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We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of
quantum loop algebras of type B, and Gy, as well as their Lusztig and RTT (for type B, only) integral
forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these Q(v)-
algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above
Z[v,v~1]-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras
of type By, and G, Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type A, results
of [30].

1 Introduction

1.1 Summary

The quantum loop algebras (aka quantum affine algebras with a trivial central charge) associated to
a simple finite dimensional Lie algebra g admit two well-known presentations: the original Drinfeld-
Jimbo realization UEJ (Lg) and the new Drinfeld realization U, (Lg), the latter introduced in [3]. The explicit
isomorphism UY(Lg) ~ U,(Lg) was actually upgraded in [3, Theorem 3] to the isomorphism of the
corresponding quantum affine algebras

UY (@ ~ Uy (@). (1Y)

Many intrinsic properties of quantum affine algebras have been developed in the Drinfeld-Jimbo
realization. For example, the classical Poincaré-Birkhoff-Witt theorem for Lie algebras was generalized
by Beck in [1] to the case of UY(§). More precisely, he constructed the bases of each of the subalgebras
featuring in the triangular decomposition

UV @) ~ UY> @ @ UY2@) ® U <@). (1.2)

This result is a natural upgrade of Lusztig's PBW theorem for finite quantum groups Uq(g).

On the other hand, the new Drinfeld realization U,(g) is essential to develop the representation
theory of quantum affine algebras. In this realization, there are infinitely many generators which can
be conveniently encoded by currents e;(2), fi(2), <p1.i (z). Already in the classical case, this approach played
the prominent role manifestly featuring affine Lie algebras g in the conformal field theory. It is thus
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6260 | Y.Huand A. Tsymbaliuk

natural to develop algebraic aspects of U, (g) intrinsic to the loop realization (with the hope to generalize
this to generalized Kac-Moody Lie algebras g). Let us note right away that U,(g) also has a triangular
decomposition (a vector space isomorphism)

Us(@) =~ U; (@ ® U@ ® Us (@) (1.3)

However, the isomorphism (1.1) does not intertwine the triangular decompositions (1.2)—(1.3). To this
end, we note that specific PBW-type bases of U7 (§), U5 (g) were constructed in [26].

While most often quantum groups are defined by generators and relations, there is an alternative
combinatorial approach sweeping the defining relations under the rug. For finite quantum groups, this
manifests in the algebra embedding (observed independently in [15, 27, 28]):

keN

Ui@=F= P Qu-[i...il. (1.4)

Here, I denotes the set of simple roots of g, F has a basis labeled by finite length words in I and is
endowed with the quantum shuffle product. As shown by Lalonde-Ram in [20], there is a bijection between
the set A™ of positive roots of g and so-called standard Lyndon words in I:

0 AT = {standard Lyndon Words}. (1.5)

In this case, every order on the alphabet I gives rise to a convex order on A", and the corresponding
Lusztig's PBW basis of U;(g) can be constructed combinatorially via iterated v-commutators, due to
Levendorskii-Soibelman convexity property of [21]; see [18, 26].

Using similar ideas, Feigin-Odesskii introduced the elliptic shuffle algebras in [8]-[11]. Their trigono-
metric counterpart (but in the formal setup with Q(v) been replaced by Q[[h]]) was further studied by
Enriquez in [4, 5]. Explicitly, this manifests in the algebra embedding:

W: U (Lg) < S. (1.6)

Here, S consists of symmetric rational functions in {x;,}/S” subject to so-called pole and wheel conditions,
and endowed with the shuffle product. Thus, (1.6) is a functional version of (1.4).

The major benefit of (1.6) is that it allows to conveniently work with the elements of U, (Lg) given by
rather complicated non-commutative polynomials in the original generators. Within the last decade,
this realization has already found major applications in the geometric representation theory and
quantum integrable systems. To make this approach self-contained, it is important to have an explicit

description of the image Im(¥). In fact, Enriquez conjectured:
W UZ(Lg) => S. (1.7)

To prove (1.7), it is crucial to “compare the size” of Uz (Lg) and S. For types A; and A,, this was
accomplished in [24] by crucially utilizing specialization maps analogous to those from [7, 13]. The
same approach was later used to prove (1.7) for types A, and A, in [25], for two-parameter and super
counterparts of type A, in [30], and for type D(2, 1;0) in [6].

