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Abstract

We present a shuffle realization of the GKLO-type homomorphisms for shifted
quantum affine, toroidal, and quiver algebras in the spirit of Feigin and Odesskii
(Funktsional. Anal. Prilozhen. 31(3):57-70, 1997), thus generalizing its rational ver-
sion of Frassek and Tsymbaliuk (Commun. Math. Phys. 392:545-619, 2022) and the
type A construction of Finkelberg and Tsymbaliuk (Arnold Math. J. 5(2-3):197-283,
2019). As an application, this allows us to construct large families of commuting and
g-commuting difference operators, in particular, providing a convenient approach to
the Q-systems where it proves a conjecture of Di Francesco and Kedem (Commun.
Math. Phys. 369(3):867-928, 2019).

Keywords Shuffle algebras - GKLO-type homomorphisms - Quantum Q-systems -
Generalized Macdonald operators - Quantum loop algebras

Mathematics Subject Classification 17B37 - 81R10

1 Introduction
1.1 Summary

The key result of this note is the shuffle realization of the GKLO-type homomorphisms
from various shifted quantum “loop” algebras to the algebras of (localized) difference
operators. We use this to reinterpret the recent results of [4, 5] on the quantum Q-
systems of type A. In the upcoming work, this will be also used as the main technical
ingredient to:
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e prove the regularity of certain trigonometric BC D-type Lax matrices
(generalizing the rational counterpart of [13]),

e develop the integral forms of K -theoretic Coulomb branches
(generalizing the A-type case of [12]),

o study difference operators arising from large families of g-commuting elements in
quantum affine algebras (generalizing [4] with sl been replaced by any simple g).

The GKLO-type homomorphisms for the quantum loop algebras U, (Lg) were first
introduced in [14] (hence, their acronym). Their analogues for the “shifted” versions
(the shift refers to the fact that Cartan currents wli(z) start not necessarily from 20
modes, while the defining relations are kept unchanged) arise naturally in the recent
study of the quantized Coulomb branches, see [1, 2] and [11], providing algebraic
models for the geometric objects.

On the other hand, the shuffle approach provides a convenient combinatorial model for
the positive and negative subalgebras of such quantum algebras. An essential benefit
of this approach is that it allows to work with various elements of quantum algebras
that are provided by complicated formulas in the original loop generators, making
it hard to work with them directly. In the present note, we focus on the following
cases: quantum affine of any simple g, quantum toroidal of gl; and sl,, (n > 3) with
two parameters, and quantum quiver algebras, for which the shuffle realizations were
established in [19], [15, 16], and [18], respectively.

Let U; denote the corresponding positive subalgebra, generated by the loop gener-
ators {e; ,}’ gIZ (here, I denotes a labeling set, while the subscript “L” is merely used
to remind of the loop realization, in spirit of [3]) subject to the corresponding defining
relations. Then, one considers an N’-graded vector space S = @ Sk, with S

consisting of multisymmetric rational functions in the variables {x; ,}il glrfk" subject

to rather simple “pole” conditions, equipped with an algebra structure via the shuffle
product x: Sg x Sy — Sgy¢ given by

1
F(...,Xi,l, cees Xikis ...)*G(...,x,"l, e Xils ) = W
[Ties kit - &i!
i'el r'>kjs
1<r<k; k~/<r/§k-/+l~/ xi,r
xSym | F ({xi»’}ie_l_ l) G ({xiﬂr/}i’lel S ) ' H H it <x )
4 ’
iel r<k; bLr

The rational ¢-factors are specifically chosen to allow for an algebra embedding
Y:Uyf < S givenby ¢, > xi| forall iel,reZ. )]

On the other hand, (the restriction of) the aforementioned GKLO-type homomor-
phism

& U7 — A, )
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+1 D:I:l}l<r<a,

to the algebra .Aa of localized difference operators, generated by {w;"., icl

as well as {(w; , — q ;)] }:”;SZ subject to

8ii8
(Wi, Wjs]=0=I[Dj,,Dj,] and D;,w;,=gq," "w;D;, forsome g,

is explicitly given by specifying d~>(ei, r), reminiscent of the Gelfand—Tsetlin formulas
in type A.

Thus, our main construction is the algebra homomorphism

~ ~

$: 8 — A, A3)

where .Z; denotes a localization of .ZQ at some other elements w; , — yWw; s, given by

5 _ 1<p<m’ =
Sk2 E il Z E ({Wz r4; - 1)} ) (rational prefactor) - l_[ D; m' 4

o) o iel.r<a icl
my +.tmg! =ki 4

meN Viel
and such that its composition with T of (1) recovers ® of (2):
d=doT:U; — A, )

In particular, the image of U;” under the composition (5) is in the subalgebra JZQ of Vzl;

This & can be perceived as a trigonometric counterpart of a much older construction
from [9].

We want to emphasize that this construction of ® is a general phenomenon that applies
in a much wider setup. However, if one wishes to remain in the realm of quantum
algebras, then one needs to restrict ® to the image of the embedding Y of (1). The
latter is often described by certain “wheel” conditions, see (16,42, 63, 89) for the cases
treated in the present note, which actually constitutes the core of the aforementioned
shuffle algebra isomorphisms.

In the simplest case of quantum affine s(;, some of the resulting difference operators
can be patched nicely to form a g-commuting family satisfying the quantum Q-system
relations of type A. On the other hand, for the case of quantum toroidal gl;, we
obtain the famous Macdonald difference operators as well as their generalizations from
[5]. Finally, for the case of quantum toroidal s[,, the images of natural commutative
subalgebras of the quantum toroidal U; give rise to compelling large families of
pairwise commuting difference operators (it is interesting to understand their relation
to the recent construction of [20], if any).
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1.2 Outline of the paper

The structure of the present paper is the following:

e In Sect. 2, we recall the notion of shifted quantum affine algebras and the GKLO-
type homomorphisms 5,%; of (9), following [11]. The main result of this section is

Theorem 2.8, which provides a shuffle realization of CTD,A;’Z restricted to the positive
and negative subalgebras (actually, extending it to larger algebras S(® and S(9)-°P,
whose elements are rational functions of (13) that do not necessarily satisfy the wheel
conditions (16)). As an application, we construct a natural family of elements in the
shifted quantum affine algebras whose E)fj’;—images are given by simple and interesting
formulas of Lemma 2.12. In Remark 2.10, we explain the resemblance between our
Theorem 2.8 and a much older result [9, Proposition 2].

e In Sect. 3, we generalize the results of Sect. 2 to the context of shifted quan-
tum toroidal algebras of gl; (depending on two parameters). The main result of this
section is Theorem 3.10, providing shuffle realization of the restrictions of the homo-
morphisms % from Proposition 3.4 to the positive and negative subalgebras (again
extended to the larger algebras S and S°P). In Lemma 3.12, we derive interesting
difference operators as the images of (52, 53).

e In Sect. 4, we generalize the results of Sect. 2 to the context of shifted quantum
toroidal algebras of sl,, (depending on two parameters). The main result of this section
is Theorem 4.8, providing shuffle realization of the restrictions of the homomorphisms

CT)%’Z from Proposition 4.3 to the positive and negative subalgebras (extended to the

larger algebras S and SI"1-°P). In Lemma 4.10, we get interesting difference operators
as the images of (72, 73). In Example 4.11, we use the shuffle descriptions [10, 21, 22]
of the Bethe and horizontal Heisenberg subalgebras to construct large commutative
families of difference operators.

e In Sect. 5, we generalize the results of Sect. 2 to the context of (shifted)
quantum quiver algebras as recently introduced in [18]. The main result of this
section is Theorem 5.7, providing shuffle realization of the restrictions of the new
GKLO-type homomorphisms from Proposition 5.3 to the positive and negative
subalgebras (extended to the larger algebras S¢ and S2°P), in analogy with The-
orems 2.8, 3.10, 4.8.

e In Sect. 6, we present a shuffle interpretation of the quantum Q-system of type A,
thus simplifying proofs of [4, Theorems 2.10, 2.11], see Propositions 6.3, 6.7, 6.8. We
also match the difference operators of [4, §6] with those from Sect. 2 in the simplest
case of g = sl,, see Lemma 6.12 and Proposition 6.13. Finally, in Lemma 6.15, we
explain how the images of the Cartan and negative subalgebras can be expressed via
the images of finitely many elements in the positive subalgebra, after a localization at
two elements.

e In Sect. 7, we provide a shuffle interpretation of the (¢, g)-deformed Q-system of
type A as recently investigated in [5]. In particular, we identify the generalized Mac-
donald operators (124) of [5] with the elements of Lemma 3.12, see Proposition 7.13.
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This clarifies a shuffle approach in [5] and also establishes [5, Conjecture 1.17], see
Theorem 7.14.

2 Shuffle realization of GKLO-type homomorphisms for UZ‘+ u-

2.1 Shifted quantum affine algebra

Let g be a simple Lie algebra, and {«;"};es (resp. {o;}ics) be the simple roots (resp.
simple coroots) of g. Let (-, -) denote the corresponding pairing on the root lattice,
and set d; = © éa" ) ¢ {1,2,3}. Let (c;j)i, jer be the Cartan matrix of g, so that
dicij = (), Ot;-/) = djcji. Let A be the coweight lattice of g, and AT C A be the
submonoid of dominant integral weights.

Given coweights ,ui € A, set bt = bt ic1 € Z' with bt = ay(ui). Followin
g [4 i i i g
[11, §5@1)], we define the simply connected version of shifted quantum affine alge-
bra, denoted by UZCJr u- ot U5 - as the associative C(g)-algebra generated by
reloste—bt . . .
{eir, fir, @/fijE Lk (Wiiij_i)’l};ee ] S =h with the following defining relations (for

alli, jelande, € € {:Il:}):

i@ v5 1 =0, ¥% o 7,07 =W 0™ i =1 WD

i, FbE i\ Fb;
(z—q;" wyei(2)e;j(w) = (g;"z — we;(w)ei (2), (U2)
("2 = w) /i@ fiw) = (2 — g;" w) f; (W) fi 2), U3)
(2 — g " wYf (e (w) = (q;" 2 — we; (W)Y (2), (U4)
@7z — WY Q) fiw) = (2 — g w) f;(w)Yf (2), (US)
[ei(2). f7(w)] = %6 (=) W@ -y @). (u6)

l—c,-j
1—c¢j
Sym Z(—l)’[ rcj] ei(z1) - -ei(zr)ej(w)ei(zr41) - - €i(zi—¢;) =0,
o

21,--<,Z17ri1~ =0 i

7
I—Cij

1 —cij
Sym Z(—l)’[ r”] Fi@) - fi@) fiw) fiGran) - fi@ie) =0,
.

