}\{i}, we have:

T +
w,tωi

(z) = ch+w,tωi
· Q+

w,tωi
(z)Q−

w,tωi
(z), (1.47)

with the scalar factor ch+w,tωi
arising as a trace of the z-independent twist and the

Q-operators Q±
w,tωi

(z) arising in a similar fashion to T +
w,tωi

(z) but rather from the
degenerate Lax matrices.

We refer the reader to our formulas (8.29, 8.79, 8.98, 9.24) for a case-by-case treatment
presented in the way that highlights the aforementioned combinatorial description of the
set lW in each case.

Combining our Main Theorems 2 and 3, we thus obtain expressions for the finite-
dimensional transfer matrices Ti,t (z) (with the index i from (1.22) and t ∈ N) in terms
of the above Q-operators, see Propositions 8.38, 8.81, 8.100, 9.26.

1.8. Transfer matrices from the universal R-matrix. We conclude our Introduction with
a more general, but less explicit, construction of the transfer matrices of rational spin
chains (trigonometric version of which is much better understood by now). Let g be
a semisimple Lie algebra with a non-degenerate invariant form (·, ·) and Y�(g) de-
note the Drinfeld Yangian, which is a Hopf C[�]-algebra deforming the current algebra
Y�=0(g) � U (g[u]). As the specializations Y�=a(g) � Y�=b(g) are canonically isomor-
phic for a, b ∈ C

×, we shall omit �-dependence by rather considering Y (g) = Y�=1(g).
The latter is a Hopf algebra with a coproduct

� : Y (g) → Y (g) ⊗ Y (g), (1.48)

and admits a one-parameter group of Hopf algebra automorphisms {τa}a∈C, quantizing
the shift automorphisms {τ̄a}a∈C of U (g[u]) given by Xuk �→ X (u + a)k for X ∈ g and
k ∈ N, which may be further viewed (upon replacing a ∈ C with a formal variable z) as
an algebra homomorphism

τz : Y (g) → Y (g)[z]. (1.49)

Let �g ∈ g ⊗ g be the Casimir tensor corresponding to (·, ·), and �op be the opposite
coproduct.

Theorem [D, Theorem 3]. There is a unique formal series

R(z) = 1 +
∞∑

k=1

Rk z−k ∈ Y (g) ⊗ Y (g)[[z−1]] (1.50)

satisfying the following relations:

intertwining identity : (id ⊗ τz)�
op(y) = R(z)−1 · (id ⊗ τz)�(y) · R(z) ∀ y ∈ Y (g),

cabling identity : (id ⊗ �)(R(z)) = R12(z)R13(z).

(1.51)
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It also satisfies the quantum Yang–Baxter Eq. (1.3) and is called the universal R-matrix.
Moreover, R(z) also satisfies the following identities:

R(z) = 1 + �g · z−1 + O(z−2), R(z)−1 = R21(−z),

(τa ⊗ τb)R(z) = R(z + b − a). (1.52)

For any two representations ρV : Y (g) → End(V ) and ρW : Y (g) → End(W ), consider
the evaluation of R(z):

RV W (z) = (ρV ⊗ ρW )(R(z)) ∈ End(V ) ⊗ End(W )[[z−1]]. (1.53)

For W = V , RV V (z) is thus a solution of the quantum Yang–Baxter Eq. (1.3). For
irreducible finite-dimensional V and W , RV W (z) is actually a rational function in z, up
to an overall (possibly divergent) power series f (z), see [D, Theorem 4] (cf. [GRW,
Theorem 3.10] for more details). This way one recovers the rational R-matrices (1.2)
and (1.19). Indeed, for g = sln and V = C

n , we have RV V (z) = f (z)R(z) with R(z)
as in (1.2), according to [D, Example 1]. Likewise, for g = soK, spK and V = C

K, we
have RV V (z) = f (z)R(z) with R(z) as in (1.19), due to [GRW, Proposition 3.13].

For any Y (g)-module W and a group-like element x in an appropriate completion of
Y (g), consider

TW,x (z) = (id ⊗ trW ) ((1 ⊗ x)R(z)) (1.54)

whenever the latter is well-defined. The above properties of the universal R-matrixR(z)
imply:

TW1⊕W2,x (z) = TW1,x (z) + TW2,x (z), TW1⊗W2,x (z) = TW1,x (z) · TW2,x (z). (1.55)

For a Y (g)-module W and a ∈ C, we set W (a) = τ ∗
a (W ). If further τz(x) = x ,

then (1.52) implies:

TW (a),x (z) = TW,x (z + a) ∀ a ∈ C. (1.56)

Combining (1.55, 1.56), we get the commutativity of the resulting universal transfer
matrices:

TW1,x (z + a) · TW2,x (z + b) = TW2,x (z + b) · TW1,x (z + a) ∀ a, b ∈ C. (1.57)

Thus, for every finite-dimensional representation ρV : Y (g) → End(V ) we obtain a
commuting family of endomorphisms of V , defined by extracting the coefficients of the
power series

TW (z) = ρV (TW,x (z)) ∈ End(V )[[z−1]], (1.58)

as we vary the auxiliary representation W (we suppress x in TW (z) for simplicity of
notation).

The explicit constructions of the present paper should arise as particular examples of
this general setup with V = (Cn)⊗N for g = gln (resp. V = (CK)⊗N for g = soK, spK),
the Y (g)-modules W being isomorphic to the modules {M ′

w ·tωi
} as g-modules with i

from (1.22), andfinally x = exp(h) for a generalCartan elementh ∈ h ⊂ g (equivalently,

x =∏rk(g)
i=1 τ

ε∗
i

i with ε∗
i being a basis of h).
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1.9. Outline of the paper. The structure of the present paper is as follows. In Sect. 2,
we construct (by using a geometric approach) the novel BGG-type resolutions (1.30)
and (1.31) on which the functional relations presented in this article are based on. The
reader interested only in the functional relations can start in Sect. 3 where we recall
the well studied case of A-type and the standard BGG resolution. In Sect. 4, we apply
the new BGG-type resolutions to type A recovering functional relations that follow
from the standard BGG resolution. Sections 5, 6 and 7 are dedicated to the functional
relations obtained from theBGG-type resolutions for type BC D. The factorisation of the
corresponding infinite-dimensional transfer matrices is then discussed in Sects. 8 and 9.
Finally, we mention some generalizations (to be presented elsewhere) of our work in
Sect. 10.

2. Truncated BGG Resolutions as Cousin Complexes

In this section, we construct both resolutions (1.30) and (1.31) by interpreting their
“restricted dual” as Cousin complexes of relative local cohomology groups, in the spirit
of [Ke,Br,MR,Ku].

2.1. Cohomology with relative support and Cousin complexes. Let X be a topological
space and Z ⊂ X be a closed subset. Consider the functor �Z sending a sheaf F of
abelian groups on X to the module ker(�(X,F) → �(X − Z ,F)). Let
F �→ Hi

Z (X,F) denote the i-th right derived functor of �Z (X,−), the i-th coho-
mology group of F with support on a closed subset Z . This construction admits the
following relative version. Suppose that A and B are two closed subsets of X such that
B ⊂ A. Consider the functor �A/B which sends a sheaf F of abelian groups on X to
the module coker(�B(X,F) → �A(X,F)). Let F �→ Hi

A/B(X,F) denote the i-th

right derived functor1 of �A/B(X,−), the i-th cohomology group of F with relative
support (A, B). We note that Hi

A(X,F) = Hi
A/∅(X,F) and Hi

X (X,F) = Hi (X,F).

Lemma 2.1 [Ke]. The functor Hi
A/B(X,−) satisfies the following properties:

(a) There is a long exact sequence

· · · → Hi
B(X,F) → Hi

A(X,F) → Hi
A/B(X,F) → Hi+1

B (X,F) → · · · (2.2)

(b) Every inclusion of closed subsets C ⊆ B induces a natural morphism

Hi
A/C (X,F) → Hi

A/B(X,F) (2.3)

functorial with respect to A and B, and a morphism of the corresponding exact
sequences (2.2).

(c) There is an “excision” isomorphism:

Hi
A/B(X,F)

∼−→ Hi
A\B(X\B,F) (2.4)

functorial with respect to A and B (here, A\B denotes the complement of B in A).

1 The issues with coker not being left exact are carefully resolved by Kempf in the beginning of [Ke, §7].
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We will also need the following simple corollary of Lemma 2.1 and the above defi-
nitions:

Lemma 2.5. For any two disjoint closed subsets Z1 and Z2 of X there exist isomor-
phisms:

Hi
Z1

(X,F)
∼−→ Hi

Z1
(X\Z2,F |X\Z2) (2.6)

and

Hi
Z1
Z2

(X,F)
∼−→ Hi

Z1
(X,F) ⊕ Hi

Z2
(X,F) (2.7)

functorial with respect to Z1 and Z2.

Let now X be a smooth algebraic variety. Let OX be the structure sheaf and DX
be the sheaf of algebraic differential operators of finite order on X . We also define
D = �(X,DX ), the algebra of global differential operators on X . The crucial obser-
vation is that the above constructions remain true in the D-module theoretic setting:

Lemma 2.8 [Br, §2]. For a coherent sheafF of leftDX -modules, all cohomology groups
Hi

A/B(X,F) carry the natural D-action. Moreover, all maps in Lemmas 2.1 and 2.5 are
D-equivariant.

Suppose now that X is a G-variety. Then, there is an evident Lie algebra homomor-
phism g → D (the target endowed with the commutator bracket). It obviously induces a
g-action on H•

A/B(X,F). However, whenever considering H•
A/B(X,F) as a g-module,

wewill be interested not literally in this g-action, but in the one twisted by theChevalley
involution φ of g determined by:

φ : h �→ −h, eα �→ e−α, ∀ h ∈ h, α ∈ �. (2.9)

Let us now recall the key tool of Cousin complexes (our exposition closely follows that of
[MR, §3]). Suppose that X is a topological space equipped with a
(not necessarily exhaustive) filtration

Zn ⊆ Zn−1 ⊆ · · · ⊆ Z0 ⊆ X (2.10)

of closed subsets, and let E be a sheaf of abelian groups on X . Picking a flabby resolution
E• of E and considering the mapping cones C j = C(�Z j+1(X, E•) → �Z j (X, E•)),
whose cohomology are naturally isomorphic to the relative cohomology H•

Z j /Z j+1
(X, E),

one can construct a double complexC•,• with exact rows andwhose j-th column isC j [ j],
the j-th coneC j shifted by degree j . Then, on the one hand, the exactness of rows implies
that the cohomology of the total complex Tot(C•,•) is isomorphic to the cohomology
of �Z0(X, E•), i.e. to H•

Z0
(X, E). On the other hand, the vertical cohomology of this

double complex C•,• is Hk+ j
Z j /Z j+1

(X, E), as noted above, and the horizontal differential
in the k-th row gives rise to the so-called k-th Cousin complex:

Ck : Hk
Z0/Z1

(X, E) → Hk+1
Z1/Z2

(X, E) → Hk+2
Z2/Z3

(X, E) → · · · (2.11)

Therefore, by applying the vertical spectral sequence of the double complex C•,•, we
obtain:2

Theorem 2.12 [MR]. If all except the k-th Cousin complexes are zero, then we have:

H•(Ck) = H•
Z0

(X, E). (2.13)

2 While the Cousin complexes were introduced by Grothendieck and were first applied in the above con-
text in [Ke], we choose to follow the exposition of [MR] for its simplicity.
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2.2. The geometry of partial flag varieties. In what follows, we shall freely use the
notation of Sect. 1.5. In particular, let G be a connected algebraic groupwith Lie(G) = g
and H ⊂ B ⊂ P be the Cartan torus, the Borel, and parabolic subgroups of G with
the corresponding Lie algebras Lie(H) = h, Lie(B) = b, Lie(P) = p. Consider the
corresponding partial flag variety

X = G/P. (2.14)

Let B− ⊂ G be the opposite Borel subgroup of B containing H , and U− ⊂ B− be its
unipotent radical, so that Lie(U−) =⊕α∈�+ Ce−α and Lie(B−) = h⊕Lie(U−). Then,
B− naturally acts on X , giving rise to the stratification of X by B−-orbits
(see e.g. [Ku, §7.21]):

X =
⊔

w∈lW

Xw, Xw = B−wP/P = U−wP/P, codimX (Xw) = l(w). (2.15)

Here, the indexing set lW consists of the shortest length representatives of the left cosets
W/Wl, precisely as in (1.33), and Xw is an affine space of dimension equal to l(w), the
length of w ∈ lW .

Following the setup of Sect. 1.5, letλ ∈ P+
g/l be a dominant integralweight of g vanishing

on the coroot lattice of the Levi subalgebra l ⊂ p. Let L̃−λ be the one-dimensional
P-representation corresponding to the weight −λ, and L̃λ be the corresponding G-
equivariant line bundle on X :

L̃λ = G ×P L̃−λ. (2.16)

For any subset Y of a topological space X, we use Y and ∂(Y) to denote its closure and
boundary. Since Xw is locally closed (as an orbit of an algebraic group), we have:

Xw = Xw\∂(Xw). (2.17)

All g-modules we consider in this paper do belong to the category O of [BGG]. In
particular, every suchmoduleV has theweight space decompositionwith all components
being finite-dimensional:

V =
⊕

ν∈h∗
V [ν], V [ν] =

{
v ∈ V | h(v) = ν(h)v ∀h ∈ h

}
. (2.18)

In this setup, one may define the restricted dual module V ∨ ⊆ V ∗: as a vector space

V ∨ =
⊕

ν∈h∗
V [ν]∗, (2.19)

while the g-action is the restriction of the natural one on V ∗ twisted by the Chevalley
involutionφ of (2.9). This defines an involutive antiautoequivalence� of the categoryO:

� : V �→ V ∨. (2.20)

For the finite-dimensional g-modules, we have:

L∨
λ � Lλ, ∀ λ ∈ P+

g . (2.21)
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Theorem 2.22. There exists a finite length exact sequence of g-modules of the form:

0 → Mwwl,0 ·λ → · · · →
l(v)=2⊕

v∈Wl

Mwv ·λ →
l(v)=1⊕

v∈Wl

Mwv ·λ → Mw ·λ → Hl(w)

Xw/∂(Xw)
(X, L̃λ)

∨ → 0.

(2.23)

Proof. Using � of (2.20) it suffices to prove that there exists an exact sequence of
g-modules of the form:

0 → Hl(w)

Xw/∂(Xw)
(X, L̃λ) → M∨

w ·λ →
l(v)=1⊕

v∈Wl

M∨
wv ·λ →

l(v)=2⊕

v∈Wl

M∨
wv ·λ → · · · → M∨

wwl,0 ·λ → 0.

(2.24)

To this end, consider the complete flag variety

Y = G/B, (2.25)

and let π : Y → X denote the natural projection:

π : G/B → G/P. (2.26)

Note that Y admits a natural Bruhat decomposition by B−-orbits, cf. (2.15):

Y =
⊔

u∈W

Yu, Yu = B−u B/B = U−u B/B, codimY (Yu) = l(u). (2.27)

For any w ∈ lW , define Qw ⊆ Y via:

Qw = π−1(B−wP), (2.28)

which is naturally stratified by B−-orbits:

Qw = π−1(B−wP) =
⊔

v∈Wl

Ywv. (2.29)

Let us also note the following useful equality:

l(wv) = l(w) + l(v) for any w ∈ lW, v ∈ Wl. (2.30)

Let L−λ be the one-dimensional B-representation corresponding to the weight −λ,
and Lλ be the corresponding G-equivariant line bundle on Y :

Lλ = G ×B L−λ. (2.31)

Similarly to [MR], for any w ∈ lW consider

Uw = Y\∂(Qw) = Y\π−1 (∂(Xw)) (2.32)

(the second equality is due to π being proper), so that Qw is closed in Uw. Note that Uw

is naturally stratified by B−-orbits, which gives rise to the following filtration Z• of Uw

by closed subsets:

Zi = Qw ∩ Z̃i with Z̃i =
⊔

u∈W
l(u)≥l(w)+i

Yu . (2.33)
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We note that Z0 = Qw, and according to (2.29, 2.30) we have:

Z̃i\Z̃i+1 =
⊔

u∈W : l(u)=l(w)+i

Yu, Zi\Zi+1 =
⊔

v∈Wl: l(v)=i

Ywv. (2.34)

We shall now apply the results of Sect. 2.1 to Uw equipped with the filtration (2.33)
and the sheaf F = Lλ|Uw . We claim that Theorem 2.12 applies in this setting, and
furthermore the correspondingCousin complex,which calculates H•

Z0
(Uw,F), provides

the desired exact sequence (2.24).
Indeed, according to [Ku, Proposition 9.3.7], for any u ∈ W we have:

Hk
Y u/∂(Yu)

(G/B,Lλ) =
{

M∨
u ·λ if k = codimY (Yu) = l(u)

0 otherwise
. (2.35)

Combining this with (2.34) and Lemma 2.5, we obtain:

Hi+l(w)
Zi /Zi+1

(Uw,F) = Hi+l(w)
Zi \Zi+1

(Uw\Zi+1,Lλ) �
l(v)=i⊕

v∈Wl

M∨
wv ·λ (2.36)

and

Hk
Zi /Zi+1

(Uw,F) = 0 for k �= i + l(w). (2.37)

Remark 2.38. We note that Lemma 2.5 does apply, due to:

(1) Zi\Zi+1 = ⊔
v∈Wl: l(v)=i

Ywv;

(2) for every cell Yu ⊂ Zi\Zi+1, we have ∂(Yu) ⊆ ∂(Qw) ∪ Zi+1, so that

Uw\Zi+1 = Y\(∂(Qw) ∪ Zi+1) = Vu\((Vu ∩ ∂(Qw)) ∪ (Vu ∩ Zi+1)),

where Vu = Y\∂(Yu), and Vu ∩ ∂(Qw), Vu ∩ Zi+1 are closed subsets of Vu disjoint
from Yu .

Thus, all Cousin complexes Ck of (2.11) vanish for k �= l(w), while the terms of Cl(w)

precisely coincide with the terms of the exact sequence (2.24). Applying Theorem 2.12,
we therefore get Hi (Cl(w)) = Hi+l(w)

Z0
(Uw,F).

Hence, it remains to prove that:

(I) H0(Cl(w)) = Hl(w)
Z0

(Uw,F) coincides with the g-module

Nw(λ) = Hl(w)

Xw/∂(Xw)
(X, L̃λ) (2.39)

(II) Hi (Cl(w)) = Hi+l(w)
Z0

(Uw,F) vanishes for i �= 0.

Both results follow immediately from a B-version of Theorem 2.51 below, the exci-
sion isomorphism

Hk
Xw/∂(Xw)

(X, L̃λ) � Hk
Xw

((G/P)\∂(Xw), L̃λ),

cf. (2.17), and the following two lemmas:

Lemma 2.40 [GS, p. 286]. R0π∗(Lλ) = L̃λ and R>0π∗(Lλ) = 0.
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Lemma 2.41 [GR, Exposé 5, Lemme 3.2]. Let f : X → X ′ be an arbitrary morphism,
S ⊂ X ′ be a closed subset, and F be a sheaf of abelian groups on X. Then, there is a
spectral sequence:

Hi
S

(
X ′, R j f∗F

)
⇒ Hi+ j

f −1(S)
(X,F).

Therefore, the l(w)-th Cousin complex Cl(w) realizes the exact sequence (2.24) of
g-modules, which produces the exact sequence (2.23) upon a further application of the
antiautoequivalence � of (2.20). �


Let us now recall the highest weight g-modules M ′
w ·λ = Mw ·λ/Msing

w ·λ for w ∈ lW ,
defined by the formulas (1.36, 1.37) in the Introduction. They admit the following geo-
metric interpretation:

Lemma 2.42. For any w ∈ lW , we have the isomorphism of g-modules:

M ′
w ·λ � Nw(λ)∨. (2.43)

Proof. This follows from the following fragment of (2.23) using the notation (2.39):

l(v)=1⊕

v∈Wl

Mwv ·λ → Mw ·λ → Nw(λ)∨ → 0.

�

Combining Theorem 2.22 and Lemma 2.42, we immediately obtain:

Corollary 2.44. All g-modules {M ′
w ·λ}w∈lW admit resolutions (1.31) by Verma modules.

As a direct corollary of (1.31), we obtain the character formula for the g-modules
M ′

w ·λ, cf. (1.38):

Lemma 2.45. For w ∈ lW , we have:

chM ′
w ·λ = ew(λ+ρ)−ρ

∏
α∈�+\w(�+

l )

(
1 − e−α

) . (2.46)

Proof. The existence of the resolution (1.31) implies the following equality of charac-
ters:

chM ′
w ·λ =

∑

v∈Wl

(−1)l(v) chMwv ·λ =
∑

v∈Wl
(−1)l(v)ewv(λ+ρ)−ρ

∏
α∈�+(1 − e−α)

= ew(λ+ρ)−ρ ·
∑

v∈Wl
(−1)l(v)ew(v(ρ)−ρ)

∏
α∈�+(1 − e−α)

= ew(λ+ρ)−ρ ·
∑

v∈Wl
(−1)l(v)ew(v(ρl)−ρl)

∏
α∈�+(1 − e−α)

, (2.47)

where ρ is defined in (1.15), ρl is defined in (1.26), and the last two equalities follow
from:

v(λ) = λ, v(ρ) − ρ = v(ρl) − ρl, ∀ v ∈ Wl, λ ∈ P+
g/l. (2.48)
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Applying the Weyl denominator formula (1.18) for l:
∑

v∈Wl

(−1)l(v)ev(ρl)−ρl =
∏

α∈�+
l

(1 − e−α) (2.49)

and noting w(�+
l ) ⊆ �+, due to (1.32), we get precisely the character formula (2.46). �


Remark 2.50. The corresponding formula for chNw(λ) goes back to [Ke, Lemma 12.8].

The next result is the key point of the further discussion:

Theorem 2.51. For any w ∈ lW , we have:

Hi
Xw/∂(Xw)

(X, L̃λ) = 0 for any i �= l(w). (2.52)

Proof. It is a direct consequence of the local purity theorems (see [AL, Proposition 4.1]).
�


2.3. Derivation of the truncated BGG resolutions. Let λ ∈ P+
g/l be a dominant integral

weight of g vanishing on the coroot lattice of l, see (1.29). Now we are ready to derive
both resolutions (1.30, 1.31) of the Introduction, cf. Main Theorem 1.

Theorem 2.53. For λ ∈ P+
g/l, the irreducible finite-dimensional g-module Lλ has a

finite length resolution (1.30), with each term admitting a finite length resolution (1.31)
by Verma modules.