In the present note, we generalize most of the results from [30] to types G, and B,, thus estab-
lishing the isomorphism (1.7) and constructing families of PBWD (Poincaré-Birkhoff-Witt-Drinfeld)-
bases of U;(Lg) in these types. To do so, we introduce the corresponding specialization maps on
the shuffle algebra of the associated type, and establish their key properties similarly to type A,
from [30]. Let us note that these specialization maps arise naturally from the specific convex orders
on A*.
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It should be emphasized right away that Enriquez’s conjecture (1.7) has been recently proved for
all finite g in [26], the joint work of Negut and the second author. However, the approach of loc.cit.
is completely different, as it crucially uses a loop version of (1.4) instead of the specialization maps.
The present approach has its own benefits as it can also be used to upgrade both results (the shuffle
algebra realization and the PBWD-type bases) to the integral Z[v, v—?!]-forms of U3 (Lg) and the Yangian
version Y7 (g), generalizing type A, from [29, 30]. We conclude this introduction by noting that similar
specialization maps actually exist for all finite types (which was already known to [26]), though their
definition is more involved.

1.2 Outline of the paper

The structure of the present paper is the following:

o In Section 2, we recall the notion of quantum loop algebras U; (Lg) in the new Drinfeld realization
as well as shuffle algebras S, introduce certain families of quantum root vectors (associated to
specific convex orders on the set A* of positive roots), and state the key results (PBWD bases and
shuffle algebra isomorphism) for U; (Lg) of types B, and G,. We briefly recall how such results were
proved in [30] for type A, using specialization maps on S, and summarize their key properties in
Lemmas 2.6-2.8.

e In Section 3, we define the specialization maps for the shuffle algebra S of exceptional type
G,, establish the counterparts of Lemmas 2.6-2.8 in that setup, and use the latter to prove
Theorems 2.4 and 2.5 for type G,; see Theorem 3.7. We upgrade both results to the Lusztig/Chari-
Pressley/Grojnowski integral form U7 (Lg,) in Theorem 3.12.

e In Section 4, we define the specialization maps for the shuffle algebra S of type By, establish the
counterparts of Lemmas 2.6-2.8 in that setup, and use the latter to prove Theorems 2.4 and 2.5
for type By; see Theorem 4.8. We upgrade both results to the Lusztig/Chari-Pressley/Grojnowski
integral form U; (Logny1) in Theorem 4.19. Likewise, we upgrade both results to the RTT integral
form U (Loony1) in Theorem 4.14.

o In Section 5, we generalize the results of Sections 3—4 to the rational setup by providing the shuffle
realization and constructing PBWD bases for the positive subalgebras of the Yangians and their
Drinfeld-Gavarini duals in types G, and B,; see Theorems 5.14, 5.20.

o In Appendix A, we use the RTT realization of U, (Loons1) from [17] to explain the natural origin and
the name of the RTT integral form U (Lo2n41) from Subsection 4.2.

2 Preliminaries

2.1 Quantum loop algebras and shuffle algebras

Let g be a finite dimensional simple Lie algebra with simple positive roots {a;}ic;. We denote the set of
positive roots by A*. Each g € A* can be uniquely expressed as a sum of simple roots: B = > vgiai
with vg; € N (the set N will be assumed to include 0). We shall refer to vg; as the coefficient of «; in g, and
we shall use the following notation:

lef < vg; #0. (2.1)

We fix a nondegenerate invariant bilinear form on the Cartan subalgebra b of g. This gives rise to a
nondegenerate form on the dual h*, and we set d; == ("2—‘” The choice of the form is such that d; = 1 for
short roots «;. Let A = (aj);j be the Cartan matrix of g, so that diay = («;, @j) = dja;;. In this paper, we
consider simple Lie algebras of types A;, By, G2. The corresponding Dynkin diagrams look as follows:

Ap-type (n > 1) : 0—O0— - —0—0

g (63 Qp—1 Qp (22)
Byp-type (n > 2): 0—0—+" —0=0

(&3] [65] Qp—1 Qn (23)
Go-type : 0= 0

a1 o (2.4)
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For these types, we have

