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We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of
quantum loop algebras of type Bn and G2, as well as their Lusztig and RTT (for type Bn only) integral
forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these Q(v)-
algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above
Z[v, v−1]-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras
of type Bn and G2 Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type An results
of [30].

1 Introduction
1.1 Summary
The quantum loop algebras (aka quantum affine algebras with a trivial central charge) associated to
a simple finite dimensional Lie algebra g admit two well-known presentations: the original Drinfeld-
Jimbo realization UDJ

v (Lg) and the new Drinfeld realization Uv(Lg), the latter introduced in [3]. The explicit
isomorphism UDJ

v (Lg) � Uv(Lg) was actually upgraded in [3, Theorem 3] to the isomorphism of the
corresponding quantum affine algebras

UDJ
v (̂g) � Uv (̂g). (1.1)

Many intrinsic properties of quantum affine algebras have been developed in the Drinfeld-Jimbo
realization. For example, the classical Poincaré-Birkhoff-Witt theorem for Lie algebras was generalized
by Beck in [1] to the case of UDJ

v (̂g). More precisely, he constructed the bases of each of the subalgebras
featuring in the triangular decomposition

UDJ
v (̂g) � UDJ,>

v (̂g) ⊗ UDJ,0
v (̂g) ⊗ UDJ,<

v (̂g). (1.2)

This result is a natural upgrade of Lusztig’s PBW theorem for finite quantum groups Uq(g).
On the other hand, the new Drinfeld realization Uv (̂g) is essential to develop the representation

theory of quantum affine algebras. In this realization, there are infinitely many generators which can
be conveniently encoded by currents ei(z), fi(z), ϕ

±
i (z). Already in the classical case, this approach played

the prominent role manifestly featuring affine Lie algebras ĝ in the conformal field theory. It is thus
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natural to develop algebraic aspects of Uv (̂g) intrinsic to the loop realization (with the hope to generalize
this to generalized Kac-Moody Lie algebras g). Let us note right away that Uv (̂g) also has a triangular
decomposition (a vector space isomorphism)

Uv (̂g) � U>
v (̂g) ⊗ U0

v (̂g) ⊗ U<
v (̂g). (1.3)

However, the isomorphism (1.1) does not intertwine the triangular decompositions (1.2)–(1.3). To this
end, we note that specific PBW-type bases of U>

v (̂g), U<
v (̂g) were constructed in [26].

While most often quantum groups are defined by generators and relations, there is an alternative
combinatorial approach sweeping the defining relations under the rug. For finite quantum groups, this
manifests in the algebra embedding (observed independently in [15, 27, 28]):

U>
v (g) ↪→ F =

k∈N⊕
i1,...,ik∈I

Q(v) · [i1 . . . ik]. (1.4)

Here, I denotes the set of simple roots of g, F has a basis labeled by finite length words in I and is
endowed with the quantum shuff le product. As shown by Lalonde-Ram in [20], there is a bijection between
the set �+ of positive roots of g and so-called standard Lyndon words in I:

� : �+ ∼−→
{
standard Lyndon words

}
. (1.5)

In this case, every order on the alphabet I gives rise to a convex order on �+, and the corresponding
Lusztig’s PBW basis of U>

v (g) can be constructed combinatorially via iterated v-commutators, due to
Levendorskii-Soibelman convexity property of [21]; see [18, 26].

Using similar ideas, Feigin-Odesskii introduced the elliptic shuffle algebras in [8]–[11]. Their trigono-
metric counterpart (but in the formal setup with Q(v) been replaced by Q[[h̄]]) was further studied by
Enriquez in [4, 5]. Explicitly, this manifests in the algebra embedding:

� : U>
v (Lg) ↪→ S. (1.6)

Here, S consists of symmetric rational functions in {xi,r}r∈Z
i∈I subject to so-called pole and wheel conditions,

and endowed with the shuffle product. Thus, (1.6) is a functional version of (1.4).
The major benefit of (1.6) is that it allows to conveniently work with the elements of Uv(Lg) given by

rather complicated non-commutative polynomials in the original generators. Within the last decade,
this realization has already found major applications in the geometric representation theory and
quantum integrable systems. To make this approach self-contained, it is important to have an explicit
description of the image Im(�). In fact, Enriquez conjectured:

� : U>
v (Lg) ∼−→ S. (1.7)

To prove (1.7), it is crucial to “compare the size” of U>
v (Lg) and S. For types A1 and Â1, this was

accomplished in [24] by crucially utilizing specialization maps analogous to those from [7, 13]. The
same approach was later used to prove (1.7) for types An and Ân in [25], for two-parameter and super
counterparts of type An in [30], and for type D(2, 1; θ) in [6].

In the present note, we generalize most of the results from [30] to types G2 and Bn, thus estab-
lishing the isomorphism (1.7) and constructing families of PBWD (Poincaré-Birkhoff-Witt-Drinfeld)-
bases of U>

v (Lg) in these types. To do so, we introduce the corresponding specialization maps on
the shuffle algebra of the associated type, and establish their key properties similarly to type An

from [30]. Let us note that these specialization maps arise naturally from the specific convex orders
on �+.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/7/6259/7613644 by guest on 09 April 2024



Shuffle Algebras and Their Integral Forms | 6261

It should be emphasized right away that Enriquez’s conjecture (1.7) has been recently proved for
all finite g in [26], the joint work of Neguţ and the second author. However, the approach of loc.cit.
is completely different, as it crucially uses a loop version of (1.4) instead of the specialization maps.
The present approach has its own benefits as it can also be used to upgrade both results (the shuffle
algebra realization and the PBWD-type bases) to the integral Z[v, v−1]-forms of U>

v (Lg) and the Yangian
version Y>

h̄ (g), generalizing type An from [29, 30]. We conclude this introduction by noting that similar
specialization maps actually exist for all finite types (which was already known to [26]), though their
definition is more involved.

1.2 Outline of the paper
The structure of the present paper is the following:

• In Section 2, we recall the notion of quantum loop algebras U>
v (Lg) in the new Drinfeld realization

as well as shuffle algebras S, introduce certain families of quantum root vectors (associated to
specific convex orders on the set �+ of positive roots), and state the key results (PBWD bases and
shuffle algebra isomorphism) for U>

v (Lg) of types Bn and G2. We briefly recall how such results were
proved in [30] for type An using specialization maps on S, and summarize their key properties in
Lemmas 2.6–2.8.

• In Section 3, we define the specialization maps for the shuffle algebra S of exceptional type
G2, establish the counterparts of Lemmas 2.6–2.8 in that setup, and use the latter to prove
Theorems 2.4 and 2.5 for type G2; see Theorem 3.7. We upgrade both results to the Lusztig/Chari-
Pressley/Grojnowski integral form U>

v (Lg2) in Theorem 3.12.
• In Section 4, we define the specialization maps for the shuffle algebra S of type Bn, establish the

counterparts of Lemmas 2.6–2.8 in that setup, and use the latter to prove Theorems 2.4 and 2.5
for type Bn; see Theorem 4.8. We upgrade both results to the Lusztig/Chari-Pressley/Grojnowski
integral form U>

v (Lo2n+1) in Theorem 4.19. Likewise, we upgrade both results to the RTT integral
form U>

v (Lo2n+1) in Theorem 4.14.
• In Section 5, we generalize the results of Sections 3–4 to the rational setup by providing the shuffle

realization and constructing PBWD bases for the positive subalgebras of the Yangians and their
Drinfeld-Gavarini duals in types G2 and Bn; see Theorems 5.14, 5.20.

• In Appendix A, we use the RTT realization of Uv(Lo2n+1) from [17] to explain the natural origin and
the name of the RTT integral form U>

v (Lo2n+1) from Subsection 4.2.

2 Preliminaries
2.1 Quantum loop algebras and shuffle algebras
Let g be a finite dimensional simple Lie algebra with simple positive roots {αi}i∈I. We denote the set of
positive roots by �+. Each β ∈ �+ can be uniquely expressed as a sum of simple roots: β = ∑

i∈I νβ,iαi

with νβ,i ∈ N (the set N will be assumed to include 0). We shall refer to νβ,i as the coefficient of αi in β, and
we shall use the following notation:

i ∈ β ⇐⇒ νβ,i 	= 0. (2.1)

We fix a nondegenerate invariant bilinear form on the Cartan subalgebra h of g. This gives rise to a
nondegenerate form on the dual h∗, and we set di := (αi ,αi)

2 . The choice of the form is such that di = 1 for
short roots αi. Let A = (aij)i,j∈I be the Cartan matrix of g, so that diaij = (αi, αj) = djaji. In this paper, we
consider simple Lie algebras of types An, Bn, G2. The corresponding Dynkin diagrams look as follows:

(2.2)

(2.3)

(2.4)
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For these types, we have

An-type (n ≥ 1) : di = 1 (1 ≤ i ≤ n), (2.5)

Bn-type (n ≥ 2) : di = 2 (1 ≤ i ≤ n − 1), dn = 1, (2.6)

G2-type: d1 = 3, d2 = 1. (2.7)

Let v be a formal variable. We define vα = v(α,α)/2 for any α ∈ �+, and denote vαi = vdi simply by vi

for any i ∈ I. Let Sm denote the symmetric group of degree m. Let U>
v (Lg) be the “positive subalgebra”

of the quantum loop algebra Uv(Lg) associated to g in the new Drinfeld realization. Explicitly, U>
v (Lg) is

the Q(v)-algebra generated by {ei,r}r∈Z
i∈I subject to the following defining relations:

(z − v
aij

i w)ei(z)ej(w) = (v
aij

i z − w)ej(w)ei(z) ∀ i, j ∈ I, (2.8)

Sym
z1,...,z1−aij

1−aij∑
k=0

(−1)k

[
1 − aij

k

]
vi

ei(z1) · · · ei(zk)ej(w)ei(zk+1) · · · ei(z1−aij ) = 0 ∀ i 	= j. (2.9)

Here, we use the following notations:

[�]u := u� − u−�

u − u−1
, [�]u! :=

�∏
k=1

[k]u,

[
�

m

]
u

:= [�]u!
[� − m]u! [m]u!

,

ei(z) :=
∑
r∈Z

ei,rz
−r, Sym

z1,...,zm

V(z1, . . . , zm) :=
∑

σ∈Sm

V(zσ(1), . . . , zσ(m)).

(2.10)

We shall also need the following notation later:

〈m〉u := um − u−m ∀ m ∈ N. (2.11)

We define Sk := ∏
i∈I Ski

for any k = (k1, . . . , k|I|) ∈ NI. Associated to the Cartan matrix A = (aij)i,j∈I,
we also have the trigonometric version of the Feigin-Odesskii shuffle algebra. To this end, consider the
following NI-graded Q(v)-vector space

S =
⊕
k∈NI

Sk,

where Sk consists of rational functions F in the variables {xi,r}1≤r≤ki
i∈I such that:

• F is Sk-symmetric, that is, symmetric in {xi,r}ki
r=1 for each i ∈ I,

• (pole conditions) F has the form

F = f ({xi,r}1≤r≤ki
i∈I )∏aij 	=0

i<j

∏1≤s≤kj

1≤r≤ki
(xi,r − xj,s)

, (2.12)

where f ∈ Q(v)[{x±1
i,r }1≤r≤ki

i∈I ]Sk and an arbitrary order < is chosen on I to make sense of i < j (though
the space Sk is clearly independent of this order).

Let (ζi,j(z))i,j∈I be the matrix of rational functions in z given by

ζi,j(z) = z − v−(αi ,αj)

z − 1
. (2.13)

For k, � ∈ NI, let

k + � = (ki + �i)i∈I ∈ NI.
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Let us introduce the bilinear shuff le product  on S as follows: for F ∈ Sk and G ∈ S�, we set

F  G
({xi,r}1≤r≤ki+�i

i∈I

) =

1
k! ·�!

· Sym
Sk+�

(
F
({xi,r}1≤r≤ki

i∈I

) · G
({xj,s}kj<s≤kj+�j

j∈I

)∏
i,j∈I

s>kj∏
r≤ki

ζi,j

( xi,r

xj,s

))
.

(2.14)

Here, for k ∈ NI, we set k! = ∏
i∈I ki!, and define the symmetrization

Sym
Sk

(
F({xi,r}1≤r≤ki

i∈I )
)

:=
∑

(σ1,...,σ|I|)∈Sk

F({xi,σi(r)}1≤r≤ki
i∈I ). (2.15)

This endows S with a structure of an associative unital algebra. The resulting algebra (S, ) is related to
U>

v (Lg) via the following result (cf. [4, Theorem 3], [5, Proposition 1.2]):

Proposition 2.1. The assignment ei,r �→ xr
i,1 ∈ S1i (i ∈ I, r ∈ Z), where 1i = (0, . . . , 1, . . . , 0) with 1 at

the i-th coordinate, gives rise to a Q(v)-algebra homomorphism

� : U>
v (Lg) −→ S. (2.16)

Moreover, for any F ∈ Im(�), its numerator f from (2.12) satisfies:

f ({xi,r}1≤r≤ki
i∈I ) = 0 once xi,s1 = v2

i xi,s2 = · · · = v
−2aij

i xi,s1−aij
= v

−aij

i xj,r (2.17)

for any i 	= j such that aij 	= 0, pairwise distinct 1 ≤ s1, . . . , s1−aij ≤ ki, and 1 ≤ r ≤ kj.

The vanishing conditions (2.17) are usually called wheel conditions. Let Sk denote the subspace of all
elements of Sk satisfying the wheel conditions, and set S = ⊕

k∈NI Sk. The following is straightforward:

Lemma 2.2. S is a subalgebra of S under the shuffle product  determined by (2.14).

From now on, we will refer to (S, ) as the (trigonometric Feigin-Odesskii) shuffle algebra (of type g).
According to [26, Proposition 5.7] (cf. [5, Corollary 1.4]), we have:

Proposition 2.3. The algebra homomorphism � of (2.16) is injective.

In fact, � is an algebra isomorphism, cf. (1.7). This was first conjectured by Enriquez, established for
An-type in [25] (see also [30]), and finally proved in the full generality in [26].

Theorem 2.4. � : U>
v (Lg) ∼−→ S of (2.16) is a Q(v)-algebra isomorphism.

The key to the proof of Theorem 2.4 is to obtain an upper bound estimate for the dimensions of the
graded components of the shuffle algebra S. To this end, we note that [26] instrumentally used a loop
version of the formal quantum shuffle algebra due to Green, Rosso, and Schauenburg. In contrast, the
arguments of [25] and [30] for type An were quite different: an estimate of the graded dimensions was
achieved by using certain specialization maps. One benefit of the latter approach is that it allows for
the shuffle realization of various integral Z[v, v−1]-forms.

The key objective of the present paper is to extend the method used in [25, 30] to types Bn and G2.
This will provide a new proof of Theorem 2.4 in these types, different from [26].

2.2 Root vectors and PBWD bases
Our construction of the specialization maps and PBWD bases is based on the specific choice of a convex
order on �+. The one that is best suited for our purposes is arising through the lexicographical order on
standard Lyndon words, see [18, 20], as we recall next.
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Recall that I is the indexing set of the simple roots of g. The labeling of the simple roots in
the corresponding Dynkin diagrams (2.2)–(2.4) provides a total order on the set I, and hence the
lexicographical order on the set of words in the alphabet I. According to [20, Proposition 3.2], there
is a natural bijection between the sets of positive roots �+ and so-called standard Lyndon words, cf. (1.5).
Thus, the lexicographical order on the latter gives rise to an order < on �+, which is convex by [18,
Proposition 26], cf. [26, Proposition 2.34]. In what follows, we fix this specific convex order on �+ and
use standard Lyndon words to parametrize the positive roots.

Let us work this out explicitly for types An, Bn, G2 with the specific order on I as in (2.2)–(2.4). Applying
[18, Proposition 25], we find the set of all standard Lyndon words:

An-type (n ≥ 1) : �+ = {
[i, i + 1, . . . , j]

∣∣ 1 ≤ i ≤ j ≤ n
}
,

Bn-type (n ≥ 2) : �+ = {
[i, i + 1, . . . , j]

∣∣ 1 ≤ i ≤ j ≤ n
}

∪ {
[i, . . . , n, n, n − 1, . . . , j]

∣∣ 1 ≤ i < j ≤ n
}
,

G2-type: �+ = {
[1], [1, 2], [1, 2, 1, 2, 2], [1, 2, 2], [1, 2, 2, 2], [2]

}
.

(2.18)

For convenience, we shall use the following notations for positive roots in types An and Bn:

[i, j] := [i, i + 1, . . . , j] for 1 ≤ i ≤ j ≤ n,

[i, n, j] := [i, . . . , n, n, n − 1, . . . , j] for 1 ≤ i < j ≤ n.
(2.19)

The aforementioned specific convex order on �+ in types An, Bn, G2 looks as follows:

• Type An (n ≥ 1) :

[1] < [1, 2] < · · · < [1, n] < [2] < · · · < [n − 1] < [n − 1, n] < [n]. (2.20)

• Type Bn (n ≥ 2) :

[1] < [1, 2] < · · · < [1, n] < [1, n, n] < · · · < [1, n, 2] < [2] < · · · < [n − 1, n, n] < [n]. (2.21)

• Type G2 :

[1] < [1, 2] < [1, 2, 1, 2, 2] < [1, 2, 2] < [1, 2, 2, 2] < [2]. (2.22)

The quantum root vectors {Eβ,s}s∈Z
β∈�+ of U>

v (Lg) in type An were defined in [30, (2.12)] via iterated v-
commutators (they were called the PBWD basis elements and depended on certain extra choices). Here,
for x, y ∈ U>

v (Lg) and u ∈ Q(v), the u-commutator [x, y]u is defined via:

[x, y]u := xy − u · yx. (2.23)

We shall now similarly define the quantum root vectors of U>
v (Lg) for g of type Bn and G2:

• Bn-type.
For any β = [i1, . . . , i�] ∈ �+ from (2.18) and s ∈ Z, choose a collection λ1, . . . , λ�−1 ∈ vZ and a
decomposition s = s1 + · · · + s� with s1, . . . , s� ∈ Z. Then, we define

Eβ,s := [· · · [[ei1,s1 , ei2,s2 ]λ1 , ei3,s3 ]λ2 , · · · , ei� ,s�
]λ�−1 . (2.24)

• G2-type.
For β = [i1, . . . , i�] 	= [1, 2, 1, 2, 2], s ∈ Z, the elements Eβ,s are defined exactly as in (2.24).
For β = [1, 2, 1, 2, 2], s ∈ Z, we choose a decomposition s = s1 +· · ·+ s5 with s1, . . . , s5 ∈ Z, a collection
λ1, . . . , λ4 ∈ vZ, and define

Eβ,s := [[e1,s1 , e2,s2 ]λ1 , [[e1,s3 , e2,s4 ]λ2 , e2,s5 ]λ3 ]λ4 . (2.25)
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In particular, we have the following specific choices {Ẽ±
β,s}s∈Z

β∈�+ which will be used to construct PBWD
bases of the integral forms in Sections 3.2, 4.2, and 4.3:

• Bn-type.
If β = [i, j], s ∈ Z, we choose any decomposition s = si + · · · + sj, fix a sign ±, and define

Ẽ±
[i,j],s := [· · · [[ei,si

, ei+1,si+1
]v±2 , ei+2,si+2

]v±2 , · · · , ej,sj
]v±2 . (2.26)

If β = [i, n, j], s ∈ Z, we choose any decomposition s = si + · · · + sj−1 + 2sj + · · · + 2sn, fix a sign ±, and
define

Ẽ±
[i,n,j],s := [· · · [[[· · · [ei,si

, ei+1,si+1
]v±2 , · · · , en,sn ]v±2 , en,sn ], en−1,sn−1 ]v±2 , · · · , ej,sj

]v±2 . (2.27)

• G2-type.
If β = [1] or [2], s ∈ Z, we define

Ẽ±
[i],s := ei,s for 1 ≤ i ≤ 2. (2.28)

If β = [1, 2], s ∈ Z, we choose any decomposition s = s1 + s2, and define

Ẽ±
[1,2],s := [e1,s1 , e2,s2 ]v±3 . (2.29)

If β = [1, 2, 2], s ∈ Z, we choose any decomposition s = s1 + 2s2, and define

Ẽ±
[1,2,2],s := [[e1,s1 , e2,s2 ]v±3 , e2,s2 ]v±1 . (2.30)

If β = [1, 2, 2, 2], s ∈ Z, we choose any decomposition s = s1 + 3s2, and define

Ẽ±
[1,2,2,2],s := [[[e1,s1 , e2,s2 ]v±3 , e2,s2 ]v±1 , e2,s2 ]v∓1 . (2.31)

If β = [1, 2, 1, 2, 2], s ∈ Z, we choose any decomposition s = 2s1 + 3s2, and define

Ẽ±
[1,2,1,2,2],s := [[e1,s1 , e2,s2 ]v±3 , [[e1,s1 , e2,s2 ]v±3 , e2,s2 ]v±1 ]v∓1 . (2.32)

Evoking the specific convex orders < on �+ from (2.20)–(2.22), let us consider the following order <

on the set �+ × Z:

(α, s) < (β, t) iff α < β or α = β, s < t. (2.33)

Let H denote the set of all functions h : �+ × Z → N with finite support. The monomials

Eh :=
→∏

(β,s)∈�+×Z

Eh(β,s)
β,s ∀ h ∈ H (2.34)

will be called the ordered PBWD monomials of U>
v (Lg). Here, the arrow → over the product sign refers to

the total order (2.33).
Our first key result generalizes [30, Theorem 2.16] from type An to types G2 and Bn (the proof is

presented in Sections 3 and 4, respectively, and is based on the shuffle approach):