Zlq--lefcij r=0 i

(UB)

e qdi - L q"—q™™ tmy . Im—r+1]y-[m]
where g; 1= ¢, [a, b], = (lb — )C.- ba, [m]y = =T [r]q W’
Sym stands for the symmetrizationin zy, .. ., zy, and the generating series are defined

215-0094s
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as follows:

ei@:=Y e ", fi@:=) fi,sz7,

rez rez
Vi@ = Y Ui T 8@ =) 7 6)
rZ_bii rez

Let USC_;< . Usc,> . Usc,()
wtp

i g be the C(g)-subalgebras of UZC_F,M_ generated by

£ _pE . .
{fl-,r}lTEeIZ, {ei,r}?EeIZ, {wl.iisi, (llfl.ibi)fl}f’e]_ ", respectively. The following result
is standard:

Proposition 2.2 [11] (a) (Triangular decomposition of UZC+ M_) The multiplication
map

sc, < sc,0 sc,> sc
mU7 QU _ QUL - —> _
whp wtp wtop W

is an isomorphism of C(q)-vector spaces.

(b) The algebras U;CJ;;,, UZCJ;Z,, and UZ&?M, are isomorphic to the C(q)-algebras
IRt :

generated by {f,-’r}fEEIZ, {ei,r}{glz, and {wij;:sii’ (wiipbii) l}fzd " with the defining
relations (U3, U8), (U2, U7), and (U1), respectively. In particular, U;c;jf, UZC+’>H,
are independent of u* € A.

The algebras U;Cﬂ;r and U&CMJr -
see [11, p. 162]. Therefore, we do not lose generality by considering only Uq@ =
Ué‘ = U&Cﬂ in the rest of this note. The quantum loop algebra U, (Lg) is isomorphic

to US,CO/(I/fjJ,row,'To - ])iEI-

are naturally isomorphic for any u* € A,

2.3 GKLO-type homomorphisms

Fix an orientation of the graph Dyn(g) obtained from the Dynkin diagram of g by
replacing all multiple edges by simple ones. The notation j — i (resp. j — i or
Jj < i) is to indicate an edge (resp. oriented edge pointing towards i or j) between
the vertices i, j € Dyn(g). We fix a dominant coweight A € A™ and a coweight
i € A, such that A — u = > ., ajo; with a; € N. We also fix a sequence

iel
A = (wj,...,wi,) of fundamental coweights, such that Z,I{VZI w;, = A, as well
as a sequence z = (21, ...,zy) € (C*)V.
Consider the associative C(g)-algebra A?mc generated by {Dl.irl , Wzirl /2 }} eflr =% sub-
ject to

1/2 1/2
[Dir. Dyl = w2 w;

1/2 8ijbrs  1/2
Di,er{S =4q; Y rst{S D; @)

£1/2, F1/2 _

i,r i,r ’

— +1 pFl _
]_O’ Di,rDi,r =W
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foralli,jel, 1 <r<a;, 1 <s<aj Let Afmc be the localization of Afrac by the
1<r#s=<a;

iClomez, s which obviously satisfies the

multiplicative set generated by {w; » —g;" W; s}
Ore conditions. We also define:

iy=i _ aj A s#r .
z@ =[] (1 = q’f), Wi(2) :=ﬂ<1 = W;) Wir@ =[] (1 —%)

1<s<N r=1 1<s=<a;
(®)

The following result has been established in [11, Theorem 7.1] (in the unshifted case
ut = p~ = 0, more precisely for U, (Lg), this result appeared without a proof
in [14]):

Proposition 2.4 [11] There exists a unique C(q)-algebra homomorphism
UM - 'Zfrac ®

such that

(‘j,

E,‘(Z)D—) 21_[W,t1_[1_[ z],/2 Z (Wi,r) Z(Wzr) l_[l_[Wj —L],—Zp )Dlr,

w,
’tl j—it=1 z lr(lr)]—npl

(],

1 2
i@~ = [TIIw” Z‘S(qivzw’r) v TTTT Wi, o 10)
—1 Wi r (Wi r

1 j<it=1 j<ip=1

e +
L Zi i —Cji—
VEQ) HWHHH /2 (Wi(z)W(iZ()q-_z )1‘[ [Twia; 2pz)) .

j—it=1 j—i p=1

We write y ()T for the expansion of a rational function y (z) in zT', respectively.

2.5 Shuffle algebra realization of the positive and negative subalgebras

According to Proposition 2.2(b), we have algebra isomorphisms forany ut, u~ € A:

U{j‘,> AN U;(Lg) givenby e, +> ¢, for i€l ,reZ, an

U(;"<;>U‘]<(Lg) givenby fi, > fi, for iel, reZ.

We also note the algebra isomorphism
U;(Lg)— Uy (Lg)™ givenby fi, e, for iel.reZ,  (12)

where for any algebra A we use AP to denote the algebra with the opposite multipli-
cation.
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22 Page8of43 A. Tsymbaliuk

Consider an N’ -graded C(g)-vector space S'¢) = ®k:(ki)ie JeN! S,(Cg) , with the graded
components N B

o I=r<k
SE)Z . flxirkic =" ‘fec[{xil}lsrski]sk e

unordered T75=k; irtiel
[1:55 [T=k Gir = xjs)

where S; := [];c; S(k;) is the product of symmetric groups. We also fix rational
functions:
z z—q Y
Gi (-):q+ Vi,jel. (14)
w Z—w

Let us now introduce the bilinear shuffle product » on S'® as follows:

1
FCGooxit, o Xiggs oo G X1, oo Xigy, - .0) 1= ﬂ
i'el >k
o lsr<k ' ki <r' <ky+€y - Xir
X Sym F({xl,r}iel )G({xl/,r/},'/EI H 1_[ Giiv m
iel r<k; ’
(15)
Here, k! = [];c; ki!, while the symmetrization of f € C({x;1,..., Xim,}iel) is

defined via:

Sym (f)({xi,lv e Xiom }ie]) = Z f({xi,a,-(l)a ce xi,a,—(m,»)}id)-

og;eSm;)Viel

This endows S® with a structure of an associative C(g)-algebra with the unit

,,,,, )
We are interested in an N/-graded C(g)-subspace of S'® defined by the wheel condi-

tions:
F (1)

for any connected vertices i — j in Dyn(g). Let $©@ < S® denote the subspace
of all such elements F. It is straightforward to check that S® < S@® is x-closed.
The resulting algebra (S (@), *) is called the (trigonometric Feigin—Odesskii) shuffle

algebra of type g.
The following result has been recently established in [19, Theorem 1.7]:

=0 (16

24 —2¢ij —Cij
(X, 15X0,25X0 35000 X 1 ) (W, WG WG w0, X 1wy

Proposition 2.6 [19] The assignments e; , > xl-’yl and fi , xi”lfori el,reZ
give rise to C(q)-algebra isomorphisms:

Y:U;(Lg)— S@ and T:U;(Lg)—> SO, (17)
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2.7 Shuffle algebra realization of the GKLO-type homomorphisms

The main new result of this section is the shuffle algebra interpretation of the homomor-
phisms 5%} We note that the type A case of this result is due to [12, Theorem 4.11],
while its rational counterpart is due to [13, Theorem B.17], where they played crucial
roles.

To this end, forany i € [ and 1 <r < g;, we define:

—cji—2p
L/,/Z Z(Z)H/—H ]_[p lW](Z ! )

Yir(2) = — HW’ ! 1_[ 1_[ Wi (2) ’

q9i — 4, j—it=1

—cji—2p
i12 [1; 1_[ | W (Z ! )
Y, (@) = Y 1_[ H Wi / e ' (1%)
q; jeit=1 l,r(Zqi )

Define the C(g)-algebra .Z?r’;c as the further localization of /T? wac Dy the multiplicative
r<aj,s<aj

set generated by {w; , — g¢"'w jvS}ifj mez - We note that .Afrac is naturally embedded

~, !
into A?r’ac. Then, we have the following result:

Theorem 2.8 (a) The assignment

ki—k?
S(g)aEn—)Hq

iel
(i)

aj my 2p—1) 2p—1) ]<p<m()
—<(p— —2(p—
<2 AT (™) (o)
. iel, 1<r<a;
m(‘)-i- +m(l) =k iel r=1p=1
m(')ENVtEI

Xl—[ 1—[ 1—[ ¢ 1<W1 rql—Z(m 1)/Wz rq—Z(pz 1))

iel 1<r=a; 1<p1<p2<m()

l<p2<m( n

xl_[ 1_[ 1_[ ;l_lfl( zr]q,_Z(pl l)/Wz 1 —2(p2 1))

iel 1<r1#r<a; lfplfmp

I<r<a; 1<p2<mm

I R T A Yy e B 1 e

Jj—i 1<ri<a; 1<p1<m() iel r=1
(19)
gives rise to the algebra homomorphism

R | L (20)
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22 Page 10 0f 43 A. Tsymbaliuk

Moreover, the composition

an Y e
Ulm = U7 (Lg) — S© 2 A 21)

coincides with the restriction of the homomorphism 5%f of (9) to the subalgebra
U“’> of U“ In particulan the image of U;’> under the composition (21) is in the

subalgebra Afmc of Afmc

(b) The assignment

S,((g)’Op 5 F >

(i) .

a; my (i)

1<p<m

2p 2p | =P

E ||||||Y/(W .)-F {W' }
- . | ir\Wi.rg; i,rg; iel.1<r<a;
’"(1')+--<+m¢(zli)=ki iel r=1p=1
mPeNViel

y 1—[ l_[ 1—[ o 1<Wz rq?pz/wl quPl)

iel 1<r<a; 1<p1<p2<m()

1<P2<m(l)
—1,-1 2ps 2pi
X 1_[ 1_[ H q; & (Wi,rzqi /Wi,i‘lqi
iel 1<ri#ry<a; 151715"12)

1<r<aj 1<pr=m}3)

[T T1 I1 Ej_i]<Wj,rzq]2‘p2/Wi,rnqi ) l—“_[D

(t)

Jj<i 1<ri<a; 1SP1§m£il) iel r=1

(22)

gives rise to the algebra homomorphism

14
Z.g@.op __ Afm (23)
Moreover, the composition
(1) T Gt

U= = Uy (Lg) = sleop Aﬁac (24)

coincides with the restriction of the homomorphism 5%f of (9) to the subalgebra
U“’< of UM In particular, the image of Uél’< under the composition (24) is in the

subalgebra Afrac of Afrac

Proof (a) Let us denote the right-hand side of (19) by 5%’Z(E ). A tedious straightfor-
ward verification proves 6,%’Z(E*E/) = 6%(15)6,%@(15’) forany E € S,((g), E' ¢ SEE)

@ Springer



Difference operators via GKLO-type homomorphisms: shuffle... Page110f43 22

with arbitrary k, £ € N’. Thus, 6:\;’;: S@® ,Zl?r’;c is a C(g)-algebra homomorphism,
and clearly the images of {e; ,}’ GEIZ under (21) and 5%[; do coincide. This completes
our proof of Theorem 2.8(a).