Ap-type(n>1): di=1(1<i<n), (2.5)
Bp-type(m>2): di=2(1<i<n-1),d,=1, (2.6)
sztype: d1 = 3, dz =1. (27)

Let v be a formal variable. We define v, = v@®/2 for any « € A*, and denote v,, = v% simply by v;
for any i € I. Let &,, denote the symmetric group of degree m. Let U; (Lg) be the “positive subalgebra”
of the quantum loop algebra U, (Lg) associated to g in the new Drinfeld realization. Explicitly, U (Lg) is
the Q(u)-algebra generated by {e;,}/€Z subject to the following defining relations:

iel

(z— U?”w)ei(z)ej (w) = (U?UZ — w)ej(w)e;(z) Vijel, (2.8)
1-ay 1 s
Sym > (=DF [ v ”] €i(z1) - ei(Ze)ej(W)ei(Zes1) - €i(Z1-q)) =0 VI#]. (2.9)
210 21-a5 v

i

Here, we use the following notations:

= 7 = ] m [4.!

-l T —ml I
u—u Pl . [£ —m],! [m],! 210)
ei(z) == Zei‘,z”, Sym V(zq,...,Zm) = Z V(Zo(1), - -+ Zo(m))-
TeZ Z1peeniZm 0eGy
We shall also need the following notation later:
m)y, =um"—u™" vmeN. (2.12)

We define &y =[] &, for any k = (kq,...,ky) € N\ Associated to the Cartan matrix A = (@)ijer,
we also have the trigonometric version of the Feigin-Odesskii shuffle algebra. To this end, consider the
following N'-graded Q(v)-vector space

s=Psk

keN!

1<r<k,

where Sy, consists of rational functions F in the variables {x;,};5 =" such that:

e Fis &-symmetric, that is, symmetric in {xw}’f‘:1 foreachiel,
¢ (pole conditions) F has the form

1<r<k
_ f({xi,r}id ")
a;j#0 155512} ) ) ’
Hi<j Hlsrskz i = XJvS)

(2.12)

where f € Q(U)[{Xil}iljrsk‘]ek and an arbitrary order < is chosen on I to make sense of i < j (though

the space Sy is clearly independent of this order).

Let (£j(2))ijer be the matrix of rational functions in z given by

7 _ y—@a)

P (2.13)

Gij(z) =
Fork, ¢ e NI, let

R+ €= (ki + {)ieg € N

20z 1udy 60 uo isenb Aq #¥9€1.9//6529/./¥20z/a 101 e/ulwl/wod dno-oiwapese//:sdpy woly papeojumoq



Shuffle Algebras and Their Integral Forms | 6263
Let us introduce the bilinear shuffle product x on S as follows: for F € S, and G € S;, we set

1€l

Fx G (x5 =040 =
L

1<r<k; k <s<k +Z S>k X1 r (214)
AW Sy kL( ({XIT}IEI - ) ({ )S})el HH{U(X ))
- ijel r<k; 1,8
Here, for k € N!, we set k! = [[; ki!, and define the symmetrization
Symck (F({X1 r}11:!r<k ) = Z F({Xl ,0i(1) }1:;42 . (215)

(01,...,01)€S )

This endows S with a structure of an associative unital algebra. The resulting algebra (S, ») is related to
U7 (Lg) via the following result (cf. [4, Theorem 3], [5, Proposition 1.2]):

Proposition 2.1. The assignment ¢;, — x{, € Sy, (i € [,7 € Z), where 1; = (0,. ,...,0) with 1 at
the i-th coordinate, gives rise to a Q(v)- algebra homomorphism

W: U (Lg) — S. (2.16)

Moreover, for any F € Im(¥), its numerator f from (2.12) satisfies:

l=r=k 2 —2a, —a
fxi}i =" =0 once X5, =ViXis, =--- =V, 'Xg, o =Y X, (2.17)

for any i # j such that ay # 0, pairwise distinct 1 <, ..., S1-ay < ki, and 1 <7 <k;.

The vanishing conditions (2.17) are usually called wheel conditions. Let S, denote the subspace of all
elements of Sy satisfying the wheel conditions, and set S = @y Sk The following is straightforward:

Lemma 2.2. Sis a subalgebra of S under the shuffle product » determined by (2.14).