Theorem 2.5. The ordered PBWD monomials {Eh}h∈H of (2.34) form Q(v)-bases of U>
v (Lg) for g of

type Bn and G2.
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2.3 Specialization maps in type An

As already mentioned, our key technique used to prove Theorem 2.5 as well as Theorem 2.4 in types Bn

and G2 is that of specialization maps. Following [30], we shall now briefly recall the construction and
the key properties of the latter in type An, while Sections 3–4 will generalize this technique to types G2

and Bn, respectively.
Identifying each simple root αi (i ∈ I) with a basis element 1i ∈ NI (having the i-th coordinate equal

to 1 and the rest equal to 0), we can view NI as the positive cone of the root lattice of g. For any k ∈ NI,
let KP(k) be the set of Kostant partitions, which consists of all unordered vector partitions of k into a sum
of positive roots. Explicitly, a Kostant partition of k is the same as a tuple d = {dβ }β∈�+ ∈ N�+

satisfying

∑
i∈I

kiαi =
∑

β∈�+
dββ. (2.35)

The convex order (2.20) on �+ induces a total order on KP(k) (opposite to that of [30]):

{dβ }β∈�+ < {d′
β }β∈�+ ⇐⇒ ∃ γ ∈ �+ s.t. dγ < d′

γ and dβ = d′
β for all β < γ . (2.36)

For any h ∈ H, we define its degree deg(h) ∈ N�+
as the Kostant partition d = {dβ }β∈�+ with

dβ = ∑
s∈Z h(β, s) ∈ N for all β ∈ �+, and the grading gr(h) ∈ NI so that deg(h) ∈ KP(gr(h)). For any

k ∈ NI and d ∈ KP(k), we define the following subsets of H:

Hk := {
h ∈ H

∣∣ gr(h) = k
}
, Hk,d := {

h ∈ H
∣∣deg(h) = d

}
. (2.37)

For any h ∈ Hk,d and β ∈ �+, we consider the collection

λh,β = {
rβ(h, 1) ≤ · · · ≤ rβ(h, dβ)

}
(2.38)

obtained by listing all integers r ∈ Z with multiplicity h(β, r) > 0 in the nondecreasing order. Thus, Eh of
(2.34) can be represented by

Eh =
→∏

β∈�+

(
Eβ,rβ (h,1) · · · Eβ,rβ (h,dβ )

) ∀ h ∈ Hk,d, (2.39)

where the arrow → over the product sign refers to the convex order (2.20) on �+.
Let us now recall the definition of the specialization maps in type An. For any F ∈ Sk and d ∈ KP(k),

we split the variables {xi,l}1≤l≤ki
i∈I into the disjoint union of

∑
β∈�+ dβ groups

⊔
β∈�+

1≤s≤dβ

{
x(β,s)

i,t

∣∣∣ i ∈ I, 1 ≤ t ≤ νβ,i

}
, (2.40)

where the integer νβ,i is the coefficient of αi in β as defined in the beginning of Subsection 2.1. In type

An, any positive root β ∈ �+ is of the form β = [i, j] = ∑j
s=i αs for some 1 ≤ i ≤ j ≤ n, and so νβ,i ∈ {0, 1} for

any 1 ≤ i ≤ n. For F ∈ Sk, let f denote its numerator from (2.12). Then, we define φd(F) by specializing the
variables in f as follows:

x(β,s)
i,1 �→ v−iwβ,s , . . . , x(β,s)

j,1 �→ v−jwβ,s ∀ β = [i, j], 1 ≤ s ≤ dβ . (2.41)

We note that φd(F) is symmetric in {wβ,s}dβ

s=1 for any β ∈ �+, and is independent of our splitting (2.40) of
the variables {xi,l}1≤l≤ki

i∈I into groups. This gives rise to the specialization map

φd : Sk −→ Q(v)[{w±1
β,s}1≤s≤dβ

β∈�+ ]Sd . (2.42)
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We shall further extend it to the specialization map φd on the entire shuffle algebra S:

φd : S −→ Q(v)[{w±1
β,s}1≤s≤dβ

β∈�+ ]Sd (2.43)

by declaring φd(F′) = 0 for any � 	= k and F′ ∈ S�.
Let us now summarize the key properties of the above specialization maps φd that were crucially

used in [30] to derive the shuffle algebra realization and the PBWD bases in type An. Our presentation
is adapted to allow for an immediate formulation of Bn and G2 counterparts.

In what follows, we will use the notation .= to denote an equality up to Q× · vZ:

A .= B if A = c · B for some c ∈ Q× · vZ. (2.44)

In type An, we define κβ := |β| − 1 for β ∈ �+, where |β| denotes the height of a root β ∈ �+:

|β| :=
∑
i∈I

νβ,i. (2.45)

We also recall the notation 〈m〉v from (2.11). The first two lemmas imply the linear independence of the
ordered PBWD monomials {Eh}h∈H in type An (see [30, §3.2.2]):

Lemma 2.6. For any h ∈ Hk,d, we have

φd(�(Eh))
.= 〈1〉v

∑
β∈�+ dβ κβ ·

β<β ′∏
β,β ′∈�+

Gβ,β ′ ·
∏

β∈�+
Gβ ·

∏
β∈�+

Pλh,β . (2.46)

Here, the factors Gβ,β ′ and Gβ are products of linear factors wβ,s and wβ,s − vZwβ ′ ,s′ which are
independent of h ∈ Hk,d and are symmetric with respect to Sd, λh,β are as in (2.38), and

Pλh,β = Sym
Sdβ

⎛⎝wrβ (h,1)

β,1 · · · wrβ (h,dβ )

β,dβ

∏
1≤i<j≤dβ

wβ,i − v−2
β wβ,j

wβ,i − wβ,j

⎞⎠ . (2.47)

This result (cf. [30, Lemma 3.17]) features a “rank 1 reduction”: each Pλh,β from (2.47) can be viewed as

the shuffle product xrβ (h,1)  · · ·  xrβ (h,dβ ) in the shuffle algebra of type A1, evaluated at {wβ,s}dβ

s=1. The fol-
lowing is [30, Lemma 3.16] (keeping in mind that our total order (2.36) on KP(k) is opposite to that of [30]):

Lemma 2.7. For any h ∈ Hk,d and d′
< d, we have φd′ (�(Eh)) = 0.

Let S′
k be the Q(v)-subspace of Sk spanned by {�(Eh)}h∈Hk . The following result (which implies

Theorem 2.4 and establishes PBWD bases in type An) is proved in [30, §3.2.3]:

Lemma 2.8. For any F ∈ Sk and d ∈ KP(k), if φd′ (F) = 0 for all d′ ∈ KP(k) such that d′
< d, then there

exists Fd ∈ S′
k such that φd(F) = φd(Fd) and φd′ (Fd) = 0 for all d′

< d.

Combining Lemmas 2.6–2.8, we derive the An-type counterparts of Theorems 2.4, 2.5 using

(1) the validity of Theorems 2.4, 2.5 in type A1, see [30, §3.2.1],
(2) the observation that φd(F) = 0 ∀ d ∈ KP(k) implies F = 0 by taking the maximal element of

KP(k) with respect to (2.36) corresponding to a partition of k into a sum of simple roots; see [31,
Proposition 1.6].

Let us emphasize that proofs of both theorems use only the properties of the specialization maps φd

stated above. With this in mind, we will now define similar specialization maps and verify the validity of
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analogous lemmas in types G2 (Section 3) and Bn (Section 4). This will yield a new proof of Theorem 2.4
and a proof of Theorem 2.5 in types G2, Bn. As an important benefit of this approach, in contrast to [26],
we also establish the counterparts of the above two results for integral Z[v, v−1]-forms as well as for the
Yangian version (treated in Section 5).

3 Specialization Maps for Type G2

In this section, we define specialization maps for the shuffle algebra of type G2 and verify their key prop-
erties. This implies the shuffle algebra realization and PBWD-type theorems for U>

v (Lg2) as well as its
Lusztig integral form U>

v (Lg2) introduced in Subsection 3.2. Here, g2 is the simple Lie algebra of type G2.

3.1 U>
v (Lg2) and its shuffle algebra realization

In type G2, for any F ∈ Sk with k = (k1, k2) ∈ N2, the wheel conditions are:

F({xi,r}1≤r≤ki
1≤i≤2 ) = 0 once x1,1 = v6x1,2 = v3x2,1,

or x2,1 = v2x2,2 = v4x2,3 = v6x2,4 = v3x1,1.
(3.1)

For any k ∈ N2 and d ∈ KP(k), the specialization map φd as in (2.43) is defined by the following
specialization of the x(∗,∗)∗,∗ -variables (replacing (2.41) for type An):

x(β,s)
1,t �→ v2twβ,s (1 ≤ t ≤ νβ,1) , x(β,s)

2,t �→ v−3+2twβ,s (1 ≤ t ≤ νβ,2) (3.2)

for any positive root β ∈ �+, where νβ,i is as in Subsection 2.1.

Lemma 3.1. Consider the particular choices (2.28)–(2.32) of quantum root vectors {Ẽ±
β,s}s∈Z

β∈�+ . Their
images under � in the shuffle algebra S of type G2 are as follows:

• For {Ẽ+
β,s}s∈Z

β∈�+ :

�(Ẽ+
[i],s)

.= xs
i,1, i = 1, 2, (3.3)

�(Ẽ+
[1,2],s)

.= 〈3〉vxs1+1
1,1 xs2

2,1

x1,1 − x2,1
, with s = s1 + s2, (3.4)

�(Ẽ+
[1,2,2],s)

.= 〈3〉v〈2〉v[2]v · xs1+2
1,1 (x2,1x2,2)

s2

(x1,1 − x2,1)(x1,1 − x2,2)
, with s = s1 + 2s2, (3.5)

�(Ẽ+
[1,2,2,2],s)

.= 〈3〉2
v〈2〉v[2]v · xs1+3

1,1 (x2,1x2,2x2,3)
s2

(x1,1 − x2,1)(x1,1 − x2,2)(x1,1 − x2,3)
, with s = s1 + 3s2, (3.6)

�(Ẽ+
[1,2,1,2,2],s)

.= 〈3〉3
v〈2〉v[2]v · (x1,1x1,2)

s1+1(x2,1x2,2x2,3)
s2 · g1∏1≤t≤3

1≤r≤2(x1,r − x2,t)
, with s = 2s1 + 3s2, (3.7)

where

g1 = (v6 + 1)x2
1,1x2

1,2 + (v6 + 1)x1,1x1,2(x2,1x2,2 + x2,1x2,3 + x2,2x2,3)

− v3(x1,1 + x1,2)(x1,1x1,2x2,1 + x1,1x1,2x2,2 + x1,1x1,2x2,3 + x2,1x2,2x2,3).
(3.8)

• For {Ẽ−
β,s}s∈Z

β∈�+ :

�(Ẽ−
[i],s)

.= xs
i,1, i = 1, 2, (3.9)

�(Ẽ−
[1,2],s)

.= 〈3〉vxs1
1,1xs2+1

2,1

x1,1 − x2,1
, with s = s1 + s2, (3.10)

�(Ẽ−
[1,2,2],s)

.= 〈3〉v〈2〉v[2]v · xs1
1,1(x2,1x2,2)

s2+1

(x1,1 − x2,1)(x1,1 − x2,2)
, with s = s1 + 2s2, (3.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/7/6259/7613644 by guest on 09 April 2024



Shuffle Algebras and Their Integral Forms | 6269

�(Ẽ−
[1,2,2,2],s)

.= 〈3〉2
v〈2〉v[2]v · xs1

1,1(x2,1x2,2x2,3)
s2+1

(x1,1 − x2,1)(x1,1 − x2,2)(x1,1 − x2,3)
, with s = s1 + 3s2, (3.12)

�(Ẽ−
[1,2,1,2,2],s)

.= 〈3〉3
v〈2〉v[2]v · (x1,1x1,2)

s1 (x2,1x2,2x2,3)
s2+1 · g2∏1≤t≤3

1≤r≤2(x1,r − x2,t)
, with s = 2s1 + 3s2, (3.13)

where

g2 = (v6 + 1)x2,1x2,2x2,3 + (v6 + 1)x1,1x1,2(x2,1 + x2,2 + x2,3)

− v3(x1,1 + x1,2)(x1,1x1,2 + x2,1x2,2 + x2,1x2,3 + x2,2x2,3).
(3.14)

Proof. Straightforward computation. �

For more general quantum root vectors {Eβ,s}s∈Z
β∈�+ of U>

v (Lg2) defined by (2.25), their images under
� in S are not so well factorized as for the particular choices above. Nevertheless, what is actually
important is that they behave well under the specialization maps. For β ∈ �+, we shall use φβ to denote
the specialization map φd with d = {dα = δβ,α}α∈�+ .

Lemma 3.2. For any s ∈ Z and any choices of sk and λk in (2.24, 2.25), we have:

φ[i](�(E[i],s))
.= ws

[i],1, 1 ≤ i ≤ 2, (3.15)

φ[1,2](�(E[1,2],s))
.= 〈3〉v · ws+1

[1,2],1, (3.16)

φ[1,2,2](�(E[1,2,2],s))
.= 〈3〉v〈2〉v[2]v · ws+2

[1,2,2],1, (3.17)

φ[1,2,2,2](�(E[1,2,2,2],s))
.= 〈3〉2

v〈2〉v[2]v · ws+3
[1,2,2,2],1, (3.18)

φ[1,2,1,2,2](�(E[1,2,1,2,2],s))
.= 〈4〉v〈3〉3

v〈2〉2
v[2]v · ws+6

[1,2,1,2,2],1. (3.19)

Thus, we have:

φβ(�(Eβ,s))
.= cβ · ws+κβ

β,1 ∀ (β, s) ∈ �+ × Z, (3.20)

where the constant cβ is explicitly specified in (3.15)–(3.19), and κβ is given by

κβ =
⎧⎨⎩|β| − 1 if β 	= [1, 2, 1, 2, 2]

|β| + 1 if β = [1, 2, 1, 2, 2]
. (3.21)

Proof. This follows from straightforward computations and the fact that for any positive roots α1 < α2

such that α1 + α2 is a root, we have

φα1+α2 (�(Eα1,s1 )  �(Eα2,s2 )) = 0 ∀ s1, s2 ∈ Z.

The latter fact is a special case of Proposition 3.5. �

Let us now generalize the above lemma by computing φd(�(Eh)) for any h ∈ Hk,d. According to (2.39),
we have:

�(Eh) =
→∏

β∈�+

(
�(Eh,rβ (h,1))  · · ·  �(Eh,rβ (h,dβ ))

)
.

Here, the product refers to the shuffle product and the arrow → over the product sign refers to the order
(2.22). Thus, we can choose a special splitting such that the variables in �(Eβ,rβ (h,s)) are taken to be the

group {x(β,s)
i,t }1≤t≤νβ,i

1≤i≤2 , and under φd they are specialized as in (3.2).
For each 1 ≤ i ≤ 2, let us consider an order on all the variables

Xi = {
x(β,s)

i,t

∣∣β ∈ �+, 1 ≤ s ≤ dβ , 1 ≤ t ≤ νβ,i
}
, (3.22)

defined by (cf. (2.33))

x(β,s)
i,t < x(β ′ ,s′)

i,t′ iff (β, s) < (β ′, s′) or (β, s) = (β ′, s′), t < t′. (3.23)
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Once we fix the above splitting of the x∗,∗-variables, the group Sk acts on each Xi (1 ≤ i ≤ 2) by permuting
the tuples {

(β, s, t) ∈ �+ × N × N
∣∣1 ≤ s ≤ dβ , 1 ≤ t ≤ νβ,i

}
. (3.24)

For any d ∈ KP(k), let Shd ⊂ Sk be the subset of “d-shuffle permutations”, defined via:

Shd :=
{
σ ∈ Sk

∣∣∣ σ(x(β,s)
i,t ) < σ(x(β,s)

i,t′ ) ∀ t < t′, β ∈ �+, 1 ≤ s ≤ dβ , 1 ≤ i ≤ 2
}
, (3.25)

where the order < on the variables is defined in (3.23). Then, by definition of the shuffle product (2.14),
we have:

�(Eh)
.=

∑
σ∈Shd

σ
(
Fh({x(∗,∗)

∗,∗ })) =
∑

σ∈Shd

Fh
({σ(x(∗,∗)

∗,∗ )}), (3.26)

where

Fh :=
∏

β∈�+
1≤s≤dβ

�(Eβ,rβ (h,s))

(β,p)<(β ′ ,q)∏
β,β ′∈�+

1≤p≤dβ ,1≤q≤dβ′

∏
1≤i,j≤2

1≤r≤νβ′ ,j∏
1≤�≤νβ,i

x(β,p)

i,� − v
−aij

i x(β ′ ,q)

j,r

x(β,p)

i,� − x(β ′ ,q)

j,r

. (3.27)

Let us now evaluate the φd-specialization of each term σ(Fh) in the symmetrization (3.26), many of
which actually vanish. To this end, consider the elements σ ∈ Sk which satisfy the following condition:
as a permutation of the tuples (3.24) σ fixes the indices β, t (as well as i) and only permutes the index s.
In other words, for each β ∈ �+ there is σβ ∈ Sdβ

such that:

σ(x(β,s)
i,t ) = x(β,σβ (s))

i,t ∀ β ∈ �+, 1 ≤ s ≤ dβ , i ∈ β, 1 ≤ t ≤ νβ,i. (3.28)

Such permutations σ form a subgroup of Sk isomorphic to Sd := ∏
β∈�+ Sdβ

, and we shall denote this
subgroup simply by Sd.

In what follows, given a collection A of the variables x(∗,∗)

i,∗ with a fixed index i and a collection B of

the variables x(∗,∗)

j,∗ with a fixed index j, we shall use the following notation:

ζi,j(A/B) :=
y∈B∏
x∈A

ζi,j(x/y). (3.29)

Then, we have:

Lemma 3.3. φd(σ (Fh)) = 0 for σ /∈ Sd.

Proof. Define the following sets of variables (cf. the notation (2.1)):

Zβ

i = {
x(β,s)

i,t

∣∣1 ≤ s ≤ dβ , 1 ≤ t ≤ νβ,i
} ∀ β ∈ �+, i ∈ β, (3.30)

Z>β

i = {
x(α,s)

i,t

∣∣β < α, 1 ≤ s ≤ dα , i ∈ α, 1 ≤ t ≤ να,i} ∀ β ∈ �+, 1 ≤ i ≤ 2. (3.31)

It suffices to show that φd(σ (Fh)) 	= 0 only if (3.28) holds for every β ∈ �+. We shall prove this by induction
on β with respect to the increasing order (2.22).

We note that Fh contains ζ -factors ζ1,2(Z
[1]
1 /Z>[1]

2 ), cf. (3.29), and clearly σ(Z>[1]
2 ) = Z>[1]

2 . If σ(Z[1]
1 ) 	= Z[1]

1 ,
then there is some x([1],s)

1,1 such that σ(x([1],s)
1,1 ) = x(γ ,r)

1,t for some γ > [1]. In the latter case, σ(Fh) contains the

ζ -factor ζ1,2(x
(γ ,r)
1,t /x(γ ,r)

2,t ) and so φd(σ (Fh)) = 0, which is a contradiction. This establishes (3.28) for β = [1],
which is the base of induction.

Let us now prove (3.28) for β, assuming (3.28) holds for all α < β. The only nontrivial check is for the
case β = [1, 2, 1, 2, 2]. Assuming by induction that for all s < s0 there is s′ with 1 ≤ s′ ≤ dβ such that
σ(x(β,s)

i,t ) = x(β,s′)
i,t for any i ∈ β, 1 ≤ t ≤ νβ,i, we shall prove the same also holds for s = s0. The base of

induction is s0 = 1, in which case the statement is vacuous.
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Let σ(x(β,s0)

1,1 ) = x(γ1,r1)

1,t1
. By the induction hypothesis, we have (β, s0) ≤ (γ1, r1). Suppose σ(x(β1,s1)

2,�1
) = x(γ1,r1)

2,t1
.

If β1 < β, then by the induction hypothesis we get γ1 = β1 < β, a contradiction. On the other hand, if
β1 > β, then we note that Fh contains the ζ -factors ζ1,2(x

(β,s0)

1,1 /Z>β

2 ), and thus σ(Fh) contains the factor

ζ1,2(x
(γ1,r1)

1,t1
/x(γ1,r1)

2,t1
), which specializes to zero under φd, a contradiction. Thus, β1 = β. Similarly, there is

some x(β,s2)

2,�2
such that σ(x(β,s2)

2,�2
) = x(γ1,r1)

2,t1+1. Moreover, if s0 < s1 or s1 < s2, then σ(Fh) contains the ζ -factor

ζ1,2(x
(γ1,r1)

1,t1
/x(γ1,r1)

2,t1
) or ζ2,2(x

(γ1,r1)

2,t1
/x(γ1,r1)

2,t1+1), which implies φd(σ (Fh)) = 0, hence, a contradiction. Thus, we have
s0 ≥ s1 ≥ s2. If s1 < s0, then by induction hypothesis, we get a contradiction. Similarly, if s2 < s0, we also
get a contradiction. Thus, s0 = s1 = s2. If �2 < �1, then x(β,s0)

2,�2
< x(β,s0)

2,�1
, and the condition σ ∈ Shd implies

x(γ1,r1)

2,t1+1 = σ(x(β,s0)

2,�2
) < σ(x(β,s0)

2,�1
) = x(γ1,r1)

2,t1
,

a contradiction. Thus, �1 < �2. Combining all the above, we get s1 = s2 = s0 and �1 < �2.
Similarly, let σ(x(β,s0)

1,2 ) = x(γ2,r2)

1,t2
. Then, there are x(β,s0)

2,�′
1

, x(β,s0)

2,�′
2

with �′
1 < �′

2 and

σ(x(β,s0)

2,�′
1

) = x(γ2,r2)

2,t2
, σ(x(β,s0)

2,�′
2

) = x(γ2,r2)

2,t2+1.