(b) The proof of Theorem 2.8(b) is completely analogous. O

Remark 2.9 We note that Theorem 2.8 can actually be used to simplify our proof
of Proposition 2.4. Indeed, it immediately implies the compatibility of the assign-
ment &3% with the defining relations (U2, U3, U7, US), while the compatibility
with (U1, U4, US5) is easily checked. Thus, it remains only to prove the compatibility
with (U6), which is verified by expressing y (z)™ — y(z) ™ as a sum of delta-functions
in a standard way, see [11, Lemma C.1, §C(vi)].

Remark 2.10 The construction (19) is reminiscent of that from [9, Proposition 2]

in the elliptic setting. To this end, we consider the C(g)-algebra ggcq generated
by {Wfrl, Ei ) =/ =", being further localized by the multiplicative set generated by

Cij ;ﬁO,meZ

(iry(j . VIR

{Wi,r - qmcij Wi s }

_Z(Sijgrs
Wi Wjs =W; Wi, Ei Wjs=g wj.sEir,
2w —w;
i t,r — Wj,s
i B = g g (25)
Wir —¢q; Wjs

This algebra is equipped with the following homomorphism to the algebra A’?r;ic:

~, !

q,
Afrac

. g(g),q

: By givenby Wi, — w;,. Ei, > Y, (WD) (26)
Then: _

(a) The restriction of the algebra homomorphism CID,A;’Z to the positive subalgebra
U;L '”, identified with Uq> (Lg) via (11), can be interpreted as a composition of ¢
from (26) and

Wi r

) B, (@27
Z

frac

aj
Dy U;(Lg) — W given by e;(z) ZS (
r=I1

(b) The homomorphisms EQ of (27) can be obtained from their simplest coun-

terparts with ¢ = (0,...,0,1,...,0) via the “twisted tensor product”. To this
end, for a¥,a® e N/ set a1? := g + 4@, and consider the correspond-
ing algebras Bg;c’q, Bg;c’q, Blgr]azc)‘q. Let qu (Lg) be the subalgebra generated by

{eir, Ilfi__k}?glz’kEN. It is endowed with the formal coproduct:

Atei() > e ()Q1+Y;, (2)®ei(z), ¥, @D V¥, Y, (7). (28)
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22 Page 120f43 A. Tsymbaliuk

Following (10), let us extend the algebra homomorphism (27) to ®, U (Lg)— B@.

trac
We also consider the algebra embedding i : Bgazc) a Bt(rlgcq ® Bt(il)cq determined by
w!) o ifr<al : E if r < a”
Wir= aw® itr > a0 TS 0w w?  DEP ) ifr > a(l)
ir—a; i,r—a; i,r—a;

(29)

Then, ® () 4a@: U (Lg)— Bg dc) "4 factors through the composition(Eau) ®3@a(z))oA,
that is: a B

1o EQU)J@O) = (agm ® 52(20 oA.

2.11 Special difference operators

1 . : . +1,1<r<k |5k
Forany k € N" and any multisymmetric Laurent polynomial g € C(q) [ {x; };2; ,

consider the following shuffle element Ek(g) € S(g).

1<r=k;
[Ticr Hlf}’;ﬁsfki (i —q; xl s) 8 <{Xt r},elr )

s<k;

Hi—)j Hrfk} (xj,s = Xir)

N 1,
Ex@ :=]] {q;{’ “ —q,-_l)k"}
iel

(30)

These elements obviously satisfy the wheel conditions (16), due to the presence of the
factor [ [;; ]_[lfr#‘vgk[_ (xjr— qi_zxivs) and thus can be written as Ex(g) = Y (ex(g))

for unique ¢ (g) € Ué"> o~ Uq> (Lg) by Proposition 2.6, so that 5%;;([7?&(57)) =
5%;;(2'&(37)) by Theorem 2.8(a). We also consider I?k(g) € S,Eg)’OP defined via:

1<r<k;
[Tics Hlsr;ﬁsski i —aq; xl s 8 <{x1 r}lelr )

s<k
niﬁj Hrfk; (xi,r — xj,s)

- e
Fe@) =[] {qf’ “a —q,»z)""}

(€29
The following result generalizes its type A case established in [12, Proposition 4.12]:
Lemma 2.12 (a) For E&(g) € S,ig) given by (30), we have:

i kit Wk,
~\z, 1 «~i 2%
% (En(@) =] (HWi,t> '

iel t=I
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1 —Cj Cji+2pw
<s=<aj Ji— Oses; q: is
== J _ 1 J»
Hj—>i l_[reJ; l_[p 1 1 Wi r

x 3
J; Wi s
hela Mier TEE7 (1 )

|Ji|l=k; Viel

<[z TT(TTw)" " TIT1 2 )- (32)

iel rel; iel reJ; iel rel;

rel;
g (twirkicr' )

(b) For Fk(g) € S(g) op given by (31), we have:

le

#h4(Ruen = [T ([Twe)™ "

iel t=1

1<s< ch,-+2pq_2W

=s=a; —Cji _q; i J.s

]_[/ i Hre],' 1_[17=1+3SEJJ. 1 Wi r

<) (
s¢Ji ( _ W_>

2 reJ;
{ql' Wi,r}iell)

Jic{l,....a} [Tier Hre] Wi r
|Jil=k; Yiel ’
ki=1=32; i kj i cij—Dkik;
“T1(TT) L& o). o
iel reJ; iel iel rel;

Proof The proof is straightforward and is based on (19, 22). Due to the presence of the
factors [ [, Hlsraéssk,- (xir— quxi,s), the summands of (19, 22) with at least one

m 5’) > 1 do vanish. This explains why the summations over all partitions of k; into a;

nonnegative terms in (19, 22) are replaced by the summations over all cardinality k;
subsets of {1, ..., qa;}in (32, 33). O

Corollary 2.13 If k; > a; for some i € I, then ®5%(E(9)) = 0 = &% (Fi(g)) for
all g.

3 Generalization to the quantum toroidal g,

The above constructions admit natural generalizations to the case of shifted version of
the quantum toroidal algebra Uy, 4,45 (g[;), related (e.g. via [2]) to the Jordan quiver.
We shall state the key results, skipping the proofs when they are similar to those from
Sect. 2.

3.1 Shifted quantum toroidal gl,

Fix q1, g2, g3 € C* that are notroots of unity and satisfy g1g2q3 = 1.Forb™, b~ € Z,
o (bt =
we define the shifted quantum toroidal algebra of gl;, denoted by U,;?,q’zb,q_g) , to be the

associative C-algebra generated by {e,, f, wisi, (I/Iib:t)il }ig_bi with the follow-

ing defining relations:
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W@ =0, Y3 Wh ' =@ ¥ =1, (t1)
(2 — qrw)(z — qaw)(z — gaw)e(2)e(w) = (q1z2 — w)(g2z — w)(g3z — we(w)ez),  (2)
(@12 = w)(g2z = w)(g3z = W) f ) f (W) = @ = Gz — W) — gsw) f(W) f@),  (13)
(z = qrw)(z — w)(z — g3w) Y (De(w) = (q1z — w)(g2z — w)(g3z — W)e(W)Y* (2), (t4)
(@12 = w)(g2z = w)(g32 = WY@ f (W) = (2 = q1w) (2 = QW) (@ — g3w) fF W)Y (),

(t5)
+ —
le(2), f(w)]—ﬂ—S( )@ -v ), (16)
Sym =2 fe(z). le(z2). e(z5)11 = 0. (7)
21,282,233 <%
sym =[£G, [F(@2). £l =0, (t8)

21,22,23 £

where €, ¢’ € {£}, B1 = (1 — q1)(1 — g2)(1 — g3), and the generating series are
defined via:

e(z) = Zerz_r, f(2) = Zfrz_’, vER) = Z i v

reZ reZ r>—b*

Remark 3.2 (a) The original quantum toroidal algebra of gl;, denoted by Uql 293 (81),
is isomorphic to US0) 4 /(W wrg — 1).

(b) We note the S(3)-symmetry of Uq(1 o, (13) with respect to the permutations of
q1, 492, 43-

The algebras Uq1 qz q3 and U;? 32 ,;b ) are naturally isomorphic for any b*. Hence,

we do not lose generality by considering only Ué?:g;’%, which will be denoted by

Uﬂﬁ?,)qz,% for simplicity.

3.3 GKLO-type homomorphisms

Fix a pair of integers: @ > 1 and N > 0 (following [2, §A(iii)], one can interpret them
asa = dim(V) and N = dim(W) in the Jordan quiver). Let A% be the associative C-
algebra generated by {D;JEl , Wj‘l }1<r<q With the only nontrivial commutator D, w; =
qf” w; D, and let A4 be the localization of A4! by the multiplicative set generated

by {w, — qi"ws}’fgerz#sia. We also choose a sequence z = (z1, ..., zy) € (C*)V and

define Z(z) := [} ( - Z_k)

z
Then, we have the following analogue of Proposition 2.4:

Proposition 3.4 There exists a unique C-algebra homomorphism
5 UM s AN (34)

q1.92,93

such that
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—1
—1 a w, SFET Wr—qy, Ws ~vy—1
1_‘71_1 r=1 $ (Tr) Z(W") nlgsga Wy —Ws Dr ?

1 a qQw, SFEF Wy —qaW,
f@) HZ,:&(—Z’) 1<s<a w,—w, Dr:

+
+ (z—ay 'w) a5 'wp)
VEQ - (Z<z> Tl g ) : (35)
As before, y (z)* denotes the expansion of a rational function y (z) in z ', respectively.

Remark 3.5 Due to the S(3)-symmetry of U;{Y;z,% (Remark 3.2(b)), we can replace

q2 by g3 in (35). Overall, we have six similar homomorphisms: two Uéfv ()12,,13 — Adi
foreachi =1, 2, 3.