From now on, we will refer to (S, ») as the (trigonometric Feigin-Odesskii) shuffle algebra (of type g).
According to [26, Proposition 5.7] (cf. [5, Corollary 1.4]), we have:

Proposition 2.3. The algebra homomorphism W of (2.16) is injective.

In fact, ¥ is an algebra isomorphism, cf. (1.7). This was first conjectured by Enriquez, established for
Ay-type in [25] (see also [30]), and finally proved in the full generality in [26].

Theorem 2.4. ¥: U; (Lg) = S of (2.16) is a Q(v)-algebra isomorphism.

The key to the proof of Theorem 2.4 is to obtain an upper bound estimate for the dimensions of the
graded components of the shuffle algebra S. To this end, we note that [26] instrumentally used a loop
version of the formal quantum shuffle algebra due to Green, Rosso, and Schauenburg. In contrast, the
arguments of [25] and [30] for type A, were quite different: an estimate of the graded dimensions was
achieved by using certain specialization maps. One benefit of the latter approach is that it allows for
the shuffle realization of various integral Z[v, v=']-forms.

The key objective of the present paper is to extend the method used in [25, 30] to types B, and Go.
This will provide a new proof of Theorem 2.4 in these types, different from [26].

2.2 Root vectors and PBWD bases

Our construction of the specialization maps and PBWD bases is based on the specific choice of a convex
order on A*. The one that is best suited for our purposes is arising through the lexicographical order on
standard Lyndon words, see [18, 20], as we recall next.
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Recall that I is the indexing set of the simple roots of g. The labeling of the simple roots in
the corresponding Dynkin diagrams (2.2)-(2.4) provides a total order on the set I, and hence the
lexicographical order on the set of words in the alphabet I. According to [20, Proposition 3.2], there
is a natural bijection between the sets of positive roots A* and so-called standard Lyndon words, cf. (1.5).
Thus, the lexicographical order on the latter gives rise to an order < on A*, which is convex by [18,
Proposition 26], cf. [26, Proposition 2.34]. In what follows, we fix this specific convex order on A* and
use standard Lyndon words to parametrize the positive roots.

Let us work this out explicitly for types An, B,,, G, with the specific order onIasin (2.2)—(2.4). Applying
[18, Proposition 25], we find the set of all standard Lyndon words:

Aptypem=1: At ={[i,i+1,...,j]|1<i<j<n},

Botype m>2): At = {[ii+1,...j]|1<i<j<n]

(2.18)
U{li,....n,mn—1,...,j]| 1 <i<j<n}
Go-type:  A* ={[1],[1,2],[1,2,1,2,2],[1,2,2],[1,2,2,2], [2]}.
For convenience, we shall use the following notations for positive roots in types A, and By:
i,j]=[1+1,...,j] for 1<i<j<n,
(2.19)
Lnjl=104....,nnn=-1,...,j] for 1<i<j<n
The aforementioned specific convex order on A* in types Ay, By, G, looks as follows:
e Type Ay (n>1):
1] <[L,2]<--<[n]<[2]<--<n=1] <[n—1,n] <n] (2.20)
e Type B, (n>2):
1] <[L,2]<---<[Ln<[nn<--<[Ln2]<[2] < - <[n=1,nn] <n]. (2.21)
e Type G:
1] <[1,2] <[1,2,1,2,2] < [1,2,2] < [1,2,2,2] < [2]. (2.22)

The quantum root vectors {I:’ﬂ,s}ffezA+ of U7 (Lg) in type A, were defined in [30, (2.12)] via iterated v-

commutators (they were called the PBWD basis elements and depended on certain extra choices). Here,
for x,y € U7 (Lg) and u € Q(v), the u-commutator [x,y], is defined via:
(X, ylu =xy —u-yx. (2.23)

We shall now similarly define the quantum root vectors of U7 (Lg) for g of type B, and G»:

* B,-type.
For any B = [i1,...,i] € A* from (2.18) and s € Z, choose a collection Aq,..., -1 € V% and a
decomposition s = s1 + -+ -+, with s1,...,s, € Z. Then, we define
Eﬁ,S = [ o [[eiw 510 ei7,57])»1 » € ,53])»2 P eir.S(])\efl' (2-24)
e Go-type.
For B =[i1,..., 1] #[1,2,1,2,2], s € Z, the elements Ez are defined exactly as in (2.24).
For 8 =1[1,2,1,2,2],s € Z, we choose a decomposition s = s; +---+Ss with s1,...,ss € Z, a collection
A, ..., s € V4, and define