Note that 1 ≤ �1 < �2 ≤ 3 and 1 ≤ �′
1 < �′

2 ≤ 3. Then, we have three cases:

• if �1 = �′
1, then (γ1, r1) = (γ2, r2) and t1 = t2, a contradiction.

• if �1 > �′
1, then �′

1 = 1, �1 = 2, �2 = 3, �′
2 = �1 or �2. In either case, we get (γ1, r1) = (γ2, r2). However,

since x(β,s0)

1,1 < x(β,s0)

1,2 we have t1 < t2; since x(β,s0)

2,1 < x(β,s0)

2,2 , we have t2 < t1, which is a contradiction.
• if �1 < �2, then �1 = 1, �′

1 = 2, �′
2 = 3. Similarly to above, we must have (γ1, r1) = (γ2, r2), t1 = 1, t2 = 2.

Then γ1 = γ2 = β, which is precisely what we wanted.

This completes our proof of the induction step. �

Combining Lemmas 3.2–3.3, we obtain the following analogue of Lemma 2.6 for type G2:

Proposition 3.4. For any h ∈ Hk,d, we have

φd(�(Eh))
.=

β<β ′∏
β,β ′∈�+

Gβ,β ′ ·
∏

β∈�+

(
cdβ

β · Gβ

) ·
∏

β∈�+
Pλh,β , (3.32)

where the factors {Pλh,β }β∈�+ are given by (2.47), the constants {cβ }β∈�+ are as in Lemma 3.2, and
the factors Gβ , Gβ,β ′ are explicitly given in the proof below.

Proof. If σ ∈ Sd, then in Fh the following factor is invariant under σ :

β,β ′∈�+∏
β<β ′

1≤q≤dβ′∏
1≤p≤dβ

∏
1≤i,j≤2

1≤r≤νβ′ ,j∏
1≤l≤νβ,i

x(β,p)

i,l − v
−aij

i x(β ′ ,q)

j,r

x(β,p)

i,l − x(β ′ ,q)

j,r

, (3.33)

and we denote its φd-specialization by
∏

β<β ′ Gβ,β ′ (with matching indices β, β ′). Thus, we only need to
prove the following equality for any β ∈ �+:

φd

(
�
(
Eβ,rβ (h,1)  · · ·  Eβ,rβ (h,dβ )

)) .= cdβ

β · Gβ · Pλh,β , (3.34)

with the factor Gβ being independent of σ ∈ Sd. This is proved by straightforward computation.
Explicitly, we have the following formulas:
Gβ

.=
• 1, for β = [1], [2],
•

∏
1≤s	=r≤dβ

(wβ,s − v6wβ,r) · ∏dβ

�=1 wβ,�, for β = [1, 2],

•
∏

1≤s	=r≤dβ

{
(wβ,s − v6wβ,r)(wβ,s − v4wβ,r)

} · ∏dβ

�=1 w2
β,�, for β = [1, 2, 2],

•
∏

1≤s	=r≤dβ

{
(wβ,s − v6wβ,r)(wβ,s − v4wβ,r)(wβ,s − v2wβ,r)

} · ∏dβ

�=1 w3
β,�, for β = [1, 2, 2, 2],
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•
∏

1≤s	=r≤dβ

{
(wβ,s − v8wβ,r)(wβ,s − v6wβ,r)

2(wβ,s − v4wβ,r)
2(wβ,s − v2wβ,r)

} ·∏dβ

�=1 w6
β,�, for β = [1, 2, 1, 2, 2].

Gβ,β ′
.=

•
∏1≤r≤dβ′

1≤s≤dβ
(wβ,s − v−6wβ ′ ,r), for β = [1] and β ′ = [1, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−6wβ ′ ,r)(wβ,s − v−4wβ ′ ,r)(wβ,s − v4wβ ′ ,r)

}
, for β = [1] and β ′ = [1, 2, 1, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−6wβ ′ ,r)(wβ,s − v2wβ ′ ,r)

}
, for β = [1] and β ′ = [1, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−6wβ ′ ,r)(wβ,s − v2wβ ′ ,r)(wβ,s − v4wβ ′ ,r)

}
, for β = [1] and β ′ = [1, 2, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ
(wβ,s − wβ ′ ,r), for β = [1] and β ′ = [2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v8wβ ′ ,r)(wβ,s − v−6wβ ′ ,r)(wβ,s − v6wβ ′ ,r)(wβ,s − v−4wβ ′ ,r)(wβ,s − v−2wβ ′ ,r)

}
, for β = [1, 2]

and β ′ = [1, 2, 1, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−6wβ ′ ,r)(wβ,s − v6wβ ′ ,r)(wβ,s − v−2wβ ′ ,r)

}
, for β = [1, 2] and β ′ = [1, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s −v−6wβ ′ ,r)(wβ,s −v6wβ ′ ,r)(wβ,s −v−2wβ ′ ,r)(wβ,s −v2wβ ′ ,r)

}
, for β = [1, 2] and β ′ = [1, 2, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ
(wβ,s − v−2wβ ′ ,r), for β = [1, 2] and β ′ = [2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s −v−8wβ ′ ,r)(wβ,s −v−6wβ ′ ,r)

2(wβ,s −v6wβ ′ ,r)(wβ,s −v−4wβ ′ ,r)(wβ,s −v4wβ ′ ,r)(wβ,s −v2wβ ′ ,r)
}
,

for β = [1, 2, 1, 2, 2] and β ′ = [1, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−8wβ ′ ,r)(wβ,s − v−6wβ ′ ,r)

2(wβ,s − v6wβ ′ ,r)(wβ,s − v−4wβ ′ ,r)(wβ,s − v4wβ ′ ,r)(wβ,s −
v2wβ ′ ,r)

2(wβ,s − v−2wβ ′ ,r)
}
, for β = [1, 2, 1, 2, 2] and β ′ = [1, 2, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s − v−6wβ ′ ,r)(wβ,s − v−2wβ ′ ,r)

}
, for β = [1, 2, 1, 2, 2] and β ′ = [2],

•
∏1≤r≤dβ′

1≤s≤dβ

{
(wβ,s −v−6wβ ′ ,r)(wβ,s −v6wβ ′ ,r)(wβ,s −v−4wβ ′ ,r)(wβ,s −v4wβ ′ ,r)(wβ,s −v−2wβ ′ ,r)

}
, for β = [1, 2, 2]

and β ′ = [1, 2, 2, 2],

•
∏1≤r≤dβ′

1≤s≤dβ
(wβ,s − v−4wβ ′ ,r), for β = [1, 2, 2] and β ′ = [2],

•
∏1≤r≤dβ′

1≤s≤dβ
(wβ,s − v−6wβ ′ ,r), for β = [1, 2, 2, 2] and β ′ = [2].

This completes our proof. �

Proposition 3.5. Lemma 2.7 is valid for type G2 and specialization maps φd as in (3.2).

Proof. Given d, d′ ∈ KP(k) with d′
< d, and any σ ∈ Sk, we will show that φd′ (σ (Fh)) = 0. Let x(∗,∗)∗,∗ be the

above special splitting of the variables {xi,l}1≤l≤ki
i=1,2 for φd (see (3.26, 3.27)) and let x′(∗,∗)∗,∗ be any splitting of

the variables {xi,l}1≤l≤ki
i=1,2 for φd′ (see (2.40)). We consider the following sets of x(∗,∗)∗,∗ -variables:

Z>(β,s)
i = {

x(α,r)
i,∗

∣∣ (α, r) > (β, s)
} ∀ (β, s) ∈ �+ × N, 1 ≤ i ≤ 2. (3.35)

Let β be the smallest positive root such that d′
β < dβ . Following Lemma 3.3, we can assume that

for any α ≤ β the property (3.28) holds for the variables x′(α,∗)∗,∗ , since otherwise the φd′ -specialization is
zero. Thus, without loss of generality, we can assume d′

α = 0 for all α ≤ β. Then, we have the following
case-by-case analysis:

• Case β = [1]. Let σ(x(β,1)

1,1 ) = x′(γ ,r)
1,t for some γ > β. Since Fh contains the factor ζ1,2(x

(β,1)

1,1 /Z>(β,1)

2 ), and

x′(γ ,r)
2,t ∈ σ(Z>(β,1)

2 ), we get φd′ (σ (Fh)) = 0.

• Case β = [1, 2]. Let σ(x(β,1)

1,1 ) = x′(γ ,r)
1,t for some γ > β. Since Fh contains the factor ζ1,2(x

(β,1)

1,1 /Z>(β,1)

2 ), we

have φd′ (σ (Fh)) = 0 unless σ(x(β,1)

2,1 ) = x′(γ ,r)
2,t . In this case, we again get φd′ (σ (Fh)) = 0 as Fh contains the

factor ζ2,2(x
(β,1)

2,1 /Z>(β,1)

2 ) and x′(γ ,r)
2,t+1 ∈ σ(Z>(β,1)

2 ).

• Case β = [1, 2, 1, 2, 2]. Let σ(x(β,1)

1,1 ) = x′(γ1,r1)

1,t1
for some γ1 > β. Then, we get φd′ (σ (Fh)) = 0 unless there

is some 1 ≤ �1 < �2 ≤ 3 such that σ(x(β,1)

2,�1
) = x′(γ1,r1)

2,t1
, σ(x(β,1)

2,�2
) = x′(γ1,r1)

2,t1+1 . Similarly, let σ(x(β,1)

1,2 ) = x′(γ2,r2)

1,t2

for some γ2 > β, then φd′ (σ (Fh)) = 0 unless there is some 1 ≤ �3 < �4 ≤ 3 such that σ(x(β,1)

2,�3
) = x′(γ2,r2)

2,t2
,

σ(x(β,1)

2,�4
) = x′(γ2,r2)

2,t2+1 . This implies that (γ1, r1) = (γ2, r2), t1 = 1, t2 = 2, thus contradicting γ1 > β. Hence,
φd′ (σ (Fh)) = 0.

• Case β = [1, 2, 2]. Let σ(x(β,1)

1,1 ) = x′(γ ,r)
1,1 for some γ > β. Then, we have φd′ (σ (Fh)) = 0 unless σ(x(β,1)

2,1 ) =
x′(γ ,r)

2,1 and σ(x(β,1)

2,2 ) = x′(γ ,r)
2,2 . As Fh contains the factor ζ2,2(x

(β,1)

2,2 /Z>(β,1)

2 ) and x′(γ ,r)
2,3 ∈ σ(Z>(β,1)

2 ), we thus
again obtain φd′ (σ (Fh)) = 0.

• Case β = [1, 2, 2, 2]. This case is impossible with our assumptions d′≤β = 0 and dβ 	= 0, as we have
d′

[2] · [2] = ∑
α∈�+ d′

α · α = ∑2
i=1 kiαi = ∑

α∈�+ dα · α = d[1,2,2,2] · [1, 2, 2, 2] + d[2] · [2].
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This completes our proof. �

Proposition 3.6. Lemma 2.8 is valid for type G2 and specialization maps φd as in (3.2).

Proof. The wheel conditions (3.1) for F ∈ Sk guarantee that φd(F) (which is a Laurent polynomial in the
variables {wβ,s}) vanishes under specific specializations wβ,s = v# ·wβ ′ ,s′ . To evaluate the aforementioned
powers # of v and the orders of vanishing, let us view φd as a step-by-step specialization in each interval
[β], ordered in the decreasing order with respect to

(β, s) < (β ′, s′) iff β < β ′ or β = β ′ and s < s′ .

We note that this computation is local with respect to any fixed pair (β, s) ≤ (β ′, s′). Consider

d1 = {dβ = 2, dα = 0, α 	= β} ∈ KP(k1), (3.36)

d2 = {dβ = dβ ′ = 1, dα = 0, α 	= β, β ′} ∈ KP(k2). (3.37)

For any F1 ∈ Sk1
, F2 ∈ Sk2

, it thus suffices to show that φd1
(F1) is divisible by Gβ if φd(F1) = 0 for any d < d1

and φd2
(F2) is divisible by Gβ,β ′ if φd(F2) = 0 for any d < d2, cf. (3.32).

For d1 = {dβ = 2, dα 	=β = 0}, the nontrivial cases are β = [1, 2, 2], [1, 2, 2, 2], [1, 2, 1, 2, 2].

• β = [1, 2, 2]. For F1, under φd1
the wheel condition F1 = 0 once x(β,1)

1,1 = v6x(β,2)

1,1 = v3x(β,1)

2,1 becomes
φd1

(F1) = 0 once wβ,1 = v6wβ,2, thus we get the vanishing factor (wβ,1 − v6wβ,2); the wheel condition
F1 = 0 once x(β,1)

2,2 = v2x(β,1)

2,1 = v4x(β,2)

2,2 = v6x(β,2)

2,1 = v3x(β,2)

1,1 becomes φd1
(F1) = 0 once wβ,1 = v4wβ,2,

thus we get the vanishing factor (wβ,1 − v4wβ,2). Since φd1
(F1) is symmetric with respect to wβ,1 and

wβ,2, we also have the vanishing factor (wβ,2 − v6wβ,1) and (wβ,2 − v4wβ,1), thus we get the vanishing
factor Gβ .

• β = [1, 2, 2, 2]. Besides the vanishing factors appearing in G[1,2,2], the wheel condition F1 = 0 once
x(β,1)

2,3 = v2x(β,1)

2,2 = v4x(β,1)

2,1 = v6x(β,2)

2,1 = v3x(β,2)

1,1 becomes φd1
(F1) = 0 once wβ,1 = v2wβ,2, thus we get the

vanishing factor (wβ,1 − v2wβ,2)(wβ,2 − v2wβ,1), and we get all the vanishing factors in Gβ .
• β = [1, 2, 1, 2, 2]. Besides the vanishing factors in G[1,2,2,2], the wheel conditions F1 = 0 once x(β,1)

1,1 =
v6x(β,2)

1,2 = v3x(β,1)

2,1 or x(β,1)

1,2 = v6x(β,2)

1,2 = v3x(β,1)

2,2 or x(β,1)

1,2 = v6x(β,2)

1,1 = v3x(β,1)

2,2 give us the rest vanishing
factors in Gβ .

For d2 = {dβ = dβ ′ = 1, dα 	=β,β ′ = 0}, take F2 ∈ Sk, then

• (β, β ′) = ([1], [1, 2]). Under φd2
the wheel condition F2 = 0 once x(β ′ ,1)

1,1 = v6x(β,1)

1,1 = v3x(β ′ ,1)

2,1 becomes
φd2

(F2) = 0 once wβ,1 = v−6wβ ′ ,1, thus we have the factor Gβ,β ′ .
• (β, β ′) = ([1], [1, 2, 1, 2, 2]). Besides the factor G[1],[1,2], the wheel condition x(β ′ ,1)

1,2 = v6x(β,1)

1,1 = v3x(β ′ ,1)

2,2

gives the vanishing factor wβ,1 = v−4wβ ′ ,1. Let d3 = {d[1,2] = 3, dα 	=[1,2] = 0}, then d3 < d2, by φd3
(F2) = 0

we know φd2
(F2) = 0 once wβ,1 = v4wβ ′ ,1.

• (β, β ′) = ([1], [1, 2, 2]). Besides the factor G[1],[1,2], let d3 = {d[1,2] = 2, dα 	=[1,2] = 0}, then d3 < d2, by
φd3

(F2) = 0 we know φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1.

• (β, β ′) = ([1], [1, 2, 2, 2]). Besides the factor G[1],[1,2], let d3 = {d[1,2,1,2,2] = 1, dα 	=[1,2,1,2,2] = 0}, then d3 < d2,
by φd3

(F2) = 0 we know φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1. Let d4 = {d[1,2] = 1, d[1,2,2] = 1, dα 	=[1,2],[1,2,2] = 0},

then d4 < d2, by φd4
(F2) = 0 we know φd2

(F2) = 0 once wβ,1 = v4wβ ′ ,1.
• (β, β ′) = ([1], [2]). Let d3 = {d[1,2] = 1, dα 	=[1,2] = 0}, then d3 < d2, by φd3

(F2) = 0 we know φd2
(F2) = 0

once wβ,1 = wβ ′ ,1.
• (β, β ′) = ([1, 2], [1, 2, 1, 2, 2]). The factors in G[1,2],[1,2,1,2,2] all appear in G[1,2,1,2,2], and they appear due

to similar wheel conditions.
• (β, β ′) = ([1, 2], [1, 2, 2]). Besides the factors in G[1,2], let d3 = {d[1,2,1,2,2] = 1, dα 	=[1,2,1,2,2] = 0}, then

d3 < d2, by φd3
(F2) = 0 we know φd2

(F2) = 0 once wβ,1 = v−2wβ ′ ,1.
• (β, β ′) = ([1, 2], [1, 2, 2, 2]). Besides the factors in G[1,2], let d3 = {d[1,2,1,2,2] = 1, d[2] = 1, dα 	=[1,2,1,2,2],[2] = 0},

d4 = {d[1,2,2] = 2, dα 	=[1,2,2] = 0}, then d3, d4 < d2. By φd3
(F2) = 0 we know φd2

(F2) = 0 once wβ,1 =
v−2wβ ′ ,1, and by φd4

(F2) = 0 we know φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1, thus we get the vanishing

factor G[1,2],[1,2,2,2].
• (β, β ′) = ([1, 2], [2]). Let d3 = {d[1,2,2] = 1, dα 	=[1,2,2] = 0}, then d3 < d2, by φd3

(F2) = 0 we know φd2
(F2) = 0

once wβ,1 = v−2wβ ′ ,1.
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• (β, β ′) = ([1, 2, 1, 2, 2], [1, 2, 2]). The factors in G[1,2,1,2,2],[1,2,2] all appear in G[1,2,1,2,2], and they appear
due to similar wheel conditions.

• (β, β ′) = ([1, 2, 1, 2, 2], [1, 2, 2, 2]). Besides the factors appearing in G[1,2,1,2,2], let d3 = {d[1,2,2] = 3,
dα 	=[1,2,2] = 0}, then d3 < d2, by φd3

(F2) = 0 we know φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1.

• (β, β ′) = ([1, 2, 1, 2, 2], [2]). Besides the factors appearing in G[1,2,1,2,2], let d3 = {d[1,2,2] = 2, dα 	=[1,2,2] = 0},
then d3 < d2, by φd3

(F2) = 0 we know φd2
(F2) = 0 once wβ,1 = v−2wβ ′ ,1.

• (β, β ′) = ([1, 2, 2], [1, 2, 2, 2]). The factors in G[1,2,2],[1,2,2,2] all appear in G[1,2,2,2], and they appear due to
similar wheel conditions.

• (β, β ′) = ([1, 2, 2], [2]). Let d3 = {d[1,2,2,2] = 1, dα 	=[1,2,2,2] = 0}, then d3 < d2, by φd3
(F2) = 0 we know

φd2
(F2) = 0 once wβ,1 = v−4wβ ′ ,1.

• (β, β ′) = ([1, 2, 2, 2], [2]). The wheel condition F2 = 0 once x(β ′ ,1)

2,1 = v2x(β,1)

2,3 = v4x(β,1)

2,2 = v6x(β,1)

2,1 = v3x(β,1)

1,1

becomes φd2
(F2) = 0 once wβ,1 = v−6wβ ′ ,1.

This completes our proof. �

Combining Propositions 3.4–3.6, we immediately obtain the shuffle algebra realization and the PBWD
theorem for U>

v (Lg2):

Theorem 3.7. (a) � : U>
v (Lg2)

∼−→ S of (2.16) is a Q(v)-algebra isomorphism.
(b) For any choices of sk and λk in the definition (2.24, 2.25) of quantum root vectors Eβ,s, the

ordered PBWD monomials {Eh}h∈H from (2.34) form a Q(v)-basis of U>
v (Lg2).

3.2 Integral form U>
v (Lg2) and its shuffle algebra realization

Let us consider the divided powers

E(k)

i,r := ek
i,r

[k]vi !
∀ 1 ≤ i ≤ 2, r ∈ Z, k ∈ N. (3.38)

Following [16, §7.7], we define the integral form U>
v (Lg2) as the Z[v, v−1]-subalgebra of U>

v (Lg2) generated
by {E(k)

i,r }k∈N
1≤i≤2,r∈Z. For any (β, s) ∈ �+ × Z, we define the normalized divided powers of the quantum root

vectors from (2.28)–(2.32) via:

Ẽ±,(k)
β,s :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Ẽ±

β,s)
k

[k]vβ
! if β = [1], [2], [1, 2]

(Ẽ±
β,s)

k

([2]v!)k[k]vβ
! if β = [1, 2, 2]

(Ẽ±
β,s)

k

([3]v!)k[k]vβ
! if β = [1, 2, 2, 2], [1, 2, 1, 2, 2]

. (3.39)

Similarly to [31, Proposition 1.2], we have:

Proposition 3.8. For any β ∈ �+, s ∈ Z, k ∈ N, we have Ẽ±,(k)
β,s ∈ U>

v (Lg2).

Proof. Let U>
v (g2) be the “positive subalgebra” of the Drinfeld-Jimbo quantum group of g2. Thus, U>

v (g2)

is the Q(v)-algebra generated by {E1, E2} subject to the v-Serre relations:

1−aij∑
k=0

(−1)k

[
1 − aij

k

]
vi

Ek
i EjE

1−aij−k
i = 0, i 	= j. (3.40)

Let U>
v (g2) be the Lusztig integral form defined as the Z[v, v−1]-subalgebra of U>

v (g2) generated by the
divided powers

E(k)

i := Ek
i

[k]vi !
∀ 1 ≤ i ≤ 2, k ∈ N.