Proof. We will prove the dualized version of the desired statement, just as in our proof
of Theorem 2.22. Let us consider the sheaf F = L̃λ and the following filtration of X by
closed subsets:

Zi =
⊔

w∈lW : l(w)≥i

Xw. (2.54)

We claim that Theorem 2.12 applies in this setup and gives rise to the following exact
sequence of g-modules:

0 → L∨
λ → (M ′

λ)
∨ →

l(w)=1⊕

w∈lW

(M ′
w ·λ)∨ →

l(w)=2⊕

w∈lW

(M ′
w ·λ)∨ → · · · → (M ′

l,0w ·λ)
∨ → 0. (2.55)

Indeed, all Cousin complexes Ck of (2.11) vanish for k �= 0, due to Theorem 2.51
and Lemma 2.5:

Hk+ j
Z j /Z j+1

(X,F) = Hk+ j
Z j \Z j+1

(X\Z j+1,F) =
l(w)= j⊕

w∈lW

Hk+ j
Xw/∂(Xw)

(X, L̃λ) = 0. (2.56)

Therefore, Theorem 2.12 applies, and we get:

Hi (C0) = Hi
X (X,F) = Hi (X,F). (2.57)

According to the parabolic version of the Borel–Weil–Bott theorem [Kos, Theorem 6.4],
combinedwith our conventions of all geometric g-actions being twisted by the Chevalley
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involution φ of (2.9) that also enters our definition (2.19, 2.20) of the restricted dual
g-module, we have (cf. (2.21)):

Hi (X,F) = Hi (X, L̃λ) �
{

L∨
λ � Lλ for i = 0

0 for i �= 0
. (2.58)

On the other hand, the j-th term of C0 is computed using Lemmas 2.5 and 2.42 similarly
to (2.56):

H j
Z j /Z j+1

(X,F) =
l(w)= j⊕

w∈lW

Hl(w)

Xw/∂(Xw)
(X, L̃λ) =

l(w)= j⊕

w∈lW

(M ′
w ·λ)∨. (2.59)

Combining (2.57, 2.58, 2.59), we see that the Cousin complex C0 realizes the exact
sequence (2.55).

Applying the antiautoequivalence� of (2.20) to (2.55) produces the resolution (1.30),
while the resolutions (1.31)were constructed inCorollary 2.44. This completes our proof
of the theorem. �

Remark 2.60. Our argument above has been strongly influenced by [MR], where the
Lepowsky parabolic BGG resolution (1.39) was interpreted via the Cousin complex on
the complete flag variety Y = G/B stratified by P-orbits. Nevertheless, there are two
subtle points in [MR]:

(1) For u ∈ W , let Zu denote the B-orbit Bu B/B ⊆ Y . It is stated in [MR, after (3.2)]
that:

Hk
Zu/∂(Zu)

(G/B,Lλ) =
{

M∨
u ·λ if k = codimY (Zu)

0 otherwise
. (2.61)

This (as well as λ �= 0 case at [Br, p. 55]) is wrong, as we rather have:

Lemma 2.62.

Hk
u (λ) := Hk

Zu/∂(Zu)
(G/B,Lλ) =

{
M∨

uw0·λ if k = codimY (Zu)

0 otherwise
. (2.63)

Proof. When u = w0, this statement is well-known (cf. [Be, Claim 2.4.2]). One can
show that the general case holds along the lines of [Br, Proposition 7]. Indeed, let
w0u−1 = sα1 · . . . · sαN−�(u)

be a reduced decomposition, where N = l(w0) = |�+|.
Then, similarly to the argument in [Br, Lemma 4], it is easy to see that we still have a
sequence of the following g-module epimorphisms:

H0
w0

(λ) = H0
sα1 sα2 ···sαN−l(u)

u(λ) � H1
sα2 ···sαN−l(u)

u(λ) � · · · � Hc(u)−1
sαN−l(u)

u(λ) � Hc(u)
u (λ),

where c(u) = codimY (Zu) = N − l(u). Thus, the argument of [Br] still applies and we
get:

Hc(u)
u (λ) = M∨

(sαN−l(u)
···sα1 ) ·λ = M∨

uw0 ·λ.

On the other hand, the vanishing result in (2.63) is just the B-case of Theorem 2.51. �




22 R. Frassek, I. Karpov, A. Tsymbaliuk

(2) The use of H•• (−,Lλ ⊗ K) in [MR] is wrong.

However, both of the above inaccuracies can be easily fixed by replacingLλ⊗Kwith
Lλ and considering the stratification of Y by P−-orbits, where P− ⊂ G is the opposite
parabolic subgroup.

Remark 2.64. (a) It is instructive to point out that the results of [MR] provide the answer
to [Ku, Open Problem 9.3.19]. The only difference is that loc.cit. treats the case of
an arbitrary Kac–Moody algebra. Nonetheless, the results of [MR], as well as ours,
admit natural generalizations to such infinite-dimensional setup through the usual
stratification by Schubert varieties.

(b) We also note that the other possible way to generalize our results is by considering an
arbitrary dominant integral weight λ ∈ P+

g , not necessarily vanishing on the coroot
lattice of l. In this case, oneobtains (exactly as above) the resolutions of the form (1.30)
and (1.31)with L̃λ being replacedby R0π∗(Lλ) (note that R>0π∗(Lλ) = 0, according
to [GS]). However, the corresponding infinite-dimensional g-modules (realized as
Hl(w)

Xw/∂(Xw)
(X, R0π∗(Lλ))

∨) are not defined for λ /∈ P+
g in this case, in contrast to

such a key feature of our modules M ′
w ·λ of (1.36) as discussed in Sect. 1.6.

3. Standard BGG

In this section, we recall the standard relation between the transfer matrices of A-type
spin chains corresponding to finite-dimensional and infinite-dimensional (dual Verma)
gln-modules provided via oscillator Lax matrices, as summarized in the Introduction.
This exposition is mostly to motivate the key constructions and results of the upcoming
sections. We also provide an overview of the factorisation and the determinant formulas
in this setup, as mentioned in the Introduction.

3.1. Oscillator realization in type A (Verma). For any n ∈ Z≥2, let A denote the oscil-
lator algebra generated by n(n−1)

2 pairs of oscillators {(a j,i , āi, j )}1≤i< j≤n subject to the
standard defining relations:

[a j,i , āk,�] = δk
i δ�

j , [a j,i , a�,k] = 0, [āi, j , āk,�] = 0, (3.1)

so that

A = C

〈
a j,i , āi, j

〉

1≤i< j≤n

/
(3.1). (3.2)

Fix λ = (λ1, . . . , λn) ∈ C
n . Following [DM1, §2] (going back to [GN]), let us consider

the gln-type A[x]-valued Lax matrix (i.e. a solution of the RTT relation (1.1) with the
R-matrix of (1.2)):

Lλ(x) = U−1(x + Dλ)U (3.3)

defined through the matrices:

U =

⎛

⎜⎜⎝

1 −ā1,2 · · · −ā1,n
...

. . .
. . .

...

0 · · · 1 −ān−1,n
0 · · · 0 1

⎞

⎟⎟⎠ , Dλ =

⎛

⎜⎜⎜⎝

λ1 0 · · · 0

ã2,1 λ2 − 1 . . .
...

...
. . .

. . . 0
ãn,1 · · · ãn,n−1 λn − n + 1

⎞

⎟⎟⎟⎠ , (3.4)
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with

ã j,i = −a j,i +
n∑

k= j+1

ā j,kak,i . (3.5)

Writing (3.3) in the form

Lλ(x) = xIn +
n∑

i, j=1

ei jE j i , (3.6)

we note that the RTT relation (1.1) implies that {Ei j }n
i, j=1 satisfy the gln commutation

relations:

[Ei j , Ek�] = δk
jEi� − δi

�Ek j . (3.7)

Let us consider the standard Fock module F of A, generated by the Fock vacuum
|0〉 ∈ F satisfying

a j,i |0〉 = 0, 1 ≤ i < j ≤ n. (3.8)

Thus, F has a basis obtained by the action of the pairwise commuting creation operators
on |0〉:

| �m 〉 =
∏

1≤i< j≤n

ā
mi, j
i, j |0〉, ∀ �m = (mi, j )1≤i< j≤n ∈ N

n(n−1)
2 . (3.9)

We shall use 〈 �m| to denote the dual basis of F∗, so that

〈�k|X | �m〉 = 〈�k|
(

X | �m〉
)

(3.10)

denotes the (|�k〉, | �m〉)-matrix coefficient of any linear operator X acting on the Fock
space F.

By straightforward computation, we find:

Ei i = λi +
∑

k<i

āk,iai,k −
∑

k>i

āi,kak,i , 1 ≤ i ≤ n, (3.11)

Ei j = −a j,i +
∑

k<i

āk,ia j,k, 1 ≤ i < j ≤ n. (3.12)

Hence, the Fock vacuum |0〉 is a highest weight state of the resulting gln-action:

Ei j |0〉 = 0, 1 ≤ i < j ≤ n, (3.13)

with the highest weight λ, that is:

Ei i |0〉 = λi |0〉, 1 ≤ i ≤ n. (3.14)

We can now identify the resulting gln-modulesFwith those featuring in the Introduction:
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Lemma 3.15. There is a gln-module isomorphism:

F � M∨
λ , (3.16)

identifying F with the restricted dual (2.19) of the highest weight Verma module Mλ.

Proof. Since the restricted dual F∨ has the same highest weight and the character as
Mλ, it suffices to prove that it is also a highest weight gln-module, i.e. generated by its
highest weight vector 〈0|. To this end, we note that the formula (3.12) implies that 〈 �m|
is in fact a non-zero multiple of

(E∗
12)

m1,2 · · · (E∗
1n)

m1,n (E∗
23)

m2,3 · · · (E∗
2n)m2,n · · · (E∗

n−1,n)
mn−1,n 〈0|

for any �m = (mi, j )1≤i< j≤n ∈ N
n(n−1)

2 , where E∗
i j ∈ End(F∗) is the dual of the Ei j -action

on F. �

Combining this with the determinant formula of [J] and the isomorphism (2.21), we

obtain:

Corollary 3.17. (a) The Fock space F is irreducible as a gln-module if and only if

λi − λ j /∈ i − j + Z>0, ∀ 1 ≤ i < j ≤ n. (3.18)

(b) The Fock vacuum |0〉 generates an irreducible finite-dimensional gln-module Lλ if
and only if

λ ∈ P+ =
{
μ ∈ C

n | μi − μi+1 ∈ N ∀ 1 ≤ i < n
}
. (3.19)

3.2. Transfer matrices. Recall the notion of transfer matrices {TW (x)}W∈Rep Y (gln), as
discussed in Sect. 1.8. In particular, we shall consider the following explicit infinite-
dimensional transfer matrices:

T +
λ (x) = tr

n∏

i=1

τ
Ei i
i Lλ(x) ⊗ · · · ⊗ Lλ(x)︸ ︷︷ ︸

N

. (3.20)

Here, we use the N -fold tensor product and the trace is taken over the entire Fock
space (3.9, 3.10):

tr(X) =
∑

�m
〈 �m|X | �m〉. (3.21)

Remark 3.22. The twist parameters τi ∈ C lift the degeneracies in the spectrum, i.e.
break the sln invariance of the transfer matrix, and regularize the infinite-dimensional
trace.

For a dominant integral λ ∈ P+, see (3.19), we also consider the finite-dimensional
transfer matrices Tλ(x) corresponding to themodules Lλ in the auxiliary space: those are
defined similarly to (3.20), butwith the trace taken over thefinite-dimensional submodule
Lλ of F, see Corollary 3.17(b).

Recall the dot action (1.14) of Sn on C
n , cf. (1.11):

σ · λ = σ(λ + ρ) − ρ, ρ = ( n−1
2 , n−3

2 , . . . , 1−n
2

) ∈ C
n . (3.23)

Then, according to [BFLMS,DM3], while for low ranks it goes back to [BLZ,BHK],
we have:
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Theorem 3.24. For λ ∈ P+, we have:

Tλ(x) =
∑

σ∈Sn

(−1)l(σ )T +
σ ·λ(x). (3.25)

As recalled in Sect. 1.3, the formula (3.25) is a consequence of the BGG resolution of
the finite-dimensional gln-module Lλ by means of the infinite-dimensional dual Verma
gln-modules:

0 → Lλ → M∨
λ →

l(σ )=1⊕

σ∈Sn

M∨
σ ·λ →

l(σ )=2⊕

σ∈Sn

M∨
σ ·λ → · · · → M∨

(λn+1−n,λn−1+3−n,...,λ1+n−1) → 0,

(3.26)

cf. (2.19, 2.55). We note that the character limit of (3.25), corresponding to its special
case with N = 0 (zero length of the spin chain), recovers the classical Weyl character
formula:

chLλ =
∑

σ∈Sn

(−1)l(σ ) eσ(λ+ρ)−ρ

∏
α∈�+(1 − e−α)

=
∑

σ∈Sn

(−1)l(σ ) chM∨
σ ·λ , (3.27)

where �+ denotes the set of positive roots of g = sln . In particular, identifying simple
roots with αi = εi − εi+1 in the standard way, we get �+ = {εi − ε j }1≤i< j≤n and (3.23)
agrees with (1.15).

Remark 3.28. For the physics’ reader, let us explain how (3.27) fits into the rest of our
notation. Consider a general Cartan element h = ∑n

i=1 xiε
∗
i ∈ h ⊂ gln (here, one can

think of xi ∈ C or as a formal parameter), and let τi = exi . Then, eh and
∏n

i=1 τ
Ei i
i agree

and the formula (3.27) reads:

chLλ(e
h) = trLλ

∏

1≤i≤n

τ
Ei i
i =

∑

σ∈Sn

(−1)l(σ ) e(σ (λ+ρ)−ρ,h)

∏
i< j (1 − τ j

τi
)

=
∑

σ∈Sn

(−1)l(σ ) chM∨
σ ·λ(e

h) (3.29)

with

chM∨
λ
(eh) = trM∨

λ

∏

1≤i≤n

τ
Ei i
i =

∏

1≤i≤n

τ
λi
i

∏

1≤i< j≤n

1

1 − τ j
τi

, (3.30)

where the left-hand sides denote the traces of eh (invertible diagonal element of GLn)
on Lλ, M∨

λ .
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3.3. Factorisation. The factorisation formula for the transfer matrices T +
λ (x) of the

restricted dual of Vermamodules, cf. (2.19) and Lemma 3.15, was proven in [BFLMS]. It
was further combined with the BGG-relation (3.25) to derive the determinant expression
for the finite-dimensional transfer matrices Tλ(x). We review these constructions in the
present subsection.

Following [BFLMS, (1.16)], let us consider the following gln-typeA[x]-valued Lax
matrices:

Li (x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 āi,1
. . .

...

1 āi,i−1

a1,i · · · ai−1,i x +
∑i−1

j=1 a j,i āi, j −∑n
j=i+1 āi, ja j,i āi,i+1 · · · āi,n

−ai+1,i 1
...

. . .

−an,i 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.31)

with 1 ≤ i ≤ n and the oscillators {a j,i , āi, j } j �=i subject to the standard commutation
relations (3.1).

The following factorisation formula has been shown in [BFLMS, Appendix B]:

L1(x + �1)L2(x + �2) · · · Ln(x + �n) = SLλ(x)GS−1, (3.32)

where Lλ(x) is the Lax matrix of (3.3) and the shifted weights {�i }n
i=1 are defined via:

�i = λi − i + 1, 1 ≤ i ≤ n. (3.33)

Here, the similarity transformation S = Sn · · · S1 is defined via:

Si = exp

⎡

⎣
i−1∑

j=1

⎛

⎝ā j i −
i−1∑

k= j+1

āki āk j

⎞

⎠ a j i

⎤

⎦ , (3.34)

while the matrix G reads:

G =

⎛

⎜⎜⎝

1 −ā2,1 · · · −ān,1
...

. . .
. . .

...

0 · · · 1 −ān,n−1
0 · · · 0 1

⎞

⎟⎟⎠

−1

. (3.35)

As explained below, the factorisation formula (3.32) can be lifted to the level of trans-
fer matrices. To this end, let us first define single-index Q-operators
{Qi (x)}n

i=1 ⊂ End(Cn)⊗N via:

Qi (x) = t̂rDi

(
Li (x) ⊗ · · · ⊗ Li (x)︸ ︷︷ ︸

N

)
, (3.36)

where we use the normalized trace t̂rDi defined through:

t̂rDi (X) = tr(Di X)

tr(Di )
, (3.37)
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cf. (3.21). The twist Di in (3.36) acts only on the Fock space and is defined via:

Di =
∏

1≤ j<i

(
τi

τ j

)a j i āi j ∏

i< j≤n

(
τ j

τi

)āi ja j i

. (3.38)

We note that the action of this twist on the Fock module is uniquely determined (up to
a scalar function) by the following condition:

DLi (x)D−1 = D−1
i Li (x)Di , (3.39)

with

D = diag(τ1, . . . , τn). (3.40)

The relation (3.39) ensures the commutativity of Qi (x) defined via (3.36) and the transfer
matrix T(1,0,...,0)(y) of the defining fundamental representation in the auxiliary space,
see Remark 3.67(b).

Next, we consider the N -fold tensor product on the matrix space of the factorisation
formula (3.32). Taking the normalized traces of each of the resulting monodromies
Li (x + �i )⊗· · ·⊗ Li (x + �i ) on the left-hand side of the corresponding relation yields a
product of the Q-operators. On the right-hand side, we recover the transfer matrix T +

λ (x)

multiplied by the inverse of the character

ch+λ = tr
∏

1≤i≤n

τ
Ei i
i =

∏

1≤i≤n

τ
λi
i

∏

1≤i< j≤n

τi

τi − τ j
=
∏

1≤i≤n

τ
�i
i

∏

1≤i< j≤n

1

τ−1
j − τ−1

i

. (3.41)

Remark 3.42. The above computation requires a few steps. First, let us note the following
relation among the twists of the Q-operators and the transfer matrices:

n∏

i=1

Di =
∏

1≤i≤n

τ
Ei i −λi
i

∏

1≤ j<i≤n

(
τ j

τi

)−a j i āi j

. (3.43)

Second, we note that apart from its diagonal thematrix G in (3.35) only contains creation
operators which do not contribute to the trace. Finally, we need the commutativity (3.59)
established below.

Thus, we finally obtain the factorisation formula for T +
λ (x), cf (1.10):

T +
λ (x) = ch+λ · Q1(x + �1)Q2(x + �2) · · · Qn(x + �n). (3.44)

Combining (3.44) with the BGG-relation (3.25) and evoking the Vandermonde determi-
nant:

∏

1≤i< j≤n

(
τ−1

j − τ−1
i

)
= det

∥∥∥τ− j+1
i

∥∥∥
1≤i, j≤n

, (3.45)

we get the determinant formula for Tλ(x) in type A, cf. (1.12):

Theorem 3.46. For λ ∈ P+, we have:

Tλ(x) =
det
∥∥∥τ � j

i Qi (x + � j )

∥∥∥
1≤i, j≤n

det
∥∥∥τ− j+1

i

∥∥∥
1≤i, j≤n

. (3.47)
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Remark 3.48. The partonic Lax matrices Li (x) of [BFLMS, (1.16)] are related to ours
(3.31) via:

Li (x) = Li
(
x − n−1

2

)
(3.49)

upon the following identification of the oscillators {b†j,i ,bi, j }1≤i �= j≤n of loc.cit. with
ours:

b†i, j =
{
āi, j for i < j
a j,i for i > j

, bi, j =
{

−ā j,i for i < j
ai, j for i > j

. (3.50)

To continue this comparison, we note that the Q-operators {Qi (x)}n
i=1 of [BFLMS]

slightly differ from ours. Explicitly, to simplify the functional relations an extra factor
τ x

i has been introduced in [BFLMS, (4.23)], so that the Q-operators of [BFLMS] are
related to ours (3.36) via:

Qi (x) = τ x
i · Qi

(
x − n−1

2

)
. (3.51)

Here, the exponential twist parameters of [BFLMS] are related to our conventions simply
through

τa = ei�a , 1 ≤ a ≤ n. (3.52)

Likewise, the T -operators T+
λ(x) and Tλ(x) of [BFLMS, (4.15, 4.16)] are related to ours

via:

T+
λ(x) =

n∏

i=1

τ x
i · T +

λ (x), Tλ(x) =
n∏

i=1

τ x
i · Tλ(x), (3.53)

thus differing by an overall factor
∏n

i=1 τ x
i . However, we note that the constraint∑n

a=1 �a = 0 was imposed in [BFLMS, (4.4)], thus translating into
∏n

i=1 τi = 1,
see (3.52). Finally, our determinant formula (3.47) is equivalent to the determinant for-
mula of [BFLMS, (5.10)], see (1.12):

�{1,...,n} · Tλ(x) = det
∥∥∥Qi (x + λ′

j )

∥∥∥
1≤i, j≤n

, (3.54)

where

�{1,...,n} = det
∥∥∥τ− j+1

i

∥∥∥
1≤i, j≤n

= det
∥∥∥τ− j+1

i

∥∥∥
1≤i, j≤n

·
n∏

i=1

τ
n−1
2

i =
∏

1≤i< j≤n

τi − τ j√
τiτ j

(3.55)

and

λ′
i = �i +

n − 1

2
= λi +

n + 1 − 2i

2
, 1 ≤ i ≤ n, (3.56)

cf. [BFLMS, (3.19, 5.3)]. Indeed, identifying our twist parameters τa with the �a of
[BFLMS] via (3.52), we get precisely the formulas of [BFLMS], due to:

√
τa

τb
−
√

τb

τa
= 2i sin

(
�a − �b

2

)
. (3.57)



Transfer Matrices of Rational Spin Chains 29

Remark 3.58. An essential step used in the derivation of (3.44) is the following commu-
tativity:

[
S,

n∏

i=1

Di

]
= 0. (3.59)

As the proof of this result was missing in [BFLMS], we provide the corresponding argu-
ment below. To this end, it is more convenient to switch to the oscillators (bi, j ,b

†
j,i )i �= j

of [BFLMS], related to our (ai, j , ā j,i )i �= j via (3.50). With this choice of conventions,
the twist Di of (3.38) reads:

Di =
∏

j �=i

(
τ j

τi

)b†i jb j i

, (3.60)

so that the product of twists in (3.59) simplifies to:

n∏

i=1

Di =
n∏

i=1

τ
Ni
i , (3.61)

where Ni are defined via:

Ni =
∑

j �=i

(
b†j ibi j − b†i jb j i

)
. (3.62)

Likewise, the similarity transformation Si of (3.34) reads:

Si = exp

⎡

⎣
∑

1≤ j<i

b†j ib
†
i j +

∑

1≤ j<k<i

b†kib jkb
†
i j

⎤

⎦ , (3.63)

which can be further simplified to:

Si =
∏

1≤ j<i

exp
[
b†i jb

†
j i

] ∏

1≤ j<k<i

exp
[
b†i jb jkb

†
ki

]
, (3.64)

since the oscillators b†•,• in (3.63) always have one of • equal to i , while the b•,•’s never
have. Therefore, to prove (3.59) it suffices to verify that:

[Ni ,b
†
k�b

†
�k] = 0, [Ni ,b

†
k�b�mb

†
mk] = 0 (3.65)

for any 1 ≤ i ≤ n and 1 ≤ � < m < k ≤ n. These equalities follow immediately
from the fact that [Ni ,−] acts on a given state by counting the number of creation and
annihilation operators via:

∑

j �=i

[
(#b†j i − #bi j ) − (#b†i j − #b j i )

]
. (3.66)

Remark 3.67. We conclude with the commutativity of {T +
λ (x)}λ∈Cn , {Tμ(x)}μ∈P+ ,

{Qi (x)}n
i=1.
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(a) The commutativity

[T +
λ (x), T +

μ (y)] = 0, λ, μ ∈ C
n, (3.68)

is a direct consequence of their realization through the universal R-matrix as outlined
in Sect. 1.8. To this end, we also would like to point out that an explicit form of
the R-matrix intertwining the monodromies of these infinite-dimensional transfer
matrices was obtained in [DM2, (2.28)]. By a direct application of Theorem 3.24 (or,
alternatively, the construction of Sect. 1.8), we also get:

[T +
λ (x), Tμ(y)] = 0, [Tν(x), Tμ(y)] = 0, λ ∈ C

n, μ, ν ∈ P+. (3.69)

(b) The commutativity of the above transfer matrices with all single-index Q-operators:

[T +
λ (x), Qi (y)] = 0, [Tμ(x), Qi (y)] = 0, 1 ≤ i ≤ n, λ ∈ C

n, μ ∈ P+, (3.70)

follows from the R-matrix of [FLMS, (2.15)] intertwining the monodromies of all
non-degenerate Lax matrices and the degenerate one of (3.31). Nonetheless, let us
present a self-contained proof of

[Qi (x), T(1,0,...,0)(y)] = 0, 1 ≤ i ≤ n, (3.71)

in order to emphasize the role of the relation (3.39), as promised after (3.40). To
this end, combining the RTT relation (1.1) for Li (x) of (3.31) with the identity
R(x)R(−x) = (1 − x2)In , we obtain:

Li (x − y) ⊗ Li (x)R(y) = R(y)Li (x) ⊗ Li (x − y). (3.72)

Building further the monodromy matrices

Mi (x) = Li (x) ⊗ · · · ⊗ Li (x)︸ ︷︷ ︸
N

, Ma(y) = Ra1(y) · · · RaN (y), (3.73)

we end up with the following equation:

Li (x − y)Mi (x)Ma(y) = Ma(y)Mi (x)Li (x − y), (3.74)

where Li (x − y) acts nontrivially on the auxiliary spaces of these two monodromies:
the monodromy Mi built from the oscillators and the monodromy Ma of the funda-
mental transfer matrix with an n-dimensional auxiliary space denoted by a. Multiply-
ing (3.74) by the twists Di and D on the left and taking the trace, we end up precisely
with (3.71) (we should note that to move both twists past Li (x) in the left-hand side
of (3.74), we use the commutativity [Di D, Li (x)] = 0 of (3.39)).