Eﬂ,S = “el.slv eQ,Sz]M ’ [[61,53 ’ 62154]12 ’ eZ.Ss]?Lz]M' (2'25)
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In particular, we have the following specific choices {E‘ﬁs}fffA+ which will be used to construct PBWD
bases of the integral forms in Sections 3.2, 4.2, and 4.3:

* B,-type.
If B =1i,j], s € Z, we choose any decomposition s = s; + - - - +s;, fix a sign +, and define

T+

E[i,j],s = [ . [[el-ysl , ei+1,51+1]vﬂ , ei+2,Sz+z]Uﬂ’ CEEN ejysj]uﬂ. (2426)

If 8 =[i,n,J], s € Z, we choose any decomposition s = s; + - -- +j_1 + 25 + - - - + 25y, fix a sign +, and
define

E[il'n'j],s =l [eisir Cittsia Jus2 s+ 5 CrsyJus2, @nsy |y @t sy Jus2, - -+ vej,sj]uiﬂ (2.27)
e Go-type.
If B=[1] or [2],s € Z, we define
E[ii],s =€s for 1 < i <2. (228)
If B =[1,2],s € Z, we choose any decomposition s = s; + Sz, and define
E[il,z],s = [e1s,,€2s,]vt3- (2429)
If 8=11,2,2],s € Z, we choose any decomposition s = s1 + 255, and define
E[i‘l,Z,Z],s = [[91'31, QQYSZ]UB , EQYSZ]Uﬂ. (230)
If =1[1,2,2,2],s € Z, we choose any decomposition s = s; + 3s,, and define
E[il,Z,Z,Z],s = [[le1s:, €25, Jv43, €25 |vs1, €25, Ju=1. (2.31)
If8=11,2,1,2,2],s € Z, we choose any decomposition s = 2s; + 3s,, and define

E[i1,2,1,2,2],s = [[e1s1, €25 Jv=s, [[€1515 €25, Ju23, €25, Jux1 [yt - (2.32)

Evoking the specific convex orders < on A* from (2.20)—(2.22), let us consider the following order <
on the set A™ x Z:

(a,8) < (B,t) iff a<p ora=p8,s<t. (2.33)

Let H denote the set of all functions h: AT x Z — N with finite support. The monomials

Ev= [] E%®  vheH (2.34)
(B,S)EAT XZ

will be called the ordered PBWD monomials of U; (Lg). Here, the arrow — over the product sign refers to
the total order (2.33).

Our first key result generalizes [30, Theorem 2.16] from type A, to types G, and B, (the proof is
presented in Sections 3 and 4, respectively, and is based on the shuffle approach):

Theorem 2.5. The ordered PBWD monomials {Ep}nen 0f (2.34) form Q(v)-bases of U} (Lg) for g of
type B, and G,.

20z 1udy 60 uo isenb Aq #¥9€1.9//6529/./¥20z/a 101 e/ulwl/wod dno-oiwapese//:sdpy woly papeojumoq



6266 | Y.Huand A. Tsymbaliuk

2.3 Specialization maps in type A,

As already mentioned, our key technique used to prove Theorem 2.5 as well as Theorem 2.4 in types B,
and G, is that of specialization maps. Following [30], we shall now briefly recall the construction and
the key properties of the latter in type A,, while Sections 3-4 will generalize this technique to types G,
and By, respectively.

Identifying each simple root ¢; (i € I) with a basis element 1; € N! (having the i-th coordinate equal
to 1 and the rest equal to 0), we can view N' as the positive cone of the root lattice of g. For any k € NI,
let KP(k) be the set of Kostant partitions, which consists of all unordered vector partitions of k into a sum
of positive roots. Explicitly, a Kostant partition of k is the same as a tuple d = {dg}gea+ € N*" satisfying

D ke = > dy. (2.35)

iel Beat

The convex order (2.20) on A* induces a total order on KP(k) (opposite to that of [30]):
{dplpear < {dglpenr <= Ty e AT st d, <d, anddy =dj forall g < y. (2.36)