Eemq(k3.6 In the ~unshifted case N = 0, (34) factors through
Du: Uyyg0.q5(811) — A9 (see Remark 3.2(a)) that maps:

F . —1 a SFEr Wy — qz Ws 1
D, ey = 17q1_1 Zr:lﬂ15s<a W, —Wy D" for

e T, %2 p,,
U =g HA =g H Y we, v > A=) —g) Y0 wil, g e 1L
(36)

Let us compare this with [7, Proposition 5.1], where a natural Uy, 4, 4,(gl;)-
representatlon of [7, Lemma 3.7] is interpreted as an algebra homomorphism
Uq1 a.q3 (@) — Aa given by (we swap g2 <> g3 in the formulas of [7]):

. 1 a 1
(O eg — T—a Zr:l Wy,

-1 — +
17(1171 f:l W 1'[/0 = l’
v (=g (= a3) X0 Tz e Dy

Wy

Yo (=g = a5 Y T, M2 pot, (37)

Both &, and ®, factor through the central quotient Uq,1 a.q3 @1/ (1//0 1) and
the resultmg homomorphisms o,, D, Uq, a0 81D/ (wo -1 = A4 are related
via ®, = P, o w, where @ is an automorphism (a version of the Burban-
Schiffmann/Miki’s automorphism) of Uql,qz,qa (aly)/ (1/f0i — 1) determined by:

@Y > Bifo, WO, Bieo, eo— q; B, fors qiBr v,

(38)
3.7 Shuffle algebra realization of the positive and negative subalgebras
Similar to (11, 12), we have the following algebra isomorphisms:
U;f\»]c)l’;qa - an g2.95 (811, chvt)zqu - Uq1 72,381,
Uc;»qzm (gh) — Uq1 PPACIAS (39
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with subalgebras Usr o, s, U s @), TSN U 4. (al1) defined in a self-
explaining way.

Consider an N-graded C-vector space S = @, .Sk, with the graded components

_ G X 750
Sk = {F = H]Sr?gsfk(xr xv) ‘f € C[ cees X ] } (40)

We also fix a rational function

Z z—q;'wz—gq;" w)(z—q3 w)
<(3) =

w (z — w)3 @

The bilinear shuffle product * on S is defined completely analogously to (15), thus
endowing S with a structure of an associative unital C-algebra. As before, we are
interested in an N-graded subspace of S defined by the following wheel conditions:

X1 X2 X3
F(xi,...,xx) =0 once —,—,— 1 =191, 92, g3}. (42)
X2 X3 X|

Let § C S denote the subspace of all such elements F, which is easily seen to be
*-closed. The resulting shuffle algebra (S, x) is related to Uy, 4,,4;(gl}) via the fol-
lowing result of [15]:

Proposition 3.8 [15] The assignments e, — x| and f, — x| for r € Z give rise to
C-algebra isomorphisms

T: Vg grgs @) — S and - T2, 4 (@h) — S, 43)

3.9 Shuffle algebra realization of the GKLO-type homomorphisms

For 1 <r < a, we define:

SF#Er g —1 1 SF#Er Zq,1 Wsg
— Wsq2
Y@= ——20) [] Ty = 1 [T 2%
1<s<a —a I<s<a <41 — Wy
(44)
We also define
1/2 1/2 1/2 1/2
Z (‘11/1_‘11 /w)<‘12/z_‘12 / ) 45
(p(w)'_ (z —w)? ’ (45)
Let A% be the localization of A4 by the multiplicative set generated by

{w, — qi"qus}',n;SZ . The following is our key result and is proved completely analo-

gously to Theorem 2.8:
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Theorem 3.10 (a) The assignment

a my 1<p<m
p—D —(p=D | ==
Sk > E — E | | | | Y, (qul ) E <{W,q1 }1§r§a )

mi+...4+mg=k | r=1 p=1

_ —(pi—1 (a1
« 1_[ H ¢ I(qul (p1 )/qu] (P2 ))

I<r<al<pi<py<m,

1<p> =My,

a
_ —(p1—1 — 1 —
< [T TT ¢ (wnar ™" [wnar ") - TTO™ (46)
r=1

I<ri#r<a 1<py<my,

gives rise to the algebra homomorphism

LS — A0, (47)
Moreover, the composition
(39 Y o
g i (gl — S = A0 (48)
co(ixfides with the restriction of the homomorphism A of (34) to the subalgebra
Ug,. qz>qz

(b) The assignment

op a mr , P p 1<p=<m;
sPoFe 3 AT v (wal)-F ({wat}

mi+...4+mg=k | r=1p=1

X 1_[ 1_[ ' l(qul /qu )

I<r<al<pi<p,<m,

1<p2<mr2 a
< T1 TT o' (weal” fwnal’) TT22 @)
1<ri#r<a 1<pi<my, r=1
gives rise to the algebra homomorphism
PL.sP s A0, (50)
Moreover, the composition
(39) T .,
GM< s (gl —> 5P 25 qon 51)
91.92.43 q1.92.43 \8'1

coincides with the restriction of the homomorphism 5% of (34) to the subalgebra

7(N),<
Uql 92:93°
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3.11 Special difference operators

Forany g € (C[xf—Ll, e, x,ﬁcl]s("), consider the following shuffle elements Ek (g) € Sk:

Ti<rms et Cor — g7 '56) - gCx1n 30

, 52
Hlfr;ésfk(Xr — X5) 62

~ k=k? i .
Ei(g):=¢q3" (g —D"-

which obviously satisfy the wheel conditions (42). Due to Proposition 3.8,
Ex(g) = Y(er(g)) for unique elements ¢;(g) € U;]N(),;m ~ Uq>1 .03 (gly), so that
<I>§(Ek (g) = @f;('é’k(g)) by Theorem 3.10(a). We also consider Fk(g) € S,((’p defined
via:

(53)

)k l_[1<r7é3<k(xr ql xs) g(xls"'v k)
H]<r7és<k(xr — Xg) .

~ K=k

Fi(g) :=(q2/q1) ? (1 =
The following result is established completely analogously to Lemma 2.12:
Lemma 3.12 (a) For Ek (g) € Sy given by (52), we have:

II=k  (s¢J 1
oE) = ) {HWW—W [Tz g({wr}rej)-l‘[D:l}.
a} r

reJ $ reJ reJ

(54)
(b) For I?k(g) € S,?p given by (53), we have:
_ Wi=k (s oW
O(Fr(g) = Y {]‘[ W : g({qlwr}rej) T1 Dr} . (59)
Jc{l,....,a} \reJ reJ

Example 3.13 For N = 0 and g = 1, we recover the famous Macdonald difference
operators:

o~ [JI=k s¢J W, — q;lws B .
D (Ex(1)) =JC{Z }UWI—P =: Dy(q1, 92),
|J|=k 9¢J
CHGUED S | —@W 1o =Dia" . aH. 66
Jc{l,....a}redJ reJ

Remark 3.14 We note that the crucial and rather nontrivial commutativity
[Phar.a2). DY @1.q)] =0 forall 1<k K =a
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thus arises as an immediate consequence of a simple equality [Ek(l), Ek/ (D] =0in
the shuffle algebra S, see [8, Proposition 2.21].

4 Generalization to the quantum toroidal sl, (n > 3)

The above constructions admit natural generalizations to the case of shifted version
of the quantum toroidal algebra Uq,d(sln), related (e.g. via [2]) to the cyclic n-vertex
quiver. We shall state the key results, skipping the proofs when they are similar to
those from Sect. 2.

4.1 Shifted quantum toroidal s,

For n > 3, consider an index set [n] := {0, 1,...,n — 1} (also viewed as a set of
residues modulo ). We define two matrices (¢;;);, je[n) (the Cartan matrix of sl,) and

(mij)i, je[n] via:
Cij = 2, Cii+l = —1, mii+1 = :Fl, and Cij = 0= mij otherwise. (57)
Fix ¢, d € C* such that ¢, gd*! are not roots of unity. Given b* = {b:*}ic[n) € ZI",

(bt H—
we define the shifted quantum toroidal algebra of sl,,, denoted by Uq(,éd b ), to be the

reZ,s,.:tz—b?E

associative C-algebra generated by {e; , fi r, wfixii, (wizb?)’]}i el ' with
the following defining relations (for all i, j € [n] and €, €’ € {£}):
W @ovf )l =0, i .-l 0™ =@ 07 vl =1 (T
(d"z — g w)ei(2)ej(w) = (U d" Tz — w)ej(w)e; (2), (T2)
(qTd"™iz —w) fi (@) fj(w) = (@™ z — g% w) f; () fi (2), (T3)
@™z — qTw)Yi (Dej(w) = (¢ d™ z — w)e; (W)Y (2), (T4)
(g1 d™iz — w)yi () fj(w) = @™z — g w) f; (W) ¥y (2), (T5)
. )] = Y (w2 — u
ler @), fi)] = =5 ()@ -vw @), (T6)

Sym (ei (zD)ei(z2)eix1(w) — (g + g~ Nei(z)eir1 (We; (22) + eix1(w)ei (z1)e; (Zz)) =0, (T7)

21,22

Sym (fi @) fi(z2) fis1t(w) = (g + ¢~ ) i) firn (W) fi (22) + fiil(w)fi(zl)fi(zz)) =0, (T8)
21,22

where the generating series {¢; (z), fi(z), wii (2)}ie[n) are defined as in (6).
The algebras &%, 27 and {7 2™ +2) Iy i hic for any b* € 71

e algebras U, , and U, , are naturally isomorphic for any b~ € .

Thus, we do not lose generality by considering only U ;?&é), which will be denoted

by U.q(% for simplicity. The original quantum toroidal algebra Uq,d (sl,) is isomorphic
'7(0,0 -

to U;yd )/(Iﬂifol//i,o — Diem)-
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4.2 GKLO-type homomorphisms

Fix b € Z" and let a e N[ be such that N; = bj +2a; — aj—1 —aj+1 = 0
for all i € [n] (in particular, existence of such a forces ) b;i > 0). We pick

zZ = ({ziy,}ilef[; ]fN ) with z; , € C*, as well as an orientation of the cyclic quiver

i€[n]

Dyn(sl,,) with the vertex set [7] and the vertex i connected to the verticesi + 1,7 — 1.
We define the C-algebra A7 as in Sect. 2.3 (note that we omit the subscript “frac” as
it is now a C-algebra) and follow the notations (8).

Then, we have the following analogue of Proposition 2.4:

Proposition 4.3 There exists a unique C-algebra homomorphism

~ s . b ~
&7 U — A (58)
such that
— u i,r Z' i,r _
e =0 Tl [T T30 () s T wa-tamvom

j—it=1

71/2 o (@PWir 1 1—[ —1 m
fl(z) > 2 |||| E 8 Z W(CI d /Z)Dtr,
r=1

Jjit=1 i r)
Vi) ﬁw l_“_][wﬂ/z B A [[Wita"amiz) (59)
=z el 3 it Wi(2)Wi(g=22) j—i ' | |

As before, y (z)* denotes the expansion of a rational function y (z) in 7T, respectively.

Remark 4.4 We note that the unshifted case b =0 corresponds to ap=a;=...=a,_|.

4.5 Shuffle algebra realization of the positive and negative subalgebras

Similar to (11, 12, 39), we have the following algebra isomorphisms:

. b s ~ .. b s ~ . ~ .
087 =5 07yl U5 5 0yl U5y (sl) —> U7 4 (1),
(60)
< (b ) > > 5 (b), < <
with the subalgebras U U d(ﬁ ), U 0.d (slp), U d(s n) defined in a self-
explaining way.