(c) Finally, to establish the commutativity among the Q-operators Qi (x), it is convenient
to realize them as the normalized limits of the transfer matrices T +

λ (x) in which some
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of the representation labels tend to infinity. On the level of the corresponding Lax
matrices, the relevant limit is:

lim
t→∞

⎧
⎨

⎩diag(t
−1, . . . , t−1
︸ ︷︷ ︸

n−1

,−1)L(t, . . . , t︸ ︷︷ ︸
n−1

,0)(x) diag(1, . . . , 1︸ ︷︷ ︸
n−1

,−1)

⎫
⎬

⎭

=
⎛

⎜⎝
U−1

n−1 0

An−1 −x + n − 1

⎞

⎟⎠

⎛

⎝ Un−1 −Ān−1

0 1

⎞

⎠

⎛

⎝
In−1 0

0 −1

⎞

⎠

=
⎛

⎜⎝
In−1 U−1

n−1Ān−1

An−1Un−1 x − n + 1 + An−1Ān−1

⎞

⎟⎠ = SL ′
n(x − n + 1)S−1,

where An−1 = (an,1, . . . , an,n−1), Ān−1 = (ā1,n, . . . , ān−1,n)T , Ui denotes the
upper-left i × i block of the matrixU = Un from (3.4), and L ′

n(x) is the gln-type Lax
matrix obtained from Ln(x) of (3.31) by relabelling ak,n �→ an,k and ān,k �→ āk,n
for 1 ≤ k < n. Here, the similarity transformation S is defined via:

S = Sn−1 · · ·S1, Sk = exp

[
ākn

k−1∑

i=1

ani āik

]
. (3.75)

This implies [Qn(x), Qn(y)] = 0 and combining this with the action of the Weyl
group, we obtain:

[Qi (x), Qi (y)] = 0, 1 ≤ i ≤ n. (3.76)

Finally, the proof of

[Qi (x), Q j (y)] = 0, 1 ≤ i �= j ≤ n, (3.77)

follows immediately from the factorisation of the X -operators from [BFLMS, §4–5],
see (8.46).

4. A-type: Rectangular

Let us now consider A-type Lax matrices corresponding to rectangular representations,
i.e. those whose highest weight is a multiple of a fundamental weight. These play a
special role because their transfer matrices are related by the Hirota equation [KNS].
But also, as we will see below, they will be relevant to our approach to the study of
transfer matrices in other classical types.

4.1. Oscillator realization in type A (parabolic Verma). For any n ∈ Z≥2 and
1 ≤ a ≤ n − 1, let A denote the oscillator algebra generated by a(n − a) pairs of
oscillators {(a j,i , āi, j )}a< j≤n

1≤i≤a subject to the defining relations (3.1):

A = C

〈
a j,i , āi, j

〉a< j≤n

1≤i≤a

/
(3.1). (4.1)
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Following [BFLMS], let us consider the gln-type A[x]-valued Lax matrix (depending
on t ∈ C):

La(x) =
⎛

⎜⎝
(x + t)Ia − ĀA −Ā(t + a − AĀ)

−A (x − a)In−a + AĀ

⎞

⎟⎠ (4.2)

with the blocks Ā ∈ Mata×(n−a)(A) andA ∈ Mat(n−a)×a(A) encoding all the generators
via:

Ā =
⎛

⎝
ā1,a+1 · · · ā1,n

... . .
. ...

āa,a+1 · · · āa,n

⎞

⎠ , A =
⎛

⎝
aa+1,1 · · · aa+1,a

... . .
. ...

an,1 · · · an,a

⎞

⎠ . (4.3)

Writing (4.2) in the form

La(x) = xIn +
n∑

i, j=1

ei jE j i , (4.4)

we note that {Ei j }n
i, j=1 satisfy the gln commutation relations (3.7), as a consequence of

the RTT relation (1.1).
As before, let F denote the Fock module ofA, generated by the Fock vacuum |0〉 ∈ F

satisfying:

a j,i |0〉 = 0, 1 ≤ i ≤ a < j ≤ n. (4.5)

Then, the Fock vacuum |0〉 is a highest weight state of the resulting gln-action:

Ei j |0〉 = 0, 1 ≤ i < j ≤ n, (4.6)

with the highest weight λ = tωa = (t, . . . , t︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
n−a

), that is:

Ekk |0〉 = tδk≤a |0〉, 1 ≤ k ≤ n. (4.7)

We can now identify the resulting gln-modulesFwith those featuring in the Introduction:

Lemma 4.8. There is a gln-module isomorphism:

F �
(

M
p{1,...,n−1}\{a}
tωa

)∨
, (4.9)

identifying F with the restricted dual (2.19) of the parabolic Verma module (1.28).

Proof. Since the restricted dual F∨ has the same highest weight and the character as
M

p{1,...,n−1}\{a}
tωa

, it suffices to prove that it is also a highestweight gln-module, i.e. generated
by its highest weight vector 〈0|. To this end, we note that 〈 �m| is in fact a non-zero
multiple of the image of 〈0| under the order-independent product ∏a< j≤n

1≤i≤a (E∗
i j )

mi, j for

any �m = (mi, j )1≤i≤a< j≤n ∈ N
a(n−a), cf. the proof of Lemma 3.15. �


Combining this with the determinant formula of [J] and the isomorphism (2.21), we
obtain:

Corollary 4.10. (a) For t /∈ Z≥2−n, the gln-module F is irreducible (thus, it is generated
by the Fock vacuum |0〉).

(b) For t ∈ N, the Fock vacuum |0〉 generates an irreducible finite-dimensional
gln-module Ltωa .



Transfer Matrices of Rational Spin Chains 33

4.2. More oscillator realizations in type A via underlying symmetries. Since the
R-matrix (1.2) is invariant, cf. (1.5), with respect to the natural action of the symmetric
group Sn (via the standard embedding Sn ↪→ GLn), we can generate more solutions to
the RTT relation (1.1) from the Lax matrix (4.2) above by simultaneously permuting its
rows and columns. We shall further apply the (unique) particle-hole automorphism of
A to insure that the Fock vacuum |0〉 ∈ F remains to be a gln highest weight state. To
this end, consider the indexing set

Sa =
{

I ⊆ {1, . . . , n} | #I = a
}
. (4.11)

Then, we construct the following explicit gln-type A[x]-valued Lax matrices:

LI (x) = BILa(x)B−1
I

∣∣∣
p.h.

= xIn +
n∑

i, j=1

ei jE I
j i , ∀ I ∈ Sa, (4.12)

with the similarity matrix BI and the particle-hole transformation (denoted p.h.) de-
scribed below.

Let J = Ī denote the complement of the subset I :

J = Ī = {1, . . . , n}\I, (4.13)

and let us order the elements of I and J in the increasing order:

I = {i1, i2, . . . , ia}, 1 ≤ i1 < i2 < · · · < ia ≤ n,

J = { j1, j2, . . . , jn−a}, 1 ≤ j1 < j2 < · · · < jn−a ≤ n.
(4.14)

We consider the following permutation σI of the set {1, . . . , n}:

σI (c) =
{

ic for 1 ≤ c ≤ a
jc−a for a < c ≤ n

. (4.15)

Remark 4.16. Consider the natural transitive action of the symmetric group Sn on the set
Sa (4.11). Then, the stabilizer of {1, . . . , a} ∈ Sa is the subgroup Sa×Sn−a ⊂ Sn of those
permutations that map {1, . . . , a} �→ {1, . . . , a} and {a + 1, . . . , n} �→ {a + 1, . . . , n}.
This gives rise to a set bijection

π : Sn/(Sa × Sn−a)
∼−→ Sa (4.17)

satisfying the property σI ∈ π−1(I ) with σI defined in (4.15). Furthermore, σI can be
characterized as the shortest representative of the corresponding left coset π−1(I ), and
its length is given by:

l(σI ) = #
{
(k, �) ∈ I × Ī | k > �

}
. (4.18)

Then, we define BI in (4.12) as the permutation matrix corresponding to σI ∈ Sn :

BI =
n∑

i=1

eσI (i),i . (4.19)

We note that its inverse coincides with its transpose: B−1
I = BT

I =∑n
i=1 ei,σI (i).
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To determine the particle-hole transformation used in (4.12) so as to preserve the gln
highest weight state condition, let us check where the a·,·-generators from the lower-left
block of (4.2) are moved to under the conjugation by the matrix BI of (4.19). Explicitly,
the oscillator −a j,i (i ≤ a < j) is located above the main diagonal of BILa(x)B−1

I if
and only if σI ( j) < σI (i), due to the equality

(
BILa(x)B−1

I

)

σI ( j),σI (i)
= (La(x)) j i , 1 ≤ i, j ≤ n. (4.20)

Therefore, we consider the following particle-hole automorphism of A in (4.12):

āi, j �→ −a j,i , a j,i �→ āi, j for 1 ≤ i ≤ a < j ≤ n such that σI ( j) < σI (i).

(4.21)

The resulting matrix elements {E I
i j }n

i, j=1 ⊂ A of (4.12) still satisfy the gln commuta-
tion relations (3.7), as follows from the RTT relation (1.1). This makes the Fock module
F into a gln-module, denoted by M+

I,t . The Fock vacuum |0〉 ∈ M+
I,t is easily seen to be

a gln highest weight state:

E I
i j |0〉 = 0, 1 ≤ i < j ≤ n. (4.22)

To compute its highest weight, we note that
(

BILa(x)B−1
I

)

σI (i),σI (i)
= x + t −

∑

a< j≤n

āi ja j i , 1 ≤ i ≤ a,

(
BILa(x)B−1

I

)

σI ( j),σI ( j)
= x − a +

∑

1≤i≤a

a j i āi j

= x +
∑

1≤i≤a

āi ja j i , a < j ≤ n, (4.23)

which after implementing the particle-hole transformation (4.21) gives:

E I
σI (i),σI (i)|0〉 =

(
t + #{a < j ≤ n | σI ( j) < σI (i)}

)
|0〉, 1 ≤ i ≤ a,

E I
σI ( j),σI ( j)|0〉 =

(
− #{1 ≤ i ≤ a | σI ( j) < σI (i)}

)
|0〉, a < j ≤ n. (4.24)

Evoking (4.15) and the particular ordering (4.14), we find:

#
{

a < j ≤ n | σI ( j) < σI (i)
}

= σI (i) − i, 1 ≤ i ≤ a,

−#
{
1 ≤ i ≤ a | σI ( j) < σI (i)

}
= σI ( j) − j, a < j ≤ n, (4.25)

so that:

E I
kk |0〉 =

(
δ
σ−1

I (k)≤at + k − σ−1
I (k)

)
|0〉, 1 ≤ k ≤ n. (4.26)

Hence, the highest weight of the Fock vacuum |0〉 ∈ M+
I,t is precisely

σI · tωa,
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see (1.14), or equivalently:

E I
kk |0〉 =

{
(t + # { j /∈ I | j < k}) |0〉 for k ∈ I
(−# {i ∈ I | i > k}) |0〉 for k /∈ I

. (4.27)

Thus, the highest weight of |0〉 ∈ M+
I,t is the same as the highest weight of our key

modules M ′
σI · tωa

, introduced in (1.36), with respect to the standard parabolic subalgebra
pS ⊂ gln corresponding to S = {1, . . . , n − 1}\{a}. Furthermore, the module M ′

σI · tωa

has the same character as M+
I,t (according to Lemma 2.45) and is irreducible for t /∈ Z

(as follows from [J]). Therefore, we obtain:

Proposition 4.28. For any I ∈ Sa and t /∈ Z, we have gln-module isomorphisms:

M+
I,t � M ′

σI · tωa
� (M ′

σI · tωa

)∨
. (4.29)

Remark 4.30. Let us point out the keydifferencebetweenProposition4.28 andLemma4.8:

(a) For I = {1, . . . , a} ∈ Sa , we actually have M+
I,t � (M ′

σI · tωa
)∨ for any t ∈ C, due

to Lemma 4.8.
(b) Likewise, for I = {n − a + 1, . . . , n} ∈ Sa , we have M+

I,t � M ′
σI · tωa

for any t ∈ C.
(c) For other I ∈ Sa , M+

I,t is not isomorphic to either of M ′
σI · tωa

or (M ′
σI · tωa

)∨ at certain
t ∈ Z (but is expected to be isomorphic to one of the twisted Verma modules in the
sense of [AL]).

Remark 4.31. (a) The Weyl group Wl of the Levi subalgebra l of pS is Sa × Sn−a ⊂ Sn .
(b) We indeed have σI ∈ lW in the notation (1.32, 1.33), due to Remark 4.16.
(c) For any other permutation σ ′ ∈ σI (Sa × Sn−a), conjugating La(x) with

B ′
I =∑n

i=1 eσ ′(i),i and applying the corresponding particle-hole transformation will
produce an isomorphic gln-module.

Evoking the above bijection Sa � I ↔ σI ∈ lW , see (4.15) and Remarks 4.16,
4.31(b), we define:

M∨
I,t = (M ′

σI · tωa

)∨
, ∀ t ∈ C. (4.32)

Then, Proposition 4.28 can be recast as the isomorphism of the following gln-modules:

M+
I,t � M∨

I,t , ∀ t ∈ C\Z. (4.33)

For I ∈ Sa , we also define its length l(I ) as the length of the corresponding σI ∈ Sn ,
see (4.18):

l(I ) = l(σI ) = #
{
(k, �) ∈ I × Ī | k > �

}
. (4.34)
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4.3. Type A transfer matrices. Recall the notionof transfermatrices {TW (x)}W∈Rep Y (gln),
as discussed in Sect. 1.8. In particular, we shall consider the following explicit infinite-
dimensional transfer matrices:

T +
I,t (x) = tr

n∏

i=1

τ
E I

i i
i LI (x) ⊗ · · · ⊗ LI (x)︸ ︷︷ ︸

N

, ∀ I ∈ Sa, t ∈ C, (4.35)

corresponding to M+
I,t . For t ∈ N, we also consider the finite-dimensional transfer

matrices Ta,t (x) corresponding to the modules Ltωa in the auxiliary space: those are
defined similarly to (4.35), butwith the trace taken over thefinite-dimensional submodule
Ltωa of M+{1,...,a},t , see Corollary 4.10(b).

Using the notation (4.32, 4.34), let us recast the resolution (2.55), dual to (1.30), as
follows:

0 → Ltωa → M∨{1,...,a},t →
l(I )=1⊕

I∈Sa

M∨
I,t →

l(I )=2⊕

I∈Sa

M∨
I,t →· · · → M∨{n−a+1,...,n},t → 0

(4.36)

for any t ∈ N. Combining this with (4.33) and the fact that the transfer matrices (4.35)
depend continuously on t ∈ C (as so do the Lax matrices LI (x)), we obtain the key
result of this section:

Theorem 4.37. For 1 ≤ a < n and t ∈ N, we have:

Ta,t (x) =
∑

I∈Sa

(−1)l(I ) T +
I,t (x). (4.38)

The character limit of (4.38) expresses the character of the gln-modules {Ltωa }t∈N

1≤a<n
defined as

cha,t = cha,t (τ1, . . . , τn) := trLtωa

n∏

i=1

τ
Ei i
i , (4.39)

that is the length N = 0 case of Ta,t (x), via:

cha,t =
∑

I∈Sa

(−1)l(I )

∏
k∈I τ

t+#{�/∈I |�<k}
k

∏
�/∈I τ

−#{k∈I |k>�}
�

∏k>�
k∈I,�/∈I

(
1 − τk

τ�

)∏k<�
k∈I,�/∈I

(
1 − τ�

τk

) (4.40)

with the I ’s summand in the right-hand side of (4.40) equal to the character of M+
I,t , up

to a sign.
Let us note right away that formulas (4.38) and (4.40) allow to analytically continue

the transfer matrices Ta,t (x) and their particular length N = 0 case cha,t of (4.39) from
the discrete set t ∈ N to the entire complex plane t ∈ C.

Remark 4.41. For the physics’ reader who skipped Sect. 2, let us present a concise proof
of (4.40). We shall identify the set �+ of positive roots of g = gln with
�+ = {εi − ε j |1 ≤ i < j ≤ n}, so that ρ = ( n−1

2 , n−3
2 , . . . , 1−n

2 ) in the basis
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{εi }n
i=1 and the Weyl group W gets identified with W � Sn (acting by permutations on

the basis {εi }n
i=1). According to the Weyl character formula, we have:

chLtωa
=
∑

σ∈Sn

(−1)l(σ ) eσ(tωa+ρ)−ρ

∏
1≤i< j≤n(1 − eε j −εi )

. (4.42)

Following Remark 4.31, let us consider the parabolic subalgebra p{1,...,n−1}\{a} ⊂ gwith
the Levi subalgebra l � gla ⊕ gln−a and the Weyl group Wl � Sa × Sn−a ⊂ Sn . We
can rewrite (4.42) as:

chLtωa
=

∑

σ̄∈W/Wl

∑

τ∈Wl

(−1)l(στ) eστ(tωa+ρ)−ρ

∏
i< j (1 − eε j −εi )

, (4.43)

where σ ∈ W is a representative of σ̄ ∈ W/Wl (the inner sum is independent of
the choice of σ ). The key step is to simplify the inner sum of (4.43) using the Weyl
denominator formula for l:

∑

τ∈Wl

(−1)l(τ )eτ(ρl)−ρl =
∏

α∈�+
l

(1 − e−α), (4.44)

where�+
l = {εi −ε j }1≤i< j≤a∪{εi −ε j }a<i< j≤n ⊂ �+ denotes the set of positive roots of

l andρl = 1
2

∑
α∈�+

l
α = ( a−1

2 , . . . , 1−a
2 , n−a−1

2 , . . . , 1+a−n
2 ). As τ(ρ)−ρ = τ(ρl)−ρl

for τ ∈ Wl, we get:

∑

τ∈Wl

(−1)l(τ ) eτ(tωa+ρ)−ρ

∏
1≤i< j≤n(1 − eε j −εi )

= etωa

∏a< j≤n
1≤i≤a (1 − eε j −εi )

. (4.45)

Therefore, the inner sum of (4.43) corresponding to the trivial left coset Wl ∈ W/Wl

gives rise to the I = {1, . . . , a}’s term of (4.40). Likewise, we claim that any I ’s term
of (4.40) precisely arises from the inner sum of (4.43) corresponding to the left coset
σI Wl with σI ∈ Sn of (4.14, 4.15), which amounts to the proof of (4.47) below. To this
end, let us apply σI to both sides of (4.44):

∑

τ∈Wl

(−1)l(σI τ)eσI τ(ρ)−ρ = (−1)l(σI )eσI (ρ)−ρ

i< j∏

i, j∈I

(1 − eε j −εi )

i< j∏

i, j /∈I

(1 − eε j −εi ). (4.46)

Combining this with the straightforward formula

σI (ρ) − ρ =
∑

k∈I

#{� /∈ I | � < k}εk −
∑

�/∈I

#{k ∈ I | k > �}ε�,

we obtain the desired equality:

∑

τ∈Wl

(−1)l(σI τ) eσI τ(tωa+ρ)−ρ

∏
i< j (1 − eε j −εi )

= (−1)l(I )

∏
k∈I e(t+#{�/∈I |�<k})εk

∏
�/∈I e−#{k∈I |k>�}ε�

∏k>�
k∈I,�/∈I (1 − eεk−ε�)

∏k<�
k∈I,�/∈I (1 − eε�−εk )

. (4.47)

This completes our direct proof of (4.40), due to the bijectionπ of (4.17), seeRemark4.16
(cf. Remark 3.28 for more details as for perceiving cha,t of (4.39) as a specialization of
chLtωa

).
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5. Resolutions for Transfer Matrices of C-type

In this section, we generalize the key constructions and results of Sect. 4 to C-type.