Recall our specific convex order (2.22) on �+. Let {Ê−
β }β∈�+ denote Lusztig’s quantum root vectors of

U>
v (g2) associated to this convex order (defined through the use of Lusztig’s braid group action; see [23,

§37.1.3]). According to [22, Theorem 6.6], we have:

Ê−,(k)
β := (Ê−

β )k

[k]vβ
!

∈ U>
v (g2) ∀ β ∈ �+, k ∈ N. (3.41)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/7/6259/7613644 by guest on 09 April 2024



Shuffle Algebras and Their Integral Forms | 6275

On the other hand, let us define another set of quantum root vectors {Ẽ−
β }β∈�+ in U>

v (g2) using v-
commutators similar to (2.28)–(2.32):

Ẽ−
[i] := Ei, 1 ≤ i ≤ 2; Ẽ−

[1,2] := [E1, E2]v−3 ; Ẽ−
[1,2,2] := [[E1, E2]v−3 , E2]v−1 ;

Ẽ−
[1,2,2,2] := [[[E1, E2]v−3 , E2]v−1 , E2]v; Ẽ−

[1,2,1,2,2] := [[E1, E2]v−3 , [[E1, E2]v−3 , E2]v−1 ]v.
(3.42)

Due to [21, Proposition 5.5.2], the quantum root vectors Ẽ−
β and Ê−

β differ only by a scalar multiple for
any β ∈ �+. These scalars are determined explicitly for Drinfeld-Jimbo quantum groups of any simple
Lie algebra g in [2, Theorem 4.2] (note that the parameter q of [2] equals our v−1). Specifically, in our
case we have:

Ẽ−
β =

⎧⎪⎪⎨⎪⎪⎩
Ê−

β if β = [1], [2], [1, 2]

[2]v! Ê−
β if β = [1, 2, 2]

[3]v! Ê−
β if β = [1, 2, 2, 2], [1, 2, 1, 2, 2]

. (3.43)

Let us now pass from the finite to the loop setup. First, we note that comparing the coefficients of
z−s1

1 · · · z−s1
1−aij

w−s2 in (2.9) for any s1, s2 ∈ Z, we obtain:

1−aij∑
k=0

(−1)k

[
1 − aij

k

]
vi

ek
i,s1

ej,s2 e
1−aij−k
i,s1

= 0, i 	= j.

Thus, the assignment E1 �→ e1,s1 , E2 �→ e2,s2 gives rise to an algebra homomorphism

ηs1,s2 : U>
v (g2) −→ U>

v (Lg2).

Clearly, we have ηs1,s2 (U
>
v (g2)) ⊂ U>

v (Lg2). Combining (3.41)–(3.43) with (3.39), we thus get:

Ẽ−,(k)
β,s = ηs1,s2 (Ê

−,(k)
β ) ∈ U>

v (Lg2).

To prove the other inclusions Ẽ+,(k)
β,s ∈ U>

v (Lg2), let us consider the convex order on �+ opposite to
(2.22):

[2] < [1, 2, 2, 2] < [1, 2, 2] < [1, 2, 1, 2, 2] < [1, 2] < [1]. (3.44)

Let {Ê+
β }β∈�+ denote the set of Lusztig’s quantum root vectors associated to that convex order, and define

another set of quantum root vectors {Ẽ+
β }β∈�+ via v-commutators:

Ẽ+
[i] := Ei, 1 ≤ i ≤ 2; Ẽ+

[1,2] := [E2, E1]v−3
.= [E1, E2]v3 ;

Ẽ+
[1,2,2] := [E2, [E2, E1]v−3 ]v−1

.= [[E1, E2]v3 , E2]v;

Ẽ+
[1,2,2,2] := [E2, [E2, [E2, E1]v−3 ]v−1 ]v

.= [[[E1, E2]v3 , E2]v, E2]v−1 ;

Ẽ+
[1,2,1,2,2] := [[E2, [E2, E1]v−3 ]v−1 , [E2, E1]v−3 ]v

.= [[E1, E2]v3 , [[E1, E2]v3 , E2]v]v−1 .

(3.45)

Then, due to [22, Theorem 6.6] and [2, Theorem 4.2] the analogues of (3.41) and (3.43) with the superscript
− replaced by + hold. Therefore, we likewise obtain:

Ẽ+,(k)
β,s

.= ηs1,s2 (Ê
+,(k)
β ) ∈ U>

v (Lg2).

This completes our proof. �

For any k ∈ N2, consider the Z[v, v−1]-submodule Sk of Sk consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

f ∈ Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤2 ]Sk . (3.46)
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(2) For any d ∈ KP(k), the specialization φd(F) is divisible by the product∏
β∈�+

c̃dβ

β , (3.47)

where we define {c̃β }β∈�+ via {cβ }β∈�+ of Lemma 3.2:

c̃β =

⎧⎪⎪⎨⎪⎪⎩
cβ if β = [1], [2], [1, 2]

cβ

[2]v! if β = [1, 2, 2]
cβ

[3]v! if β = [1, 2, 2, 2], [1, 2, 1, 2, 2]

. (3.48)

We define S := ⊕
k∈N2 Sk. Then, we have:

Proposition 3.9. �(U>
v (Lg2)) ⊂ S.

The proof is based on the following simple “rank 1” computation from [31, Lemma 1.3]:

Lemma 3.10. For any � ≥ 1, r ∈ Z, and 1 ≤ i ≤ 2, we have

xr
i,1  · · ·  xr

i,1︸ ︷︷ ︸
� times

= v
− �(�−1)

2
i [�]vi ! ·(xi,1 · · · xi,�)

r. (3.49)

Proof of Proposition 3.9. For any m ∈ N, 1 ≤ i1, . . . , im ≤ 2, r1, . . . , rm ∈ Z, �1, . . . , �m ∈ N, let

F := �
(
E(�1)

i1,r1
· · · E(�m)

im ,rm

)
,

and f be the numerator of F from (2.12). If a variable x(∗,∗)∗,∗ is plugged into �(E(�q)

iq ,rq
), then we shall use the

following notation:

o(x(∗,∗)
∗,∗ ) = q. (3.50)

Thus, o(x(β,s)
i,t ) = q means that in the corresponding summand from the symmetrization of

�(E(�1)

i1,r1
) · · · �(E(�m)

im ,rm
) · (rational factor), this x-variable is placed as an argument of �(E(�q)

iq ,rq
).

According to Lemma 3.10:

�(E(�q)

iq ,rq
) = v

− �q (�q−1)

2
iq

(xiq ,1 · · · xiq ,�q )
rq ∀ 1 ≤ q ≤ m,

hence, the condition (3.46) holds. To verify the validity of the divisibility (3.47), it suffices to show that
for any β ∈ �+ and 1 ≤ s ≤ dβ , the total contribution of φd-specializations of the ζ -factors between

the variables {x(β,s)
i,t }1≤t≤νβ,i

i∈β
is a multiple of c̃β . This is obvious for β = [1], [2], [1, 2]. Let us now treat the

remaining three cases:

• β = [1, 2, 2]. In this case, the φd-specialization of the corresponding product of the ζ -factors vanishes
unless

o(x(β,s)
1,1 ) ≥ o(x(β,s)

2,1 ) ≥ o(x(β,s)
2,2 ).

On the other hand, o(x(β,s)
i,t ) 	= o(x(β,s)

i′ ,t′ ) for i 	= i′. Thus, we only need to deal with the case

o(x(β,s)
1,1 ) > o(x(β,s)

2,1 ) ≥ o(x(β,s)
2,2 ).

In this case, the product of the ζ -factors

ζ2,1(x
(β,s)
2,1 /x(β,s)

1,1 ) · ζ2,1(x
(β,s)
2,2 /x(β,s)

1,1 )
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has a numerator

(x(β,s)
2,1 − v3x(β,s)

1,1 )(x(β,s)
2,2 − v3x(β,s)

1,1 ),

which contributes precisely the factor 〈3〉v〈2〉v = c̃[1,2,2] under φd.
• β = [1, 2, 2, 2]. In this case, the φd-specialization of the corresponding product of the ζ -factors

vanishes unless

o(x(β,s)
1,1 ) > o(x(β,s)

2,1 ) ≥ o(x(β,s)
2,2 ) ≥ o(x(β,s)

2,3 ).

In the latter case, the product of the ζ -factors

ζ2,1(x
(β,s)
2,1 /x(β,s)

1,1 ) · ζ2,1(x
(β,s)
2,2 /x(β,s)

1,1 ) · ζ2,1(x
(β,s)
2,3 /x(β,s)

1,1 )

has a numerator

(x(β,s)
2,1 − v3x(β,s)

1,1 )(x(β,s)
2,2 − v3x(β,s)

1,1 )(x(β,s)
2,3 − v3x(β,s)

1,1 ),

which contributes precisely the factor 〈3〉v〈2〉v〈1〉v = c̃[1,2,2,2] under φd.
• β = [1, 2, 1, 2, 2]. In this case, the φd-specialization of the corresponding product of the ζ -factors

vanishes unless

o(x(β,s)
1,1 ) > o(x(β,s)

2,1 ) ≥ o(x(β,s)
2,2 ) ≥ o(x(β,s)

2,3 ) and o(x(β,s)
1,2 ) > o(x(β,s)

2,2 ), (3.51)

If o(x(β,s)
1,2 ) > o(x(β,s)

2,1 ), then the product
∏1≤l≤3

1≤k≤2 ζ2,1(x
(β,s)
2,l /x(β,s)

1,k ) has a numerator

1≤l≤3∏
1≤k≤2

(x(β,s)
2,l − v3x(β,s)

1,k ),

which contributes precisely the factor 〈4〉v〈3〉2
v〈2〉2

v〈1〉v = c̃[1,2,1,2,2] under φd. On the other hand, if
o(x(β,s)

1,2 ) < o(x(β,s)
2,1 ), then we have

o(x(β,s)
1,1 ) > o(x(β,s)

2,1 ) > o(x(β,s)
1,2 ) > o(x(β,s)

2,2 ) ≥ o(x(β,s)
2,3 ),

in which case the φd-specialization of the ζ -factors between the x(β,s)
∗,∗ -variables contributes a total

of [3]v · c̃[1,2,1,2,2].

This completes the verification of the divisibility (3.47), thus concluding the proof. �

For any h ∈ H, define the ordered monomials (cf. (2.34))

Ẽ+
h =

→∏
(β,s)∈�+×Z

Ẽ+,(h(β,s))
β,s , Ẽ−

h =
→∏

(β,s)∈�+×Z

Ẽ−,(h(β,s))
β,s . (3.52)

According to Proposition 3.9, we have Ẽ±
h ∈ S. For any ε ∈ {±}, let Sε

k be the Z[v, v−1]-submodule of Sk

spanned by {�(Ẽε
h)}h∈Hk . Then, the following analogue of Lemma 2.8 holds:

Proposition 3.11. For any F ∈ Sk and d ∈ KP(k), if φd′ (F) = 0 for all d′ ∈ KP(k) such that d′
< d, then

there exists Fd ∈ Sε
k such that φd(F) = φd(Fd) and φd′ (Fd) = 0 for all d′

< d.

Proof. Combining (3.39), (3.48), and Proposition 3.4, we obtain:

φd(�(Ẽε
h))

.=
β<β ′∏

β,β ′∈�+
Gβ,β ′ ·

∏
β∈�+

(c̃dβ

β · Gβ) ·
∏

β∈�+
Pλh,β , (3.53)
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where

Pλh,β := 1∏
r∈Z[h(β, r)]vβ

!
· Sym

Sdβ

⎛⎝wrβ (h,1)

β,1 · · · wrβ (h,dβ )

β,dβ

∏
1≤i<j≤dβ

wβ,i − v−2
β wβ,j

wβ,i − wβ,j

⎞⎠ , (3.54)

cf. (2.38). As {Pλh,β }h∈Hk,d form a Z[v, v−1]-basis of Z[v, v−1][{w±1
β,s}dβ

s=1]Sdβ (this is a “rank 1” computation, cf.
[31, Proposition 1.4, Lemma 1.14]), the claimed result follows from Proposition 3.6 and conditions (3.46,
3.47). �

Combining Propositions 3.9 and 3.11, we obtain the following upgrade of Theorem 3.7:

Theorem 3.12. (a) The Q(v)-algebra isomorphism � : U>
v (Lg2)

∼−→ S of Theorem 3.7(a) gives rise
to a Z[v, v−1]-algebra isomorphism � : U>

v (Lg2)
∼−→ S.

(b) For any choices of s1, s2 in (2.29)–(2.32) and ε ∈ {±}, the ordered monomials {Ẽε
h}h∈H of (3.52)

form a basis of the free Z[v, v−1]-module U>
v (Lg2).

4 Specialization Maps for Type Bn

In this section, we define specialization maps for the shuffle algebras of type Bn and verify their key
properties. This implies the shuffle algebra realizations and PBWD-type theorems for U>

v (Lo2n+1), as well
as for its two integral forms U>

v (Lo2n+1) and U>
v (Lo2n+1). Using arguments similar to those from Section 3

we establish the counterparts of Lemmas 2.6, 2.7, 2.8 for B2 case, and then use induction to treat the
general Bn case.

4.1 U>
v (Lo2n+1) and its shuffle algebra realization

In type Bn, for any F ∈ Sk with k ∈ Nn, the wheel conditions are:

F({xi,r}1≤r≤ki
1≤i≤n ) = 0 once xi,1 = v4xi,2 = v2xi+1,1 for some 1 ≤ i ≤ n − 1,

or xi,1 = v4xi,2 = v2xi−1,1 for some 2 ≤ i ≤ n − 1,

or xn,1 = v2xn,2 = v4xn,3 = v2xn−1,1.

(4.1)

For any k ∈ Nn and d ∈ KP(k), the specialization map φd as in (2.43) is defined by the following
specialization of the x(∗,∗)∗,∗ -variables (replacing (2.41) for type An):

x(β,s)
i,1 �→ v−2iwβ,s, x(β,s)

i,2 �→ v−4n+2i+2wβ,s ∀ β ∈ �+, 1 ≤ s ≤ dβ , i ∈ β. (4.2)

Lemma 4.1. Consider the particular choices (2.26)–(2.27) of quantum root vectors {Ẽ±
β,s}s∈Z

β∈�+ . Their
images under � in the shuffle algebra S of type Bn are as follows:

• If β = [i, j], then for any decomposition s = si + · · · + sj used in (2.26), we have:

�(Ẽ+
[i,j],s)

.=
〈2〉v

|β|−1 · xsi+1
i,1 · · · x

sj−1+1
j−1,1 x

sj

j,1∏j−1
�=i (x�,1 − x�+1,1)

, (4.3)

�(Ẽ−
[i,j],s)

.=
〈2〉v

|β|−1 · xsi
i,1xsi+1+1

i+1,1 · · · x
sj+1
j,1∏j−1

�=i (x�,1 − x�+1,1)
. (4.4)

• If β = [i, n, j], then for any decomposition s = si + · · · + sj−1 + 2sj + · · · + 2sn used in (2.27), we have:

�(Ẽ+
[i,n,j],s)

.= 〈2〉v
|β|−1 · g1 · ∏n−1

�=j (v4x�,1 − x�,2)(v4x�,2 − x�,1)

(xi,1 − xi+1,1) · · · (xj−1,1 − xj,1)(xj−1,1 − xj,2)
∏n−1

�=j

∏
1≤r,t≤2(x�,r − x�+1,t)

, (4.5)

�(Ẽ−
[i,n,j],s)

.= 〈2〉v
|β|−1 · g2 · ∏n−1

�=j (v4x�,1 − x�,2)(v4x�,2 − x�,1)

(xi,1 − xi+1,1) · · · (xj−1,1 − xj,1)(xj−1,1 − xj,2)
∏n−1

�=j

∏
1≤r,t≤2(x�,r − x�+1,t)

, (4.6)
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where

g1 =
j−2∏
�=i

xs�+1
�,1 · x

sj−1+2
j−1,1 (xj,1xj,2)

sj ·
n∏

�=j+1

(x�,1x�,2)
s�+1,

g2 = xsi
i,1

j−1∏
�=i+1

xs�+1
�,1

n∏
�=j

(x�,1x�,2)
s�+1.

(4.7)

Proof. Straightforward computation. �

For more general quantum root vectors {Eβ,s}s∈Z
β∈�+ defined by (2.24), we have the following counterpart

of Lemma 3.2:

Lemma 4.2. For any choices of sk and λk in (2.24), we have:

φβ(�(Eβ,s))
.= cβ · ws+κβ

β,1 ∀ (β, s) ∈ �+ × Z, (4.8)

where {κβ }β∈�+ are explicitly given by

κβ =
⎧⎨⎩|β| − 1 if β = [i, j]

|β| + 2(n − j) − 1 if β = [i, n, j]
(4.9)

and the constants {cβ }β∈�+ are explicitly given by

cβ =
⎧⎨⎩〈2〉v

|β|−1 if β = [i, j]

〈2〉v
|β|−1 · ∏n−1

�=j

{
(v−4n+4�−2 − 1)(v−4n+4�+6 − 1)

}
if β = [i, n, j]

. (4.10)

Proof. The proof is by induction on n, the base case n = 2 being obvious. Let us now assume that
the result holds for types Bm (m < n). In what follows, we shall use the following special case of
Proposition 4.5: for any positive roots α1 < α2 such that α1 + α2 is a root, we have

φα1+α2 (�(Eα1,s1 )  �(Eα2,s2 )) = 0 ∀ s1, s2 ∈ Z.

If β = [i, j] with 1 ≤ i ≤ j ≤ n, then (4.8) follows from the An type; see [30, Lemma 3.14]. If β = [i, n, j]
with 1 < i < j ≤ n, then (4.8) likewise follows from the Bn−1 case. Therefore, it remains to treat the cases
β = [1, n, j] with 2 ≤ j ≤ n.

If β = [1, n, n], then

Eβ,s = [[[· · · [[e1,s1 , e2,s2 ]λ1 , e3,s3 ]λ2 , · · · , en−1,sn−1 ]λn−2 , en,sn ]λn−1 , en,sn+1 ]λn

with s = s1 + · · · + sn+1. Consider α = [1, n], r = s1 + · · · + sn−1 + sn, and

Eα,r = [[· · · [[e1,s1 , e2,s2 ]λ1 , e3,s3 ]λ2 , · · · , en−1,sn−1 ]λn−2 , en,sn ]λn−1 .

Then, we have:

φβ(�(Eβ,s)) = φβ(�(Eα,r)  �(en,sn+1 ) − λn�(en,sn+1 )  �(Eα,r))

.= φβ(�(en,sn+1 )  �(Eα,r))

.= φβ

(
Sym

S2

(
�(Eα,r)(x

(β,1)

n,2 )sn+1 ζn,n−1(x
(β,1)

n,2 /x(β,1)

n−1,1)ζn,n(x
(β,1)

n,2 /x(β,1)

n,1 )
))

.= φβ

(
�(Eα,r)(x

(β,1)

n,2 )sn+1
(x(β,1)

n,2 − v2x(β,1)

n−1,1)(x
(β,1)

n,2 − v−2x(β,1)

n,1 )

(x(β,1)

n,2 − x(β,1)

n−1,1)(x
(β,1)

n,1 − x(β,1)

n,2 )

)
.= 〈2〉v

|β|−1 · ws+|β|−1
β,1 ,

(4.11)
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where we plug the variables {x(β,1)

i,1 }1≤i≤n into �(Eα,r), the variable x(β,1)

n,2 into �(en,sn+1 ), Sym
S2

denotes

the symmetrization with respect to the variables {x(β,1)

n,1 , x(β,1)

n,2 }, and the last line follows by applying the
validity of (4.8) for (α, r) established above. We also note that the second equality in (4.11) used the
vanishing φβ(�(Eα,r)  �(en,sn+1 )) = 0, due to

φβ(ζn,n(x
(β,1)

n,1 /x(β,1)

n,2 )) = 0 = φβ(ζn−1,n(x
(β,1)

n−1,1/x(β,1)

n,1 )) . (4.12)

If β = [1, n, j] with 2 ≤ j ≤ n − 1, then

Eβ,s = [[· · · [[· · · [e1,s1 , e2,s2 ]λ1 , · · · , en,sn ]λn−1 , en,sn+1 ]λn , · · · , ej+1,s2n−j
]λ2n−j−1 , ej,s2n−j+1

]λ2n−j

with s = s1 + · · · + s2n−j+1. Consider α = [1, n, j + 1], r = s1 + · · · + s2n−j, and

Eα,r = [· · · [[· · · [e1,s1 , e2,s2 ]λ1 , · · · , en,sn ]λn−1 , en,sn+1 ]λn , · · · , ej+1,s2n−j
]λ2n−j−1 .