Consider an N"l-graded C-vector space S = @k:(ki)iqn JeN[n]SZ], with the graded
components

F (i lic )

s =1 F=
k <k;
l_[ie[n] Hi<k * (xz r — Xi+l1, )

recfuzhis M ey
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where Sy 1= ]_[ieln] S(k;). We also fix rational functions {¢;; (2)}i, je[n] via:

z d~'z—quw z z—qd 'w
Giit1 (—) =—" Gii-1 (—) =—,
w zZ—w w Z—w
-2
Z Z—q “w Z e e
Gii <—)=—, Gij (—)zl if j#i,i+l. (62)
w Z—w w
The bilinear shuffle product * on S is defined completely analogously to (15), thus
endowing SI"! with a structure of an associative unital C-algebra. As before, we are
interested in an N"l-graded subspace of Sl defined by the following wheel condi-
tions:

F ({xi ;) =0 once x;» = gx;1 and Xie,1 = gd x; 1 for i € [n], € = £1.
(63)

Let SI"1 ¢ SI" denote the subspace of all such elements F, which is easily seen
to be »-closed. The resulting shuffle algebra (S, %) is related to Uy 4(sl,) via the
following result of [16]:

Proposition 4.6 [16] The assignments e; , > x| | and f; , > x| fori € [n],r € Z
give rise to C-algebra isomorphisms

Y: U 6l) — S" and T U7, (sl,) — SUTP (64)

4.7 Shuffle algebra realization of the GKLO-type homomorphisms

Foranyi € [n] and 1 <r < g;, we define:

_1/2 Zi(2) 1_[1_” W (Zq_ldm”)

Yiyr(Z) :— _1 let 1_[1_[ Wzr(z) ’

j—it=1

_ <i WiGzqld™)
Y, (@)= P l—[ l—[ 1/2 T zr(ZZCI %) °

j<it=l1

Define the C-algebra A4 as the further localization of A4 by the multiplicative set
r=a;,s<a;

generated by {d" g“iw; , —q>"W; st jmidlmez We note that A7 is naturally embed-

ded into A4,
The following is our key result and is proved completely analogously to Theo-
rem 2.8:

Theorem 4.8 (a) The assignment

S[n] S E— qzren (ki — 12)
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a m®

(@)
X Z l_[ l_[ l_[ Yi,r (Wi,rq72(pil)> -E ({Wi,qu(pl)}.]<p<mr )

€[n],1<r<a;
<l)+ Jrm(t) =k; i€[n]r=1 p=1 i€lnl.1=r<a;
mmEN Vieg[n]

) 1_[ 1_[ H 5171<Wi,r5]72(pl71)/Wi’rq*2([7271))

TEmN=r=ai 1 <p) < py<m?

p—

1 _ _ _ _
[T 11 [T &' (wina™7" [wing™20)

i€[n] 1<ri#r<a; lgplfm(yil)

1<ry<a; 1<pa<m’)

X l_[ 1_[ 1_[ 51‘;1<Wi.r1q_2(’”_1)/Wj,,2q_2<p2_1)> l—[ l—[D mr (66)

Jj—i 1<r1<aq; l<p1<m() i€[n]r=1

gives rise to the algebra homomorphism

s A9, (67)
Moreover, the composition
(60) e Aa,z
087 =5 07y (sly) —> s = T (68)

coincides with the restriction of the homomorphism ED%Z of (58) to the subalgebra

U (b) . In particular, the image of U ;@d’>

gebra A4 of Ad',

under the composition (68) is in the subal-

(b) The assignment

SR 5 s

a;i m, (i)

Z l_[ l—[ l—[ Y (Wi,rqu) F {Wl rq }1<[:]<,1m§r§a,~

ie
(t)+ +m(l) —=k; ie[n]r=1 p=1
(I)EN Vie[n]

<JTIT T o (e fwirg™)

ie[n] 1<r=a; l<p1<p2<m()

1<P2<m()

[T I1  T1 o 'a'(wnd® [wing®)

i€[n] 1<r1#r2<a; 1<p Sm;])

I<r=<a; 1<p2<m(/)

[T IT 11 ¢,~7~1(Wj,r2q2”2/wi,r1q2”‘) ]_[]_[D (69)

j<i1<ri<a; 1<p|<m() i€ln]r
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gives rise to the algebra homomorphism

By shbor . 4, (70)
Moreover, the composition
(60) T T
08~ =5 U (sly) —> st = Ja 71)

coincides with the restriction of the homomorphism 5%§ of (58) to the subalgebra

U ;%f In particular, the image of U q%‘ under the composition (71) is in the subal-
gebra A4 of A4,

4.9 Special difference operators

75k
Forany k € Nl and any multisymmetric Laurent polynomial g € C(q) [{xfr1 };GS[]Z]] o,

consider the following shuffle elements E@ (g) € S,E"]:
1<r§k,')

-2 <
~ 2, oo e Thi<rsgs<t; Gir — a7 xis) - 8 (i e
Ex(e) = [] {qkf Yig—q 1)"’]~ ( —

K <k:
i€[n] [li-; Hj;kf (xj,s — Xir)
(72)
which obviously satisfy the wheel conditions (63). Due to Proposition 4.6, Ek (g) =
T (ex(g)) for unique elements ¢ (g) € Uu T~ U>d(5[ ), so that <I> (Ek(g)) =
5%%(?&(37)) by Theorem 4.8(a). We also consider Fk(g) € S,En P defined via:
ki
~ k2 2k l_[ie[n] nlfr;ésfki (xi,r - xl s) & <{xl r}}:[:: )
Fite) = [] {a" M a-g»k} —
i€[n] [li-; l_[r;kf (xir —Xj.5)
(73)

The following result is established completely analogously to Lemma 2.12:

Lemma 4.10 (a) For E@(g) € S,l("l given by (72), we have:

a; ki—% Y ik
6Z:'Z(Ek(g)) — d2icim kikiv18it1i 1_[ (l_[ Wi,z)

ieln] \t=1

s¢dj qd"iiwj
Z H]ﬁz Hrejj ( Wi : ) (
X
¢J Wi s
gl ) Hze[n]ﬂie],( - w—>

[Jil=k; Vie[n]

Ji
{Wl r}::[n]>
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ki—l_Zjﬁi j

XIHHZ(W,r) IT1I]wr 1125 |- s

e[n]reJ; i€[n] \reJ; i€[n]reld;

(b) For I:"{k(g) € S,En]’()p given by (73), we have:

1
a; —2 2 jikj
6;4(?&((%,)) :dZie[n]kai+l3i+l<—iq*3Zie[n]kiki-H | | (l |Wi,t)

ie[n] \r=1

Si] _Idmjin.S
Hj(—l Hre] ( Wi r ) reld;
x Z ({q Wi r}ze )
i TS (1 - 5
Jic{l,....a;} ien] 1lrey; Wi,

|Jil=ki Vie[n]
ki—l_Zjeikj
< [T TTwir TTTT2ir |- (75)
ie[n] \reJ; i€[n]red;

Example 4.11 Consider the orientation of the cyclic quiver with arrows i —i+1(i €[n]).

(a) For p € [n] and k > 1, consider the degree k = (k, k, ..., k) € NIl elements

0o ._ 7 14+8i0—38;
1—‘p;k = Lk (1_[ ('xi,l o 'xi,k) i0 lp)

ie[n]

-2 k k
nk Hie[n] ngr#sﬁk(xiv" —q Xis)- I—[ie[n] Hr:l Xi,r ) l_[ X0,r
[licpn Thi<rs <t ir = Xiz1)

_ n(k*—k) -1
=q" (@—q)
1 Yo

(76)

r=

Their images under 6%’Z of (20) vanish if £ > min{a;} and otherwise are given by:

ki— ki ]—[S¢Ji71 (1 _ qdflwi—l,x)
Ji ir
pao-T ()« ¥ (2
§ is
i€ln] Jic{l,....a;} l_Le[n] ]_[rEJ ( - m)
|Ji|=k Yie[n] '
ki—ki—1+8i0—3ip
<TT Tz TT (T e o

i€e[n]lred; i€[n] \reJ; i€[n]rel;

Similar to Remark 3 14 the difference operators (77) pairwise commute, due to
the equality [I"° AR bl k,] = 0 in the shuffle algebra S established in [10,
Remark 4.11(a)] (the limit case of [10 Theorem3 3], see part (b) below). According to
[21, 22], the elements { Y~ l(I”O k)} n] generate the “positive half of the horizontal”

Heisenberg subalgebra of Uq,d(s [n).
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(b)Foru € C,k > 1,and s = (59, $1, - - -, Sp—1) € (C*)" satisfying sos1 - - - sp—1 =1,
consider:

k k
~ 2_ _
Fl'(s) = Ex ( Il (so cosi [Jxir—n]] xim)) =q"E P (g — g™
r=1 r=1

i€[n]

y l_[ie[n] H]gr;ésfk(xi,r - q_zxi.,s) ) Hie[n](s() C S l_[l;le Xir — M l_[;lle Xig1,r)
[licpn Th<rs<kGir —xio1.5) ’
(78)

Their images under 6%’2 of (67) vanish if £ > min{a;} and otherwise are given by:

@ ki—4k;
i i~ 2 Ki+l1
o A(F o) =[] ( w,-,z>

t=1

i€[n]

s¢di— gd™'wi_i,
I—[FGJ,' (1 - Wi » : ) I—[reji+| Wi+1,r
< ¥ T (051 — izt e
]

s¢J; Wi s W;
st a) \ e IT 67 (1_w,~,) i€n ey Wir
|Ji|l=k Yie[n] ’

ki—ki—1
—1
< [ [Tzwir- TT| TTwir 11125
i€[n]red; i€[n] \reJ; i€ln]red;

(79)

Similar to part (a), the difference operators (79) pairwise commute, due to the equal-
ity [F} (s), F,ﬁf/ (s)] = 0 in the shuffle algebra S established in [10, Theorem 3.3].
According to [10, Theorem 4.10], we note that the elements {Y ! (F, ,ﬁ‘ (s))} in fact gen-
erate the Bethe commutative subalgebra of the “horizontal” quantum affine subalgebra
U, (gl,) of Uy a(sly).

5 Generalization to the quantum quiver algebras
The above constructions admit natural generalizations to the case of quantum algebras

associated with quivers as recently introduced in [18] following [17]. We shall state
the key results, skipping the proofs when they are similar to those from Sect. 2.