For any h e H, we define its degree deg(h) € N2" as the Kostant partition d = {dg}gea+ with
dg = X, h(B,s) € Nforall B e AT, and the grading gr(h) € N' so that deg(h) KP(gr(h)). For any
k e Nl and d € KP(k), we define the following subsets of H:

He = {he H|gr(h) =k}, Hpg = {h € H|deg(h) = d}. (2.37)

For any h € Hyq and B € A, we consider the collection
Mg ={rs(h, 1) <--- <1p(h,dp)} (2.38)

obtained by listing all integers r € Z with multiplicity h(8,r) > 0 in the nondecreasing order. Thus, E, of
(2.34) can be represented by

—

Ev= ] Eonorn - -Eorpinan)  VheHeg (2.39)

BeAt

where the arrow — over the product sign refers to the convex order (2.20) on A*.
Let us now recall the definition of the specialization maps in type A,. For any F € S, and d € KP(k),

we split the variables {x;;}'5"=" into the disjoint union of > pea+ dg groups

iel

|_| {(/35)

BeA™
1<s=dg

1e11<t<uf;1}, (2.40)

where the integer vg; is the coefficient of «; in g as deﬁned in the beginning of Subsection 2.1. In type
Ay, any positive root § € A* is of the form g = [1,j] = 3,_ s for some 1 < i <j < n,and so vg; € {0, 1} for
any 1 <i<n.ForF € S, let f denote its numerator from (2.12). Then, we define ¢,4(F) by specializing the
variables in f as follows:
(8:5)
Xin

U W, ., XPY s vTwgs VB =], 1<s<dg. (2.41)

i1

We note that ¢,4(F) is symmetric in {wﬁys}fil for any B € A*, and is independent of our splitting (2.40) of
the variables {x; 1}1<I<k‘ into groups. This gives rise to the specialization map

1 1ss<dp s

¢d Sk—>Q(U)[{LU }ﬂEAJr ] < (2.42)
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We shall further extend it to the specialization map ¢4 on the entire shuffle algebra S:
$a: S — QW[{wil)=s"]Se (2.43)
by declaring ¢4(F) = 0 forany £ # kand F' € S,.
Let us now summarize the key properties of the above specialization maps ¢4 that were crucially
used in [30] to derive the shuffle algebra realization and the PBWD bases in type A,. Our presentation

is adapted to allow for an immediate formulation of B, and G, counterparts.
In what follows, we will use the notation = to denote an equality up to Q* - v%:

A=B if A=c-B forsomece Q" v~ (2.44)
In type An, we define x4 := |B] — 1 for B € AT, where |8| denotes the height of a root g € A*:

1Bl := > vgi. (2.45)

iel

We also recall the notation (m), from (2.11). The first two lemmas imply the linear independence of the
ordered PBWD monomials {Ep}en in type A, (see [30, §3.2.2]):

Lemma 2.6. For any h € Hy4, we have

B<p'
$a(W(Ep) = (1) 2resr @ [T Gpp- [] Go- [] Pos- (2.46)
BB eat BeAt BeAt

Here, the factors Ggp and G are products of linear factors wgs and wgs — vZwg ¢ which are
independent of h € Hiq and are symmetric with respect to &g, Ap s are as in (2.38), and

-2
_ rp(n,L) r5(h.dg) Wpi— Vg Wg,
Puy = Syme, (wiy w1 (2.47)
1sicjzd, WBi T W,

This result (cf. [30, Lemma 3.17]) features a “rank 1 reduction”: each P, , from (2.47) can be viewed as

the shuffle product x#"D « ...« x4 in the shuffle algebra of type A;, evaluated at {wy s}, . The fol-
lowingis [30, Lemma 3.16] (keeping in mind that our total order (2.36) on KP(k) is opposite to that of [30]):

Lemma 2.7. Forany h € Hy4 and d' < d, we have ¢q (W(Ep)) = 0.

Let S/k be the Q(v)-subspace of Sp spanned by {W(En)}sen,. The following result (which implies
Theorem 2.4 and establishes PBWD bases in type A;) is proved in [30, §3.2.3]:

Lemma 2.8. For any F € S and d € KP(k), if ¢4 (F) = O for all d' e KP(k) such that d’ < d, then there
exists Fy € S, such that ¢a(F) = ¢a(Fa) and ¢¢ (Fy) = 0 for all d <d.