Note that φβ(ζj+1,j(x
(β,1)

j+1,2/x(β,1)

j,2 )) = 0 = φβ(ζj,j+1(x
(β,1)

j,1 /x(β,1)

j+1,1)), cf. (4.12). Thus, we have:

φβ(�(Eβ,s)) = φβ(�(Eα,r)  �(ej,s2n−j+1
) − λ2n−j�(ej,s2n−j+1

)  �(Eα,r))

.= φβ(�(ej,s2n−j+1
)  �(Eα,r))

.= φβ

(
Sym

S2

(
�(Eα,r)(x

(β,1)

j,2 )s2n−j+1 ζj,j(x
(β,1)

j,2 /x(β,1)

j,1 )×

ζj,j−1(x
(β,1)

j,2 /x(β,1)

j−1,1)ζj,j+1(x
(β,1)

j,2 /x(β,1)

j+1,1)ζj,j+1(x
(β,1)

j,2 /x(β,1)

j+1,2)
))

.= φβ

⎛⎝�(Eα,r)(x
(β,1)

j,2 )s2n−j+1 (x(β,1)

j,2 − v−4x(β,1)

j,1 )

x(β,1)

j,1 − x(β,1)

j,2

×

(x(β,1)

j,2 − v2x(β,1)

j−1,1)(x
(β,1)

j,2 − v2x(β,1)

j+1,1)(x
(β,1)

j,2 − v2x(β,1)

j+1,2)

(x(β,1)

j,2 − x(β,1)

j−1,1)(x
(β,1)

j,2 − x(β,1)

j+1,1)(x
(β,1)

j,2 − x(β,1)

j+1,2)

⎞⎠
.= 〈2〉v

|β|−1 ·
n−1∏
�=j

{
(v−4n+4�−2 − 1)(v−4n+4�+6 − 1)

} · ws+|β|+2(n−j)−1
β,1 ,

(4.13)

where we plug the variables {x(β,1)

i,t , x(β,1)

j,1 }1≤t≤νβ,i

1≤i≤n,i 	=j into �(Eα,r), the variable x(β,1)

j,2 into �(ej,s2n−j+1
), Sym

S2

denotes the symmetrization with respect to the variables {x(β,1)

j,1 , x(β,1)

j,2 }, and the last line follows by
applying the induction hypothesis for φα(�(Eα,r)). �

Let us now generalize the above lemma by computing φd(�(Eh)) for any h ∈ Hk,d. Similarly to type G2,

we choose a special splitting such that the variables in �(Eβ,rβ (h,s)) are taken to be the group {x(β,s)
i,t }1≤t≤νβ,i

1≤i≤n ,
and under φd they are specialized as in (4.2). For each 1 ≤ i ≤ n, we define the set Xi as in (3.22), and the
total order on Xi as in (3.23).

For any d ∈ KP(k), we define the subset Shd ⊂ Sk of “d-shuffle permutations” as in (3.25):

Shd =
{
σ ∈ Sk

∣∣∣ σ(x(β,s)
i,1 ) < σ(x(β,s)

i,2 ) ∀ β ∈ �+, 1 ≤ s ≤ dβ , 2 ≤ i ≤ n
}
. (4.14)

Then from (2.14), we have:

�(Eh)
.=

∑
σ∈Shd

σ
(
Fh({x(∗,∗)

∗,∗ })) =
∑

σ∈Shd

Fh
({σ(x(∗,∗)

∗,∗ )}), (4.15)

where

Fh :=
∏

β∈�+
1≤s≤dβ

�(Eβ,rβ (h,s))

(α,p)<(β,q)∏
α,β∈�+

1≤p≤dα ,1≤q≤dβ

aij	=0∏
1≤i,j≤n

1≤r≤νβ,j∏
1≤�≤να,i

x(α,p)

i,� − v
−aij

i x(β,q)

j,r

x(α,p)

i,� − x(β,q)

j,r

. (4.16)
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Let us consider the elements of Sk satisfying (3.28), which form a subgroup isomorphic to Sd (we
shall denote this subgroup by Sd). Then, similarly to Lemma 3.3, we have:

Lemma 4.3. φd(σ (Fh)) = 0 for σ /∈ Sd.

Proof. The proof is by induction on n. Arguing alike in the proof of Lemma 3.3, the result is clear for
B2-type. Let �+

1 = {[1, j]}1≤j≤n ∪ {[1, n, j]}1<j≤n. It suffices to show that φd(σ (Fh)) 	= 0 only if (3.28) holds for
every β ∈ �+

1 , as for β > [1, n, 2] we can apply the induction hypothesis for Bn−1-type. We shall now prove
that (3.28) holds for any x(β,s1)

∗,∗ , assuming it holds for any x(β ′ ,s′)
∗,∗ with (β ′, s′) < (β, s1). Similar to (3.35), we

define the following sets of x(∗,∗)∗,∗ -variables:

Z>(β,s)
i = {

x(α,r)
i,∗

∣∣ (α, r) > (β, s)
} ∀ (β, s) ∈ �+ × N, 1 ≤ i ≤ n. (4.17)

• Case 1: β = [1, j] with 1 ≤ j ≤ n − 1. Let σ(x(β,s1)

1,1 ) = x(γ ,r)
1,1 with γ ≥ β. Since Fh contains the

factor ζ1,2(x
(β,s1)

1,1 /Z>(β,s1)

2 ), we have φd(σ (Fh)) = 0 unless σ(x(β,s1)

2,1 ) = x(γ ,r)
2,1 . Proceeding as this, we get

φd(σ (Fh)) = 0 unless σ(x(β,s1)

�,1 ) = x(γ ,r)
�,1 for any � ≤ j. If γ > β, then we get φd(σ (Fh)) = 0, since Fh

contains the factor ζj,j+1(x
(β,s1)

j,1 /Z>(β,s1)

j+1 ) and x(γ ,r)
j+1,1 ∈ σ(Z>(β,s1)

j+1 ), hence, a contradiction. Thus, γ = β,

and (3.28) holds for any x(β,s1)
∗,∗ .

• Case 2: β = [1, n]. Let σ(x(β,s1)

1,1 ) = x(γ ,r)
1,1 with γ ≥ β. Then, similar to above, we get φd(σ (Fh)) = 0 unless

σ(x(β,s1)

�,1 ) = x(γ ,r)
�,1 for any � ≤ n. If γ > β, then we get φd(σ (Fh)) = 0, since Fh contains the factor

ζn,n(x
(β,s1)

n,1 /Z>(β,s1)
n ) and x(γ ,r)

n,2 ∈ σ(Z>(β,s1)
n ), a contradiction. Thus, γ = β, and (3.28) holds for any x(β,s1)

∗,∗ .

• Case 3: β = [1, n, j] with 2 ≤ j ≤ n. Let σ(x(β,s1)

1,1 ) = x(γ ,r)
1,1 with γ ≥ β. Then, φd(σ (Fh)) = 0 unless there

exist {t�,1, t�,2}n
�=j such that

σ(x(β,s1)

�,1 ) = x(γ ,r)
�,1 if 1 ≤ � ≤ j − 1,

σ(x(β,s1)

�,t�,1
) = x(γ ,r)

�,1 , σ(x(β,s1)

�,t�,2
) = x(γ ,r)

�,2 if j ≤ � ≤ n.
(4.18)

If t�,2 < t�,1 for some � ∈ {j, j + 1, . . . , n}, then x(β,s1)

�,t�,2
< x(β,s1)

�,t�,1
, and the condition σ ∈ Shd implies

x(γ ,r)
�,1 = σ(x(β,s1)

�,t�,1
) < σ(x(β,s1)

�,t�,2
) = x(γ ,r)

�,2 ,

a contradiction. Hence, t�,1 < t�,2 for any j ≤ � ≤ n, so that t�,1 = 1, t�,2 = 2 for any j ≤ � ≤ n. If γ > β,
then we get φd(σ (Fh)) = 0, since Fh contains the factor ζj,j−1(x

(β,s1)

j,2 /Z>(β,s1)

j−1 ) and x(γ ,r)
j−1,2 ∈ σ(Z>(β,s1)

j−1 ), a

contradiction. Thus, γ = β, and (3.28) holds for any x(β,s1)
∗,∗ .

This completes our proof. �

Combining Lemmas 4.2 and 4.3, we obtain the following analogue of Lemma 2.6 for type Bn:

Proposition 4.4. For any h ∈ Hk,d, we have

φd(�(Eh))
.=

β<β ′∏
β,β ′∈�+

Gβ,β ′ ·
∏

β∈�+
(cdβ

β · Gβ) ·
∏

β∈�+
Pλh,β , (4.19)

where the factors {Pλh,β }β∈�+ are given by (2.47), the constants {cβ }β∈�+ are as in Lemma 4.2, and
the terms Gβ,β ′ , Gβ are products of linear factors wβ,s and wβ,s − vZwβ ′ ,s′ which are independent
of h ∈ Hk,d and are Sd-symmetric (the factors Gβ are explicitly computed in (4.36)).

Proposition 4.5. Lemma 2.7 is valid for type Bn and specialization maps φd as in (4.2).

Proof. The proof is by induction on n with the base case of B2-type being clear, cf. the proof of Lemma 4.3.
Given d, d′ ∈ KP(k) with d′

< d, let β ∈ �+ be the smallest root such that d′
β < dβ . We can assume

that β ∈ �+
1 , as otherwise the induction hypothesis for Bn−1 type will apply. Similarly to the proof of

Proposition 3.5, without loss of generality, we can assume d′
α = 0 for all α ≤ β. Let x(∗,∗)∗,∗ be the above

special splitting of the variables for φd, and x′(∗,∗)∗,∗ be any splitting of the variables for φd′ . Then, we have
the following case-by-case analysis:
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• Case 1: β = [1, j] with 1 ≤ j ≤ n−1. Since 0 = d′
β < dβ , we have σ(x(β,1)

1,1 ) = x′(γ ,r)
1,1 for some γ > β. Since Fh

contains the ζ -factor ζ1,2(x
(β,1)

1,1 /x(α,s)
2,t ) for any (α, s) > (β, 1) and 1 ≤ t ≤ 2, we have φd′ (σ (Fh)) = 0 unless

σ(x(β,1)

2,1 ) = x′(γ ,r)
2,1 . Proceeding as this, we get φd′ (σ (Fh)) = 0 unless σ(x(β,1)

i,1 ) = x′(γ ,r)
i,1 for any 1 ≤ i ≤ j. In

the latter case, we still obtain φd′ (σ (Fh)) = 0, since Fh contains the factor ζj,j+1(x
(β,1)

j,1 /x′(γ ,r)
j+1,1).

• Case 2: β = [1, n]. Let σ(x(β,1)

1,1 ) = x′(γ ,r)
1,1 for some γ > β. Arguing as above, we have φd′ (σ (Fh)) = 0 unless

σ(x(β,1)

i,1 ) = x′(γ ,r)
i,1 for any 1 ≤ i ≤ n. If (β ′, s′) is such that σ(x(β ′ ,s′)

n,t ) = x′(γ ,r)
n,2 , then we have (β ′, s′) > (β, 1).

Therefore, we still get φd′ (σ (Fh)) = 0, since Fh contains the factor ζn,n(x
(β,1)

n,1 /x(β ′ ,s′)
n,t ).

• Case 3: β = [1, n, j] with 2 < j ≤ n. Similar to above, φd′ (σ (Fh)) = 0 unless there is γ > β such that
σ(x(β,1)

i,1 ) = x(γ ,r)
i,1 for 1 ≤ i ≤ n, σ(x(β,1)

i,2 ) = x(γ ,r)
i,2 for j ≤ i ≤ n. In the latter case, we again obtain

φd′ (σ (Fh)) = 0, since Fh contains the factor ζj,j−1(x
(β,1)

j,2 /x′(γ ,r)
j−1,2).

• Case 4: β = [1, n, 2]. This case is impossible as 0 = d′
α = dα for α < β and 0 = d′

β < dβ (indeed,
k1 = ∑

α≤β d′
α <

∑
α≤β dα = k1 as d, d′ ∈ KP(k), a contradiction).

This completes our proof. �

Proposition 4.6. Lemma 2.8 is valid for type Bn and specialization maps φd as in (4.2).

Proof. Similarly to the proof of Proposition 3.6, we only need to prove the lemma to be true for any pair
of roots (β ≤ β ′). First let d1 = {dβ = 2, dα = 0, ∀α 	= β} ∈ KP(k1) and F1 ∈ Sk1

. We can assume β = [1, n, j]
for some 2 ≤ j ≤ n. If j > 2, let γ = [2, n, j], and d3 = {dγ = 2, d[1] = 2, dα = 0, ∀α 	= γ , [1]}. By induction we
know φd3

(F1) has the factor Gγ (here we change the variable wγ ,s in Gγ by wβ,s). Moreover, we have

Gβ = (wβ,1 − v−4wβ,2)(wβ,1 − v4wβ,2) · Gγ , (4.20)

The wheel condition F1 = 0 once x(β,1)

1,1 = v4x(β,2)

1,1 = v2x(β,1)

2,1 or x(β,2)

1,1 = v4x(β,1)

1,1 = v2x(β,2)

2,1 becomes φd1
(F1) = 0

once wβ,1 = v4wβ,2 or wβ,1 = v−4wβ,2, thus giving us the required vanishing factors. If j = 2, let γ = [1, n, 3]
(here we assume n > 3), then

Gβ = (wβ,1 − v±(4n−6)wβ,2)(wβ,1 − v±(4n−14)wβ,2)(wβ,1 − v±4wβ,2) · Gγ . (4.21)

The wheel condition F1 = 0 once x(β,1)

2,2 = v4x(β,2)

2,1 = v2x(β,2)

1,1 , or x(β,1)

2,1 = v4x(β,2)

2,2 = v2x(β,1)

3,1 , or x(β,1)

2,2 = v4x(β,2)

2,2 =
v2x(β,2)

3,2 give us the vanishing factors above. Thus, the lemma is true for pairs (β, β).
Now for any pair (β < β ′), let d2 = {dβ = dβ ′ = 1, dα 	=β,β ′ = 0} ∈ KP(k2) and F2 ∈ Sk2

, we prove φd2
(F2) has

the vanishing factor Gβ,β ′ if φd(F2) = 0 for any d < d2. By induction we know it is true for any (β < β ′)
with [2] ≤ β. And by results on type An, we know it is true for any (β < β ′) with β = [1, j], β ′ = [i′, j′] for
some 1 ≤ i′, j, j′ ≤ n.

• β = [1, j] for some 1 ≤ j ≤ n, β ′ = [i, n, n] for some 1 ≤ i ≤ n − 1.
Let γ = [i, n]. If j < n − 1 then Gβ,β ′ = Gβ,γ and φd2

(F2) has the factor Gβ,β ′ for the same reason. If
j = n − 1, then

Gβ,β ′ = (wβ,1 − v2wβ ′ ,1) · Gβ,γ , (4.22)

and by induction we know φd2
(F2) has the factor Gβ,γ . Set d3 = {d[1,n] = 2, dα 	=[1,n] = 0} if i = 1, or

d3 = {d[1,n,n] = 1, d[i,n−1] = 1, dα 	=[1,n,n],[i,n−1] = 0} if i 	= 1. Then for each case, we have d3 < d2 and
φd3

(F2) = 0 implies that φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1. If j = n and i = 1, then

Gβ,β ′ = (wβ,1 − v−2wβ ′ ,1) · Gβ,β , (4.23)

where Gβ,β is obtained by changing the variable wβ,2 in Gβ by wβ ′ ,1. By induction we know φd2
(F2) has

the factor Gβ,β . Also the wheel condition F2 = 0 once x(β ′ ,1)

n,2 = v2x(β ′ ,1)

n,1 = v4x(β,1)

n,1 = v2x(β,1)

n−1,1 becomes
φd2

(F2) = 0 once wβ,1 = v−2wβ ′ ,1. If j = n and i > 1, then

Gβ,β ′ = (wβ,1 − wβ ′ ,1) · Gβ,γ . (4.24)

Let d3 = {d[1,n,n] = 1, d[i,n] = 1, dα 	=[1,n,n],[i,n] = 0}, then d3 < d2 and φd3
(F2) = 0 implies that φd2

(F2) = 0
once wβ,1 = wβ ′ ,1.
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• β = [1, j] for some 1 ≤ j ≤ n, β ′ = [i, n, �] for some 1 ≤ i < � ≤ n.
We already prove � = n case, so we can use induction. If j ≤ � − 2, then Gβ,β ′ = Gβ,[i,�−1] and φd2

(F2)

has the factor Gβ,β ′ for the same reason. If j ≥ � + 1, then

Gβ,β ′ = (wβ,1 − v(4�−4n−2)wβ ′ ,1)(wβ,1 − v(4�−4n+6)wβ ′ ,1) · Gβ,[i,n,�+1]. (4.25)

By induction we know φd2
(F2) has the factor Gβ,[i,n,�+1], and the wheel conditions F2 = 0 once x(β ′ ,1)

�,2 =
v4x(β,1)

�,1 = v2x(β,1)

�−1,1 or x(β,1)

�,1 = v4x(β ′ ,1)

�,2 = v2x(β,1)

�+1,1 give the additional vanishing factors. If j = � − 1, then

Gβ,β ′ = (wβ,1 − v(4�−4n+2)wβ ′ ,1) · Gβ,[i,n,�+1]. (4.26)

By induction we know φd2
(F2) has the factor Gβ,[i,n,�+1]. Let d3 = {d[1,�] = d[i,n,�+1] = 1, dα 	=[1,�],[i,n,�+1] = 0},

then d3 < d2 and φd3
(F2) = 0 implies that φd2

(F2) = 0 once wβ,1 = v(4�−4n+2)wβ ′ ,1. If j = �, then

Gβ,β ′ = (wβ,1 − v(4�−4n−2)wβ ′ ,1) · Gβ,[i,n,�+1], (4.27)

and the wheel condition F2 = 0 once x(β ′ ,1)

�,2 = v4x(β,1)

�,1 = v2x(β,1)

�−1,1 gives the additional vanishing factor.
• β = [1, n, j] for some 2 ≤ j ≤ n and β ′ = [i, �] for some 2 ≤ i ≤ � ≤ n.

We only need to prove β = [1, n, n] case, other cases can be proved by induction as above. If � ≤ n−2,
then Gβ,β ′ = G[1,n−1],β ′ and the vanishing factors appear for the same wheel conditions. If � = n − 1,
then

Gβ,β ′ = (wβ,1 − v2wβ ′ ,1) · G[1,n],β ′ . (4.28)

Let d3 = {d[1,n,n−1] = d[i,n−2] = 1, dα 	=[1,n,n−1],[i,n−2] = 0}, then d3 < d2 and φd3
(F2) = 0 implies that

φd2
(F2) = 0 once wβ,1 = v2wβ ′ ,1. If � = n, then

Gβ,β ′ = (wβ,1 − v−4wβ ′ ,1) · Gβ,[i,n−1], (4.29)

and the wheel condition F2 = 0 once x(β ′ ,1)

n,1 = v2x(β,1)

n,2 = v4x(β,1)

n,1 = v2x(β,1)

n−1,1 becomes φd2
(F2) = 0 once

wβ,1 = v−4wβ ′ ,1.
• β = [1, n, j] for some 2 ≤ j ≤ n, β ′ = [i, n, �] for some 1 ≤ i < � ≤ n.

If j ≥ 3 and i > 2, then Gβ,β ′ = G[2,n,j],β ′ and they appear for the same reason.
Let us consider now j ≥ 3 and i = 2. Then if � < j, we have

Gβ,β ′ = (wβ,1 − wβ ′ ,1) · G[2,n,j],β ′ , (4.30)

Let d3 = {d[1,n,�] = d[2,n,j] = 1, dα 	=[1,n,�],[2,n,j] = 0}, then d3 < d2 and φd3
(F2) = 0 implies that φd2

(F2) = 0
once wβ,1 = wβ ′ ,1. If � ≥ j + 2, then

Gβ,β ′ = (wβ,1 − v4n−4j+2wβ ′ ,1)(wβ,1 − v4n−4j−6wβ ′ ,1) · G[1,n,j+1],β ′ , (4.31)

and the wheel condition x(β,1)

j,2 = v4x(β ′ ,1)

j,1 = v2x(β ′ ,1)

j−1,1 or x(β ′ ,1)

j,1 = v4x(β,1)

j,2 = v2x(β ′ ,1)

j+1,1 gives the vanishing
factors. If � = j + 1, then

Gβ,β ′ = (wβ,1 − v4n−4j+2wβ ′ ,1)(wβ,1 − v4n−4j−6wβ ′ ,1)(wβ,1 − v4wβ ′ ,1) · G[1,n,j+1],β ′ , (4.32)

then the wheel condition for (4.31) and x(β,1)

j+1,2 = v4x(β ′ ,1)

j+1,2 = v2x(β,1)

j,2 give the vanishing factors. If � = j,
then

Gβ,β ′ = (wβ,1 − v−4wβ ′ ,1) · Gβ ′ ,β ′ , (4.33)
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and the wheel condition x(β ′ ,1)

2,1 = v4x(β,1)

2,1 = v2x(β,1)

1,1 give the vanishing factor.
If j ≥ 3 and i = 1, then � < j. If � ≥ 3, we have

Gβ,β ′ = (wβ,1 − v−4wβ ′ ,1)(wβ,1 − v4wβ ′ ,1) · G[2,n,j],[2,n,�], (4.34)

and the wheel conditions for (4.20) give the additional factors. If � = 2, then for j > 3, we can use
induction. If � = 2, j = 3, then

Gβ,β ′ = (wβ,1 − v−4wβ ′ ,1)(wβ,1 − v−4n+6wβ ′ ,1)(wβ,1 − v−4n+14wβ ′ ,1) · Gβ,β . (4.35)

The wheel conditions for (4.25) and the wheel condition x(β ′ ,1)

3,2 = v4x(β,1)

3,2 = v2x(β ′ ,1)

2,2 give the additional
factors. Now let β = [1, n, 2], then i ≥ 2. If � > 3 then we can use induction. If � = 3, then β ′ = [2, n, 3],
and similar wheel conditions for (4.35) apply.