5.1 Shifted quantum algebras associated with quivers

Let E be a finite quiver, with a vertex set I and an edge set E (here, multiple edges and
edge loops are allowed). Any edge e of E from a vertex i € I to a vertex j € [ shall
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be written as e = i}' € E. We fix ¢ € C* and equip every edge e € E with a weight
t. € C*. Furthermore, following [17, 18], we shall make the following assumption
(cf. [18, Definition 5.2]):

lg|l < ltel <1 forall ee€E. (M

We define rational functions {¢;;(z)};,jes via:

(- () TG I 0-%)

e=ijeE e=jicE

Let E be the “double” of the edge set E, i.e. there are two edges e = i}', e* = ]?i €E
for every ¢ = ij € E. Note the canonical involution e <> ¢* on E and extend the
notation t, to E via:

tox 1= q/t,. (81)
For any bt = {bi},d e Z!, we define the shifted quantum quiver algebra,
denoted by Ug @b ), to be the associative C-algebra generated by

io
leir, firs lﬁ gt (W b;t) I}EIZJ" =" With the following defining relations (for

all i, j eIande e e{:l:})

i@, v5 I =0, ¥= o 7,07 =W 07 T =1

QM)

i (%)ei(ne,»(w):;i,-( ) eswei (@), Q)
Z

Gi (;)ﬁ(z)fj(w)=;ﬁ< ) Fiw fi@). Q3)
w

i (;)wﬂz)e‘;(w):a,( =) e @, Q4)
2z €

i (=) vi (z)fj<w>=c,~i( )f,(w)w (@), Q5)

les ). f1w)] = 88 (=) (17 @) =¥, @) (Q6)

and more complicated cubic Serre relations of [18, §5.4] that shall be omitted for
brevity. Here, the generating series {e; (z), f; (z), 1//-jE (2)}ier are defined as in (6). The

I 1 Wovo— e

original quantum quiver algebra U of [18] is isomorphic to U

@ Springer



Difference operators via GKLO-type homomorphisms: shuffle... Page270f43 22

5.2 GKLO-type homomorphisms

Fix a = (a;)ie; € N/, N = (Ni)ies € N/, and a collection z = {z; ,};5 =" with

z; , € C*. We define Z;(z) := ]_[NL <1 -4 r) Finally, we consider the following

r=1
particular b* € Z!:

=Zaj~#{e=i;'eE}—ai, bl._z—N,-—Zaj~#{e=fieE}+a,-.

jel jel
(82)
For any i, j € I, we also define constants yi}’, Yij» yl.(]). via:
vii = Y log,(t), v; == Y log,t), vj=v]+v;. @83
e=ijeE e=jicE
Let A4 be the associative C- algebra generated by {Wlirl, Dil}l1 e< lr =di satisfying
the relations [w; ,,w;] = 0 = [D;,,Dj;] and D;,w;, = ¢ SuarswirD,- r-

:E
Let A% be obtained from .44 by formally ad]01n1ng ((TT, w r) it};, jer satisfying
+ +
the relations w, , ([T, wi )7 = (TT/, w; ,)yJ w, s and D, s ([TM, wi )77 =
o _ + ~
q_B” Vji (]_[f’:1 Wi,,)yff D, s, foralli, j,t,s. We define A7 as the localization of .49

by the multiplicative set generated by {w; , — qmwi,x};’;eI% £

Then, we have the following analogue of Proposition 2.4:

Proposition 5.3 There exists a unique C-algebra homomorphism
~ + = ~
vyt — A (84)

for any a and z as above, with b* € 7' defined via (82), such that

e=ii Dfl’
H.\'#r(l W’ ) o

aj Vij aj l—IS<aJ l—I = (1 — W/ rte ) HS#r _ Wi,sfe)

w; z

fi(2) > l_[ < w;j ) . 25 (J) g Lle=ji gl 9 p,
J#i \s=1 9z nsyér(l T g )

ia (W[J) Ziwi) 127 Tl (E - W”)n‘*’ G- &)
1

+ g ' -1 -~ g
Vi@~ T Twis

Moo (=D =5) ja\a

X(Zf(z>.“f6’“?il{ﬂea<i ) Tyl - wm})i
n?[:l{(l—m)( _vz,(),)}
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Here, ¢ € E and y(z)* denotes the expansion of a rational function y(z) in 7%,
respectively.

5.4 Shuffle algebra realization of the positive and negative subalgebras

Similar to (11, 12, 39, 60), we have the following algebra isomorphisms:

b*t.b7),> ~ > btb),< ~ < < = >,0p
UQ —>UQ, UQ —)UQ’ UQ—>UQ s (85)

+ p— + p—
with the subalgebras U(Qé b )’>, UE, U<Qé b )’<, Ué defined in a self-explaining
way.

Consider an N’-graded C-vector space S¢ = Di=k); ey e SkQ , with the graded
components N -

iel

sg = {F c c[{xf)}lf’f"f]sk} . (86)

Evoking the rational functions of (80), we equip S€ with the bilinear shuffle product
completely analogously to (15), thus making S into an associative unital C-algebra.
As before, we are interested in an N’ -graded subspace of S€ defined by the following
wheel conditions:

Flyy=gu, isdivisible by (xj 1 — yx; 1)@ (87)

forany y € C* and j € I, where

bi; () :#{e —ijecE

Q:y} (88)

In particglar, as pointed out in [17, 18], if for any i, j € [ all the weights
{t.le = ij € E} are pairwise distinct, then (87) may be written in a more famil-
iar form, cf. (16, 42, 63), as:

F ({xir}) =0 once xj,= qt; 'xjp = qxic

for any edge Eae:i}' and a #c¢, where a#b #c if i =j. (89)

Let S¢  S? denote the subspace of all such elements F, which is easily seen to be
*-closed. The resulting shuffle algebra (S g *) isrelated to U via [18, Theorem 5.8]:

Proposition 5.5 [18] The assignments e; , — x; | and fi , > xi | fori € I,r € Z
give rise to C-algebra isomorphisms

T Ué;SQ and Y: Ué 5 §9-0p, (90)
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5.6 Shuffle algebra realization of the GKLO-type homomorphisms

Foranyi € I an 1 <r < a;, we define:

‘ vif s<a; s .
o\ @I Megee (- 50) U5, (7 - 5)
Yir@ =T TTwis| - ,
i \Jj=1 [Tszr (1 B wf,s>
. Yii s=aj W sle SF#Er Wi sle
, 7 ! l_[j;éij I—[e:fiEE (1 - ?[1 )l_[gi;lgE (1 - 7’7>
Ve@=TT{TTwis | - m :
i \j=1 [Tz (1 - z’;)

oD

We also define
8 ~1
Z Z—w Y 1 z
il—)=— — - — . 92
w,(w) (zq‘l—w> H (fe W) 02
J

Define the C-algebra A4 as the further localization of A4 by the multiplicative set
generated by {w; , — 1 Lgmw s }rfai “=% We note that A9 is naturally embedded
into A7,

The following result is proved completely analogously to Theorem 2.8:

e:i}'eE,meZ.

Theorem 5.7 (a) The assignment

ki —k?
e

SEBEHH l_[ t, 2

i€l o=jicE

a m’ | 1 1=p=m
<y AT () (o).
iel, 1<r<a;

mg[)-i-mﬂ-m{(,i-):ki iel r=1p=1

mPeNViel
-1 -1 -1
<[T I1 [1 Sii (Wi,rq‘y1 /Wi,rqp2 ) T
iel 1<r<a; 1§p1<172§m§[) e=iicE

()£ ry) 1=p2=m])

a; ;
x H 1—[ 1_[ ®ij (Wi,rlqpl_l/wj,rquz_l> : H H D;;n£>

i,jel 1<ri<aq; (i) iel r=1
! lfrzfa; I=pi=mn
93)
gives rise to the algebra homomorphism
Az ~_/
5S¢ — A4 94)
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Moreover, for b* € Z! defined via (82), the composition

Uy P S up s e = A (95)

coincides with the restriction of the homomorphism E)é of (84) to the subalgebra

+ p + p— ~
Ug SRR particular, the image of U(QQ 2 under (95) is in the subalgebra A1
of A4,

(b) The assignment
ki —k?
S,?’OPBFHH 1_[ t,

i€l o=jicE

aj mﬁi)

1<p<m®
< Y ATITIIT Y (wira ) - F <{w,-,,q"’}i:zrsai)

m®4am@ =, i€l r=1p=1
m,(f)eN Viel
1 _ _
<[ I1 [1 Gii (Wi,rq pz/Wi,rCI p‘) T
el l=r=ai 1<p <py<m e=iicE

() £Gr) 1Sp2<m)

ai i
[T 11 [1 ‘Pﬂ(Wj,rzq_m/wi,nq"”)-]_[]_[D{’ff)

ijel llgrrzléal; 1<pr<m iel r=1
(96)
gives rise to the algebra homomorphism
L SOP s Ja, 97)
Moreover, for b* € Z! defined via (82), the composition
Lo @9 r P
vy P S us s s 5 g (98)

coincides with the restriction of the homomorphism E)é of (84) to the subalgebra

+ p + p— ~
Ug L= particular, the image of U(QQ 2= ynder (98) is in the subalgebra A1
of A4,

Remark 5.8 This theorem immediately implies that the assignment of Proposition 5.3
is indeed compatible with the cubic Serre relations of [18, §5.4] which we omitted,
cf. Remark 2.9.
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6 Relation to quantum Q-systems of type A

In this section, we explain how the shuffle approach from Sect. 2 in the simplest case
of g = sl simplifies some of the tedious arguments of [4] in their study of A-type
Q-systems. We also match their difference operators representing the M -system with
those of Sect. 2.

6.1 Elements E; , and My , for g = sl

For any k > 1 and n € Z, consider the elements Ej , € Sy = S,Eﬁ[Z) defined via:

EpnCorooooox) = [T o [T o —a7%x0. (99)

1<r<k 1<r#s<k
The following result identifies these elements with those featuring in [11, (9.2)]:

Lemma 6.2 The elements Ey , correspond to explicit g-commutators in U q> (Lsly):

k(k—=1)
2

(=D

Exn=——""—7—
n (1 _q72)k71

- ([en, lent2, -+, [enyak—2), enak—1)lg—4 -+~ ]q—Z(k—l)]q—Zk) ,

(100)

where [x, ylgr = xy —q" - yx as before.