5.1. Oscillator realization in type C (parabolic Verma). Let A denote the oscillator
algebra generated by r(r+1)

2 pairs of oscillators {(a j ′,i , āi, j ′)}1≤i≤ j≤r with r ∈ Z≥1, cf.
notation (1.21), subject to the standard defining relations:

[a j ′,i , āk,�′ ] = δk
i δ�

j , [a j ′,i , a�′,k] = 0, [āi, j ′ , āk,�′ ] = 0, (5.1)

so that

A = C

〈
a j ′,i , āi, j ′

〉

1≤i≤ j≤r

/
(5.1). (5.2)

Following [FT, p. 593], see also [KK, §6.2], let us consider the Cr -type A[x]-valued
Lax matrix:

L(x) =
⎛

⎜⎝
(x + t)Ir − ĀA −Ā(2t + r + 1 − AĀ)

−A (x − t − r − 1)Ir + AĀ

⎞

⎟⎠ , (5.3)

depending on t ∈ C, with the blocks Ā,A ∈ Matr×r (A) encoding all the generators
via:

Ā =

⎛

⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ ā1
... . .

. ā2 ā1,2′

ār−1,r ′ ār−1 . .
. ...

ār ār−1,r ′ · · · ā1,r ′

⎞

⎟⎟⎟⎠ , A =

⎛

⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 ar
... . .

. ar−1 ar ′,r−1

a2′,1 a2 . .
. ...

a1 a2′,1 · · · ar ′,1

⎞

⎟⎟⎟⎠ , (5.4)

where the anti-diagonal terms {āi , ai }r
i=1 are defined via:

āi = 2āi,i ′ , ai = ai ′,i . (5.5)

Remark 5.6. The Lax matrix (5.3) is the specialization of the one from [FT, (3.51)] at
x1 = t, x2 = −t − r − 1.

Writing (5.3) in the form

L(x) = xI2r +
2r∑

i, j=1

ei jF j i , (5.7)

we note that the RTT relation (1.1) implies that {Fi j }2r
i, j=1 satisfy the sp2r commutation

relations:

[Fi j ,Fk�] = δ
j
kFi� − δ�

i Fk j − εiε j (δ
i ′
k F j ′� − δ

j ′
� Fki ′), Fi j = −εiε jF j ′i ′ , (5.8)

with {εi }2r
i=1 defined as in the Introduction:

ε1 = · · · = εr = 1 and εr+1 = · · · = ε2r = −1. (5.9)
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As before, let F denote the Fock module ofA, generated by the Fock vacuum |0〉 ∈ F
satisfying:

a j ′,i |0〉 = 0, 1 ≤ i ≤ j ≤ r. (5.10)

Then, the Fock vacuum |0〉 is a highest weight state of the resulting sp2r -action:

Fi j |0〉 = 0, 1 ≤ i < j ≤ 2r, (5.11)

with the highest weight λ = tωr = (t, . . . , t︸ ︷︷ ︸
r

), that is:

Fi i |0〉 = t |0〉, 1 ≤ i ≤ r. (5.12)

The latter is a consequence of the following explicit formulas for any 1 ≤ i ≤ r :

Fi i = t − 2āi i ′ai ′i −
r∑

k=i+1

āik′ak′i −
i−1∑

k=1

āki ′ai ′k,

Fi ′i ′ = −t − r − 1 + 2ai ′i āi i ′ +
i−1∑

k=1

ai ′k āki ′ +
r∑

k=i+1

ak′i āik′ = −Fi i . (5.13)

Similarly to Lemma 4.8, we can identify the resulting sp2r -modules F as follows:

Lemma 5.14. There is an sp2r -module isomorphism:

F �
(

M
p{1,...,r−1}
tωr

)∨
, (5.15)

identifying F with the restricted dual (2.19) of the parabolic Verma module (1.28).

Combining this with the determinant formula of [J] and the isomorphism (2.21), we
obtain:

Corollary 5.16. (a) For t /∈ 1
2Z≥2−2r , the sp2r -module F is irreducible (thus, it is

generated by the Fock vacuum |0〉).
(b) For t ∈ N, the Fock vacuum |0〉 generates an irreducible finite-dimensional

sp2r -module Ltωr .

5.2. More oscillator realizations in type C via underlying symmetries. Consider the
following endomorphisms of C

2r :

Bi = eii ′ − ei ′i +
j �=i∑

1≤ j≤r

(
e j j + e j ′ j ′

)
, 1 ≤ i ≤ r, (5.17)

along with their order-independent products:

B�μ =
μ j =−1∏

1≤ j≤r

B j , �μ = (μ1, . . . , μr ) ∈ {±1}r . (5.18)
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Remark 5.19. For 1 ≤ i ≤ r , we have:

B�μ(ei ) =
{

ei if μi = 1
−ei ′ if μi = −1

, B�μ(ei ′) =
{

ei ′ if μi = 1
ei if μi = −1

.

Since the R-matrix (1.19) is invariant under such transformations, cf. (1.5):

[R(x), B�μ ⊗ B�μ] = 0, ∀�μ ∈ {±1}r , (5.20)

we can generate more solutions to the RTT relation (1.1) from the Lax matrix (5.3) via:

L̂ �μ(x) = B�μL(x)B−1
�μ = xI2r +

2r∑

i, j=1

ei j F̂ �μ
j i , ∀�μ ∈ {±1}r . (5.21)

We shall further apply the following particle-hole automorphism ofA (denoted p.h.):

āi, j ′ �→ −a j ′,i , a j ′,i �→ āi, j ′ for 1 ≤ i ≤ j ≤ r such that μi = −1. (5.22)

Thus, we obtain the following explicit Cr -type A[x]-valued Lax matrices:

L �μ(x) = L̂ �μ(x)

∣∣∣
p.h.

= B�μL(x)B−1
�μ
∣∣∣

p.h.

= xI2r +
2r∑

i, j=1

ei jF �μ
j i , ∀�μ ∈ {±1}r . (5.23)

The resulting matrix elements {F �μ
i j }2r

i, j=1 of A satisfy the sp2r commutation relations
(5.8), due to the RTT relation (1.1). This makes the Fock module F into an sp2r -module,
denoted by M+

�μ,t . We furthermore note that the particular choice of the particle-hole
transformation (5.22) is uniquely made to insure that the Fock vacuum |0〉 ∈ M+

�μ,t
remains to be an sp2r highest weight state:

F �μ
i j |0〉 = 0, 1 ≤ i < j ≤ 2r. (5.24)

To compute its highest weight, we note that:

diag
(
F̂ �μ) = diag

(
B�μFB−1

�μ
)

= (μ1F11, . . . , μrFrr ,−μrFrr , . . . ,−μ1F11) , (5.25)

due to (5.13), which after implementing the particle-hole transformation (5.22) gives:

F �μ
i i |0〉 = μi

(
t + (r − i + 1)δ−

μi
+

i∑

k=1

δ−
μk

)
|0〉, 1 ≤ i ≤ r. (5.26)

Thus, the Fock vacuum |0〉 ∈ M+
�μ,t is an sp2r highest weight state whose weight is given

by (5.26).
We shall now compare the abovemodules M+

�μ,t ’s with those from the Introduction. To
this end, let us consider the parabolic pS ⊂ sp2r corresponding to S = {1, . . . , r −1}, see
Sect. 1.5. TheWeyl groupof sp2r canbe identifiedwithW � (Z/2Z)r

�Sr � {±1}r
�Sr ,

so that elements of W are indexed by pairs ( �μ, σ) with �μ ∈ {±1}r and σ ∈ Sr . The
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Weyl group of the Levi subalgebra l � glr is Wl � Sr consisting of the elements
((+1, . . . ,+1), σ )σ∈Sr

⊂ W . Thus, we have a set bijection

π : W/Wl
∼−→ {±1}r , (5.27)

cf. (4.17). Given any �μ ∈ {±1}r , we define the permutation σ �μ ∈ Sr via:

σ−1
�μ (i) =

{
#{1 ≤ k ≤ i | μk = 1} if μi = 1
r + 1 − #{1 ≤ k ≤ i | μk = −1} if μi = −1

, (5.28)

and further consider w �μ ∈ W � {±1}r
� Sr defined via:

w �μ = ( �μ, σ �μ). (5.29)

It is clear thatw �μ ∈ π−1( �μ), see (5.27). Furthermore, it can be characterized as follows:

Lemma 5.30. w �μ is the shortest representative of the left coset π−1( �μ), for any
�μ ∈ {±1}r .

Proof. This follows from the standard combinatorial description of the length function
on the Weyl group of any Lie algebra g:

l(w) = #
{
α ∈ �+ | w(α) ∈ −�+

}
(5.31)

for any w ∈ W , where �+ denotes the set of positive roots of g (cf. Remark 5.45). �

Corollary 5.32. lW = {w �μ}�μ∈{±1}r .

Combining now the formula (5.26) with the definition of w �μ ∈ W , see (5.28, 5.29),
we conclude that the highest weight of the Fock vacuum |0〉 ∈ M+

�μ,t coincides with the
highest weight of our key modules M ′

w �μ · tωr
introduced in (1.36), see Corollary 5.32.

Furthermore, M ′
w �μ · tωr

has the same character as M+
�μ,t (according to Lemma 2.45) and

is irreducible for t /∈ 1
2Z (as follows from [J]). Therefore, similarly to Proposition 4.28,

we obtain:

Proposition 5.33. For any �μ ∈ {±1}r and t /∈ 1
2Z, we have sp2r -module isomorphisms:

M+
�μ,t � M ′

w �μ · tωr
�
(

M ′
w �μ · tωr

)∨
. (5.34)

Remark 5.35. Let us point out the key difference between Proposition 5.33 and
Lemma 5.14:

(a) For �μ = (+1, . . . ,+1), we actually have M+
�μ,t � (M ′

w �μ · tωr
)∨ for any t ∈ C, due to

Lemma 5.14.
(b) Likewise, for �μ = (−1, . . . ,−1), we have M+

�μ,t � M ′
w �μ · tωr

for any t ∈ C.

(c) For other �μ ∈ {±1}r , M+
�μ,t is not isomorphic to either of M ′

w �μ · tωr
or (M ′

w �μ · tωr
)∨ at

certain t ∈ Z (but is expected to be isomorphic to one of the twisted Verma modules
in the sense of [AL]).
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Evoking the above bijection {±1}r � �μ ↔ w �μ ∈ lW of Corollary 5.32, let us define:

M∨
�μ,t =

(
M ′

w �μ · tωr

)∨
, ∀ t ∈ C. (5.36)

Then, Proposition 5.33 can be recast as the isomorphism of the following sp2r -modules:

M+
�μ,t � M∨

�μ,t , ∀ t ∈ C\ 1
2Z. (5.37)

For �μ ∈ {±1}r , we also define its length l( �μ) as the length of the corresponding
element w �μ ∈ W . Using formula (5.31) and the explicit description of the set �+ of
positive roots of sp2r , we find:

l( �μ) = l(w �μ) =
r∑

i=1

(r − i + 1)δ−
μi

. (5.38)

Our choice of notation is due to l( �μ) �= l( �μ), the latter being used for the length of
( �μ, id) ∈ W .

5.3. Type C transfer matrices. Recall the notionof transfermatrices {TW (x)}W∈Rep Y (sp2r ),
as discussed in Sect. 1.8. In particular, we shall consider the following explicit infinite-
dimensional transfer matrices:

T +
�μ,t (x) = tr

r∏

i=1

τ
F �μ

i i
i L �μ(x) ⊗ · · · ⊗ L �μ(x)
︸ ︷︷ ︸

N

, (5.39)

corresponding to M+
�μ,t . For t ∈ N, the finite-dimensional transfer matrices Tr,t (x) cor-

responding to the modules Ltωr in the auxiliary space are defined similarly to (5.39),
but with the trace taken over the finite-dimensional submodule Ltωr of M+

(+1,...,+1),t , see
Corollary 5.16(b).

Using the notation (5.36, 5.38), let us recast the resolution (2.55), dual to (1.30), as
follows:

0 → Ltωr → M∨
(+1,...,+1),t →

l( �μ)=1⊕

�μ∈{±1}r

M∨
�μ,t →

l( �μ)=2⊕

�μ∈{±1}r

M∨
�μ,t → · · · → M∨

(−1,...,−1),t → 0

(5.40)

for any t ∈ N. Combining this with (5.37) and the fact that the transfer matrices (5.39)
depend continuously on t ∈ C (as so do the Lax matrices L �μ(x)), we obtain the key
result of this section:

Theorem 5.41. For t ∈ N, we have:

Tr,t (x) =
∑

�μ∈{±1}r

(−1)l( �μ) T +
�μ,t (x). (5.42)
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The character limit of (5.42) expresses the character of the sp2r -modules {Ltωr }t∈N

defined as

chr,t = chr,t (τ1, . . . , τr ) := trLtωr

r∏

i=1

τ
Fi i
i , (5.43)

that is the length N = 0 case of Tr,t (x), via:

chr,t =
∑

�μ=(μ1,...,μr )∈{±1}r

(−1)l( �μ)

∏r
i=1 τ

μi

(
t+(r−i+1)δ−

μi
+
∑i

k=1 δ−
μk

)

i
∏

1≤i≤ j≤r

(
1 − 1

τi τ
μi μ j
j

) (5.44)

with the �μ’s summand in the right-hand side of (5.44) equal to the character of M+
�μ,t , up

to a sign.

Remark 5.45. For the physics’ reader who skipped Sect. 2, let us present a concise
proof of (5.44). Let us identify the set �+ of positive roots of g = sp2r with �+ =
{εi − ε j }1≤i< j≤r ∪ {εi + ε j }1≤i≤ j≤r , so that ρ = (r, r − 1, . . . , 2, 1) in the basis {εi }r

i=1
and theWeyl group W gets identified with W � (Z/2Z)r

� Sr � {±1}r
� Sr . According

to the Weyl character formula, we have:

chLtωr
=

∑

( �μ,σ)∈{±1}r �Sr

(−1)l( �μ,σ) e( �μ,σ)(tωr+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )

∏
1≤i≤ j≤r (1 − e−ε j −εi )

.

(5.46)

Following §5.2, let us consider the parabolic subalgebra p{1,...,r−1} ⊂ g whose Levi
subalgebra is l � glr and the Weyl group is Wl � Sr = {((+1, . . . ,+1), σ )}σ∈Sr ⊂ W .
We can rewrite (5.46) as:

chLtωr
=

∑

�μ∈{±1}r

∑

σ∈Sr

(−1)l( �μ,σ) e( �μ,σ)(tωr+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )

∏
1≤i≤ j≤r (1 − e−ε j −εi )

.

(5.47)

The key step is to simplify the inner sum of (5.47) using the Weyl denominator formula
for l:

∑

σ∈Sr

(−1)l(σ )eσ(ρl)−ρl =
∏

α∈�+
l

(1 − e−α), (5.48)

where �+
l = {εi − ε j }1≤i< j≤r ⊂ �+ consists of positive roots of l, ρl = 1

2

∑
α∈�+

l
α =

( r−1
2 , . . . , 1−r

2 ). As σ(ρ) − ρ = σ(ρl) − ρl and σ(ωr ) = ωr for any σ ∈ Sr , we get:

∑

σ∈Sr

(−1)l(σ ) eσ(tωr+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )

∏
1≤i≤ j≤r (1 − e−ε j −εi )

=
∏r

i=1 etεi

∏
1≤i≤ j≤r (1 − e−ε j −εi )

.

Thus, the inner sum of (5.47) indexed by �μ = (+1, . . . ,+1) gives rise to the correspond-
ing summand of (5.44).We claim that the same holds for any �μ ∈ {±1}r , which amounts
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to the proof of (5.50) below. To this end, let us apply �μ = ( �μ, 1) ∈ W to both sides of
the equality (5.48):

∑

σ∈Sr

(−1)l( �μ,σ)e( �μ,σ)(ρ)−ρ = (−1)l( �μ)e �μ(ρ)−ρ
∏

1≤i< j≤r

(1 − eμ j ε j −μi εi ). (5.49)

We note that

1 − eμ j ε j −μi εi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − eε j −εi if μi = 1, μ j = 1
1 − e−ε j −εi if μi = 1, μ j = −1
−eεi −ε j (1 − eε j −εi ) if μi = −1, μ j = −1
−eεi+ε j (1 − e−ε j −εi ) if μi = −1, μ j = 1

as well as

�μ(ρ) − ρ =
r∑

i=1

(μi − 1)(r + 1 − i)εi , (−1)l( �μ) = (−1)
∑r

i=1 δ−
μi , �μ(tωr ) = (tμ1, . . . , tμr ).

Thus, we obtain the desired equality:

∑

σ∈Sr

(−1)l( �μ,σ) e( �μ,σ)(tωr+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )

∏
1≤i≤ j≤r (1 − e−ε j −εi )

= (−1)l( �μ)

∏r
i=1 e

μi

(
t+(r−i+1)δ−

μi
+
∑i

k=1 δ−
μk

)
εi

∏
1≤i≤ j≤r

(
1 − e−μi μ j ε j −εi

) . (5.50)

This completes our direct proof of the character formula (5.44) (see Remark 3.28 for
more details in regards to perceiving chr,t of (5.43) as a specialization of chLtωr

).

We note that the formula (5.44) allows to analytically continue the character chr,t

of (5.43) from the discrete set t ∈ N to the entire complex plane t ∈ C. With this
convention in mind, we have:

Lemma 5.51. (a) chr,t = (−1)
r(r+1)

2 chr,−r−1−t for any t ∈ C.

(b) chr,t = 0 for t ∈
{

− 2
2 ,− 3

2 , . . . ,− 2r−1
2 ,− 2r

2

}
.

Proof. (a) For any �μ = (μ1, . . . , μr ) ∈ {±1}r and t ∈ C, define �̄μ ∈ {±1}r and t̄ ∈ C

via:

�̄μ = (μ̄1, . . . , μ̄r ) := −�μ, t̄ = −r − 1 − t. (5.52)

Then, the obvious equality
∑r

i=1(r − i + 1)(δ−
μi

+ δ−
μ̄i

) = r(r+1)
2 implies:

l( �μ) + l( �̄μ) = r(r+1)
2 , ∀ �μ ∈ {±1}r . (5.53)

Let ch+�μ,t denote the �μ-th summand in the right-hand side of (5.44) without a sign,
see (8.80):

ch+�μ,t =
∏r

i=1 τ
μi

(
t+(r−i+1)δ−

μi
+
∑i

k=1 δ−
μk

)

i
∏

1≤i≤ j≤r

(
1 − τ−1

i τ
−μi μ j
j

) . (5.54)
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Then, we have the symmetry of (5.54) with respect to (5.52):

ch+�μ,t = ch+�̄μ,t̄
(5.55)

as follows from the equality

μi

(
t + (r − i + 1)δ−

μi
+
∑i

k=1 δ−
μk

)
= μ̄i

(
t̄ + (r − i + 1)δ−

μ̄i
+
∑i

k=1 δ−
μ̄k

)
.

This implies the desired equality:

chr,t =
∑

�μ∈{±1}r

(−1)l( �μ) ch+�μ,t

= (−1)
r(r+1)

2
∑

�μ∈{±1}r

(−1)l(
�̄μ) ch+�̄μ,t̄

= (−1)
r(r+1)

2 chr,t̄ , (5.56)

by matching the �μ-th summand in chr,t with the �̄μ-th summand in chr,t̄ for every�μ ∈ {±1}r .
(b) To prove (b), we shall rather use the Weyl character formula (5.46), which implies

that chr,t = 0 if and only if one can split elements of theWeyl group W � {±1}r
� Sr

into pairs (w,w′) so that:

(−1)l(w) = −(−1)l(w′) and w(tωr + ρ) = w′(tωr + ρ) (5.57)

with ρ = (r, . . . , 1) and ωr = (1, . . . , 1). Let us indicate such splittings for the
desired values of t :
• setw′ = w

(
(+1, . . . ,+1︸ ︷︷ ︸

k−1

,−1,+1 . . . ,+1︸ ︷︷ ︸
r−k

), id
)
if t = −(r+1−k)with 1 ≤ k ≤ r ;

• set w′ = w
(
(+1, . . . ,+1︸ ︷︷ ︸

k−1

,−1,+1, . . . ,+1︸ ︷︷ ︸
m−k−1

,−1,+1 . . . ,+1︸ ︷︷ ︸
r−m

), (k m)
)

with

(k m) ∈ Sr denoting the transposition exchanging k and m, if t = −(r +1− k+m
2 )

with 1 ≤ k < m ≤ r .
By Remark 5.45, note that (5.44) and (5.46) provide the same analytic continuations
of (5.43). �

Remark 5.58. Following the above proof, we actually get chr,t = 0 only for

t ∈
{

− 2
2 ,− 3

2 , . . . ,− 2r−1
2 ,− 2r

2

}
.

In a completely similar way, the formula (5.42) allows to analytically continue the
transfer matrices Tr,t (x) of the finite-dimensional representations Ltωr , t ∈ N, to the
entire complex plane t ∈ C. With this convention in mind, we have the following
generalization of Lemma 5.51(a):

Proposition 5.59. Tr,t (x) = (−1)
r(r+1)

2 Tr,−r−1−t (x) for any t ∈ C.

Proof. This follows from the factorisation (8.79) of each infinite-dimensional transfer
matrix T +

�μ,t (x) into the product of Q-operators that allows to recast Theorem 5.41 in the
form of Proposition 8.81:

Tr,t (x) =
∑

�μ∈{±1}r

(−1)l( �μ) ch+�μ,t · Q �μ(x + t)Q �̄μ(x + t̄), (5.60)
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with �̄μ, t̄ as in (5.52) and ch+�μ,t as in (5.54), see (8.80). Similarly to our proof of
Lemma 5.51(a), we claim that any �μ-th summand in the right-hand side of (5.60) for
Tr,t (x) coincides with the �̄μ-th summand in the corresponding expression for Tr,t̄ (x),

up to an overall sign (−1)
r(r+1)

2 :

(−1)l( �μ) ch+�μ,t · Q �μ(x + t)Q �̄μ(x + t̄) = (−1)l(
�̄μ)+

r(r+1)
2 ch+�̄μ,t̄

· Q �̄μ(x + t̄)Q �μ(x + t).

(5.61)

The latter is a consequence of (5.53, 5.55) combined with the essential property of the
Q-operators:

[Q �μ(x), Q �̄μ(y)] = 0, (5.62)

that follows from the natural commutativity of the transfermatrices, [T +
�μ (x), T +

�μ (y)] = 0,
combined with the realization of the Q-operators as renormalized limits of the transfer
matrices, cf. (8.59). �


We also expect the natural generalization of Lemma 5.51(b) to hold: Tr,t (x) = 0 for

t ∈
{

− 2
2 ,− 3

2 , . . . ,− 2r
2

}
.

6. Resolutions for Transfer Matrices of D-type: Spinorial Representations

In this section, we present a natural counterpart of the results from Sect. 5 for D-type.

6.1. Oscillator realization in type D (parabolic Verma). Let A denote the oscillator
algebra generated by r(r−1)

2 pairs of oscillators {(a j ′,i , āi, j ′)}1≤i< j≤r with r ≥ 2, cf.
notation (1.21), subject to the defining relations (5.1):

A = C

〈
a j ′,i , āi, j ′

〉

1≤i< j≤r

/
(5.1). (6.1)

Following [Fr, (5.4)] and similarly to (5.3), let us consider the Dr -typeA[x]-valued Lax
matrix:

L(x) =
⎛

⎜⎝
(x + t)Ir − ĀA −Ā(2t + r − 1 − AĀ)

−A (x − t − r + 1)Ir + AĀ

⎞

⎟⎠ , (6.2)

depending on t ∈ C, with the blocks Ā,A ∈ Matr×r (A) encoding all the generators
via:

Ā =

⎛

⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ 0
... . .