This completes our proof. �

Using formulas (4.20)–(4.21), we obtain the following explicit formulas for the factors Gβ (which shall
be used in Subsection 4.2):

Corollary 4.7. The factors {Gβ }β∈�+ featuring in (4.19) are explicitly given by:

Gβ =
dβ∏

s=1

wj−i
β,s

∏
1≤s	=s′≤dβ

(wβ,s − v4wβ,s′ )j−i if β = [i, j],

Gβ =
dβ∏

s=1

w4n−i−3j+1
β,s

∏
1≤s	=s′≤dβ

{
(wβ,s − v4wβ,s′ )2n−i−j(wβ,s − v2wβ,s′ )

}×
∏

1≤s	=s′≤dβ

n−1∏
�=j

{
(wβ,s − v4n−4�+2wβ,s′ )(wβ,s − v4n−4�−6wβ,s′ )

}
if β = [i, n, j].

(4.36)

Combining Propositions 4.4–4.6, we immediately obtain the shuffle algebra realization and the PBWD
theorem for U>

v (Lo2n+1):

Theorem 4.8. (a) � : U>
v (Lo2n+1)

∼−→ S of (2.16) is a Q(v)-algebra isomorphism.
(b) For any choices of sk and λk in the definition (2.24) of quantum root vectors Eβ,s, the ordered

PBWD monomials {Eh}h∈H from (2.34) form a Q(v)-basis of U>
v (Lo2n+1).

4.2 RTT integral form U>
v (Lo2n+1) and its shuffle algebra realization

For ε ∈ {±}, we define

Ẽε
β,s := 〈2〉v · Ẽε

β,s ∀ (β, s) ∈ �+ × Z, (4.37)

cf. (2.26)–(2.27). Similarly to (2.34), we also consider the ordered monomials

Ẽε
h =

→∏
(β,s)∈�+×Z

(Ẽε
β,s)

h(β,s) ∀ h ∈ H, (4.38)

with the arrow → over the product sign indicating the order (2.33) on �+ × Z.

Remark 4.9. The reason for the extra factor 〈2〉v in the definition (4.37) is explained in the
Appendix A; see Corollary A.5 and Proposition A.6.

We define the RTT integral form U>
v (Lo2n+1) as the Z[v, v−1]-subalgebra of U>

v (Lo2n+1) generated by
{Ẽε

β,s}s∈Z
β∈�+ . We note that the above definition depends on the choices of quantum root vectors in (2.26)–

(2.27) as well as of ε ∈ {±}. The main goal of the present subsection is to prove the following theorem
by simultaneously establishing the shuffle algebra realization of U>

v (Lo2n+1), which is of independent
interest:
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Theorem 4.10. (a) U>
v (Lo2n+1) is independent of the choice of quantum root vectors {Ẽε

β,s}s∈Z
β∈�+ .

(b) For any choices of sk in (2.26)–(2.27) and ε ∈ {±}, the ordered monomials {Ẽε
h}h∈H of (4.38) form

a basis of the free Z[v, v−1]-module U>
v (Lo2n+1).

For any k ∈ Nn, consider the Z[v, v−1]-submodule S̃k of Sk consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

f ∈ 〈2〉v
|k| · Z[v, v−1][{x±1

i,r }1≤r≤ki
1≤i≤n ]Sk , (4.39)

where |k| = |(k1, . . . , kn)| := k1 + · · · + kn.
(2) For any d ∈ KP(k), the specialization φd(f · 〈2〉v

−|k|) is divisible by

∏
β=[i,n,j]∈�+

n−1∏
�=j

{
(v−4n+4�−2 − 1)dβ (v−4n+4�+6 − 1)dβ

}
. (4.40)

We define S̃ := ⊕
k∈Nn S̃k. Then, we have:

Proposition 4.11. �(U>
v (Lo2n+1)) ⊂ S̃.

Proof. For any ε ∈ {±}, m ∈ N, β1, . . . , βm ∈ �+, r1, . . . , rm ∈ Z, let

F := �
(
Ẽε

β1,r1
· · · Ẽε

βm ,rm

)
,

and f be the numerator of F from (2.12). We set k = ∑m
q=1 βq. Similarly to (3.50), if a variable x(∗,∗)∗,∗ is

plugged into �(Ẽε
βq ,rq

) for some 1 ≤ q ≤ m, then we shall use the notation

o(x(∗,∗)
∗,∗ ) = q.

Due to Lemma 4.1, f is divisible by 〈2〉v
|k|, hence, the condition (4.39) holds. Now for any d ∈ KP(k),

consider each summand from the symmetrization featuring in f . Pick any β = [i, n, j] with 1 ≤ i < j ≤ n
such that dβ 	= 0. For any 1 ≤ s ≤ dβ and j ≤ � ≤ n, it suffices to show that the contribution of the
φd-specializations of ζ -factors between the variables

{
x(β,s)

�−1,1 , x(β,s)
�,1 , . . . , x(β,s)

n,1 , x(β,s)
n,2 , . . . , x(β,s)

�+1,2 , x(β,s)
�,2

}
is divisible by

∏n−1
t=� {(v−4n+4t−2 − 1)(v−4n+4t+6 − 1)}. The proof is by induction on �, where the base step

� = n is vacuous.
We first note that this φd-specialization vanishes unless

o(x(β,s)
�−1,1) ≥ o(x(β,s)

�,1 ) ≥ · · · ≥ o(x(β,s)
n,1 ) ≥ o(x(β,s)

n,2 ) ≥ · · · ≥ o(x(β,s)
�+1,2) ≥ o(x(β,s)

�,2 ).

If o(x(β,s)
�,1 ) = o(x(β,s)

�,2 ), then due to Lemma 4.1, this φd-specialization contains the required factor

n−1∏
t=�

{(v−4n+4t−2 − 1)(v−4n+4t+6 − 1)}.

If o(x(β,s)
�,1 ) > o(x(β,s)

�,2 ), then we have the following two cases to consider:

• Case 1: o(x(β,s)
�+1,1) = o(x(β,s)

�,2 ). Then we have

o(x(β,s)
�+1,1) = o(x(β,s)

�+2,1) = · · · = o(x(β,s)
�+1,2) = o(x(β,s)

�,2 ).
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According to Lemma 4.1, the corresponding φd-specialization is divisible by

n−1∏
t=�+1

{(v−4n+4t−2 − 1)(v−4n+4t+6 − 1)}.

On the other hand, the φd-specialization of the product of ζ -factors

ζ�,�−1(x
(β,s)
�,2 /x(β,s)

�−1,1)ζ�,�(x
(β,s)
�,2 /x(β,s)

�,1 )ζ�+1,�(x
(β,s)
�+1,2/x(β,s)

�,1 )

contributes the remaining required factor (v−4n+4�−2 − 1)(v−4n+4�+6 − 1).
• Case 2: o(x(β,s)

�+1,1) > o(x(β,s)
�,2 ). Then the φd-specialization of the product of ζ -factors

ζ�,�−1(x
(β,s)
�,2 /x(β,s)

�−1,1)ζ�,�(x
(β,s)
�,2 /x(β,s)

�,1 )ζ�,�+1(x
(β,s)
�,2 /x(β,s)

�+1,1)

contributes the factor (v−4n+4�−2 − 1)(v−4n+4�+6 − 1). Considering the contribution of the φd-
specializations of ζ -factors between the variables

{
x(β,s)

�,1 , x(β,s)
�+1,1 , . . . , x(β,s)

n,1 , x(β,s)
n,2 , . . . , x(β,s)

�+2,2 , x(β,s)
�+1,2

}
and using the induction hypothesis, we get the remaining required factors

n−1∏
t=�+1

{(v−4n+4t−2 − 1)(v−4n+4t+6 − 1)}.

This completes our proof. �

We shall now introduce a certain refinement of S̃ in order to describe the image �(U>
v (Lo2n+1)). Pick

any F ∈ S̃k and d ∈ KP(k). First, according to (4.39) and (4.40), φd(F) is divisible by

Ad := 〈2〉v
|k| ·

∏
β=[i,n,j]∈�+

n−1∏
�=j

{
(v−4n+4�−2 − 1)dβ (v−4n+4�+6 − 1)dβ

}
. (4.41)

Second, following Corollary 4.7 (based solely on the wheel conditions), the specialization φd(F) is also
divisible by the product

Bd :=
∏

β∈�+
Gβ ,

with Gβ computed explicitly in (4.36). Combining these two observations, we can now define the
following reduced specialization map

ξd : S̃ −→ Z[v, v−1][{w±1
β,s}1≤s≤dβ

β∈�+ ]Sd via ξd(F) := φd(F)

AdBd
. (4.42)

Let us introduce another type of specialization maps. Pick any collection of positive integers t =
{tβ,r}1≤r≤�β

β∈�+ (�β ∈ N) satisfying

dβ =
�β∑

r=1

tβ,r ∀ β ∈ �+. (4.43)
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For any β ∈ �+, we split the variables {wβ,s}dβ

s=1 into �β groups of size tβ,r each (1 ≤ r ≤ �β) and specialize
the variables in the r-th group to

v−2
β zβ,r, v−4

β zβ,r, . . . v−2tβ,r
β zβ,r. (4.44)

For any g ∈ Z[v, v−1][{w±1
β,s}1≤s≤dβ

β∈�+ ]Sd , we define �t(g) as the corresponding specialization of g. This gives
rise to the vertical specialization map

�t : Z[v, v−1][{w±1
β,s}1≤s≤dβ

β∈�+ ]Sd −→ Z[v, v−1][{z±1
β,r}1≤r≤�β

β∈�+ ]. (4.45)

Finally, given any d ∈ KP(k) and a collection of positive integers t = {tβ,r}1≤r≤�β

β∈�+ satisfying (4.43), we
combine (4.42) and (4.45) to define the cross specialization map

ϒd,t : S̃ −→ Z[v, v−1][{z±1
β,r}1≤r≤�β

β∈�+ ] via ϒd,t(F) := �t(ξd(F)). (4.46)

Similarly to [29, Definition 3.37], we introduce:

Definition 4.12. F ∈ S̃k is integral if ϒd,t(F) is divisible by
∏1≤r≤�β

β∈�+ [tβ,r]vβ
! for any d ∈ KP(k) and

t = {tβ,r}1≤r≤�β

β∈�+ satisfying (4.43).

Let S ⊂ S̃ denote the Z[v, v−1]-submodule of all integral elements. Then, we have:

Proposition 4.13. �(U>
v (Lo2n+1)) ⊂ S.

Proof. For any ε ∈ {±}, m ∈ N, β1, . . . , βm ∈ �+, r1, . . . , rm ∈ Z, let

F := �
(
Ẽε

β1,r1
· · · Ẽε

βm ,rm

)
.

For any β ∈ �+ and 1 ≤ r ≤ �β , we need to show that under ϒd,t, the contribution of the ζ -factors between
the variables x(∗,∗)∗,∗ that got specialized to v?zβ,r is divisible by [tβ,r]vβ

!. For β = [i, j] with 1 ≤ i ≤ j ≤ n, this
follows from [30, Lemma 3.51] (note that v[i,j] = vj).

It remains to treat the case β = [i, n, j] with 1 ≤ i < j ≤ n. We note that vβ = v2 for this β. Without loss
of generality, we may assume that under the φd-specialization:

x(β,s)
i,1 �→ v−2iwβ,s , . . . , x(β,s)

n,1 �→ v−2nwβ,s , x(β,s)
n,2 �→ v−2n+2wβ,s , . . . , x(β,s)

j,2 �→ v−4n+2j+2wβ,s

for 1 ≤ s ≤ tβ,r, while under the �t-specialization:

wβ,1 �→ v−4zβ,r , . . . , wβ,tβ,r �→ v−4tβ,r zβ,r.

Fix any 1 ≤ s 	= s′ ≤ tβ,r. First, let us consider the relative position of the variables

{
x(β,s)

j+1,2 , x(β,s)
j,2 , x(β,s′)

j+1,2 , x(β,s′)
j,2

}
, (4.47)

that is, compare their o-values with o(x(∗,∗)∗,∗ ) defined now as in the proof of Proposition 4.11. We can
assume that

o(x(β,s)
j+1,2) ≥ o(x(β,s)

j,2 ) and o(x(β,s′)
j+1,2) ≥ o(x(β,s′)

j,2 ),

as otherwise the corresponding term is specialized to zero under φd. If o(x(β,s)
j,2 ) = o(x(β,s′)

j,2 ) then, according
to Lemma 4.1, the corresponding term is divisible by

(v4x(β,s)
j,2 − x(β,s′)

j,2 )(v4x(β,s′)
j,2 − x(β,s)

j,2 ),
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whose φd-specialization contributes the factor (wβ,s − v4wβ,s′ )(wβ,s′ − v4wβ,s). If o(x(β,s)
j,2 ) 	= o(x(β,s′)

j,2 ), then

without loss of generality, we can assume o(x(β,s)
j,2 ) > o(x(β,s′)

j,2 ). Then:

• If o(x(β,s′)
j+1,2) > o(x(β,s)

j,2 ), then the φd-specialization of the product of ζ -factors

ζj,j+1(x
(β,s)
j,2 /x(β,s′)

j+1,2) · ζj,j+1(x
(β,s′)
j,2 /x(β,s)

j+1,2)

contributes the factor (wβ,s − v4wβ,s′ )(wβ,s′ − v4wβ,s).
• If o(x(β,s)

j,2 ) ≥ o(x(β,s′)
j+1,2), then the φd-specialization of the product of ζ -factors

ζj,j(x
(β,s′)
j,2 /x(β,s)

j,2 ) · ζj,j+1(x
(β,s′)
j,2 /x(β,s)

j+1,2)

contributes the factor (wβ,s − v4wβ,s′ )(wβ,s′ − v4wβ,s).

Similarly, considering the φd-specialization of the ζ -factors arising from the following quadruples

{
x(β,s)

j+2,2 , x(β,s)
j+1,2 , x(β,s′)

j+2,2 , x(β,s′)
j+1,2

}
, . . . ,

{
x(β,s)

n,2 , x(β,s)
n−1,2 , x(β,s′)

n,2 , x(β,s′)
n−1,2

}
,{

x(β,s)
n−2,1 , x(β,s)

n−1,1, x(β,s′)
n−2,1 , x(β,s′)

n−1,1

}
, . . . ,

{
x(β,s)

i,1 , x(β,s)
i+1,1 , x(β,s′)

i,1 , x(β,s′)
i+1,1

}
,

along with the contribution of the tuple (4.47) considered above, they produce a total contribution of
the factor

(wβ,s − v4wβ,s′ )2n−i−j−1(wβ,s′ − v4wβ,s)
2n−i−j−1.

Second, let us consider the relative position of the variables

{
x(β,s)

n−1,1 , x(β,s)
n,1 , x(β,s)

n,2 , x(β,s′)
n−1,1 , x(β,s′)

n,1 , x(β,s′)
n,2

}
. (4.48)

We can assume that

o(x(β,s)
n−1,1) ≥ o(x(β,s)

n,1 ) ≥ o(x(β,s)
n,2 ) and o(x(β,s′)

n−1,1) ≥ o(x(β,s′)
n,1 ) ≥ o(x(β,s′)

n,2 ), (4.49)

as otherwise the corresponding term is specialized to zero under φd. Then:

• If o(x(β,s)
n,2 ) < o(x(β,s′)

n,1 ) or o(x(β,s′)
n,1 ) < o(x(β,s)

n−1,1), then the φd-specialization of ζ -factor

ζn,n(x
(β,s)
n,2 /x(β,s′)

n,1 ) or ζn,n−1(x
(β,s′)
n,1 /x(β,s)

n−1,1)

respectively, contributes the factor wβ,s − v−4wβ,s′ . Otherwise, o(x(β,s)
n,2 ) ≥ o(x(β,s′)

n,1 ) ≥ o(x(β,s)
n−1,1), which

together with (4.49) implies:

o(x(β,s′)
n,1 ) = o(x(β,s)

n−1,1) = o(x(β,s)
n,1 ) = o(x(β,s)

n,2 ).

But there are at most two variables x(∗,∗)
n,∗ plugged into each �(Ẽε

βq ,rq
), a contradiction.

• If o(x(β,s)
n,2 ) < o(x(β,s′)

n,2 ), or o(x(β,s)
n,1 ) < o(x(β,s′)

n,1 ), or o(x(β,s′)
n,2 ) < o(x(β,s)

n−1,1), then the φd-specialization of ζ -factor

ζn,n(x
(β,s)
n,2 /x(β,s′)

n,2 ) or ζn,n(x
(β,s)
n,1 /x(β,s′)

n,1 ) or ζn,n−1(x
(β,s′)
n,2 /x(β,s)

n−1,1)

respectively, contributes the factor wβ,s −v−2wβ,s′ . Otherwise, if o(x(β,s)
n,2 ) ≥ o(x(β,s′)

n,2 ), o(x(β,s)
n,1 ) ≥ o(x(β,s′)

n,1 ),

and o(x(β,s′)
n,2 ) ≥ o(x(β,s)

n−1,1), then according to (4.49) we have

o(x(β,s)
n−1,1) = o(x(β,s)

n,1 ) = o(x(β,s)
n,2 ) = o(x(β,s′)

n,2 ).
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The latter can not occur for the same reason as above, hence, a contradiction.

Swapping the roles of s and s′ in the above two bullets, we thus conclude that the φd-specialization
of the ζ -factors arising from (4.48) contributes the factor

(wβ,s − v4wβ,s′ )(wβ,s′ − v4wβ,s)(wβ,s − v2wβ,s′ )(wβ,s′ − v2wβ,s).

Finally, for any j ≤ � < n, let us consider the relative position of the variables

{
x(β,s)

�,2 , x(β,s′)
�−1,1 , x(β,s′)

�,1 , x(β,s′)
�+1,1

}
.

We can assume that o(x(β,s′)
�−1,1) ≥ o(x(β,s′)

�,1 ) ≥ o(x(β,s′)
�+1,1), as otherwise the corresponding term is specialized

to zero under φd. If o(x(β,s)
�,2 ) = o(x(β,s′)

�,1 ), then the corresponding term has the factor

(x(β,s)
�,2 − v4x(β,s′)

�,1 )(x(β,s)
�,2 − v−4x(β,s′)

�,1 )

as in Lemma 4.1, and so its φd-specialization produces the factor

(wβ,s − v4n−4�+2wβ,s′ )(wβ,s − v4n−4�−6wβ,s′ ).

If o(x(β,s)
�,2 ) < o(x(β,s′)

�,1 ) or o(x(β,s)
�,2 ) > o(x(β,s′)

�,1 ), then the φd-specialization of the products

ζ�,�(x
(β,s)
�,2 /x(β,s′)

�,1 ) · ζ�,�−1(x
(β,s)
�,2 /x(β,s′)

�−1,1) or ζ�+1,�(x
(β,s′)
�+1,1/x(β,s)

�,2 ) · ζ�,�(x
(β,s′)
�,1 /x(β,s)

�,2 )

respectively, contributes the required factor

(wβ,s − v4n−4�+2wβ,s′ )(wβ,s − v4n−4�−6wβ,s′ ).

All these contributions overall produce exactly the factor Gβ from Corollary 4.7. However, we
have not used yet the factors ζii(x

(β,s)
i,1 /x(β,s′)

i,1 ). We can now appeal to the “rank 1” computation of [30,
Lemma 3.46] to deduce the required divisibility by [tβ,r]v2 !. �

Finally, combining Propositions 4.5, 4.6, and 4.13, we obtain the following upgrade of Theorem 4.8
(we note that divisibility (4.39, 4.40) is precisely matching the constants of (4.10), while the divisibility
condition from Definition 4.12 is precisely matching the “rank 1” formula (3.49)):

Theorem 4.14. (a) The Q(v)-algebra isomorphism � : U>
v (Lo2n+1)

∼−→ S of Theorem 4.8(a) gives rise
to a Z[v, v−1]-algebra isomorphism � : U>

v (Lo2n+1)
∼−→ S.

(b) Theorem 4.10 holds.

4.3 Integral form U>
v (Lo2n+1) and its shuffle algebra realization

Similarly to (3.38), we consider the divided powers

E(k)

i,r := ek
i,r

[k]vi !
∀ 1 ≤ i ≤ n, r ∈ Z, k ∈ N. (4.50)

Likewise, we define the integral form U>
v (Lo2n+1) as the Z[v, v−1]-subalgebra of U>

v (Lo2n+1) generated by
{E(k)

i,r }k∈N
1≤i≤n,r∈Z. For any (β, s) ∈ �+ ×Z, we define the normalized divided powers of the quantum root vectors

from (2.26)–(2.27) via:

Ẽ±,(k)
β,s :=

⎧⎪⎨⎪⎩
(Ẽ±

β,s)
k

[k]vβ
! if β = [i, j] with 1 ≤ j ≤ n

(Ẽ±
β,s)

k

([2]v!)k[k]vβ
! if β = [i, n, j] with 1 ≤ i < j ≤ n

. (4.51)
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Similarly to Proposition 3.8, we obtain:

Proposition 4.15. For any β ∈ �+, s ∈ Z, k ∈ N, we have Ẽ±,(k)
β,s ∈ U>

v (Lo2n+1).

Proof. The proof is similar to that of Proposition 3.8. Let U>
v (o2n+1) be the “positive subalgebra” of the

Drinfeld-Jimbo quantum group of type Bn. Thus, U>
v (o2n+1) is the Q(v)-algebra generated by {Ei}n

i=1 subject
to the v-Serre relations. Let U>

v (o2n+1) be its Lusztig integral form, defined as the Z[v, v−1]-subalgebra of
U>

v (o2n+1) generated by the divided powers

E(k)

i := Ek
i

[k]vi !
∀ 1 ≤ i ≤ n, k ∈ N.