Proof 1t suffices to prove (100) for n = 0. The proof is by induction on k > 1, the
base case k = 1 being obvious. For a step of induction, deducing the k = ¢ + 1
case of (100) from its validity for k < £, we first note (by direct computations) that
[xO, E@’z]q—zw-;—l) = xO*Em — q’z(”])Eg,z*xo € S¢+1 vanishes under the special-
ization xp41 = q2xg; hence, it is divisible by the product H1§r¢s5£+1 (x, — q_zxs).
As [0, Ee’z]q—z(u-l) is a polynomial in xp, ..., x¢41 of the total degree £(£ + 1), we
get:

T ([eo, lea, -+ . [exee—1), e2ely-4 -+ ]q—ze]q—z(zm) =cot1 - Eey10  (101)

for some constant c¢41. To determine this constant, we plug x,11 = ¢t into (101),
divide both sides by 2, and consider the ¢ — oo limit to obtain:

(=g D 'erp1Eeo = (=D g erlx®, Eg12],-2
1 _—2¢ Cet
=(-D"q 2ZJT([&), lea, -+, [eage—2), eae—2]g—4 - - - 1y—2e+2] 2t
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where we used the induction assumption for k = £ — 1 and k = £. Combining the
2

2
resulting equality ¢y = —L,Zfl with ¢y = 1 and ¢; = q~
£00+1)

(=D 2 (1-g 2"

— 1, we get cpq1 =

Let us now compare this with [4]. To this end, we define My , via [4, (2.23)]:!

k(k=1)
(=D 2
T [ (M1 =1, Mip—ic431q2s Min—k+51g3, -+ s Mingk—1]gt,

(102)

where we identify M, with our e_, and their parameter q with our ¢2, in accordance
with [4, (2.20)]. Due to (100), we get:

k(k

n o
T(Mi) =17 (1=g )" g DY (lepirn. -+ [enih—3s enph1]y—s 1)
=q"* D B, x) = gFETD 1_[ x Tk l_[ (e — q72xy).
1<r<k I<r#s<k
(103)

Thus, the generating series my(z) := ZneZ My, 7" of [4, (2.13)] is identified with:

T (g (2)) = qk(k—l) ) 1_[ xrl—k 1—[ (G — g 2x) - 8 <X1 "'Xk> ’

1<r<k 1<r#s<k <
(104)

where §(z) is the delta-function of (6). This immediately implies [4, Theorem 2.10]
(expressing My , as a noncommutative polynomial in Mj ,’s with coefficients in

Zla,q )

Proposition 6.3 Let Aq(uy, ..., ux) = [[1<, oy (1 = qz—f). Then, we have:

ui k
my(2) = CTyy,uy (Aq(ul, s upmy(uy) - ~m1(uk)5( )) , (105)
where CT,, .. 4, denotes the “constant term” (i.e. ”(1) s u%-coejﬁcient) of any series
inu,’s.
Proof Combining the key property f(u)d(u/z) = f(z)8(u/z) of the delta-

functions (6) with Y (m;(z)) = §(x1/z) and evoking the definition of the shuffle
product (15), we obtain:

T (Aq(ul,...,uk)m1<u1>--~m1<uk)a(”1 Z”k)) = (—H"T

! There seems to be a sign typo in [4, (2.23)] making it actually incompatible with [4, (2.25)].
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L o () ) )
X1seees Xk r\ir s

1<r#s<k I<r<s<k

Comparing the constant terms of both sides in the above equality, we get:

CTu... uk{T (Aq(ul,...,uk>m1<u1>-~-m1(uk>6(”1;'”"))}

kk—=1) _ B X1 Xk 1
=(=1)"2 qk(k IS0 l_[ xy — g 2x3)~8( ) Sym 1—[ L
Z ook \ o) ek Xr(xr — xs)

1<r#s<k

Combining this equality with the simple identity

sym { ] ;) S el (106)

xr(x, — x
I<r<s<k r (X § I<r<k

we obtain (105) as a direct consequence of the shuffle realization (104) of my(z). O
Remark 6.4 The equality (106) is equivalent to Sym {Hl§r<s§k ﬁ] = 1, which

X1 Xk
is nothing but the standard Vandermonde determinant formula.

6.5 Verifying the M-system relations through the shuffle algebra

Let us now explain how the shuffle approach also allows to establish the key relations
of [4, (2.1, 2.2)] satisfied by My , of (102), thus providing a simple proof of [4,
Theorem 2.11].

We start with the following g-commutativity property:

Lemma 6.6 (a) Foranyk > 1 and m,n € 7Z such that —1 <m —n < 2k — 1, we
have:

[xm, Ek’n]qZ(m—n—k+l) =0. (107)
(b) Foranyk > ¢ > 1anda,b € Z such that —1 < a — b < 2k —2{ + 1, we have:
[E.a, Ek’b]qZZ(a—lH—Z—k) =0. (108)

(c) Forany k > 1, n € Z, and a collection €y, . .., €x—1 € {0, 1, 2}, the following 2k
elements:

Exn, Eknt1, Ek—1,n4e> Ek—1ntei+1s -+ s Etntei+otear> Elnte+.tei+1
(109)
pairwise q-commute and are in the Y-image of the subalgebra generated by
{er}n+2k—l
r=n
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Proof (a) It suffices to prove (107) for n = 0. We note that [x"", Ek,o]q2<m_k+|>e Sk+1
vanishes under the specialization x;.; = g¢°xt, and thus, it is divisible by
H1§r¢s§k+l(x" — g7 %x). If0 < m < 2k — 1, then [x™, E,0l 20m-x+1) s a poly-
nomial in xp, ..., x;4+1 of the total degree m + k(k — 1). This implies (107) as
deg([ Ty <y i1 — ¢ 72x0) = k(k +1) > m + k(k — 1). If m = —1, then
similarly x - - - Xg41 - [x—1L, Ek’()]q—Zk € Sk41 is a polynomial in x1, ..., xg4 of the
total degree k2 which is divisible by the product L <rts<kp1 Xr — g~ 2xy) of the total
degree k(k + 1) > k?. Therefore, [x !, Er0l,-2 = 0 as well.

b)As—1<a—b,a+2—b,...,a+2 —1)—b <2k — 1, (108) is in fact an
immediate corollary of (107), due to (100) that can be written as:

£e—1
2

Ea=(1)"7 (1-g7)"™"
e, [xH2, e RO a2 D) ) e -2 (110)

(c) The g-commutativity part follows from (b), while the second part is a consequence
of (110). O

As particular cases of (108), we obtain the following equalities:

[Ex1, Exo0l,x =0 and
[Eek—t+es Ex0l2ee =0 for 1 <€ =<k, ee{-101}.

Since Y (My,n) € Sy isamultiple of Eq 1—q—y, dueto (103), we thus recover [4, (2.2)]:
Proposition 6.7 For any o, 8 € N, n € Z, € € {0, 1}, the elements My , of (102)
satisfy:

Ma,nMﬂ,n+6 - qmin(a’ﬁ)GMﬁ,n+eMa,n- (111)

We also have the following result (which together with Proposition 6.7 constitute
the content of [4, Theorem 4.18], thus providing a simple proof of [4, Theorem 2.11]):

Proposition 6.8 The elements (102) satisfy the following M -system relation [4, (2.1)]:

M2 — q My s 1Myp1 = Moyt nMy_1, forany a>1,neZ. (112)

o,n

Due to (103), this is a direct consequence of the corresponding relation for Ej ,
of (99):

Lemma 6.9 For any k > 1 and n € Z, the following quadratic relation holds in
S =56,

E{ = ¢ Exn—1%Exns1 = q* Bkt n—1*Ex—1 n 1. (113)
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Proof 1t suffices to prove (113) for n = 0, that is, to show that the shuffle element
E} = Exo%Ex0 — ¢ Ex.—1%Ex.1 — ¢ Exp1.—1%Ex—11 € Sy (114)

vanishes. We prove (114) by induction on k > 1, the base case k = 1 following
immediately from Proposition 6.3 (applied to k = 2).

For the step of induction (assuming that (114) holds for all k& < £), it suffices to
prove

Ej(x1,...,%20-2,¥,4°y) =0. (115)

Indeed, (115) implies that x1 - - - xp¢ - Eé(xl, ..., X2¢) is a polynomial in x1, ..., x3¢
of the total degree 202 which is divisible by the product ngr £5<20 (x, — q’zxs) of
degree 20(2¢ — 1). As 4¢% —2¢ > 22 for € > 1, we thus obtain E}(x1, ..., x2¢) = 0
which establishes the step of induction. Finally, the equality (115) follows from the
following straightforward computation:

Ep(x1, ... X202, ¥, ¢*y) = (1 + g g oD

2¢6-2
< [T —a 2@ —q*y) B (... x202) =0

r=1
with the latter equality due to the induction hypothesis. O

Remark 6.10 We note that similar shuffle interpretations of the relations (111, 112)
were suggested (without a proof) in [5, Lemma 8.5].

6.11 Comparison of the difference operators |

Let us now compare the realization of the M-system by difference operators as pre-
sented in [4, §6] with the construction of Sect. 2. To this end, we fix r € N and let Bgac
denote the C(q*!/?)-algebra generated by {xiil, Fiil }lr:]l
the multiplicative set generated by {x; — q™x; };";J.Z, with all elements pairwise com-
muting except for I';x; = qx; ;. Following [4, §6], consider the following series in z
with coefficients in Bf'r

being further localized by

ac”

r+1 J#i X
DFK 12 i
2@ =3 80" Pnz) [] T,
‘ . Xi — Xj
i=1 1<j<r+l1
r41 j#i .
DFK —1/2 j -1
P =3 s ) [T
i=1 1<j<r+17/ !
r+1 r+1

1//+(z)DFK — (_q—l/ZZ)r+1 . l_[xi i l_[ (1 _ qI/Z)Cl_z)*l (1 _ q—1/2xl_z)71 )

i=I i=1
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r+1 r+1

. ()PFK = (= q1/2) r—1 1—[ -1 1—[( 1/2 —1 4) I(l—q’l/zxi_lz’l)il.

i=1 i=1

(116)

We shall now identify these currents and those in the construction from Sect. 2 in

the special case of g = sly, © = —(2r + 2)w with w being the fundamental coweight
of slp, . = 0, so that a = r 4 1. To this end, we identify ¢: Afrac AN Bf'mc via
g g2 wEl e xFqF20 pEL L TFL 1 <i<r 41, (117)

apd the corresponding shifted quantum affine algebras j: U, _; — Us orn
via

Jie@ >z (@), f@ f@), ¥vE@ T YEQ@.
Define the composition:

l =0 L
d>72r

T . y7SC q
Gpy1: UZ 1,—r—1 UO —2r—2 ” *Afrac Bfrac

(118)

The following is straightforward:

Lemma 6.12 The currents (116) can be expressed as:

(@)K = (=1 (@' = 7D P11 (e(2)).
f)P = (1 = P11 (f(2)),

Y QP = (D) (),
Y@ = (1) @)

In particular, this immediately shows that the currents (116) indeed satisfy the
relations of [4, (5.7)—(5.11)]. Furthermore, we also immediately obtain [4, (6.1)]:

Proposition 6.13 Under the assignment ", _;, My ,2" = m (z) + e(q~!/27)PFK
the elements {Mk,n}zg% of (102) are mapped to:
[J]1=k ¢
Min = Y ] (119)
Jc{l,...r+1}ieJ leJ iel

Proof Formula (119) immediately follows by combining Lemma 6.12 with the shuffle
realization (103) of the elements My , and the shuffle realization of @92 +_p from
Theorem 2.8(a). m]
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6.14 Finite set of generators

We shall follow the setup of the previous subsection, that is, g = slh, A = 0, u =
—(2r 4+ 2)w. The last result of this section explains why it essentially suffices to
consider only ®°, ,(E »):

Lemma6.15 For any n € Z, the C(q)- subalgebm 0f ,Atmc generated Dby
{Cb_zr z(ep)}””’“ andfurtherlocallzedat{<I>_2r (Y NE 41, p))}”+] coincides

with all image CD_zr_z(Uq( —2r- 2)).