. 0 −ā1,2′

ār−1,r ′ 0 . .
. ...

0 −ār−1,r ′ · · · −ā1,r ′

⎞

⎟⎟⎟⎠ , A =

⎛

⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 0
... . .

. 0 −ar ′,r−1

a2′,1 0 . .
. ...

0 −a2′,1 · · · −ar ′,1

⎞

⎟⎟⎟⎠ .

(6.3)
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Writing (6.2) in the form

L(x) = xI2r +
2r∑

i, j=1

ei jF j i , (6.4)

we note that the RTT relation (1.1) implies that {Fi j }2r
i, j=1 satisfy the so2r commutation

relations:

[Fi j ,Fk�] = δ
j
kFi� − δ�

i Fk j − δi ′
k F j ′� + δ

j ′
� Fki ′ , Fi j = −F j ′i ′ . (6.5)

As before, let F denote the Fock module ofA, generated by the Fock vacuum |0〉 ∈ F
satisfying:

a j ′,i |0〉 = 0, 1 ≤ i < j ≤ r. (6.6)

Then, the Fock vacuum |0〉 is a highest weight state of the resulting so2r -action:

Fi j |0〉 = 0, 1 ≤ i < j ≤ 2r, (6.7)

with the highest weight λ = 2tωr = (t, . . . , t︸ ︷︷ ︸
r

), that is:

Fi i |0〉 = t |0〉, 1 ≤ i ≤ r. (6.8)

The latter is a consequence of the following explicit formulas for any 1 ≤ i ≤ r :

Fi i = t −
r∑

k=i+1

āik′ak′i −
i−1∑

k=1

āki ′ai ′k,

Fi ′i ′ = −t − r + 1 +
i−1∑

k=1

ai ′k āki ′ +
r∑

k=i+1

ak′i āik′ = −Fi i . (6.9)

Similarly to Lemmas 4.8, 5.14, we can identify the resulting so2r -modules F as follows:

Lemma 6.10. There is an so2r -module isomorphism:

F �
(

M
p{1,...,r−1}
2tωr

)∨
. (6.11)

Combining this with the determinant formula of [J] and the isomorphism (2.21), we
obtain:

Corollary 6.12. (a) For t /∈ 1
2Z≥4−2r , the so2r -module F is irreducible (thus, it is gen-

erated by the Fock vacuum |0〉).
(b) For t ∈ 1

2N, the Fock vacuum |0〉 generates an irreducible finite-dimensional
so2r -module L2tωr .
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6.2. More oscillator realizations in type D via underlying symmetries. Similarly to the
C-type case, let us consider the following endomorphisms of C

2r :

Bi = eii ′ + ei ′i +
j �=i∑

1≤ j≤r

(
e j j + e j ′ j ′

)
, 1 ≤ i ≤ r, (6.13)

along with their order-independent products:

B�μ =
μ j =−1∏

1≤ j≤r

B j , �μ = (μ1, . . . , μr ) ∈ {±1}r . (6.14)

Remark 6.15. For 1 ≤ i ≤ r , we have:

B�μ(ei ) =
{

ei if μi = 1
ei ′ if μi = −1

, B�μ(ei ′) =
{

ei ′ if μi = 1
ei if μi = −1

.

Since the R-matrix (1.19) is invariant under such transformations, cf. (1.5):

[R(x), B�μ ⊗ B�μ] = 0, ∀�μ ∈ {±1}r , (6.16)

we can generate more solutions to the RTT relation (1.1) from the Lax matrix (6.2) via:

L �μ(x) = B�μL(x)B−1
�μ
∣∣∣

p.h.
= xI2r +

2r∑

i, j=1

ei jF �μ
j i , ∀�μ ∈ {±1}r . (6.17)

Here, we apply the following particle-hole automorphism ofA (denoted p.h.), cf. (5.22):

āi, j ′ �→ −a j ′,i , a j ′,i �→ āi, j ′ for 1 ≤ i < j ≤ r such that μi = −1, (6.18)

uniquely chosen to insure that the Fock vacuum |0〉 remains to be an so2r highest weight
state:

F �μ
i j |0〉 = 0, 1 ≤ i < j ≤ 2r. (6.19)

The resulting matrix elements {F �μ
i j }2r

i, j=1 of A satisfy the so2r commutation relations
(6.5), due to the RTT relation (1.1). This makes the Fock module F into an so2r -module,
denoted by M+

�μ,t . The corresponding highest weight of |0〉 is computed similarly to
C-type, see (5.26):

F �μ
i i |0〉 = μi

(
t + (r − i − 1)δ−

μi
+

i∑

k=1

δ−
μk

)
|0〉, 1 ≤ i ≤ r. (6.20)

Let us note that for the particular choice �μ = (+1, . . . ,+1,−1), the particle-hole
transformation (6.18) is the identity, and the resulting so2r -module M+

�μ,t can be read off
the Lax matrix

L−(x) = L(+1, . . . ,+1︸ ︷︷ ︸
r−1

,−1)(x), (6.21)

which is obtained from the Lax matrix L+(x) = L(x) of (6.2) by permuting its r -th and
(r + 1)-st rows and columns. We also have the following counterparts of Lemma 6.10
and Corollary 6.12:
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Lemma 6.22. There is an so2r -module isomorphism:

M+
(+1, . . . ,+1︸ ︷︷ ︸

r−1

,−1),t �
(

M
p{1,...,r−2,r}
2tωr−1

)∨
. (6.23)

Corollary 6.24. (a) For t /∈ 1
2Z≥4−2r , the so2r -module M+

(+1,...,+1,−1),t is irreducible.

(b) For t ∈ 1
2N, the Fock vacuum |0〉 generates an irreducible finite-dimensional

so2r -module L2tωr−1 .

For �μ = (μ1, . . . , μr ) ∈ {±1}r , we define its sign | �μ| ∈ {±1} via:
| �μ| = μ1 · . . . · μr . (6.25)

We call �μ ∈ {±1}r even (resp. odd) if | �μ| = 1 (resp. | �μ| = −1), and denote the sets of
such by

{±1}r
+ =

{
even �μ ∈ {±1}r

}
, {±1}r− =

{
odd �μ ∈ {±1}r

}
. (6.26)

For t ∈ 1
2N, let L±

t denote the following irreducible finite-dimensional so2r -modules:

L+
t = L2tωr , L−

t = L2tωr−1 , (6.27)

which can be uniformly written as L±
t = L2tω± with the weights ω± defined via:

ω+ = ωr , ω− = ωr−1. (6.28)

Let us now generalize Lemmas 6.10, 6.22 by comparing the above modules
{M+

�μ,t }�μ∈{±1}r to those from the Introduction. To this end,we shall consider twoparabolic
subalgebras pS± ⊂ so2r with

S+ = {1, . . . , r − 2, r − 1}, S− = {1, . . . , r − 2, r}. (6.29)

The Weyl group of so2r can be identified with W � (Z/2Z)r−1
� Sr � {±1}r

+ � Sr ,
cf. (6.26), so that elements of W are indexed by pairs ( �μ, σ)with σ ∈ Sr and �μ ∈ {±1}r

that are even (| �μ| = 1).
The Weyl group of the Levi subalgebra l+ � glr of pS+ is Wl+ � Sr , which con-

sists of the elements ((+1, . . . ,+1), σ )σ∈Sr
⊂ W . Equivalently, Wl+ is the stabilizer of

(+1, . . . ,+1) for the natural transitive action of W on the set {±1}r
+. Thus, we have a set

bijection

π+ : W/Wl+
∼−→ {±1}r

+, (6.30)

cf. (5.27). For any �μ ∈ {±1}r
+, we define w �μ ∈ W � {±1}r

+ � Sr via:

w �μ = ( �μ, σ �μ), (6.31)

with σ �μ ∈ Sr as in (5.28). The element w �μ ∈ π−1
+ ( �μ) can be characterized similarly to

Lemma 5.30:

Lemma 6.32. w �μ is the shortest representative of the left coset π−1
+ ( �μ), for any

�μ ∈ {±1}r
+.

Corollary 6.33. l
+
W = {w �μ}�μ∈{±1}r

+
.
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Likewise, theWeyl group of the Levi subalgebra l− � glr of pS− is Wl− � Sr , which
consists of the elements ((+1, . . . ,+1,−1,+1, . . . ,+1,−1), σ )σ∈Sr

⊂ W with −1’s at
the r -th and σ(r)-th spots (and there are no−1’s at all if r = σ(r)). Equivalently, Wl− is
the stabilizer of (+1, . . . ,+1,−1) for the natural transitive action of W on the set {±1}r−.
Thus, we have a set bijection

π− : W/Wl−
∼−→ {±1}r−, (6.34)

cf. (6.30). For any �μ ∈ {±1}r−, we define w �μ ∈ W � {±1}r
+ � Sr via:

w �μ = ( �μ′, σ �μ), (6.35)

with σ �μ ∈ Sr as in (5.28) and �μ′ ∈ {±1}r
+ obtained from �μ by replacing the firstμi = −1

(with minimal i) by +1. The above elementw �μ ∈ π−1− ( �μ) can be characterized similarly
to Lemma 6.32:

Lemma 6.36. w �μ is the shortest representative of the left coset π−1− ( �μ), for any
�μ ∈ {±1}r−.

Corollary 6.37. l
−

W = {w �μ}�μ∈{±1}r− .

Combining now the formula (6.20) with the definition of w �μ ∈ W , see (6.31, 6.35),
we conclude that the highest weight of the Fock vacuum |0〉 ∈ M+

�μ,t coincides with the
highest weight of our key modules M ′

w �μ · tω| �μ| introduced in (1.36), see Corollaries 6.33,

6.37 (here, we set ω±1 = ω±). Furthermore, M ′
w �μ · tω| �μ| has the same character as M+

�μ,t

(according to Lemma 2.45) and is irreducible for t /∈ 1
2Z (as follows from [J]). Therefore,

similarly to Propositions 4.28 and 5.33, we obtain:

Proposition 6.38. For any �μ ∈ {±1}r and t /∈ 1
2Z, we have so2r -module isomorphisms:

M+
�μ,t � M ′

w �μ · tω| �μ| �
(

M ′
w �μ · tω| �μ|

)∨
. (6.39)

Remark 6.40. Let us point out the key difference between Proposition 6.38 and Lem-
mas 6.10, 6.22:

(a) For �μ = (+1, . . . ,+1,±1), we actually have M+
�μ,t � (M ′

w �μ · tω±)∨ for any t ∈ C,

due to Lemmas 6.10, 6.22.
(b) Likewise, for �μ = (−1, . . . ,−1,∓1), we have M+

�μ,t � M ′
w �μ · tω| �μ| for any t ∈ C.

(c) For other �μ ∈ {±1}r , M+
�μ,t is not isomorphic to either of M ′

w �μ · tω| �μ| or (M ′
w �μ · tω| �μ|)

∨

at some t ∈ 1
2Z (but we expect it to be isomorphic to a twisted Verma module in the

sense of [AL]).

Evoking the above bijections {±1}r± � �μ ↔ w �μ ∈ l± W of Corollaries 6.33 and 6.37,
let us define:

M∨
�μ,t =

(
M ′

w �μ · tω| �μ|
)∨

, ∀ t ∈ C. (6.41)

Then, Proposition 6.38 can be recast as the isomorphism of the following so2r -modules:

M+
�μ,t � M∨

�μ,t , ∀ t ∈ C\ 1
2Z. (6.42)
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For �μ ∈ {±1}r , we also define its length l( �μ) as the length of the corresponding
element w �μ ∈ W . Using formula (5.31) and the explicit description of the set �+ of
positive roots of so2r , we find:

l( �μ) = l(w �μ) =
r∑

i=1

(r − i)δ−
μi

, (6.43)

cf. (5.38). We note that l( �μ) differs from the lengths of ( �μ, id), ( �μ′, id) ∈ W denoted by
l( �μ), l( �μ′).

6.3. Type D transfer matrices. Recall the notionof transfermatrices {TW (x)}W∈Rep Y (so2r ),
as discussed in Sect. 1.8. In particular, we shall consider the following explicit infinite-
dimensional transfer matrices:

T +
�μ,t (x) = tr

r∏

i=1

τ
F �μ

i i
i L �μ(x) ⊗ · · · ⊗ L �μ(x)
︸ ︷︷ ︸

N

, (6.44)

corresponding to M+
�μ,t . For t ∈ 1

2N, we also consider the finite-dimensional transfer

matrices T ±
t (x) corresponding to the modules L±

t (6.27) in the auxiliary space: those
are defined similarly to (6.44), but with the trace taken over the finite-dimensional sub-
modules L±

t of M+
(+1,...,+1,±1),t , see Corollaries 6.12(b), 6.24(b).

Using the notation (6.41, 6.43), let us recast the resolution (2.55), dual to (1.30), as
follows:

0 → L±
t → M∨

(1,...,1,±1),t →
l( �μ)=1⊕

�μ∈{±1}r±

M∨
�μ,t →

l( �μ)=2⊕

�μ∈{±1}r±

M∨
�μ,t → · · · → 0 (6.45)

for any t ∈ 1
2N. Combining this with (6.42) and the fact that the transfer matrices (6.44)

depend continuously on t ∈ C (as so do the Lax matrices L �μ(x)), we obtain the key
result of this section:

Theorem 6.46. For t ∈ 1
2N, we have:

T ±
t (x) =

∑

�μ∈{±1}r±

(−1)l( �μ) T +
�μ,t (x). (6.47)

The character limit of (6.47) expresses the character of the so2r -modules {L±
t }t∈ 1

2N

defined as

ch±
t = ch±

t (τ1, . . . , τr ) := trL±
t

r∏

i=1

τ
F (+1,...,+1,±1)

i i
i , (6.48)

that is the length N = 0 case of T ±
t (x), via:

ch±
t =

∑

�μ=(μ1,...,μr )∈{±1}r±

(−1)l( �μ)

∏r
i=1 τ

μi

(
t+(r−i−1)δ−

μi
+
∑i

k=1 δ−
μk

)

i
∏

1≤i< j≤r

(
1 − 1

τi τ
μi μ j
j

) (6.49)
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with the �μ’s summand in the right-hand side of (6.49) equal to the character of M+
�μ,t , up

to a sign.

Remark 6.50. The character formula (6.49) can be derived directly from theWeyl charac-
ter andWeyl denominator formulas, as in Remark 5.45; we leave details to the interested
reader.

We note that the formula (6.49) allows to analytically continue the characters ch±
t

of (6.48) from the discrete set t ∈ 1
2N to the entire complex plane t ∈ C. With this

convention in mind, we obtain:

Lemma 6.51. (a) ch±
t = (−1)

r(r−1)
2 ch±(−1)r

−r+1−t for any t ∈ C.

(b) ch±
t = 0 for t ∈

{
− 1

2 ,− 2
2 , . . . ,− 2r−4

2 ,− 2r−3
2

}
.

Proof. The proof is completely analogous to that of Lemma 5.51 with the following two
changes. In part (a), we should rather use t̄ = −r + 1 − t instead of (5.52), and note
that for �μ ∈ {±1}r± of (6.26) we have �̄μ = −�μ ∈ {±1}r

±(−1)r . In part (b) for ch+t , the
splitting of elements of W into the pairs satisfying (5.57) is performed following only
the second rule in our proof of Lemma 5.51(b). �


In a completely similar way, the formula (6.47) allows to analytically continue the

transfer matrices T ±
t (x) of the finite-dimensional representations L±

t , t ∈ 1
2N, to the

entire complex plane t ∈ C. With this convention in mind, we have the following
generalization of Lemma 6.51(a):

Proposition 6.52. T ±
t (x) = (−1)

r(r−1)
2 T ±(−1)r

−r+1−t (x) for any t ∈ C.

Proof. The proof is completely analogous to that of Proposition 5.59 and follows from
the proof of Lemma 6.51(a) combined with the factorisation (8.98) of the transfer ma-
trices T +

�μ,t (x) into the product of two commuting Q-operators, cf. Proposition 8.100.
�


We expect the natural generalization of Lemma 6.51(b) to hold: T ±
t (x) = 0 for

t ∈
{
− 1

2 ,− 2
2 , . . . ,− 2r−3

2

}
. This was first observed in [FFK] for small length and rank.

7. Resolutions for Transfer Matrices of BD-types: First Fundamental
Representations

In this section, we apply similar ideas to treat the remaining case of (1.22): i = 1 for
B D-types.

7.1. Oscillator realization in types BD (parabolic Verma). For K ≥ 5, let A denote
the oscillator algebra generated by K − 2 pairs of oscillators {(ai , āi )}1<i<1′ , cf. nota-
tion (1.21) so that 1′ = K, subject to the standard defining relations:

[ai , ā j ] = δ
j
i , [ai , a j ] = 0, [āi , ā j ] = 0, (7.1)

so that

A = C

〈
ai , āi

〉

1<i<1′

/
(7.1). (7.2)
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Following [Fr, (5.36, 5.38)] and [FT, (2.243), §4.3], let us consider the quadratic non-
degenerateA[x]-valued Laxmatrices of soK-type (i.e. of types Dr or Br with r = "K/2#
for K even or odd, respectively), depending on x1, x2 ∈ C:

Lx1,x2 (x) =

⎛

⎜⎜⎜⎜⎜⎝

1 w̄ − 1
2 w̄JK−2w̄

T

0 IK−2 −JK−2w̄
T

0 0 1

⎞

⎟⎟⎟⎟⎟⎠
· Dx1,x2 (x) ·

⎛

⎜⎜⎜⎜⎜⎝

1 −w̄ − 1
2 w̄JK−2w̄

T

0 IK−2 JK−2w̄
T

0 0 1

⎞

⎟⎟⎟⎟⎟⎠

(7.3)

with Jk being the anti-diagonal k × k-matrix and the middle factor explicitly given by:

Dx1,x2 (x)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(x − x1)(x − x1 − K
2 + 2) 0 0

−w(x − x1) (x − x1)(x − x2)IK−2 0

− 1
2w

T JK−2w wT JK−2(x − x2) (x − x2)(x − x2 − K
2 + 2)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

while the row-vector w̄ ∈ Mat1×(K−2)(A) and the column-vector w ∈ Mat(K−2)×1(A)

encode all the generators via:

Dr − t ype : w̄ = (ā2, . . . , ār , ār ′ , . . . , ā2′),

w = (a2, . . . , ar , ar ′ , . . . , a2′)T , (7.4)

Br − t ype : w̄ = (ā2, . . . , ār , ār+1, ār ′ , . . . , ā2′),

w = (a2, . . . , ar , ar+1, ar ′ , . . . , a2′)T . (7.5)

Following [FT, Remark 4.37], we also consider

Lx12(x) = Lx1,x2(x + c) = x2IK + x Mx12 + Gx12 (7.6)

with the shift c of the spectral parameter given by:

c = x1 + x2 − 1

2
, (7.7)

and x12 = x1 − x2 (note that the right-hand side of (7.6) depends only on the difference
of x1, x2).

It is straightforward to see that the linear term Mx12 in (7.6) is given by:

Mx12 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−x12 − K
2 + 1 − w̄w M[12] 0

−w ww̄ − JK−2w̄
TwT JK−2 − IK−2 M[23]

0 wT JK−2 x12 + K
2 − 1 + w̄w

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(7.8)
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with

M[12] =
(

x12 + K
2 − 2 + w̄w

)
w̄ − 1

2 w̄JK−2w̄
TwT JK−2, (7.9)

M[23] = −
(

x12 + K
2 − 2 + w̄w

)
JK−2w̄

T + 1
2 w̄JK−2w̄

T · w, (7.10)

while the free term Gx12 in (7.6) is expressed via the linear term Mx12 as follows:

Gx12 = 1
2 M2

x12 +
1
4 (K − 2)Mx12 +

1
4 (K − 3 − x212)IK. (7.11)

As a direct consequence of the RTT relation (1.1), we can identify the generators of
soK through:

Fi j =
(

M1−t−K
2

)

j i
. (7.12)

In particular, we have:

F11 = t −
K−1∑

k=2

ākak, Fi i = āiai − āi ′ai ′ for 1 < i ≤ r. (7.13)

As before, let F denote the Fock module of A, generated by the Fock vacuum |0〉 ∈ F
satisfying:

ai |0〉 = 0, 1 < i < 1′. (7.14)

Then, the Fock vacuum |0〉 is obviously a highestweight state of the resulting soK-action:

Fi j |0〉 = 0, 1 ≤ i < j ≤ K, (7.15)

with the highest weight λ = tω1 = (t, 0, . . . , 0︸ ︷︷ ︸
r−1

), that is:

Fi i |0〉 = tδ1i |0〉, 1 ≤ i ≤ r. (7.16)

Completely similarly to Lemmas 4.8, 5.14, 6.10, 6.22, we have:

Lemma 7.17. There is an soK-module isomorphism:

F �
(

M
p{2,...,r}
tω1

)∨
. (7.18)

Completely similarly to Corollaries 4.10, 5.16, 6.12, 6.24, we thus get:

Corollary 7.19. (a) For t /∈ 4 − K + 1
2N, the soK-module F is irreducible.

(b) For t ∈ N, the Fock vacuum |0〉 generates an irreducible finite-dimensional
soK-module Ltω1 .
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7.2. More oscillator realizations in types BD via underlying symmetries. Consider the
following 2r endomorphisms of C

K:

B̂k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑K
j=1 e j j for k = 1

e1k + ek1 + e1′k′ + ek′1′ +
∑ j �=k,k′

1< j<1′ e j j for 1 < k ≤ r

e1k + ek1 + e1′k′ + ek′1′ +
∑ j �=k,k′

1< j<1′ e j j ′ for r ′ ≤ k < 1′
∑K

j=1 e j j ′ for k = 1′

. (7.20)

Since the R-matrix (1.19) is invariant under such transformations, cf. (1.5):
[

R(x), B̂k ⊗ B̂k

]
= 0, ∀ k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}, (7.21)

we can generate more solutions to the RTT relation (1.1) from the Lax matrix (7.6) via:

Lk(x) = B̂k Lx12=1−t−K
2
(x)B̂−1

k

∣∣∣
p.h.

, ∀ k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}. (7.22)

Here, we apply the following particle-hole automorphism of A (denoted p.h.):

ā j �→ −a j , a j �→ ā j for 1 < j ≤ k if 1 ≤ k ≤ r,

ā j �→ −a j , a j �→ ā j for k′ < j < 1′ if r ′ ≤ k ≤ 1′,
(7.23)

uniquely chosen to insure that the Fock vacuum |0〉 remains to be an soK highest weight
state.