Recall our specific convex order (2.21) on �+. Let {Ê−
β }β∈�+ denote Lusztig’s quantum root vectors

of U>
v (o2n+1) associated to this convex order. We also define {Ẽ−

β }β∈�+ as the following iterated v-
commutators similar to (2.26)–(2.27):

Ẽ−
[i,j] := [· · · [[Ei, Ei+1]v−2 , Ei+2]v−2 , · · · , Ej]v−2 ,

Ẽ−
[i,n,j] := [· · · [[[· · · [Ei, Ei+1]v−2 , · · · , En]v−2 , En], En−1]v−2 , · · · , Ej]v−2 .

(4.52)

Then, according to [21, Proposition 5.5.2] and [2, Theorem 4.2], we have:

Ẽ−
β =

⎧⎨⎩Ê−
β if β = [i, j] with 1 ≤ i ≤ j ≤ n

[2]v! Ê−
β if β = [i, n, j] with 1 ≤ i < j ≤ n

. (4.53)

To pass from the finite to the loop setup, we note that for any s = (s1, . . . , sn) ∈ Zn, the assignment
E1 �→ e1,s1 , . . . , En �→ en,sn gives rise to an algebra homomorphism

ηs : U>
v (o2n+1) −→ U>

v (Lo2n+1),

such that ηs(U>
v (o2n+1)) ⊂ U>

v (Lo2n+1). As Ẽ−,(k)
β,s = ηs(Ê

−,(k)
β ) and Ê−,(k)

β ∈ U>
v (o2n+1) by [22, Theorem 6.6], we

get Ẽ−,(k)
β,s ∈ U>

v (Lo2n+1). Using similar arguments and the convex order on �+ opposite to (2.21), we also

obtain Ẽ+,(k)
β,s ∈ U>

v (Lo2n+1). This completes our proof. �

For any k ∈ Nn, consider the Z[v, v−1]-submodule Sk of Sk consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

f ∈ Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤n ]Sk . (4.54)

(2) For any d ∈ KP(k), the specialization φd(F) is divisible by the product∏
β=[i,j]∈�+

〈2〉v
dβ (|β|−1) ·

∏
β=[i,n,j]∈�+

{〈2〉v
dβ (|β|−2)〈1〉v

}×
∏

β=[i,n,j]∈�+

n−1∏
�=j

{
(v−4(n−�)−2 − 1)dβ (v−4(n−�)+6 − 1)dβ

}
.

(4.55)

Remark 4.16. We note that this definition is much simpler than that of Sk in Definition 4.12.

We define S := ⊕
k∈Nn Sk. Then, similarly to Proposition 3.9, we have:

Proposition 4.17. �(U>
v (Lo2n+1)) ⊂ S.
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Proof. For any m ∈ N, 1 ≤ i1, . . . , im ≤ n, r1, . . . , rm ∈ Z, �1, . . . , �m ∈ N, let

F := �
(
E(�1)

i1,r1
· · · E(�m)

im ,rm

)
,

and f be the numerator of F from (2.12). According to Lemma 3.10:

�(E(�q)

iq ,rq
) = v

− �q (�q−1)

2
iq

(xiq ,1 · · · xiq ,�q )
rq ∀ 1 ≤ q ≤ m,

hence, the condition (4.54) holds. To verify the validity of the divisibility (4.55), it suffices to show (see
Lemma 3.2 for β = [i, j]) that for any β = [i, n, j] (1 ≤ i < j ≤ n), and 1 ≤ s ≤ dβ , the total contribution of
φd-specializations of the ζ -factors between the variables {x(β,s)

i,t }1≤t≤νβ,i

i∈β
is divisible by

〈2〉v
|β|−2〈1〉v ·

n−1∏
�=j

{
(v−4(n−�)−2 − 1)(v−4(n−�)+6 − 1)

}
. (4.56)

We shall now use the notation o(x(∗,∗)∗,∗ ) defined as in (3.50). The φd-specialization of the corresponding
product of ζ -factors vanishes unless

o(x(β,s)
i,1 ) ≥ o(x(β,s)

i+1,1) ≥ · · · ≥ o(x(β,s)
n,1 ) ≥ o(x(β,s)

n,2 ) ≥ · · · ≥ o(x(β,s)
j+1,2) ≥ o(x(β,s)

j,2 ),

Since the equality above can occur only in a single spot, due to o(x(β,s)
i,t ) 	= o(x(β,s)

i′ ,t′ ) for i 	= i′, we need to
treat the following two cases:

(1) o(x(β,s)
i,1 ) > o(x(β,s)

i+1,1) > · · · > o(x(β,s)
n,1 ) > o(x(β,s)

n,2 ) > · · · > o(x(β,s)
j+1,2) > o(x(β,s)

j,2 ).

(2) o(x(β,s)
i,1 ) > o(x(β,s)

i+1,1) > · · · > o(x(β,s)
n,1 ) = o(x(β,s)

n,2 ) > · · · > o(x(β,s)
j+1,2) > o(x(β,s)

j,2 ).

In the first case, the φd-specialization of each ζ -factor

ζi+1,i(x
(β,s)
i+1,1/x(β,s)

i,1 ), . . . , ζn,n−1(x
(β,s)
n,1 /x(β,s)

n−1,1), ζn−1,n(x
(β,s)
n−1,2/x(β,s)

n,2 ), . . . , ζj,j+1(x
(β,s)
j,2 /x(β,s)

j+1,2)

as well as of the product

ζn,n(x
(β,s)
n,2 /x(β,s)

n,1 ) · ζn,n−1(x
(β,s)
n,2 /x(β,s)

n−1,1)

contributes a multiple of 〈2〉v, thus totalling 〈2〉v
|β|−1. On the other hand, for any j ≤ � ≤ n − 1, the

φd-specialization of the product of ζ -factors

ζ�,�−1(x
(β,s)
�,2 /x(β,s)

�−1,1) · ζ�,�(x
(β,s)
�,2 /x(β,s)

�,1 ) · ζ�,�+1(x
(β,s)
�,2 /x(β,s)

�+1,1)

contributes precisely the required factor (v−4(n−�)−2 − 1)(v−4(n−�)+6 − 1).
For the second case, the only difference is that we replace the product of two ζ -factors ζn,n(x

(β,s)
n,2 /x(β,s)

n,1 )·
ζn,n−1(x

(β,s)
n,2 /x(β,s)

n−1,1) with a single ζn,n−1(x
(β,s)
n,2 /x(β,s)

n−1,1), so that the first contribution of 〈2〉v
|β|−1 is now getting

replaced with 〈2〉v
|β|−2 · 〈1〉v.

This completes our verification of the divisibility (4.55), thus concluding the proof. �

For any h ∈ H, define the ordered monomials (cf. (2.34))

Ẽ+
h =

→∏
(β,s)∈�+×Z

Ẽ+,(h(β,s))
β,s , Ẽ−

h =
→∏

(β,s)∈�+×Z

Ẽ−,(h(β,s))
β,s . (4.57)

For any ε ∈ {±}, let Sε
k be the Z[v, v−1]-submodule of Sk spanned by {�(Ẽε

h)}h∈Hk . Then, the following
analogue of Lemma 2.8 holds:

Proposition 4.18. For any F ∈ Sk and d ∈ KP(k), if φd′ (F) = 0 for all d′ ∈ KP(k) such that d′
< d, then

there exists Fd ∈ Sε
k such that φd(F) = φd(Fd) and φd′ (Fd) = 0 for all d′

< d.
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The proof of this result is completely analogous to that of Proposition 3.11. Combining Proposi-
tions 4.17 and 4.18, we obtain the following upgrade of Theorem 4.8:

Theorem 4.19. (a) The Q(v)-algebra isomorphism � : U>
v (Lo2n+1)

∼−→ S of Theorem 4.8(a) gives
rise to a Z[v, v−1]-algebra isomorphism � : U>

v (Lo2n+1)
∼−→ S.

(b) For any choices of sk in (2.26)–(2.27) and ε ∈ {±}, the ordered monomials {Ẽε
h}h∈H of (4.57) form

a basis of the free Z[v, v−1]-module U>
v (Lo2n+1).

5 Yangian Counterpart
In this section, we generalize the results of Sections 3–4 to the Yangian case, thus establishing shuffle
algebra realizations of Yangians and their Drinfeld-Gavarini duals in types Bn and G2. This should be
viewed as the “rational vs trigonometric” counterpart, where we replace factors z

w − vk by z − w − k
2 h̄. In

particular, ζi,j(z) of (2.13) will be replaced by ζ̂i,j(z) = 1 + (αi ,αj)·h̄
2z .

5.1 The Yangian Y>
h̄ (g) and its shuffle algebra realization

We still use the notations from Section 2. Let g be a finite dimensional simple Lie algebra of type Bn or
G2. Following [3], the “positive subalgebra” of the Yangian of g in the new Drinfeld realization, denoted
by Y>

h̄ (g), is the Q[h̄]-algebra generated by {xi,r}r∈N
i∈I subject to the following defining relations:

[xi,r+1, xj,s] − [xi,r, xj,s+1] = diaijh̄

2
(xi,rxj,s + xj,sxi,r) ∀ i, j ∈ I, r, s ∈ N, (5.1)

Sym
s1,...,s1−aij

[xi,s1 , [xi,s2 , · · · , [xi,s1−aij
, xj,r] · · · ]] = 0 ∀ i 	= j, s1, . . . , s1−aij , r ∈ N. (5.2)

Analogously to (2.24)–(2.25), let us now define the root vectors {Xβ,s}s∈N
β∈�+ of Y>

h̄ (g):

• Bn-type.
For any β = [i1, . . . , i�] ∈ �+ from (2.18) and s ∈ N, choose a decomposition s = s1 + · · · + s� with
s1, . . . , s� ∈ N. Then, we define

Xβ,s := [· · · [[xi1,s1 , xi2,s2 ], xi3,s3 ], · · · , xi� ,s�
]. (5.3)

• G2-type.
For β = [i1, . . . , i�] 	= [1, 2, 1, 2, 2], s ∈ N, the elements Xβ,s are defined exactly as in (5.3).
For β = [1, 2, 1, 2, 2] and s ∈ N, we choose a decomposition s = s1 + · · · + s5 with s1, . . . , s5 ∈ N, and
define

Xβ,s := [[x1,s1 , x2,s2 ], [[x1,s3 , x2,s4 ], x2,s5 ]]. (5.4)

We will also need the following specific choices {X̃β,s}s∈N
β∈�+ of (5.3)–(5.4):

• Bn-type.

X̃[i,j],s := [· · · [[xi,s, xi+1,0], xi+2,0], · · · , xj,0], 1 ≤ i ≤ j ≤ n, (5.5)

X̃[i,n,j],s := [· · · [[[· · · [xi,s, xi+1,0], · · · , xn,0], xn,0], xn−1,0], · · · , xj,0], 1 ≤ i < j ≤ n. (5.6)

• G2-type.

X̃[i],s := xi,s, 1 ≤ i ≤ 2, (5.7)

X̃[1,2],s := [x1,s, x2,0], (5.8)

X̃[1,2,2],s := [[x1,s, x2,0], x2,0], (5.9)

X̃[1,2,2,2],s := [[[x1,s, x2,0], x2,0], x2,0], (5.10)

X̃[1,2,1,2,2],s := [[x1,s, x2,0], [[x1,0, x2,0], x2,0]]. (5.11)
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Let H denote the set of all functions h : �+ × N → N with finite support. For any h ∈ H, we consider
the ordered monomials

Xh =
→∏

(β,s)∈�+×N

Xh(β,s)
β,s and X̃h =

→∏
(β,s)∈�+×N

X̃
h(β,s)
β,s . (5.12)

Then, similarly to [19] (cf. [14, Theorem B.3]), we have:

Theorem 5.1. The elements {Xh}h∈H form a basis of the free Q[h̄]-module Y>
h̄ (g).

Proof. Comparing X̃β,s to the root vectors e(s)
β used in [14, (A.11)], we see that the only difference is in

the root vectors X̃[1,2,1,2,2],s in G2-type. However, the two key properties (B.1) and (B.2) of [14, Appendix B]
still hold for the new root vectors, cf. Remark 5.15. Hence, the proof of [14, Theorem B.2] and thus of
[14, Theorem B.3] still goes through. This proves that {X̃h}h∈H form a basis of the free Q[h̄]-module Y>

h̄ (g).
The proof of the fact that the ordered monomials {Xh}h∈H in more general root vectors of (5.3)–(5.4) also
provide a basis will be derived from the shuffle algebra realization of Y>

h̄ (g); see Theorem 5.14. �

We define the shuffle algebra (W̄, ) analogously to the shuffle algebra (S, ) of Section 2 with the
following modifications:

(1) All rational functions F ∈ W̄ are defined over Q[h̄].
(2) The matrix (ζ̂i,j(z))i,j∈I is defined via

ζ̂i,j(z) = 1 + (αi, αj) · h̄

2z
. (5.13)

(3) (pole conditions) F ∈ W̄k has the form

F = f ({xi,r}1≤r≤ki
i∈I )∏aij 	=0

i<j

∏1≤s≤kj

1≤r≤ki
(xi,r − xj,s)

, (5.14)

where f ∈ Q[h̄][{xi,r}1≤r≤ki
i∈I ]Sk and < is an arbitrary order on I.

(4) (wheel conditions) Let f be the numerator of F ∈ W̄k from (5.14), then

f ({xi,r}1≤r≤ki
i∈I ) = 0 once xi,s1 = xi,s2 + dih̄ = · · · = xi,s1−aij

− diaijh̄ = xj,r − diaij

2
h̄ (5.15)

for any i 	= j such that aij 	= 0, pairwise distinct 1 ≤ s1, . . . , s1−aij ≤ ki, and 1 ≤ r ≤ kj.
(5) The shuffle product is defined like (2.14), but ζi,j(

xi,r

xj,s
) are replaced by ζ̂i,j(xi,r − xj,s).

Similarly to Proposition 2.1, we have:

Proposition 5.2. The assignment xi,r �→ xr
i,1 ∈ W̄1i (i ∈ I, r ∈ N) gives rise to a Q[h̄]-algebra

homomorphism

� : Y>
h̄ (g) −→ W̄. (5.16)

Let us adapt our key tool of specialization maps to the Yangian setup. In type G2, the specialization
maps φd are defined via the following specialization of the x(∗,∗)∗,∗ -variables, cf. (3.2):

x(β,s)
1,t �→ wβ,s + th̄, 1 ≤ t ≤ 2,

x(β,s)
2,t �→ wβ,s − 3

2 h̄ + th̄, 1 ≤ t ≤ 3.
(5.17)

In type Bn, the specialization maps φd are defined via the following specialization of the x(∗,∗)∗,∗ -variables,
cf. (4.2):

x(β,s)
i,1 �→ wβ,s − ih̄, x(β,s)

i,2 �→ wβ,s − (2n − i − 1)h̄ ∀ β ∈ �+, 1 ≤ s ≤ dβ , i ∈ β. (5.18)
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In what follows, we will use the notation � to denote an equality up to Q× (cf. (2.44)):

A � B if A = c · B for some c ∈ Q×. (5.19)

Remark 5.3. We emphasize that c in (5.19) is a nonzero element of Q rather than Q[h̄]. Most impor-
tantly, the appearance of such constants occurs from the “rank 1” computations. Explicitly, the
formula (3.49) in the shuffle algebra S is now replaced by the equality

xr
i,1  · · ·  xr

i,1︸ ︷︷ ︸
� times

= �! ·(xi,1 · · · xi,�)
r (5.20)

in the shuffle algebra W̄ for any i ∈ I, r ≥ 0, � ≥ 1; see [30, Lemma 6.22]. Thus, the product of
quantum integers in the trigonometric case is now replaced by the product of integers.

We have the following straightforward analogues of Lemmas 3.1 and 4.1:

Lemma 5.4. For type G2, we have:

�(X̃[i],s) � xs
i,1, 1 ≤ i ≤ 2, (5.21)

�(X̃[1,2],s) �
h̄xs

1,1

x1,1 − x2,1
, (5.22)

�(X̃[1,2,2],s) �
h̄2xs

1,1

(x1,1 − x2,1)(x1,1 − x2,2)
, (5.23)

�(X̃[1,2,2,2],s) �
h̄3xs

1,1

(x1,1 − x2,1)(x1,1 − x2,2)(x1,1 − x2,3)
, (5.24)

�(X̃[1,2,1,2,2],s) �
h̄4g({x1,r, x2,t}1≤t≤3

1≤r≤2)∏1≤t≤3
1≤r≤2(x1,r − x2,t)

, (5.25)

where g ∈ Q[h̄][{x1,r, x2,t}1≤t≤3
1≤r≤2]S2×S3 (we do not really need an explicit formula for this g).

Lemma 5.5. For type Bn, we have:

�(X̃[i,j],s) �
h̄j−ixs

i,1

(xi,1 − xi+1,1) · · · (xj−1,1 − xj,1)
, (5.26)

�(X̃[i,n,j],s) �
h̄2n−i−j+1xs

i,1

∏n−1
�=j (2h̄ + x�,1 − x�,2)(2h̄ − x�,1 + x�,2)

(xi,1 − xi+1,1) · · · (xj−1,1 − xj,1)(xj−1,1 − xj,2)
∏n−1

�=j

∏
1≤r,t≤2(x�,r − x�+1,t)

. (5.27)

As follows from the above two lemmas, the images �(X̃β,s) are divisible by h̄|β|−1. This is actually true
for any root vectors Xβ,s defined in (5.3)–(5.4):

Lemma 5.6. For any β ∈ �+ and s ∈ N, �(Xβ,s) is divisible by h̄|β|−1.

Proof. The proof is similar to that of Lemma 4.2, and follows immediately from the equality

ζ̂i,j(z) − ζ̂j,i(−z) = (αi, αj)

z
h̄. �

Furthermore, invoking the constants κβ given by (3.21) in type G2 and by (4.9) in type Bn, we have the
following straightforward analogue of Lemmas 3.2 and 4.2:

Lemma 5.7. In both types G2 and Bn, we have:

φβ(�(Xβ,s)) � h̄κβ · pβ,s(wβ,1) ∀ (β, s) ∈ �+ × N, (5.28)

where pβ,s(w) ∈ Q[h̄][w] is a monic degree s polynomial in w over Q[h̄].
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Recall that H denotes the set of all functions h : �+ × N → N with finite support. For any k ∈ NI

and d ∈ KP(k), we define the subsets Hk, Hk,d of H similarly to (2.37), but with h ∈ H been replaced by
h ∈ H. Using Lemma 5.7 and arguing exactly as in Sections 3–4, we obtain the following analogues of
Lemmas 2.6 and 2.7 for the Yangians of types G2 and Bn:

Lemma 5.8. For any h ∈ Hk,d, we have

φd(�(Xh)) � h̄
∑

β∈�+ dβ κβ ·
β<β ′∏

β,β ′∈�+
Ĝβ,β ′ ·

∏
β∈�+

Ĝβ ·
∏

β∈�+
P̂λh,β , (5.29)

where Ĝβ,β ′ , Ĝβ are independent of h ∈ Hk,d and are rational counterparts of Gβ,β ′ , Gβ from

Lemma 2.6 (obtained by replacing factors (x − vty) with (x − y − t
2 h̄)), while

P̂λh,β = Sym
Sdβ

⎛⎝ dβ∏
s=1

pβ,rβ (h,s)(wβ,s)
∏

1≤s<r≤dβ

(
1 + (β, β) · h̄

2(wβ,s − wβ,r)

)⎞⎠ . (5.30)

This again features a “rank 1 reduction”: each P̂λh,β from (5.30) can be viewed as the shuffle product

pβ,rβ (h,1)(x)  · · ·  pβ,rβ (h,dβ )(x) in the A1-type shuffle algebra W̄, evaluated at {wβ,s}dβ

s=1. The following result
is a Yangian counterpart of Lemma 2.7 for types G2 and Bn:

Lemma 5.9. For any h ∈ Hk,d and d′
< d, we have φd′ (�(Xh)) = 0.

Combining Theorem 5.1 and Lemmas 5.8–5.9, we obtain (cf. [30, Proposition 6.16]):

Proposition 5.10. The homomorphism � of (5.16) is injective.

Following [29, Definition 3.27], we introduce:

Definition 5.11. F ∈ W̄k is good if φd(F) is divisible by h̄
∑

β∈�+ dβ κβ for any d ∈ KP(k).

Let Wk be the Q[h̄]-submodule of all good elements in W̄k, and set W := ⊕
k∈NI Wk.

Proposition 5.12. �(Y>
h̄ (g)) ⊂ W.

Proof. For any m ∈ N, i1, . . . , im ∈ I, r1, . . . , rm ∈ N, set F := �(xi1,r1 · · · xim ,rm ), and let f be the numerator of F
from (5.14). Set k = ∑m

�=1 αi� ∈ NI, and choose any d ∈ KP(k). It suffices to show that the φd-specialization
of each summand in the symmetrization from f is divisible by h̄

∑
β∈�+ dβ κβ . Similarly to (3.50), if a variable

x(∗,∗)∗,∗ is plugged into �(xiq ,rq ) for some 1 ≤ q ≤ m, then we shall use the notation o(x(∗,∗)∗,∗ ) = q.
In type Bn, the case of β = [i, j] is analogous to An-type. Thus, it remains to treat the case of β = [i, n, j]

with dβ 	= 0. For any 1 ≤ s ≤ dβ , the φd-specialization of the corresponding summand vanishes unless

o(x(β,s)
i,1 ) > o(x(β,s)

i+1,1) > · · · > o(x(β,s)
n,1 ) > o(x(β,s)

n,2 ) > · · · > o(x(β,s)
j+1,2) > o(x(β,s)

j,2 ).