Proof Let C, denote the (C(q) -subalgebra of ‘Afrac generated by the above 2r + 4

elements. Since the ®° _,-images of wi are symmetric Laurent polynomi-
als in {Wk}kzl, to prove the inclusions 592r_2(wsi) € C,, it suffices to show
that the elementary symmetric polynomials {ex(wi, ... Wr+1)}]r(:} as well as
{ex (Wfl, . r+1)}r+l belong to C,. To this end, we define
s0+...+s,=k
Xﬁlf:]:; = Z [eniso, [en+2is1 P [en+2r—2:ts,_1 » €n+2rts, ]q*4 ce ]q*z"]q*2r*2
505,85 €{0,1}
(120)
We note that X f’jzf;, X, ®.- *1ng1 are generated by {e p}”“”rl It is also clear that
K.+
YXWEY = Y lensa - s [enar—a. nsarlys - 1g2lg22) -ee o x5
r(r41) _
=D 2 (I=g D Erginlxr, o) e x5,

with the latter equality due to Lemma 6.2. Applying Lemma 2.12(a), we find:

—2)r —2k

ex (Wi, ..., Wy

~ k
<@, (T B 80, (x W)

and similarly:

ecwil o wil) = (=1 —q g™

x @, (T (Ergrnp) - @Yy, (X( )

This proves ek(wfl,... r+1) € C, for k < r + 1, hence, o0 Lo 2(% ) € C, for
all possible s. _

The inclusions CD(lzr_z(e p) € Cy, forall p € Z, follow now by induction from the
equalities:

B0, alepen) = (1= g™ Jer i, w80, ()]
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Finally, the inclusions 5(12,_2( fp) € Cy, forall p € Z, follow from the equality:

%, L(fp) = (=) Hg7 g —g™H?

50 -1 &0
ch_zr_z(Er-H,—Zr—l—p) : (D_zr_z(Er,—Zr—p)’

whose right-hand side belongs to C,, due to Theorem 2.8(a) and Lemma 6.2. O

7 Relation to (t, q)-deformed Q-systems of type A

In this section, we discuss the (¢, g)-deformation of the construction and results of
Sect. 6.11. In particular, we use the results of Sect. 3 to establish [5, Conjecture 1.17].

7.1 Comparison of the difference operators Il

We start by recalling the setup of [5, §3]. To this end, choose two generic complex
parameters q and t = 62, as well as N > 1. Define the C-algebra B9 as in Sect. 6.11
with 7 + 1 = N (the subscript “frac” is omitted as it is now a C-algebra). Following
[3, (3.6, 3.10)], consider the following series in z with coefficients in 39:

12 N I g 91y,
q X X
(P ==——>"s (ql/le_z> [] ————r.
I=ai3 l<jen NTT

~12 N J#i P O
fl(z)DFK=1q—,IZ‘3(q_l/2xz'z> ]_[ Mﬂ_l,

e 1<j<N J

N

:F
WE()PFK l_[ (1 — g7t (1 — g2 xi2)
(=g 2x - q2xiz) '

(121)
Let us now match these currents to those arising for the quantum toroidal algebra of
gl; in Sect. 3. To this end, let us first relate our former parameters to the above ones

via:

g =q, @2=1/t, 3=1/q1q2 =t/q aswellas N =0, a=N.
(122)

We identify ¢ : A0 =5 B yia Wl.il — xfqu“/z, Dl.lLl — Fl.jFl, cf. (117). Define the
composition:

~ L
- . o) ~ ~
ON: Uy gogs(gl) —> AT — B, (123)
The following is straightforward:

@ Springer



Difference operators via GKLO-type homomorphisms: shuffle... Page390f43 22

Lemma 7.2 The currents (121) can be expressed as (recall that 0 = t/2):

e1(D)PFK = g7 367 Dp(e(2)),
P = 27 dn(f(2)),
YT ()P = dy(y (),
¥~ (P = on(y T ().

In particular, this immediately shows that the currents (121) indeed satisfy the
defining relations (t1-t8) with the parameters ¢q1, ¢2, ¢3 as in (122), thus implying
[5, Theorem 3.5].

7.3 Generalized Macdonald operators

Following [5, Definition 1.13], for any 1 < o« < N and any symmetric Laurent
polynomial P € (C[xlil, oo, xE15@ define the generalized Macdonald operator
Ay (P) € B9 via:

1.
Ay(P)i= — 1 Sym (P(xl,,,,,xa) I M.pl...ra).

al - (N—a)! % |<i<a<j<N Xi —Xj

(124)

In particular, (= (Ay (1)) € A% s a multiple of the Macdonald operator Dy (q1, g2)
from (56).

Remark 7.4 We note that the definition (124) is made in [5] for any symmetric rational
function P € C(xy, ..., xy4)5@ . However, some of the key results below seem to fail
in this generality, see Remarks 7.6, 7.15.

Following [5, Definition 1.15], we also define the difference operator B, (P) € 51
via:

1 _1 _1 (i —uj)(ui —qu;)
Bu(P) = (x!CTul """ e (P(ul ’’’’ o) H (uj — tuj)(u; — qtfluj)b(ul) D(ua)) ’

(125)

where the constant term CT,
via:

ue 18 defined as in Proposition 6.3, and 9(z) is defined

,,,,,

) =Y D" = ("* =" Per@ )P, (126)

nez

The above two constructions (124) and (125) are related via [5, Theorem 1.16]:
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Proposition 7.5 [5] Forany 1 <o <Nand P € (C[xf—Ll, e, xéﬂ]s(o‘), we have:
Ay (P) = By(P). (127)
Remark 7.6 We note that this result is stated in [5] for any P € C(x, ..., xq)5@.

However, this does not look true in that generality as By (P) will involve terms with
some powers Fi>1, unlike Ay (P). For one thing, the constant term CT,,, ., (--)
should be treated carefully for rational functions by specifying the region in which
they are expanded as series.

7.7 Comparing the shuffle algebras

In order to relate the above construction to our Sect. 3, we shall first clarify the shuffle
algebra considered in [5, §7] and its relation to the one from Sect. 3.7. To this end,

consider an N-graded C-vector space SPFK = S,?FK, with the graded components
keN

SPRK _ | p SO, oo, xk)
Hlfr;é_yik(‘xr —q 'xy)

S(k)
fecls ] } . (128)

We also choose a rational function of [5, §7.1]:

pEk . (I —t0)(1 —qt'x)
=T -

(129)

The bilinear shuffle product » on SPFX is defined completely analogously to (15), thus
making SPFK into an associative unital C-algebra. As before, consider an N-graded
subspace of SPFK defined by the same wheel conditions (but now on the numerators
appearing in (128)):

X1 X2 X3

f(x1,...,xx) =0 once {—,— —}:{q ! t}. (130)

X2 X3’X1 ’t’q

Let SPFK < SPFK denote the subspace of all such elements F, which is easily seen
to be x-closed. This construction is related to that of Sect.3.7 via:

Lemma7.8 Forq) = q,q2 = 1/t, g3 = t/q as in (122), the assignment

k(k=1) Xr — Xg
T L B | r_—_fx.P(x;I,...,x,jl) (131)
15r#s<er q s

gives rise to the algebra isomorphism

n: S —> SPFK, (132)
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which further restricts to the shuffle algebra isomorphism
n: § —> SPFK. (133)

Proof Straightforward. O
Combining this with Proposition 3.8, we obtain:

Corollary 7.9 The assignments e, +— x;' and f, + x| give rise to C-algebra
isomorphisms

T U7 jyq@l) — SO and Y Uy g q(al) —> SPTOP.
(134)

Remark 7.10 1In [5], neither pole (128) nor wheel (130) conditions were imposed.

7.11 Generalized Macdonald operators via GKLO-type homomorphisms

Now we are finally ready to relate the aforementioned constructions to those of Sect. 3.
To this end, forany | < o« < Nand g € (C[xlil, .. .,xétl]s(“), recall Ea(g) € Sy
defined in (52) with the parameters q; = q,¢q2 = 1/t, g3 = t/q as in (122). The
following is straightforward:

~ ufaz
Lemma7.12 n(Eq(g) =t 2 (7' = D* - g(x; ', ... x5 ") e SPPK,

Therefore, the span of Ea (g) € S is matched under (132) with the subspace of all
symmetric Laurent polynomials in SPFX, for which the constructions and results of
Sect. 7.3 apply. In particular, comparing our Lemma 3.12 with the definition (124),
we immediately obtain:

Proposition7.13 Forany 1l <o <Nand g € (C[xf[l, R x;tl]s("‘), we have:

L PN(Ea () = 0% N9 . Ay (P) with
P(xt, .. xg) =@ Pxt o g Pah (135)

and the identification t: An =5 ga being defined right after (122).
As an immediate corollary, we obtain the following result:

Theorem 7.14 All generalized Macdonald operators Ay (P) € B9 of (124) can be
expressed as polynomials in Dy.,’s of (126).

This establishes [5, Conjecture 1.17] by choosing P to be a generalized Schur
function:
ajta—j

det(x~ .)1<' i<
L == 4y, ag € 7.

P(xl’---vxa):sal,...,au(xl’---yxa): oy
det(x; ")i<i,j<a

(136)
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Proof (Proof of Theorem 7.14) Due to (135) and the equality Dy;, = Ap(x™), it
suffices to show that Eq(g) € Sy can be expressed as a polynomial in x™ € §y. This
immediately follows from Proposition 3.8 identifying S with U q> 16t/ (gly), the latter

generated by ¢, = T~ (x"). O

Remark7.15 Interpreting  the  restriction of  GKLO-homomorphism
Py Uq,l/t,f/q(g[l) — A% as dy: SPFK 5 B9, we thus see that the images of sym-
metric Laurent polynomials recover the generalized Macdonald operators of (124),
while the image of any nonpolynomial F € SPFK will necessarily contain terms with
at least one I';” L due to our explicit formula (46).
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