The resulting soK generators are read off the linear term of (7.22) in the spectral
parameter:

Fk
i j =

(
B̂k M1−t−K

2
B̂−1

k

∣∣∣
p.h.

)

j i
, k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}. (7.24)

This makes the Fock module F into an soK-module, denoted by M+
k,t . For 1 ≤ i ≤ r ,

we get:

Fk
ii |0〉 =

⎧
⎪⎨

⎪⎩

(
(t + k − 1)δk

i − δi<k

)
|0〉 for 1 ≤ k ≤ r

(
(−t − k + 2)δk′

i − δi<k′
)
|0〉 for r ′ ≤ k ≤ 1′

, (7.25)

thus the corresponding highest weight of |0〉 ∈ M+
k,t is:

(−1, . . . ,−1︸ ︷︷ ︸
k−1

, t + k − 1, 0, . . . , 0︸ ︷︷ ︸
r−k

) for 1 ≤ k ≤ r,

(−1, . . . ,−1︸ ︷︷ ︸
k′−1

,−t − k + 2, 0, . . . , 0︸ ︷︷ ︸
r−k

) for r ′ ≤ k ≤ 1′.
(7.26)

We shall now compare the above modules M+
k,t ’s with those from the Introduction.

To this end, let us consider the parabolic pS ⊂ soK corresponding to S = {2, . . . , r}with
r = "K

2 #, see Sect. 1.5. The Weyl group of soK can be identified with W � {±1}r
� Sr

for K = 2r + 1 or W � {±1}r
+ � Sr for K = 2r , cf. (6.26). The Weyl group of

the Levi subalgebra l � soK−2 ⊕ gl1 is Wl � {±1}r−1
� Sr−1 for K = 2r + 1 or
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W � {±1}r−1
+ � Sr−1 for K = 2r , consisting of those ( �μ, σ) ∈ W such that μ1 = +1

and σ(1) = 1. Equivalently, Wl is the stabilizer of 1 for the natural transitive action of
the Weyl group W on the set {1 . . . , r} ∪ {r ′, . . . , 1′}. Thus, we have a set bijection

π : W/Wl
∼−→ {1, . . . , r} ∪ {r ′, . . . , 1′}, (7.27)

cf. (4.17, 5.27, 6.30, 6.34). For any 1 ≤ k ≤ r , we define the permutation σk ∈ Sr as
σ{k} of (4.15):

σk(1) = k, σk(2) = 1, . . . , σk(k) = k − 1, σk(k + 1) = k + 1, . . . , σk(r) = r,

(7.28)

and further consider wk ∈ W given by:

wk =
(
(+1, . . . ,+1), σk

)
, 1 ≤ k ≤ r. (7.29)

The element wk ∈ π−1(k) can be characterized similarly to Lemmas 5.30, 6.32, 6.36:

Lemma 7.30. wk is the shortest representative of the left coset π−1(k), for any
1 ≤ k ≤ r .

Likewise, for 1 ≤ k ≤ r , we also define wk′ ∈ W via:

wk′ = (μ(k), σk) , 1 ≤ k ≤ r, (7.31)

with σk ∈ Sr as in (7.28) and μ(k) ∈ {±1}r having −1 components only at the:

(1) k-th spot, if K = 2r + 1;
(2) k-th and r -th spots, if K = 2r and k < r ;
(3) (r − 1)-th and r -th spots, if K = 2r and k = r .

Then, similarly to Lemma 7.30, we have the following characterization of such elements:

Lemma 7.32. wk is the shortest representative of the left coset π−1(k), for any
r ′ ≤ k ≤ 1′.

Combining Lemmas 7.30 and 7.32 with the set bijection (7.27) and (1.33), we get:

Corollary 7.33. lW =
{
wk

∣∣∣ k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}
}

.

Combining now the formula (7.26) with the definition of wk ∈ W , see (7.29, 7.31),
we conclude that the highest weight of the Fock vacuum |0〉 ∈ M+

k,t coincides with the
highest weight of our key modules M ′

wk · tω1
introduced in (1.36), see Corollary 7.33, for

any k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}. Furthermore, M ′
wk · tω1

has the same character as M+
k,t

(according to Lemma 2.45) and is irreducible for t /∈ Z (as follows from [J]). Therefore,
similarly to Propositions 4.28, 5.33, 6.38, we obtain:

Proposition 7.34. For k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′} and t /∈ Z, we have soK-module
isomorphisms:

M+
k,t � M ′

wk · tω1
� (M ′

wk · tω1

)∨
. (7.35)

Remark 7.36. Let us point out the key difference between Proposition 7.34 and
Lemma 7.17:
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(a) For k = 1, we actually have M+
k,t � (M ′

wk · tω1
)∨ for any t ∈ C, due to Lemma 7.17.

(b) Likewise, for k = 1′, we have M+
k,t � M ′

wk · tω1
for any t ∈ C.

(c) For other values of k, M+
k,t is not isomorphic: to either of M ′

wk · tω1
or (M ′

wk · tω1
)∨ at

certain t ∈ Z (but is expected to be isomorphic to one of the twisted Verma modules
in the sense of [AL]).

Evoking the above bijection {1, . . . , r} ∪ {r ′, . . . , 1′} � k ↔ wk ∈ lW of Corol-
lary 7.33, we define:

M∨
k,t = (M ′

wk · tω1

)∨
, ∀ t ∈ C. (7.37)

Then, Proposition 7.34 can be recast as the isomorphism of the following soK-modules:

M+
k,t � M∨

k,t , ∀ t ∈ C\Z. (7.38)

For the key results of the following subsection, let us record the lengths of the above
elements:

l(wk) =
{

k − 1 for 1 ≤ k ≤ r
k − 2 for r ′ ≤ k ≤ 1′ , (7.39)

which follows from (5.31) and the explicit description of the set �+ of positive roots
of soK.

7.3. Type BD transfer matrices. Recall the notion of transfer matrices
{TW (x)}W∈Rep Y (soK), as discussed in Sect. 1.8. In particular, we shall consider the fol-
lowing explicit infinite-dimensional transfer matrices:

T +
k,t (x) = tr

r∏

i=1

τ
F k

ii
i Lk(x) ⊗ · · · ⊗ Lk(x)︸ ︷︷ ︸

N

, (7.40)

corresponding to M+
k,t . For t ∈ N, we also consider the finite-dimensional transfer

matrices T1,t (x) corresponding to the modules Ltω1 in the auxiliary space: they are
defined similarly to (7.40), butwith the trace taken over thefinite-dimensional submodule
Ltω1 of M+

1,t , see Corollary 7.19(b).
Using the notation (7.37) and the formula (7.39), let us recast the resolution (2.55),

dual to (1.30):

Dr − t ype : 0 → Ltω1 → M∨
1,t → · · · → M∨

r−1,t → M∨
r,t ⊕ M∨

r ′,t → M∨
(r−1)′,t → · · · → M∨

1′,t → 0,

(7.41)
Br − t ype : 0 → Ltω1 → M∨

1,t → · · · → M∨
r−1,t → M∨

r,t → M∨
r ′,t → M∨

(r−1)′,t → · · · → M∨
1′,t → 0,

(7.42)

for any t ∈ N. Combining them with (7.38) and the fact that the transfer matrices (7.40)
depend continuously on t ∈ C (as so do the Lax matrices Lk(x)), we obtain the key
result of this section:
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Theorem 7.43. (a) For t ∈ N, we have the following equality of Dr -type transfer matri-
ces:

T1,t (x) =
r∑

k=1

(−1)k−1T +
k,t (x) +

r∑

k=1

(−1)k−1T +
k′,t (x). (7.44)

(b) For t ∈ N, we have the following equality of Br -type transfer matrices:

T1,t (x) =
r∑

k=1

(−1)k−1T +
k,t (x) +

r∑

k=1

(−1)k T +
k′,t (x). (7.45)

The character limit of (7.44) expresses the character of the so2r -modules {Ltω1}t∈N

defined as

ch1,t = ch1,t (τ1, . . . , τr ) := trLtω1

r∏

i=1

τ
Fi i
i , (7.46)

that is the length N = 0 case of T1,t (x), via:

ch1,t =
r∑

k=1

(−1)k−1 τ−1
1 · · · τ−1

k−1τ
t+k−1
k

∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
� �=k

(
1 − 1

τkτ�

)

+
r∑

k=1

(−1)k−1 τ−1
1 · · · τ−1

k−1τ
k+1−2r−t
k

∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
� �=k

(
1 − 1

τkτ�

) .

(7.47)

Likewise, the character limit of (7.45) expresses the character of the so2r+1-modules
{Ltω1}t∈N

ch1,t = ch1,t (τ1, . . . , τr ) := trLtω1

r∏

i=1

τ
Fi i
i , (7.48)

that is the length N = 0 case of T1,t (x), via:

ch1,t =
r∑

k=1

(−1)k−1 τ−1
1 · · · τ−1

k−1τ
t+k−1
k(

1 − 1
τk

)∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
� �=k

(
1 − 1

τkτ�

)

+
r∑

k=1

(−1)k τ−1
1 · · · τ−1

k−1τ
k−2r−t
k(

1 − 1
τk

)∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
� �=k

(
1 − 1

τkτ�

) .

(7.49)

Here, the k-th summand in the first (resp. second) sums in the right-hand side of (7.47)
and (7.49) is equal to the character of M+

k,t (resp. M+
k′,t ), up to a sign.
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Remark 7.50. For the physics’ reader who skipped Sect. 2, let us present a concise
proof of (7.49) (the proof of (7.47) is completely analogous). Let us identify the set
�+ of positive roots of g = so2r+1 with �+ = {εi ± ε j }1≤i< j≤r ∪ {εi }r

i=1, so that
ρ = (r − 1

2 , r − 3
2 , . . . ,

1
2 ) and the Weyl group W is W � (Z/2Z)r

� Sr � {±1}r
� Sr .

According to the Weyl character formula, we have:

chLtω1
=

∑

( �μ,σ)∈{±1}r �Sr

(−1)l( �μ,σ) e( �μ,σ)(tω1+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )(1 − e−ε j −εi )

∏r
i=1(1 − e−εi )

.

(7.51)

Following §7.2, let us consider the parabolic subalgebra p{2,...,r} ⊂ g whose Levi sub-
algebra is l � so2r−1 ⊕ gl1 and the Weyl group is Wl � {±1}r−1

� Sr−1 consist-
ing of ( �μ, σ) ∈ {±1}r

� Sr = W such that μ1 = 1 and σ(1) = 1. The assign-
ment W � ( �μ, σ) �→ (μ1, σ (1)) ∈ {±1} × {1, . . . , r} gives rise to a set bijection
π : W/Wl

∼−→ {±1} × {1, . . . , r}, cf. (7.27). For any (μ, k) ∈ {±1} × {1, . . . , r}, we
consider ((μ, 1, . . . , 1), σk) ∈ π−1(μ, k)withσk ∈ Sr as in (7.28).Wecan rewrite (7.51)
as:

chLtω1
=

∑

(μ,k)∈{±1}×{1,...,r}

∑

(�ν,τ )∈Wl

(−1)l((μ,�ν),σkτ)e((μ,�ν),σkτ)(tω1+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )(1 − e−ε j −εi )

∏r
i=1(1 − e−εi )

,

(7.52)

where (μ, �ν) ∈ {±1}r is obtained by attaching μ ∈ {±1} on the left to �ν ∈ {±1}r−1.
The key step is to simplify the inner sum of (7.52) using the Weyl denominator formula
for l:

∑

(�ν,τ )∈Wl

(−1)l(�ν,τ )e(�ν,τ )(ρl)−ρl =
∏

α∈�+
l

(1 − e−α), (7.53)

where �+
l = {εi ± ε j }2≤i< j≤r ∪ {εi }r

i=2 ⊂ �+ consists of positive roots of l, ρl =
1
2

∑
α∈�+

l
α = (0, r − 3

2 , . . . ,
1
2 ). As (�ν, τ )(ρ) − ρ = (�ν, τ )(ρl) − ρl, (�ν, τ )(ω1) = ω1

for any (�ν, τ ) ∈ Wl ⊂ W , we get:

∑

(�ν,τ )∈Wl

(−1)l(�ν,τ ) e(�ν,τ )(tω1+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )(1 − e−ε j −εi )

∏r
i=1(1 − e−εi )

= etε1

(1 − e−ε1)
∏r

j=2(1 − eε j −ε1)(1 − e−ε j −ε1)
. (7.54)

Thus, the inner sum of (7.52) indexed by (μ, k) = (1, 1) gives rise to the k = 1 summand
of the first sum in (7.49). Likewise, we claim that the inner sum of (7.52) indexed by
(μ, k)withμ = 1 (resp.μ = −1) precisely recovers the k-th summand of the first (resp.
second) sum in (7.49), which amounts to the proof of (7.56) below (and its μ = −1
counterpart). To prove this claim forμ = 1, let us apply ((+1, . . . ,+1), σk) ∈ W to both
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sides of the equality (7.53):
∑

(�ν,τ )∈Wl

(−1)l((1,�ν),σkτ)e((1,�ν),σkτ)(ρ)−ρ

= (−1)l(σk )eσk (ρ)−ρ

i �=k∏

1≤i≤r

(1 − e−εi )

i, j �=k∏

1≤i< j≤r

(1 − eε j −εi )(1 − e−ε j −εi ).

(7.55)

Combining this with the formulas

σk(ρ) − ρ = (k − 1)εk − (ε1 + · · · + εk−1), l(σk) = k − 1, σk(ω1) = εk,

we obtain the desired equality:

∑

(�ν,τ )∈Wl

(−1)l((1,�ν),σkτ) e((1,�ν),σkτ)(tω1+ρ)−ρ

∏
1≤i< j≤r (1 − eε j −εi )(1 − e−ε j −εi )

∏r
i=1(1 − e−εi )

=

(−1)k−1 e−ε1 · · · e−εk−1e(t+k−1)εk

(1 − e−εk )
∏k−1

�=1(1 − eεk−ε� )
∏r

�=k+1(1 − eε�−εk )
∏��=k

1≤�≤r (1 − e−εk−ε� )
.(7.56)

The proof of the above claim for μ = −1 is completely analogous with the only differ-
ence that:

((−1,+1, . . . ,+1), σk)(ρ) − ρ = (k − 2r)εk − (ε1 + · · · + εk−1),

((−1,+1, . . . ,+1), σk)(ω1) = −εk .

This completes our direct proof of the character formula (7.49) (see Remark 3.28 for
more details in regards to perceiving ch1,t of (7.48) as a specialization of chLtω1

).

Let us note that the formulas (7.47, 7.49) allow to analytically continue the character
ch1,t of (7.46, 7.48), from the discrete set t ∈ N to the entire complex plane t ∈ C. With
these conventions in mind and similarly to Lemmas 5.51, 6.51, we obtain:

Lemma 7.57. (a) ch1,t = (−1)K ch1,2−K−t for any t ∈ C.
(b) ch1,t = 0 for t ∈ {−1,−2, . . . , 3 − K}.

In a completely similar way, the formulas (7.44, 7.45) allow to analytically continue
the transfer matrices T1,t (x) of the finite-dimensional representations Ltω1, t ∈ N, to
the entire complex plane t ∈ C. With this convention in mind, we have the following
generalization of Lemma 7.57(a):

Proposition 7.58. T1,t (x) = (−1)KT1,2−K−t (x) for any t ∈ C.

Proof. The proof is completely analogous to that of Proposition 5.59 and follows from
the proof of Lemma 7.57(a) combined with the factorisation (9.24) of the transfer matri-
ces T +

k,t (x), T +
k′,t (x) into the product of two commuting Q-operators, cf.

Proposition 9.26. �

We also expect the natural generalization of Lemma 7.57(b) to hold: T1,t (x) = 0 for

t ∈ {−1,−2, . . . , 3− K}. For D-type, this was first observed in [FFK] for small length
and rank.
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8. Factorisation for Linear ACD-types

In this section, we demonstrate the factorisation of the infinite-dimensional transfer
matrices (4.35, 5.39, 6.44) into the products of two Baxter Q-operators arising from
degenerate Lax matrices (which are renormalized limits of the former), linear in the
spectral parameter. The factorisation formula is universal for all three types AC D, and
we present it in full detail for the case of A-type.

8.1. General two-term linear factorisation. Consider the following two n × n matrices
written in the block form as:

La(x) =
⎛

⎜⎝
xIa − Ā1A1 Ā1

−A1 In−a

⎞

⎟⎠ , L̄a(y) =
⎛

⎜⎝
Ia Ā2

A2 yIn−a + A2Ā2

⎞

⎟⎠ , (8.1)

with a × (n − a) upper-right blocks Ā1, Ā2 and (n − a) × a lower-left blocks A1,A2.
Then, their product can be factorised as follows:

La(x)L̄a(y) =
⎛

⎜⎝
xIa − Ā′

1A
′
1

(
y − x + Ā′

1A
′
1

)
Ā′
1

−A′
1 yIn−a + A′

1Ā
′
1

⎞

⎟⎠

⎛

⎜⎝
Ia Ā′

2

0 In−a

⎞

⎟⎠ , (8.2)

where

A′
1 = A1 − A2, A′

2 = A2,

Ā′
2 = Ā2 + Ā1, Ā′

1 = Ā1.
(8.3)

We note that the right-hand side of (8.2) is independent of A′
2.

8.2. Two-term factorisation in A-type. LetA denote the oscillator algebra generated by
n(n −1) pairs of oscillators {(a j,i , āi, j )}1≤i �= j≤n subject to (3.1). For any subset I ∈ Sa ,
see our notation (4.11), recall the permutation σI of the set {1, . . . , n} defined in (4.15)
and the corresponding permutation matrix BI of (4.19). We define:

L I (x) = BI L{1,...,a}(x)B−1
I

∣∣∣
p.h.

, (8.4)

where

L{1,...,a}(x) =
⎛

⎜⎝
xIa − ĀA Ā

−A In−a

⎞

⎟⎠

=
⎛

⎝ Ia Ā

0 In−a

⎞

⎠

⎛

⎝
xIa 0

0 In−a

⎞

⎠

⎛

⎝
Ia 0

−A In−a

⎞

⎠ (8.5)
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with

A =
⎛

⎝
aa+1,1 · · · aa+1,a

... . .
. ...

an,1 · · · an,a

⎞

⎠ , Ā =
⎛

⎝
ā1,a+1 · · · ā1,n

... . .
. ...

āa,a+1 · · · āa,n

⎞

⎠ , (8.6)

as in (4.3), and the particle-hole transformation (denoted p.h.) in (8.4) is chosen as
follows:

āi, j �→ aσI ( j),σI (i), a j,i �→ −āσI (i),σI ( j) if σI ( j) < σI (i),

āi, j �→ āσI (i),σI ( j), a j,i �→ aσI ( j),σI (i) if σI ( j) > σI (i).
(8.7)

Let us note that the matrix L I (x) of (8.4) depends only on the oscillators (āi, j , a j,i ) ∈ A
with i ∈ I and j ∈ Ī = {1, . . . , n}\I , see (4.13), and can be further factorised similarly
to (8.5) as:

L I (x) =
⎛

⎝In +
j∈ Ī∑

i∈I

(
āi jδi< j + a j iδi> j

)
ei j

⎞

⎠

⎛

⎝x
∑

i∈I

eii +
∑

j∈ Ī

e j j

⎞

⎠

×
⎛

⎝In +
j∈ Ī∑

i∈I

(
āi jδ j<i − a j iδ j>i

)
e ji

⎞

⎠ .

Remark 8.8. We note that the particle-hole (8.7) differs from (4.21) in two aspects:
(1) a different sign change, (2) relabelling of the oscillator indices to indicate the row
and column of their position.

Let us now apply the general factorisation from Sect. 8.1 to the following choice
of (8.1):

La(x) = L{1,...,a}(x), L̄a(y) = L{a+1,...,n}(y). (8.9)

This fixes A1 and Ā1 of (8.1) as A and Ā of (8.6), while A2 and Ā2 are explicitly given
by:

A2 =
⎛

⎝
a1,a+1 · · · aa,a+1

... . .
. ...

a1,n · · · aa,n

⎞

⎠ , Ā2 =
⎛

⎝
āa+1,1 · · · ān,1

... . .
. ...

āa+1,a · · · ān,a

⎞

⎠ . (8.10)

We note that these two matrices La(x) and L̄a(y) involve non-intersecting sets of os-
cillators from the algebra A, hence, they mutually commute, while the only nontrivial
commutators are:

[a j,i , āi, j ] = 1. (8.11)

Thus, the transformation (8.3) in this case is in fact induced by the similarity transfor-
mation:

A′
1 = SA1S−1, A′

2 = SA2S−1,

Ā′
2 = SĀ2S−1, Ā′

1 = SĀ1S−1,
(8.12)
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with

S = exp

⎡

⎣
a< j≤n∑

1≤i≤a

āi jai j

⎤

⎦ , (8.13)

where we note that all the summands in (8.13) pairwise commute.
Combining the factorisation formula (8.2) with the similarity transformation (8.12),

we obtain:

L{1,...,a}(x + t)L{a+1,...,n}(x − a) = SLa(x)GS−1, (8.14)

where

G =
⎛

⎝ Ia Ā2

0 In−a

⎞

⎠ , (8.15)

S is given by (8.13), and La(x) is precisely the gln-type Lax matrix of (4.2).
Vice versa, the matrices L{1,...,a}(x) and L{a+1,...,n}(x) can be obtained from the Lax

matrix La(x) of (4.2) via the renormalized limit procedures (which clearly preserve the
property of being Lax):

L{1,...,a}(x) = lim
t→∞

{
La(x − t) · diag

(
1, . . . , 1︸ ︷︷ ︸

a

;− 1
t , . . . ,− 1

t︸ ︷︷ ︸
n−a

)}
,

L{a+1,...,n}(x) = lim
t→∞

{
diag
(

1
t , . . . ,

1
t︸ ︷︷ ︸

a

; 1, . . . , 1︸ ︷︷ ︸
n−a

)
· La(x + a)

}∣∣∣
āi j �→−ā j i , ai j �→−a j i

.

(8.16)

Remark 8.17. This implies that all the matrices {L I (x)}I∈Sa of (8.4) are in fact Lax,
that is, they satisfy the RTT relation (1.1), which is crucial for the entire analysis of the
present section.

Conjugating the factorisation formula (8.14) by BI of (4.19), thus utilizing the Weyl
group action, and further performing the particle-hole transformations in both sets of
oscillators, we obtain:

L I (x + t)L Ī (x − a) = SIL′
I (x)GIS

−1
I (8.18)

with the similarity transformation SI and the matrix GI specified in (8.23) and (8.22)
below, and the gln-type LaxmatrixL′

I (x) obtained fromLI (x) of (4.12) through the sign
change and relabelling of the oscillator indices precisely as in Remark 8.8. The factorisa-
tion (8.18) above follows when performing the particle-hole transformation (8.7) for the
oscillators contained in L{1,...,a}(x + t), see (8.4), and further undoing the particle-hole
transformation for the creation/annihilation oscillators contained in L{a+1,...,n}(x − a)

that get mapped below/above the main diagonal:

ā j,i �→ −aσI (i),σI ( j), ai, j �→ āσI ( j),σI (i) if σI ( j) < σI (i),

ā j,i �→ āσI ( j),σI (i), ai, j �→ aσI (i),σI ( j) if σI ( j) > σI (i),
(8.19)
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with the permutation σI of the set {1, . . . , n} as in (4.15). More precisely, the latter
particle-hole (denoted p.h.) is chosen so that the following equality holds:

L Ī (x) = BI L{a+1,...,n}(x)B−1
I

∣∣∣
p.h.