In the latter case, the φd-specialization of the ζ̂ -factors between pairs of the x(β,s)
∗,∗ -variables contributes

precisely the required factor h̄κβ .
In type G2, the only nontrivial check is for β = [1, 2, 1, 2, 2] case. Suppose dβ 	= 0. For any 1 ≤ s ≤ dβ ,

the φd-specialization of the corresponding summand vanishes unless

o(x(β,s)
1,1 ) > o(x(β,s)

2,1 ) > o(x(β,s)
2,2 ) > o(x(β,s)

2,3 ) and o(x(β,s)
1,2 ) > o(x(β,s)

2,2 ).

In the latter case, the φd-specialization of the ζ̂ -factors between pairs of the x(β,s)
∗,∗ -variables contributes

precisely the required factor h̄6 = h̄κβ as well. �

Let W′
k be the Q[h̄]-submodule of Wk spanned by {�(Xh)}h∈Hk . Then, the following Yangian counterpart

of Lemma 2.8 holds true in types G2 and Bn (cf. Propositions 3.6 and 4.6):
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Proposition 5.13. For any F ∈ Wk and d ∈ KP(k), if φd′ (F) = 0 for all d′ ∈ KP(k) such that d′
< d, then

there exists Fd ∈ W′
k such that φd(F) = φd(Fd) and φd′ (Fd) = 0 for all d′

< d.

Proof. Since F is good, the specialization φd(F) is divisible by h̄
∑

β∈�+ dβ κβ . On the other hand, arguing as in
the proofs of Propositions 3.6 and 4.6 (which utilized only wheel conditions), we conclude that φd(F) is
also divisible by

∏
β<β ′ Ĝβ,β ′ · ∏β∈�+ Ĝβ . Therefore, we have:

φd(F) = h̄
∑

β∈�+ dβ κβ ·
β<β ′∏

β,β ′∈�+
Ĝβ,β ′ ·

∏
β∈�+

Ĝβ · G (5.31)

for some symmetric polynomial G ∈ Q[h̄][{wβ,s}1≤s≤dβ

β∈�+ ]Sd . Combining (5.31) with Lemma 5.8 (and the
“rank 1” counterpart from [29, end of proof of Lemma 3.18]), we see that there is a linear combination
Fd = ∑

h∈Hk,d
chXh such that φd(F) = φd(Fd). On the other hand, the equality φd′ (Fd) = 0 for all d′

< d follows
from Lemma 5.9. �

Combining Propositions 5.12–5.13, we immediately obtain the shuffle algebra realization and the
PBW theorem for Y>

h̄ (g) in types G2 and Bn:

Theorem 5.14. (a) The Q[h̄]-algebra embedding � : Y>
h̄ (g) → W̄ of Proposition 5.10 gives rise to a

Q[h̄]-algebra isomorphism � : Y>
h̄ (g) ∼−→ W.

(b) The ordered monomials {Xh}h∈H of (5.12) form a basis of the free Q[h̄]-module Y>
h̄ (g),

cf. Theorem 5.1.

Proof. According to Lemma 5.9 and Proposition 5.10, {�(Xh)}h∈H ⊂ W are linearly independent.
On the other hand, by iterated application of Proposition 5.13, we also get that {�(Xh)}h∈H span
W over Q[h̄], cf. [31, Proposition 1.6]. Thus, {�(Xh)}h∈H form a basis of W. Combining this with the
injectivity of the homomorphism � : Y>

h̄ (g) → W from Proposition 5.10 (which uses the validity of
Theorem 5.14(b) only for the particular choices X̃β,s, see Theorem 5.1), we immediately obtain both parts
of Theorem 5.14. �

Remark 5.15. We note that Theorem 5.14(b) can be proved directly as Theorem B.3 in [14]. The
proof of the latter relied only on (B.1) and (B.2) of loc.cit. The former of these holds true in our
setup without any changes: �(Xβ,s) = Xβ,s ⊗ 1 + 1 ⊗ Xβ,s + lower order terms, where � is the
coproduct on the Yangian and we use the standard filtration on the Yangian. On the other
hand, (B.2) fails on the nose, but what we really need is the property stated after (B.2) which
does still hold: “for any PBW monomial y, the expression τa(y) is polynomial in the variable a,
has a maximal degree of a equal to the filtered degree of y, and the coefficient of this leading
power of a equals ȳ which is obtained from y by replacing all xi,r with xi,0”.

5.2 The Drinfeld-Gavarini dual Ẏ>
h̄ (g) and its shuffle algebra realization

For any (β, s) ∈ �+ × N, define X̄β,s ∈ Y>
h̄ (g) via

X̄β,s := h̄ · Xβ,s. (5.32)

We define Ẏ>
h̄ (g), the “positive subalgebra” of the Drinfeld-Gavarini dual, as the Q[h̄]-subalgebra of Y>

h̄ (g)

generated by {X̄β,s}s∈N
β∈�+ . For any h ∈ H, define the ordered monomial (cf. (5.12)):

X̄h :=
→∏

(β,s)∈�+×N

X̄
h(β,s)
β,s . (5.33)

Similarly to [14, Theorem A.7], we obtain:

Theorem 5.16. (a) Ẏ>
h̄ (g) is independent of the choice of root vectors Xβ,s in (5.3)–(5.4).

(b) For any choices of sk in (5.3)–(5.4), the ordered monomials {X̄h}h∈H form a basis of the free Q[h̄]-
module Ẏ>

h̄ (g).

Proof. The arguments of [14, Appendix A] apply directly to the particular choice {X̃β,s}s∈N
β∈�+ . The general

case can be derived from the shuffle realization of Ẏ>
h̄ (g); see Theorem 5.20. �
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Remark 5.17. We note that Theorem 5.16 can be proved directly as Theorem A.7 in [14]. The proof
of the latter relied only on the validity of properties (As1, As2, As3) from loc.cit. In the present
setup: (As1) is obvious, (As2) is established in Theorem 5.14(b), (As3) is verified precisely as in
[14, Lemma A.6] since all our Xβ,s’s are still iterated commutators of xi,r’s.

Following [29, Definition 3.8], we introduce:

Definition 5.18. F ∈ W̄k is integral if F is divisible by h̄|k| and φd(F) is divisible by h̄
∑

β∈�+ dβ (κβ+1) for
any d ∈ KP(k).

Let Wk ⊂ W̄k be the Q[h̄]-submodule of all integral elements, and set W := ⊕
k∈NI Wk. Then, following

Lemmas 5.6–5.7 and the proof of Proposition 5.12, we obtain:

Proposition 5.19. �(Ẏ>
h̄ (g)) ⊂ W.

Finally, we have the following upgrade of Theorem 5.14:

Theorem 5.20. The Q[h̄]-algebra isomorphism � : Y>
h̄ (g) ∼−→ W of Theorem 5.14(a) gives rise to a

Q[h̄]-algebra isomorphism � : Ẏ>
h̄ (g) ∼−→ W.

Proof. It remains to prove the opposite inclusion W ⊆ �(Ẏ>
h̄ (g)). To this end, it suffices to show that

for any F ∈ Wk and d ∈ KP(k), if φd′ (F) = 0 for all d′ ∈ KP(k) such that d′
< d, then there exists Fd ∈

Wk ∩ �(Ẏ>
h̄ (g)) such that φd(F) = φd(Fd) and φd′ (Fd) = 0 for d′

< d, cf. (2) after Lemma 2.8. The proof

of this result is analogous to the proof of Proposition 5.13, except that the factor h̄
∑

β∈�+ dβ κβ in (5.31) is
getting replaced by h̄

∑
β∈�+ dβ (κβ+1). �

A The RTT Realization in Type Bn

In this section, we recall the RTT realization of Uv(Lo2n+1), established in [17], and use it to explain the
natural origin and the name of the integral form U>

v (Lo2n+1) from Subsection 4.2.

RTT realization of Uq(Lo2n+1)

Set N = 2n + 1. For 1 ≤ i ≤ N, we define i′ and ī via:

i′ := N + 1 − i, (A.1)

(1̄, . . . , N̄) := (
n − 1

2 , . . . , 1
2 , 0, − 1

2 , . . . , −n + 1
2

)
. (A.2)

To follow the notations of [17], we also define:

q := v2 (so that v = q1/2), ξ := q2−N. (A.3)

Consider the trigonometric R-matrix with a spectral parameter R̄trig(u) given by

R̄trig(u) := u − 1
uq − q−1

R + q − q−1

uq − q−1
P − (q − q−1)(u − 1)ξ

(uq − q−1)(u − ξ)
Q, (A.4)

see [17, (3.1)], where P, Q, R ∈ (EndQN)⊗2 are defined via (with q = v2 as in (A.3)):

P =
∑

1≤i,j≤N

eij ⊗ eji,

Q =
∑

1≤i,j≤N

qī−j̄ei′ j′ ⊗ eij,

R =
i 	=n+1∑
1≤i≤N

q1−δi,n+1 eii ⊗ eii +
i 	=j,j′∑

1≤i,j≤N

eii ⊗ ejj + q−1
∑

i 	=n+1

eii ⊗ ei′ i′ +

(q − q−1)
∑
i<j

eij ⊗ eji − (q − q−1)
∑
i>j

qī−j̄ei′ j′ ⊗ eij.

(A.5)
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This R̄trig(u) satisfies the famous Yang-Baxter equation (with a spectral parameter):

R̄trig;12(u/v)R̄trig;13(u/w)R̄trig;23(v/w) = R̄trig;23(v/w)R̄trig;13(u/w)R̄trig;12(u/v). (A.6)

Following [17] (with the conceptual ideology going back to [12]), we define the RTT integral form of
the quantum loop algebra of oN, denoted by U rtt

v (LoN), to be the associative Z[v, v−1]-algebra generated
by {�±

ij [∓r]}r∈N
1≤i,j≤N with the following defining relations:

�+
ij [0] = �−

ji [0] = 0 for 1 ≤ i < j ≤ N,

�±
ii [0]�∓

ii [0] = 1 for 1 ≤ i ≤ N,

R̄trig(z/w)L±
1 (z)L±

2 (w) = L±
2 (w)L±

1 (z)R̄trig(z/w),

R̄trig(z/w)L+
1 (z)L−

2 (w) = L−
2 (w)L+

1 (z)R̄trig(z/w),

(A.7)

as well as

L±(u)DL±(uξ)tD−1 = DL±(uξ)tD−1L±(u) = 1, (A.8)

where t denotes the matrix transposition with Et
ij = Ej′ i′ and D is the diagonal matrix

D = diag
(
q1̄, q2̄, . . . , qN̄).

Here, L±(u) ∈ U rtt
v (LoN)[[u, u−1]] ⊗ EndQN is defined by

L±(u) =
∑

1≤i,j≤N

�±
ij (u) ⊗ Eij with �±

ij (u) :=
∑
r≥0

�±
ij [∓r]u±r. (A.9)

We also define the Q(v)-counterpart Urtt
v (LoN) := U rtt

v (LoN) ⊗Z[v,v−1] Q(v).

Remark A.1. The last two relations in (A7) are commonly referred to as the RTT relations. However,
without imposing (A8), one actually gets an extended version of that algebra featuring an extra
Heisenberg algebra factor.

Let Uv(LoN) be the quantum loop algebra of type Bn in the new Drinfeld realization. It is a Q(v)-
algebra generated by {x±

i,r, ϕi,−k, ψi,k, k±1
i }r∈Z,k∈N

1≤i≤n with the relations as in [17, §1]. Identifying x+
i,r with our ei,r,

the subalgebra of Uv(LoN) generated by {x+
i,r}r∈Z

1≤i≤n recovers U>
v (LoN) from Subsection 2.1. In what follows,

we will consider the following generating series:

x±
i (u) =

∑
r∈Z

x+
i,ru

−r, ϕi(u) =
∑
k≥0

ϕi,−kuk, ψi(u) =
∑
k≥0

ψi,ku−k.

The relation between the algebras Uv(LoN) and U rtt
v (LoN) was recently established in [17]. To state the

main result, we consider the Gauss decomposition of the matrices L±(u) from (A.9):

L±(u) = F±(u) · H±(u) · E±(u).

Here, F±(u), H±(u), E±(u) ∈ U rtt
v (LoN)[[u, u−1]] ⊗ EndQN are of the form

F±(u) =
∑

i

Eii +
∑
i>j

f±
ij (u) ⊗ Eij, H±(u) =

∑
i

h±
i (u) ⊗ Eii, E±(u) =

∑
i

Eii +
∑
i<j

e±
ij (u) ⊗ Eij.

Theorem A.2 ([17]). There is a unique Q(v)-algebra isomorphism

� : Uv(LoN) ∼−→ U rtt
v (LoN)

defined by

x+
i (u) �→ e+

i,i+1(uqi) − e−
i,i+1(uqi)

q − q−1
, x−

i (u) �→ f+
i+1,i(uqi) − f−

i+1,i(uqi)

q1−δin/2 − q−1+δin/2
,

ψi(u) �→ h−
i+1(uqi)h−

i (uqi)−1, ϕi(u) �→ h+
i+1(uqi)h+

i (uqi)−1,

(A.10)

where q = v2 as in (A3).
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Remark A.3. We note right away that [17] established a similar isomorphism for centrally
extended algebras, and also that they used slightly rescaled formulas for the images of x±

n (u).

The RTT realization of U>
v (Lo2n+1)

Let U rtt,>
v (LoN) be the Z[v, v−1]-subalgebra of U rtt

v (LoN) generated by the coefficients of {e±
ij (u)}1≤i<j≤N, the

matrix coefficients of E±(u). The key goal of this appendix is to highlight the natural origin of the integral
form U>

v (Lo2n+1) introduced in Subsection 4.2 and its specific quantum root vectors (a special case of
(4.37))

Ẽ rtt
[i,j],s := 〈2〉v · [· · · [[ei,s, ei+1,0]v2 , ei+2,0]v2 , · · · , ej,0]v2 ,

Ẽ rtt
[i,n,j],s := 〈2〉v · [· · · [[[· · · [ei,s, ei+1,0]v2 , · · · , en,0]v2 , en,0], en−1,0]v2 , · · · , ej,0]v2 .

(A.11)

Let us express the matrix coefficients of E±(u) as series in u±1 with coefficients in U rtt
v (LoN):

e+
ij (u) =

∑
r>0

e(−r)
ij ur, e−

ij (u) =
∑
r≥0

e(r)
ij u−r ∀ 1 ≤ i < j ≤ N. (A.12)

We also define eij(u) := e+
ij (u) − e−

ij (u). The key technical result of this subsection is:

Proposition A.4. For any 1 ≤ i < j ≤ n, we have:

ei,j+1(u) = (1 − q2)i−j · [· · · [[ei,i+1(u), e(0)

i+1,i+2]q, e(0)

i+2,i+3]q, · · · , e(0)

j,j+1]q (A.13)

and

ei,j′ (u) = q(1 − q2)i+j−2n−1(−1)j−n−1×
[· · · [[[· · · [ei,i+1(u), e(0)

i+1,i+2]q, · · · , e(0)

n,n+1]q, e(0)

n,n+1], e(0)

n−1,n]q, · · · , e(0)

j,j+1]q. (A.14)

Proof. Due to the “rank reduction” embedding homomorphisms of [17, §3.2, Proposition 4.2], it suffices
to prove both formulas (A.13) and (A.14) for i = 1 and 1 < j ≤ n.

We prove (A.13) for i = 1 by induction on j ≥ 1, the base case j = 1 being vacuous. Comparing
the matrix coefficients 〈v1 ⊗ vj| · · · |vj ⊗ vj+1〉 of both sides of the RTT relation R̄trig(z/w)L−

1 (z)L−
2 (w) =

L−
2 (w)L−

1 (z)R̄trig(z/w), we get:

z − w
qz − q−1w

�−
1j(z)�

−
j,j+1(w) + (q − q−1)z

qz − q−1w
�−

jj (z)�
−
1,j+1(w) =

z − w
qz − q−1w

�−
j,j+1(w)�−

1j(z) + (q − q−1)w
qz − q−1w

�−
jj (w)�−

1,j+1(z).

(A.15)

Expanding all rational factors as series in z/w and evaluating the [w0]-coefficients, we obtain:

q�−
1j(z)�

−
j,j+1[0] = q�−

j,j+1[0]�−
1j(z) + (1 − q2)�−

jj [0]�−
1,j+1(z). (A.16)

Likewise, comparing the matrix coefficients 〈v1 ⊗ vj| · · · |vj ⊗ vj〉 of both sides of the same RTT relation,
we also get:

z − w
qz − q−1w

�−
1j(z)�

−
jj (w) + (q − q−1)z

qz − q−1w
�−

jj (z)�
−
1j(w) = �−

jj (w)�−
1j(z). (A.17)

Expanding both rational factors as series in z/w and evaluating the [w0]-coefficients, we obtain:

q�−
1j(z)�

−
jj [0] = �−

jj [0]�−
1j(z), (A.18)
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or equivalently:

�−
jj [0]−1

�−
1j(z) = q−1�−

1j(z)�
−
jj [0]−1. (A.19)

Let h−
j [0] be the u0-coefficient of h−

j (u). Then, �−
jj [0] = h−

j [0] and �−
j,j+1[0] = h−

j [0]e(0)

j,j+1 = �−
jj [0]e(0)

j,j+1. Thus,

multiplying (A.16) by �−
jj [0]−1 on the left and applying (A.19), we obtain:

(1 − q2)�−
1,j+1(z) = [�−

1j(z), e(0)

j,j+1]q. (A.20)

Here, �−
1,j+1(z) = h−

1 (z)e−
1,j+1(z) and �−

1j(z) = h−
1 (z)e−

1j(z). As h−
1 (z) commutes with e−

j,j+1(w) for 1 < j < 2′, we
derive:

e−
1,j+1(z) = (1 − q2)−1 · [e−

1j(z), e(0)

j,j+1]q. (A.21)

Arguing in the same way, but using the other RTT relation R̄trig(z/w)L+
1 (z)L−

2 (w) = L−
2 (w)L+

1 (z)R̄trig(z/w),
we also obtain:

e+
1,j+1(z) = (1 − q2)−1 · [e+

1j(z), e(0)

j,j+1]q. (A.22)

Subtracting (A.21) from (A.22), we finally get:

e1,j+1(z) = (1 − q2)−1 · [e1j(z), e(0)

j,j+1]q. (A.23)

Applying the induction assumption for e1j(z) completes our proof of (A.13) for i = 1.

To prove (A.14) for i = 1, we note first that e±
1,k+1(z) = [e±

1k(z),e(0)

k,k+1]q
1−q2 for n + 1 < k < 2n, similarly to (A.21)–

(A.22). But according to [17, Proposition 5.4] (corrected by replacing −e±
n−1(uξq2n−2) with −e±

n (uξq2n) in
loc.cit.), we have e(0)

k,k+1 = −e(0)

k′−1,k′ . Therefore, we get:

e±
1,k+1(z) = −(1 − q2)−1 · [e±

1k(z), e(0)

k′−1,k′ ]q. (A.24)

Finally, a special care should be taken of the k = n + 1 case as in that case the matrix coefficient
〈v1 ⊗ vn+1|L−

2 (w)L±
1 (z)R̄trig(z/w)|vn+1 ⊗ vn+1〉 is given by a different formula:

〈
v1 ⊗ vn+1

∣∣L−
2 (w)L±

1 (z)R̄trig(z/w)
∣∣ vn+1 ⊗ vn+1

〉 =
N∑

i=1

ai,n+1(z/w)

(z/w − q−2)(z/w − ξ)
�−

n+1,i(w)�±
1,i′ (z), (A.25)

where

ai,n+1(z/w) =

⎧⎪⎪⎨⎪⎪⎩
q−1(z/w − ξ)(z/w − 1) + (ξ − 1)(q−2 − 1)z/w if i = n + 1

(q−2 − 1)qī−n+1ξ · (z/w − 1) if i < n + 1

(q−2 − 1)qī−n+1 · (z/w − 1)z/w if i > n + 1

. (A.26)

Expanding all rational factors in z/w and evaluating the w0-coefficient, only the i = n+1 term will have
a nontrivial contribution. Explicitly, we obtain the following analogue of (A.18):

q�±
1,n+1(z)�

−
n+1,n+1[0] = q�−

n+1,n+1[0]�±
1,n+1(z), (A.27)

so that (A.19) will get replaced by

�−
n+1,n+1[0]−1

�±
1,n+1(z) = �±

1,n+1(z)�
−
n+1,n+1[0]−1. (A.28)

This establishes (A.14) for i = 1 and j = n, while (A.24) establishes it then for 1 < j < n. �
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Combining Proposition A.4 with �(x+
i (u)) = −q

1−q2 ei,i+1(uqi) of (A.10), the definition (A.11), and identifi-
cation of the present currents x+

i (u) with the currents ei(u) of (2.10), we obtain:

Corollary A.5. For any 1 ≤ i < j ≤ n and s ∈ Z, we have:

�(Ẽ rtt
[i,j],s)

.= e(s)
i,j+1 and �(Ẽ rtt

[i,n,j],s)
.= e(s)

i,j′ . (A.29)

Since the elements (A.11) are specific case of quantum root vectors (4.37), we finally obtain:

Proposition A.6. �(U>
v (Lo2n+1)) = U rtt,>

v (Lo2n+1).

This result explains why we called U>
v (Lo2n+1) the RTT integral form of U>

v (Lo2n+1). Moreover,
Theorem 4.10(b) implies the PBWD theorem for U rtt,>

v (Lo2n+1), cf. [14, Theorem 3.25]:

Corollary A.7. The ordered monomials in
{
e(r)

ij | i < j such that i + j ≤ N, r ∈ Z
}

form a basis of the

free Z[v, v−1]-module U rtt,>
v (Lo2n+1).
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