, (8.20)

where we note the following natural compatibility between BI and BĪ :

BI B{a+1,...,n} = BĪ , ∀ I ∈ Sa . (8.21)

The remaining ingredients in (8.18) can be written as:

GI = BIGB−1
I

∣∣∣
p.h.

= In +
j∈ Ī∑

i∈I

(
ā j iδi< j − ai jδi> j

)
ei j , (8.22)

and SI is obtained from S of (8.13) by performing both particle-hole transformations
p.h., p.h.:

SI = exp

⎡

⎣
j∈ Ī∑

i∈I

(
āi jai jδi< j − a j i ā j iδi> j

)
⎤

⎦ . (8.23)

Following [BFLMS], let us now define the
Q-operators {QI (x)}I∈Sa ⊂ End(Cn)⊗N via:

QI (x) = t̂rDI

(
L I (x) ⊗ · · · ⊗ L I (x)︸ ︷︷ ︸

N

)
, (8.24)

that is, as the normalized trace t̂rDI , defined as in (3.37), of the N -fold tensor product
of L I (x) from (8.4). The twist DI in (8.24) acts only on the Fock space and is defined
via:

DI =
i< j∏

i∈I, j∈ Ī

(
τ j

τi

)āi ja j i i> j∏

i∈I, j∈ Ī

(
τi

τ j

)a j i āi j

, (8.25)

which can be further expressed via {E I
i i }n

i=1 of (4.12) as (cf. formulas (4.23, 4.24)):

DI =
∏

i∈I

τ−t
i ·

n∏

i=1

τ
E I

i i
i . (8.26)

We note that the action of this twist on the Fock module is uniquely determined (up to
a scalar function) by the same condition as in (3.39):

DL I (x)D−1 = D−1
I L I (x)DI , (8.27)

with D = diag(τ1, . . . , τn) of (3.40). This ensures the commutativity of QI (x) and the
transfer matrix T(1,0,...,0)(y) of the defining fundamental representation in the auxiliary
space, cf. Remark 3.67.
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Remark 8.28. For a = 1 and I = {i}, the Laxmatrix (8.4) coincides with Li (x) of (3.31)
and the twist (8.25) coincides with (3.38), hence, the above Q-operator (8.24) recovers
Qi (x) of (3.36).

Building the monodromy matrices (by considering the N -fold tensor product on the
matrix space) from (8.18), taking the normalized trace, and evoking the relation (8.26),
the factorisation formula (8.18) implies the following factorisation formula for the trans-
fer matrices T +

I,t (x) of (4.35):

T +
I,t (x) = ch+I,t · QI (x + t)QĪ (x − a) (8.29)

with

ch+I,t = tr
n∏

i=1

τ
E I

i i
i =

∏

i∈I

τ t
i

j∈ Ī∏

i∈I

(−1)δi> j τi

τi − τ j
, (8.30)

cf. the factorisation formula (3.44), the character formula (4.40), and the details of
Remark 3.42.

Remark 8.31. Let us stress right away that the transfer matrices constructed from L′
I (x)

and LI (x) via (4.35) do coincide, as the sign change and the relabelling of oscillators
(see Remark 8.8) do not affect the trace.

Remark 8.32. An essential step used in our derivation of (8.29) is the following commu-
tativity:

[SI , DI DĪ ] = 0, (8.33)

cf. (3.59). Clearly, it suffices to verify (8.33) for I = {1, . . . , a}. To this end, we note
that:

D{1,...,a} D{a+1,...,n} =
a< j≤n∏

1≤i≤a

(
τ j

τi

)āi ja j i+ai j ā j i

=
∏

1≤i≤a

τ
Ni
i

∏

a< j≤n

τ
N j
j (8.34)

with

Ni = −
∑

a< j≤n

(
āi ja j i + ai j ā j i

)
, N j =

∑

1≤i≤a

(
āi ja j i + ai j ā j i

)
, (8.35)

while the similarity transformation SI is given by (8.13):

S{1,...,a} =
a< j≤n∏

1≤i≤a

exp
[
āi jai j

]
. (8.36)

Thus, the desired commutativity (8.33) follows from the obvious equalities

[Ni , āk�a�k] = 0, [N j , āk�a�k] = 0, (8.37)

for any 1 ≤ i ≤ a < j ≤ n and 1 ≤ k ≤ a < � ≤ n, cf. (3.65, 3.66).

Combining the factorisation formula (8.29) with Theorem 4.37, we get (see (4.34)
and (8.30)):
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Proposition 8.38. For any 1 ≤ a < n and t ∈ N, we have:

Ta,t (x) =
∑

I∈Sa

(−1)l(I ) ch+I,t · QI (x + t)QĪ (x − a). (8.39)

Remark 8.40. (a) Such formula first appeared in [BHK, (5.12)] for the n = 3 trigonomet-
ric case, while the general rational case goes back to [Ts1,Ts2]. However, our deriva-
tion of (8.39) from (4.38) has a benefit of not using the determinant formula (3.47)
that is absent in other types.

(b) Let us note that (8.39) is also a consequence of the determinant formula (3.47) and its
analogue expressing any Q-operator QI (x) of (8.24) in terms of the single-indexed
Q-operators (3.36):

QI (x) =
det
∥∥∥τ−�+1

ik
Qik (x − � + 1)

∥∥∥
1≤k,�≤a

det
∥∥∥τ−�+1

ik

∥∥∥
1≤k,�≤a

, (8.41)

where I = {i1, . . . , ia} (the right-hand side of (8.41) is clearly independent of the
ordering of ic’s). To establish this formula, one has to consider a family of gln-type
Lax matrices {LI (x)}I⊆{1,...,n}, see [BFLMS, (2.20)], generalizing L I (x) of (8.4) by
letting their matrix coefficients to take values in the bigger algebra A⊗ U (gl|I |)[x].
Explicitly, we set L{1,...,a}(x) = L{1,...,a}(x) +

∑a
i, j=1 ei j E ji with {E ji }a

i, j=1 being
the generators of gla , while all other LI (x) are again obtained through the similarity
and particle-hole transformations precisely as in (8.4), thus resulting in:

LI (x) = L I (x) +
∑

i, j∈I

E
σ−1

I ( j),σ−1
I (i)ei j . (8.42)

Generalizing QI (x) of (8.24), one defines the X -operators
{X+

I (x, λ)}λ∈C
a

I∈Sa
⊂ End(Cn)⊗N via:

X+
I (x, λ) = trM∨

λ

⎧
⎨

⎩
∏

i∈I

τ
Eii
i t̂rDI

(
LI (x) ⊗ · · · ⊗ LI (x)︸ ︷︷ ︸

N

)
⎫
⎬

⎭ , (8.43)

cf. [BFLMS, (4.13)]. Thus, X+
I (x, λ) is the normalized trace t̂rDI of (3.37) in the Fock

module F of A followed by the standard trace in the dual Verma module M∨
λ of gla

of the N -fold tensor product of LI (x) with the twist DI defined in (8.25). Likewise,
for a dominant integral weight λ of gla , one defines X I (x, λ) with the outer trace
taken over the finite-dimensional gla-submodule Lλ of M∨

λ . The latter construction
allows to recover back the Q-operators via:

QI (x) = X I

(
x, (0, . . . , 0︸ ︷︷ ︸

a

)
)
. (8.44)

Then, evoking theBGGresolution of thefinite-dimensionalgla-module Lλ, we obtain
the following counterpart of Theorem 3.24 (cf. [BFLMS, (4.19)]):

X I (x, λ) =
∑

σ∈Sa

(−1)l(σ ) X+
I (x, σ · λ). (8.45)
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On the other hand, arguing precisely as in our proof of (3.44), we obtain the following
counterpart of the latter (cf. [BFLMS, (5.7)]):

X+
I (x, λ) =

∏

1≤k<�≤a

1

τ−1
i�

− τ−1
ik

∏

1≤k≤a

τ
λk−k+1
ik

×

Qi1(x + λ1)Qi2(x + λ2 − 1) · · · Qia (x + λa − a + 1), (8.46)

where I = {i1, . . . , ia} ∈ Sa and λ = (λ1, . . . , λa) ∈ C
a . Combining (8.46)

with (8.45) and evoking the Vandermonde determinant, we obtain the following
analogue of Theorem 3.46:

X I (x, λ) =
det
∥∥∥τλ�−�+1

ik
Qik (x + λ� − � + 1)

∥∥∥
1≤k,�≤a

det
∥∥∥τ−�+1

ik

∥∥∥
1≤k,�≤a

. (8.47)

Specializing this formula atλ = (0, . . . , 0) and evoking (8.44),we recover the desired
formula (8.41).

(c) Conversely, plugging the formula (8.41) into (8.39), we recover (by expanding the
corresponding n ×n determinant with respect to the first a columns) the determinant
formula (3.47) in the particular case ofλ = tωa , themultiples of fundamentalweights.

For completeness of our exposition, let us conclude with the Q Q-relations in the
present conventions:

Lemma 8.48. For any two disjoint subsets I and {i, j} of {1, . . . , n}, we have:

QI
i
 j (x + 1
2 )QI (x − 1

2 ) = τ j

τ j − τi
Q I
i (x − 1

2 )QI
 j (x + 1
2 )

− τi

τ j − τi
Q I
 j (x − 1

2 )QI
i (x + 1
2 ).

Proof. Let I = {i1, . . . , ia} and set i0 = j, ia+1 = i . Then, the Q Q-relation stated above
follows immediately from the Desnanot–Jacobi–Dodgson–Sylvester theorem applied to

the (a + 2) × (a + 2) matrix M =
(
τ−�+1

ik
Qik (x − � + 3

2 )
)1≤�≤a+2

0≤k≤a+1
with Qi (x) defined

in (3.36). �

Remark 8.49. Generalizing our earlier Remarks 3.48 and 8.28, we note that the Q-
operators QI (x) of [BFLMS, (4.13, 4.20)] are related to ours from (8.24) via:

QI (x) =
∏

i∈I

τ x
i · QI

(
x − n−|I |

2

)
, (8.50)

where the twist parameters and the oscillators are identified via (3.52) and (3.50), respec-
tively. Here, the shift of the spectral parameter x by n−|I |

2 arises when identifying our Lax
matrices (8.5) with those of [BFLMS, (2.20)], while the additional factor

∏
i∈I τ x

i is due
to the conventions of [BFLMS]. Thus, our Q Q-relations of Lemma 8.48 are equivalent
to the Q Q-relations of [BFLMS, (5.12)] (though the latter need to be corrected by a sign
as already seen from [BFLMS, (5.9)]), see (1.9):

τ j − τi√
τiτ j

· QI
i
 j (x)QI (x) = QI
i (x − 1
2 )QI
 j (x + 1

2 ) − QI
 j (x − 1
2 )QI
i (x + 1

2 ).

(8.51)
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Remark 8.52. Let us also note that the commutativity of the single-index Q-operators
{Qi (x)}n

i=1, see Remark 3.67(c), is essential both to the derivation of the determinant
formulas (3.47, 8.41) as well as to the above proof of Lemma 8.48. Furthermore, com-
bining Remark 3.67 with the determinant expression (8.41), we conclude that all the
Q-operators {QI (x)|I ⊆ {1, . . . , n}} commute among themselves as well as with the
transfer matrices T +

I,t (x) and Ta,t (x) of Sect. 4.3.

8.3. Two-term factorisation in C-type. Inspired by (5.3), let us consider the particular
example of the general factorisation (8.2) applied in the case when n = 2r , a = r , and
the r × r matrices A1, Ā1,A2, Ā2 are explicitly given by:

A1 =

⎛

⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 ar ′,r
... . .

. a(r−1)′,r−1 ar ′,r−1

a2′,1 a2′,2 . .
. ...

a1′,1 a2′,1 · · · ar ′,1

⎞

⎟⎟⎟⎠ , Ā1 =

⎛

⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ 2ā1,1′
... . .

. 2ā2,2′ ā1,2′

ār−1,r ′ 2ār−1,(r−1)′ . .
. ...

2ār,r ′ ār−1,r ′ · · · ā1,r ′

⎞

⎟⎟⎟⎠ ,

A2 =

⎛

⎜⎜⎜⎝

a1,r ′ · · · ar−1,r ′ 2ar,r ′
... . .

. 2ar−1,(r−1)′ ar−1,r ′

a1,2′ 2a2,2′ . .
. ...

2a1,1′ a1,2′ · · · a1,r ′

⎞

⎟⎟⎟⎠ , Ā2 =

⎛

⎜⎜⎜⎝

ār ′,1 · · · ā2′,1 ā1′,1
... . .

. ā2′,2 ā2′,1

ār ′,r−1 ā(r−1)′,r−1 . .
. ...

ār ′,r ār ′,r−1 · · · ār ′,1

⎞

⎟⎟⎟⎠ , (8.53)

cf. (5.4), where the only nontrivial commutators of the above entries are:
[
a j,i , āi, j

] = 1, 1 ≤ i, j ≤ 2r. (8.54)

In this setup, both matrices Lr (x) and L̄r (y) of (8.1) are actually Cr -type Lax ma-
trices. In fact

L(+, . . . ,+︸ ︷︷ ︸
r

)(x) = Lr (x) =
⎛

⎝ xIr − Ā1A1 Ā1

−A1 Ir

⎞

⎠ (8.55)

appeared in our recent work [FT, (3.50)]. On the other hand, the Lax matrix L̄r (y)

can be obtained from (8.55) via the Weyl group action followed by a particle-hole
transformation:

L(−, . . . , −︸ ︷︷ ︸
r

)(y) = L̄r (y) = SL(+,...,+)(y)S−1
∣∣∣

P.H.

=
⎛

⎝
Ir JrA1Jr

−Jr Ā1Jr yIr − Jr Ā1A1Jr

⎞

⎠

∣∣∣∣∣∣
P.H.

(8.56)

with the 2r × 2r similarity matrix S given by:

S =
⎛

⎝
0 Jr

−Jr 0

⎞

⎠ = B(−1,...,−1), (8.57)

cf. notation (5.18), and the total particle-hole transformation (denoted P.H.) given by:

āi, j ′ �→ −ai, j ′ , a j ′,i �→ ā j ′,i for all 1 ≤ i ≤ j ≤ r. (8.58)
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Let us stress right away that both L(+,...,+)(x) and L(−,...,−)(x) can be obtained from
the Lax matrix L(x) of (5.3) via the renormalized limit procedures (preserving the
property of being Lax):

L(+,...,+)(x) = lim
t→∞

{
L(x − t) · diag

(
1, . . . , 1︸ ︷︷ ︸

r

;− 1
2t , . . . ,− 1

2t︸ ︷︷ ︸
r

)}
,

L(−,...,−)(x) = lim
t→∞

{
diag
(

1
2t , . . . ,

1
2t︸ ︷︷ ︸

r

; 1, . . . , 1︸ ︷︷ ︸
r

)
· L(x + t + r + 1)

}∣∣∣
Ā�→−Ā2,A �→−A2

.

(8.59)

Remark 8.60. We note that the commutation relations (8.54) are invariant under the
transformation a j,i �→ −ai, j , āi, j �→ −ā j,i , and that furthermore such transformations
do not affect the trace.

Then, the transformation (8.3) is again induced by the similarity transformation (8.12)
with

S = exp

⎡

⎣
∑

1≤i≤ j≤r

(
1 + δ

j
i

)
āi j ′ai j ′

⎤

⎦ , (8.61)

where we note that all the summands in (8.61) pairwise commute.
Combining the factorisation formula (8.2) with the similarity transformation (8.12),

we obtain:

L(+,...,+)(x + t)L(−,...,−)(x − t − r − 1) = SL(x)GS−1, (8.62)

where

G =
⎛

⎝ Ir Ā2

0 Ir

⎞

⎠ , (8.63)

S is given by (8.61), and L(x) is precisely the Cr -type Lax matrix of (5.3).
Following (8.24), let us now define the Q-operators Q(+,...,+)(x),

Q(−,...,−)(x) ∈ End(C2r )⊗N via:

Q(+,...,+)(x) = t̂rD(+,...,+)

(
L(+,...,+)(x) ⊗ · · · ⊗ L(+,...,+)(x)︸ ︷︷ ︸

N

)
(8.64)

and

Q(−,...,−)(x) = t̂rD(−,...,−)

(
L(−,...,−)(x) ⊗ · · · ⊗ L(−,...,−)(x)︸ ︷︷ ︸

N

)
, (8.65)

cf. (3.37), with the twists D(+,...,+) and D(−,...,−) defined in analogy with (8.25)–(8.27)
via:

D(+,...,+) =
∏

1≤i≤ j≤r

(
τiτ j
)−āi j ′a j ′i , D(−,...,−) =

∏

1≤i≤ j≤r

(
τiτ j
)−ā j ′iai j ′ . (8.66)
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We note that the twist D(+,...,+) can be further expressed via {Fi i }r
i=1 of (5.7, 5.13) as:

D(+,...,+) =
r∏

i=1

τ
Fi i −t
i . (8.67)

Let us stress right away that the actions of the twists D(+,...,+) and D(−,...,−) on the
corresponding Fock modules are uniquely determined (up to scalar functions) by the
following conditions:

DL(+,...,+)(x)D−1 = D−1
(+,...,+)L(+,...,+)(x)D(+,...,+),

DL(−,...,−)(x)D−1 = D−1
(−,...,−)L(−,...,−)(x)D(−,...,−),

(8.68)

with

D = diag
(
τ1, . . . , τr , τ

−1
r , . . . , τ−1

1

)
, (8.69)

cf. (8.27). The relations (8.68) ensure the commutativity of Q(+,...,+)(x) and Q(−,...,−)(x)

defined via (8.65, 8.65) with the transfer matrix T(1,0,...,0)(y) of the defining fundamental
representation in the auxiliary space, see Remark 3.67(b).

Building the monodromy matrices (by considering the N -fold tensor product on the
matrix space) from (8.62), taking the normalized trace, and evoking the relation (8.67),
the factorisation formula (8.62) implies the following factorisation for the transfer ma-
trices T +

(+1,...,+1),t (x) of (5.39):

T +
(+1,...,+1),t (x) = ch+(+1,...,+1),t · Q(+,...,+)(x + t)Q(−,...,−)(x − t − r − 1) (8.70)

with

ch+(+1,...,+1),t = tr
r∏

i=1

τ
Fi i
i =

r∏

i=1

τ t
i

∏

1≤i≤ j≤r

1

1 − τ−1
i τ−1

j

. (8.71)

In analogy with Sect. 8.2, the factorisation formula (8.2) can be conjugated by B�μ
of (5.18) to provide an analogue of (8.18) with the index I ∈ Sa being replaced by
�μ ∈ {±1}r . To keep our presentation short, we shall generate the remaining Q-operators
directly from Q(+,...,+)(x) of (8.65) using the action of the Weyl group via:

Q �μ(x) = (B�μ ⊗ · · · ⊗ B�μ
)

Q(+,...,+)(x)
(
B�μ ⊗ · · · ⊗ B�μ

)−1
∣∣∣{

τi �→τ−1
i | μi =−1

}.

(8.72)

To this end, we should stress right away that the action of the Weyl group on the
Q-operator Q(−,...,−)(x) of (8.65) generates the same Q-operators Q �μ(x). More pre-
cisely, we have:

Q �̄μ(x) = (B�μ ⊗ · · · ⊗ B�μ
)

Q(−,...,−)(x)
(
B�μ ⊗ · · · ⊗ B�μ

)−1
∣∣∣{

τi �→τ−1
i | μi =−1

},

(8.73)

where we use the notation of (5.52):

�̄μ = −�μ. (8.74)
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The above claim, that is the operators (8.72) satisfy (8.73), follows from the equality:

B�μL(−,...,−)(x)

∣∣∣
P.H.

B−1
�μ = B �̄μL(+,...,+)(x)B−1

�̄μ
∣∣∣a j ′i �→μi μ ja j ′i
āi j ′ �→μi μ j āi j ′

(8.75)

that relates the Lax matrices from our definition of Q(±,...,±)(x). Here, P.H. stands
for undoing the total particle-hole (8.58). As mentioned in Remark 8.60, since only
powers of āa contribute to the trace, the resulting Q-operators are invariant under the
transformations a → −a, ā → −ā, and thus (8.75) indeed implies (8.73). According
to (8.56), the equality (8.75) is equivalent to:
(

B�μB(−1,...,−1)

)
L(+,...,+)(x)

(
B�μB(−1,...,−1)

)−1 = B �̄μL(+,...,+)(x)B−1
�̄μ
∣∣∣a j ′i �→μi μ ja j ′i
āi j ′ �→μi μ j āi j ′

.

(8.76)

To prove the latter (and thus establish (8.73)), we note that the endomorphisms (5.18)
satisfy:

B−1
(−1,...,−1) B−1

�μ B �̄μ =
r∑

i=1

μi (eii + ei ′i ′) , (8.77)

cf. Remark 5.19. Thus, conjugating L(+,...,+)(x) by B−1
(−1,...,−1) B−1

�μ B �̄μ (which is diag-
onal in the standard basis) and further applying the above change of oscillators leaves
L(+,...,+)(x) invariant:

L(+,...,+)(x) =
(

r∑

i=1

μi (eii + ei ′i ′)

)
L(+,...,+)(x)

(
r∑

i=1

μi (eii + ei ′i ′)

)−1
∣∣∣∣∣∣a j ′i �→μi μ ja j ′i
āi j ′ �→μi μ j āi j ′

.

(8.78)

Evoking the action of B�μ on the Lax matrices L �μ(x) and the behaviour of the twists,
as discussed in Sect. 5.2, we see that conjugating (8.62) with B�μ and subsequently in-
terchanging the twists, we obtain the following generalization of the factorisation (8.70)
for any �μ ∈ {±1}r :

T +
�μ,t (x) = ch+�μ,t · Q �μ(x + t)Q �̄μ(x − t − r − 1) (8.79)

with

ch+�μ,t = tr
r∏

i=1

τ
F �μ

i i
i =

∏r
i=1 τ

μi

(
t+(r−i+1)δ−

μi
+
∑i

k=1 δ−
μk

)

i
∏

1≤i≤ j≤r

(
1 − τ−1

i τ
−μi μ j
j

) , (8.80)

cf. (5.26, 5.44, 5.54).
Combining the factorisation formula (8.79) with Theorem 5.41, we get (cf. (5.38)

and (8.80)):

Proposition 8.81. For any t ∈ N, we have:

Tr,t (x) =
∑

�μ∈{±1}r

(−1)l( �μ) ch+�μ,t · Q �μ(x + t)Q �̄μ(x − t − r − 1). (8.82)
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8.4. Two-term factorisation in D-type. Let us now discuss the straightforward D-type
version of the results from the previous subsection (going back to [Fr, §5.1]). Consider
the particular example of the general factorisation (8.2) applied in the case when n = 2r ,
a = r , and the r × r matrices A1, Ā1,A2, Ā2 are explicitly given by:

A1 =

⎛

⎜⎜⎜⎝

ar ′,1 · · · ar ′,r−1 0
... . .

. 0 −ar ′,r−1

a2′,1 0 . .
. ...

0 −a2′,1 · · · −ar ′,1

⎞

⎟⎟⎟⎠ , Ā1 =

⎛

⎜⎜⎜⎝

ā1,r ′ · · · ā1,2′ 0
... . .

. 0 −ā1,2′

ār−1,r ′ 0 . .
. ...

0 −ār−1,r ′ · · · −ā1,r ′

⎞

⎟⎟⎟⎠ ,

A2 =

⎛

⎜⎜⎜⎝

a1,r ′ · · · ar−1,r ′ 0
... . .

. 0 −ar−1,r ′

a1,2′ 0 . .
. ...

0 −a1,2′ · · · −a1,r ′

⎞

⎟⎟⎟⎠ , Ā2 =

⎛

⎜⎜⎜⎝

ār ′,1 · · · ā2′,1 0
... . .

. 0 −ā2′,1
ār ′,r−1 0 . .

. ...

0 −ār ′,r−1 · · · −ār ′,1

⎞

⎟⎟⎟⎠ , (8.83)

cf. (6.3), where the only nontrivial commutators of the above entries are given by (8.54).
In this setup, both matrices Lr (x) and L̄r (y) of (8.1) are actually Dr -type Lax

matrices. In fact, the Lax matrix L(+,...,+)(x) = Lr (x), see (8.55), appeared first in
[Fr, §4.1], cf. [FT, (2.231)]. On the other hand, the Lax matrix L(−,...,−)(y) = L̄r (y)

can be obtained from (8.55) via the Weyl group action (8.57) followed by the total
particle-hole transformation (8.58), exactly as in (8.56).

Similarly to (8.59), we note that both L(+,...,+)(x) and L(−,...,−)(x) can be obtained
from the Lax matrix L(x) of (6.2) via the renormalized limit procedures (preserving the
property of being Lax):

L(+,...,+)(x) = lim
t→∞

{
L(x − t) · diag

(
1, . . . , 1︸ ︷︷ ︸

r

;− 1
2t , . . . , − 1

2t︸ ︷︷ ︸
r

)}
,

L(−,...,−)(x) = lim
t→∞

{
diag
(

1
2t , . . . ,

1
2t︸ ︷︷ ︸

r

; 1, . . . , 1︸ ︷︷ ︸
r

)
· L(x + t + r − 1)

}∣∣∣
Ā�→−Ā2,A�→−A2

.

(8.84)

Then, the transformation (8.3) is again induced by the similarity transformation (8.12)
with

S = exp

⎡

⎣
∑

1≤i< j≤r

āi j ′ai j ′

⎤

⎦ , (8.85)

where we note that all the summands in (8.85) pairwise commute.
Combining the factorisation formula (8.2) with the similarity transformation (8.12),

we obtain:

L(+,...,+)(x + t)L(−,...,−)(x − t − r + 1) = SL(x)GS−1, (8.86)

where

G =
⎛

⎝ Ir Ā2

0 Ir

⎞

⎠ , (8.87)

S is given by (8.85), and L(x) is precisely the Dr -type Lax matrix of (6.2).
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Following (8.24, 8.65, 8.65), we define the Q-operators Q(+,...,+)(x),

Q(−,...,−)(x) ∈ End(C2r )⊗N via:

Q(+,...,+)(x) = t̂rD(+,...,+)

(
L(+,...,+)(x) ⊗ · · · ⊗ L(+,...,+)(x)︸ ︷︷ ︸

N

)
(8.88)

and

Q(−,...,−)(x) = t̂rD(−,...,−)

(
L(−,...,−)(x) ⊗ · · · ⊗ L(−,...,−)(x)︸ ︷︷ ︸

N

)
, (8.89)

cf. (3.37), with the twists D(+,...,+) and D(−,...,−) defined in analogy with (8.25)–(8.27)
via:

D(+,...,+) =
∏

1≤i< j≤r

(
τiτ j
)−āi j ′a j ′i , D(−,...,−) =

∏

1≤i< j≤r

(
τiτ j
)−ā j ′iai j ′ , (8.90)

cf. (8.66). Similarly to C-type considered in the previous subsection, we note that the
actions of these twists on the Fock modules are uniquely determined (up to scalar func-
tions) by the condition (8.68). Crucially, the twist D(+,...,+) can be further expressed via
{Fi i }r

i=1 of (6.4, 6.9) as:

D(+,...,+) =
r∏

i=1

τ
Fi i −t
i . (8.91)

Building the monodromy matrices (by considering the N -fold tensor product on the
matrix space) from (8.86), taking the normalized trace, and evoking the relation (8.91),
the factorisation formula (8.86) implies the following factorisation for the transfer ma-
trices T +

(+1,...,+1),t (x) of (6.44):

T +
(+1,...,+1),t (x) = ch+(+1,...,+1),t · Q(+,...,+)(x + t)Q(−,...,−)(x − t − r + 1) (8.92)

with

ch+(+1,...,+1),t = tr
r∏

i=1

τ
Fi i
i =

r∏

i=1

τ t
i

∏

1≤i< j≤r

1

1 − τ−1
i τ−1

j

. (8.93)

Similarly to our treatment of C-type in the previous subsection, we shall generate
the remaining Q-operators directly from Q(+,...,+)(x) of (8.89) via:

Q �μ(x) = (B�μ ⊗ · · · ⊗ B�μ
)

Q(+,...,+)(x)
(
B�μ ⊗ · · · ⊗ B�μ

)−1
∣∣∣{

τi �→τ−1
i | μi =−1

}.

(8.94)

As in type C , let us note the following key compatibility of this construction:

Q �̄μ(x) = (B�μ ⊗ · · · ⊗ B�μ
)

Q(−,...,−)(x)
(
B�μ ⊗ · · · ⊗ B�μ

)−1
∣∣∣{

τi �→τ−1
i | μi =−1

}.

(8.95)
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The latter is a consequence of the following analogue of (8.75):

B�μL(−,...,−)(x)

∣∣∣
P.H.

B−1
�μ = B �̄μL(+,...,+)(x)B−1

�̄μ (8.96)

(where P.H. stands for undoing the total particle-hole (8.58)), which follows from the
natural compatibility among the endomorphisms (6.14), cf. (8.77):

B−1
(−1,...,−1) B−1

�μ B �̄μ = I2r . (8.97)

Thus, similarly to C-type, the factorisation (8.92) admits the generalization for any
�μ ∈ {±1}r :

T +
�μ,t (x) = ch+�μ,t · Q �μ(x + t)Q �̄μ(x − t − r + 1) (8.98)

with

ch+�μ,t = tr
r∏

i=1

τ
F �μ

i i
i =

∏r
i=1 τ

μi

(
t+(r−i−1)δ−

μi
+
∑i

k=1 δ−
μk

)

i
∏

1≤i< j≤r

(
1 − τ−1

i τ
−μi μ j
j

) , (8.99)

cf. (6.20) and (6.49).
Combining the factorisation formula (8.98) with Theorem 6.46, we get (cf. (6.26),

(6.43) and (8.99))):

Proposition 8.100. For any t ∈ 1
2N, we have:

T ±
t (x) =

∑

�μ∈{±1}r±

(−1)l( �μ) ch+�μ,t · Q �μ(x + t)Q �̄μ(x − t − r + 1). (8.101)

9. Factorisation for Quadratic BD-types

In this section, we factorise the infinite-dimensional quadratic B D-type transfer ma-
trices (7.40) into the products of two Baxter Q-operators arising from degenerate Lax
matrices, alike Sect. 8.

Consider the following two K × K matrices written in the block form as:

L1(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 + x
(
2 − K

2 − w̄1w1

)
+ 1

4 w̄1Jw̄
T
1 w

T
1 Jw1 xw̄1 − 1

2 w̄1Jw̄
T
1 w

T
1 J − 1

2 w̄1Jw̄
T
1

−xw1 +
1
2 Jw̄

T
1 w

T
1 Jw1 xI − Jw̄T

1 w
T
1 J −Jw̄T

1

− 1
2w

T
1 Jw1 wT

1 J 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.1)

and

LK(y) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 w̄2 − 1
2 w̄2Jw̄

T
2

w2 yI + w2w̄2 −yJw̄T
2 − 1

2w2w̄2Jw̄
T
2

− 1
2w

T
2 Jw2 −ywT

2 J − 1
2w

T
2 Jw2w̄2 y2 + y

(
2 − K

2 + wT
2 w̄

T
2

)
+ 1

4w
T
2 Jw2w̄2Jw̄

T
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.2)
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with I = IK−2, J = JK−2, while the length K − 2 rows w̄1, w̄2 and columns w1,w2 are
given by:

w1 = (a2,1, . . . , aK−1,1)
T , w̄1 = (ā1,2, . . . , ā1,K−1),

w2 = (a1,2, . . . , a1,K−1)
T , w̄2 = (ā2,1, . . . , āK−1,1),

(9.3)

cf. (7.4, 7.5), where the only nontrivial commutators of the above entries are given
by (8.54).

Then, their product can be factorised as follows:

L1

(
x − 1 + t

2 + K
4

)
LK

(
x − t

2 − K
4

)
= L′

1(x)G′, (9.4)

where

G′ =

⎛

⎜⎜⎜⎜⎝

1 w̄′
2 − 1

2 w̄
′
2J(w̄

′
2)

T

0 I −J(w̄′
2)

T

0 0 1

⎞

⎟⎟⎟⎟⎠
(9.5)

and L′
1(x) is the soK-type Lax matrix obtained from L1(x) of (7.22) by replacing

w̄ �→ w̄′
1,w �→ w′

1, with the following transformation in place:

w′
1 = w1 − w2, w′

2 = w2,

w̄′
2 = w̄2 + w̄1, w̄′

1 = w̄1,
(9.6)

cf. (8.3). We note that the right-hand side of (9.4) is independent of w′
2.

Actually, both L1(x) and LK(y) of (9.1, 9.2) are soK-type Lax matrices. In fact,
the Lax matrix L1(x) appeared first in [Fr, §4.2], cf. [FT, (2.237) and §4.3]. On the
other hand, the Lax matrix LK(y) can be obtained from (9.1) via the Weyl group action
followed by a particle-hole transformation:

LK(x) = B̂1′ L1(x)B̂−1
1′
∣∣∣

P.H.
(9.7)

with the similarity matrix B̂1′ = JK, cf. (7.20), and the following particle-hole transfor-
mation P.H.:

w̄1 �→ −wT
2 , w1 �→ w̄T

2 . (9.8)

We also note that the transformation (9.6) is in fact induced by the similarity trans-
formation:

w′
1 = Sw1S−1, w′

2 = Sw2S−1,

w̄′
2 = Sw̄2S−1, w̄′

1 = Sw̄1S−1,
(9.9)

with

S = exp

⎡

⎣
K−1∑

�=2

ā1�a1�

⎤

⎦ , (9.10)
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where all the summands in the right-hand side of (9.10) pairwise commute,
cf. (8.12, 8.13).

Thus, combining the factorisation formula (9.4)with the similarity transformation (9.9),
we get:

L1

(
x − 1 + t

2 + K
4

)
LK

(
x − t

2 − K
4

)
= SL1(x)GS−1, (9.11)

where L1(x) is precisely the soK-type Lax matrix of (7.22), the matrix G is obtained
from (9.5) by replacing w̄′

2,w
′
2 with w̄2,w2, and S is given by (9.10).

Remark 9.12. In type D, the factorisation formula (9.11) first appeared in [Fr, (5.30)].

Let us stress right away that both L1(x) and LK(x) can be obtained from the Lax
matrix L1(x) of (7.22) via the renormalized limit procedures (which clearly preserve
the property of being Lax):

L1(x) = lim
t→∞

{
L1

(
x + 1 − t

2 − K
4

)
· diag

(
1;− 1

t , . . . ,− 1
t︸ ︷︷ ︸

K−2

; 1
t2

)}∣∣∣
w̄ �→w̄1,w �→w1

,

LK(x) = lim
t→∞

{
diag
(

1
t2

; 1
t , . . . ,

1
t︸ ︷︷ ︸

K−2

; 1
)

· L1

(
x + t

2 + K
4

) }∣∣∣
w̄ �→−w̄2,w �→−w2

. (9.13)

Following (8.24, 8.65, 8.65, 8.89, 8.89), we define the Q-operators
Q1(x), QK(x) ∈ End(CK)⊗N via:

Q1(x) = t̂rD1

(
L1(x) ⊗ · · · ⊗ L1(x)︸ ︷︷ ︸

N

)
(9.14)

and

QK(x) = t̂rDK

(
LK(x) ⊗ · · · ⊗ LK(x)︸ ︷︷ ︸

N

)
, (9.15)

cf. (3.37), with the twists D1 and DK defined in analogy with (8.25)–(8.27) via:

D1 = τ
−∑K−1

�=2 ā1�a�1
1

r∏

i=2

τ
ā1iai1−ā1i ′ai ′1
i ,

DK = τ
−∑K−1

�=2 ā�1a1�
1

r∏

i=2

τ
āi1a1i −āi ′1a1i ′
i . (9.16)

We note that the twist D1 can be further expressed via {Fi i }r
i=1 of (7.12, 7.13) as:

D1 = τ−t
1

r∏

i=1

τ
Fi i
i . (9.17)

Similarly to (8.27) and (8.68), we should stress right away that the actions of the twists
D1 and DK on the corresponding Fock modules are uniquely determined (up to scalars)
by the conditions:

DL1(x)D−1 = D−1
1 L1(x)D1, DLK(x)D−1 = D−1

K LK(x)DK, (9.18)
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with D given by:

Dr−type : D = diag
(
τ1, . . . , τr , τ

−1
r , . . . , τ−1

1

)
,

Br−type : D = diag
(
τ1, . . . , τr , 1, τ

−1
r , . . . , τ−1

1

)
.

(9.19)

Building the monodromy matrices (by considering the N -fold tensor product on the
matrix space) from (9.11), taking the normalized trace, and evoking the relation (9.17),
the factorisation formula (9.11) implies the following factorisation formula for the trans-
fer matrices T +

1,t (x) of (7.40):

T +
1,t (x) = ch+1,t · Q1

(
x − 1 + t

2 + K
4

)
QK

(
x − t

2 − K
4

)
(9.20)

with the character ch+1,t = tr
∏r

i=1 τ
Fi i
i given explicitly by:

Dr−type : ch+1,t = τ t
1

∏

1<�≤r

1(
1 − 1

τ1τ�

) (
1 − τ�

τ1

) ,

Br−type : ch+1,t = τ t
1(

1 − 1
τ1

)
∏

1<�≤r

1(
1 − 1

τ1τ�

) (
1 − τ�

τ1

) .

(9.21)

Following Sect. 8, we define 2r Q-operators using the action of the operators B̂k
in (7.20) as:

Qk (x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
B̂k ⊗ · · · ⊗ B̂k

)
Q1(x)

(
B̂−1

k ⊗ · · · ⊗ B̂−1
k

)∣∣∣
τ1↔τk

for 1 ≤ k ≤ r
(

B̂k ⊗ · · · ⊗ B̂k

)
Q1(x)|

τi �→τ−1
i

(
B̂−1

k ⊗ · · · ⊗ B̂−1
k

)∣∣∣∣
τ1↔τk

for r ′ ≤ k ≤ 1′ .(9.22)

The compatibility condition for the QK(x) defined as in (9.15) and the above Q-operators
follows by employing the natural relation satisfied by the endomorphisms of (7.20)
(cf. (8.97)):

B̂k = B̂k′ B̂1′ , k ∈ {1, . . . , r} ∪ {r ′, . . . , 1′}. (9.23)

Acting with the endomorphisms B̂k’s on (9.11) and subsequently interchanging the
twists, we get:

T +
k,t (x) = ch+k,t · Qk

(
x − 1 + t

2 + K
4

)
Qk′
(

x − t
2 − K

4

)
,

T +
k′,t (x) = ch+k′,t · Qk′

(
x − 1 + t

2 + K
4

)
Qk

(
x − t

2 − K
4

)
,

(9.24)

for any 1 ≤ k ≤ r . Here, the characters read

ch+k,t = tr
r∏

i=1

τ
F k

ii
i , ch+k′,t = tr

r∏

i=1

τ
F k′

i i
i ,
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see (7.24, 7.25), and are explicitly given by:

Dr −type : ch+k,t = τ−1
1 · · · τ−1

k−1τ
t+k−1
k

∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
��=k

(
1 − 1

τkτ�

) ,

ch+k′,t = τ−1
1 · · · τ−1

k−1τ
k+1−2r−t
k

∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
��=k

(
1 − 1

τkτ�

) ,

Br −type : ch+k,t = τ−1
1 · · · τ−1

k−1τ
t+k−1
k(

1 − 1
τk

)∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
��=k

(
1 − 1

τkτ�

) ,

ch+k′,t = τ−1
1 · · · τ−1

k−1τ
k−2r−t
k(

1 − 1
τk

)∏
1≤�<k

(
1 − τk

τ�

)∏
k<�≤r

(
1 − τ�

τk

)∏
��=k

(
1 − 1

τkτ�

) ,

(9.25)

cf. (7.25, 7.26) and (7.47, 7.49).
Combining the factorisation formula (9.24) with Theorem 7.43, we arrive at the

following result:

Proposition 9.26. (a) In type Dr , for t ∈ N we have:

T1,t (x) =
r∑

k=1

(−1)k−1 ch+k,t · Qk

(
x − 1 + t

2 + K
4

)
Qk′
(

x − t
2 − K

4

)

+
r∑

k=1

(−1)k−1 ch+k′,t · Qk′
(

x − 1 + t
2 + K

4

)
Qk

(
x − t

2 − K
4

)
.

(9.27)

(b) In type Br , for t ∈ N we have:

T1,t (x) =
r∑

k=1

(−1)k−1 ch+k,t · Qk

(
x − 1 + t

2 + K
4

)
Qk′
(

x − t
2 − K

4

)

+
r∑

k=1

(−1)k ch+k′,t · Qk′
(

x − 1 + t
2 + K

4

)
Qk

(
x − t

2 − K
4

)
.

(9.28)

In the case of B-type, these results are in agreement with the functional relations
found by Tsuboi in [Ts2,Ts4]. In the case of D-type, they appeared in [FFK]; see also
[ESV] where similar relations were derived from the ODE/IM correspondence [DDT].

10. Further Generalizations

One may wonder to which extent our key resolution (1.30) may be further utilized to
study spin chains.

Exceptional types
While the present paper covers all examples of g-resolutions (1.30) with λ = tωi

which can be further viewed as resolutions of Y (g)-modules for g of classical types,
there are also three more examples for the case of exceptional g as follows from [CGY]
(corresponding to the vertices i of the Dynkin diagram of g with the label 1, see our
Sect. 1.4):
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• E6-type: vertices i = 1, 5
• E7-type: vertices i = 1

Type E6: According to (1.44), the transfer matrices T1,t (x) and T5,t (x) of the corre-
sponding finite-dimensional representations of the highest weights tω1 and tω5, respec-
tively, may be written as alternating sums of 27 transfer matrices associated to infinite-
dimensional representations M ′•. Their highest weights are of the form tω +wω(ρ) − ρ,
where ω runs through the set of weights of Lω1 or Lω5 , respectively, and wω ∈ WE6 are
the shortest elements in the Weyl group of E6 such that wω(ω1) = ω or wω(ω5) = ω,
respectively (note that the actions of WE6 on the sets of weights of Lω1 and Lω5 are
transitive, as both representations are minuscule, and furthermore the stabilizers of each
weight are isomorphic to WD5 = (Z/2Z)4 � S5, the Weyl group of D5).

Type E7: According to (1.44), the transfer matrices T1,t (x) of the corresponding finite-
dimensional representations of the highest weight tω1 may be written as alternating
sums of 56 transfermatrices associated to infinite-dimensional representations M ′•. Their
highest weights are of the form tω+wω(ρ)−ρ, where ω runs through the set of weights
of Lω1 and wω ∈ WE7 are the shortest elements in the Weyl group of E7 such that
wω(ω1) = ω (note that WE7 acts transitively on the set of the weights of Lω1 , with a
stabilizer of each weight isomorphic to WE6 ).

It is an interesting problem to realize the aforementioned Y (g)-representations M ′•
through the corresponding explicit Lax matrices at generic values of t ∈ C. To this end,
one should construct:

• two polynomial oscillator-type LaxmatricesL1(x),L5(x) of size 27×27 in type E6

• one polynomial oscillator-type Lax matrix of size 56 × 56 in type E7

Not only those Lax matrices are presently unknown (see [CGY, §7.7] for their semi-
classical limit), but also explicit formulas for the corresponding R-matrices seem to be
missing in the literature.

More general weights
While in the present paper we only treated the examples with λ being a multiple of a
fundamental weight from (1.22), thus being exactly in the framework of the weights
considered in [CGY], we should stress that there do exist other cases when the g-
module resolution (1.30) does become a resolution of Y (g)-modules. In particular, the
oscillator-typeLaxmatrices of [Fr, (5.24)] give rise to the explicit action ofY (so2r )on the
so2r -modules Lt1ω1+t2ωr and Lt1ω1+t2ωr−1 for any t1, t2 ∈ N.

Trigonometric version
The most interesting continuation of the current work, which shall be discussed else-
where, is the generalization of the present results to the trigonometric spin chains. To
this end, let us recall that the representation theory of the finite quantum group Uq(g),
over the field C(q), is equivalent to that of the underlying Lie algebra g. In particular,
the description of the weights of singular vectors in the Verma modules over Uq(g) is
precisely the same as for the Verma modules over g. Thus, the modules M ′

w ·λ of (1.36)
and our key resolutions (1.30) admit q-analogues. It would be interesting to construct
those in a self-contained way. For (g, i) as in (1.22), we therefore get resolutions over
the quantum loop algebra Uq(Lg), giving rise to the trigonometric version of (1.44) that
provides a BGG-type formula for the transfer matrices of finite-dimensional Uq(Lg)-
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representations Ltωi (the length N = 0 case of which recovers an interesting identity on
the corresponding q-characters).

Supersymmetric version
In view of the increasing interest in the integrable structures of supersymmetric gauge
theories as well as recent studies of quantum affine superalgebras and Yangians asso-
ciated to Lie superalgebras, it is desirable to generalize the results of the present paper
to the rational (as well as trigonometric) spin chains of super-type. We plan to return to
this question in the follow-up work.
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