Combining Lemmas 2.6-2.8, we derive the A,-type counterparts of Theorems 2.4, 2.5 using

(1) the validity of Theorems 2.4, 2.5 in type A1, see [30, §3.2.1],

(2) the observation that ¢4(F) = 0 Vd € KP(k) implies F = 0 by taking the maximal element of
KP(k) with respect to (2.36) corresponding to a partition of k into a sum of simple roots; see [31,
Proposition 1.6].

Let us emphasize that proofs of both theorems use only the properties of the specialization maps ¢4
stated above. With this in mind, we will now define similar specialization maps and verify the validity of
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analogous lemmas in types G, (Section 3) and B, (Section 4). This will yield a new proof of Theorem 2.4
and a proof of Theorem 2.5 in types G, B,. As an important benefit of this approach, in contrast to [26],
we also establish the counterparts of the above two results for integral Z[v, v~]-forms as well as for the
Yangian version (treated in Section 5).

3 Specialization Maps for Type G,
In this section, we define specialization maps for the shuffle algebra of type G, and verify their key prop-

erties. This implies the shuffle algebra realization and PBWD-type theorems for U (Lg,) as well as its
Lusztig integral form U (Lg,) introduced in Subsection 3.2. Here, g, is the simple Lie algebra of type G,.

3.1 U;(Lg,) and its shuffle algebra realization
In type Gy, for any F € S, with k = (kq, k2) € N?, the wheel conditions are:

1<r<k
F({xis}122,) =0 once x11= UPx1, = U3xp1,

(3.1)
or Xp1= UZXQ‘Q = U4X213 = U6X214 = U3X1'1.

For any k € N2 and d e KP(k), the specialization map ¢4 as in (2.43) is defined by the following
specialization of the x”-variables (replacing (2.41) for type Ay):

(ﬁ s)

> vwgs (I<t<vgi), xP sy

We,s (1<t< Uﬁyz) (32)

for any positive root g € At, where vy ; is as in Subsection 2.1.

Lemma 3.1. Consider the particular choices (2.28)—(2.32) of quantum root vectors {Ef,ys}f‘,izy . Their
images under W in the shuffle algebra S of type G, are as follows:

e For (Ef 154

BeAt -
WEL ) =X, =12, (3.3)
(3)st111+1 S271 .
w(EH = = hs= 4
Eflgs) = ypa with s =s1 + sp, (3.4)
N 1 1 R S (3.5)
[L2.2]s (11— X2,1)(X1,1 —X22) ! > '
(3)2(2)[2]y - X?f (X2,1X2,2X2,3)% .
w(Er = S , with s =57 + 3s5, 3.6
Eia22s) (X1,1 — X2,1)(X1,1 — X22)(X1,1 — X2.3) ! : (3.6
3 M. 121, - s1+1 S2 .
\I/(E . (35 2[2)y - (X1,1X1,2)F T (X0,1X0,2X23) Qly with s = 28, + 35, (37)

[1,2,1,2,2 s) - 1<t<3
I ngrgz (Xl,r - X2,t)

where

=+ 1)X%1Xf2 + (U® 4 1)X11X19(X21X2,2 4+ X21X23 + X22X23)

(3.8)
— V3 (x11 + X1,2)(X1,1X1,0X2,1 + X1,1X1,0X2,2 + X1,1X1,2X23 + X2,1X22X23).
e For {E};_J%i@ :
\I/(EI]S)_Xll’ 1:1'2’ (39)
(3] 1X321Jrl -
kI/(E[12 ) = m with s =s1 + 59, (3.10)
3w (2)0[2]y - X5 (Xp 1% 2)52 T

‘I’(Emz . ( W(2)v[2] 11(X2,1X2,2) withs = s, 4 25, (3.11)

(X1,1 — X2,1)(X1,1 — X22)
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w(E )= (30220 [2]y - X1 (Ko X2,0% 3)HE
(1222157 7 (%11 — Xp,1) (11 — X2,2) (X1,1 — X2,3)
. 302(2)0[2)y - (R1,1%12)5 (X1 X2,2%23)2 L - ga

12,1,2, - 1=<t<3
[112722(X11 —X2t)

with s = 51 + 3sp, (3.12)

, with s = 2s1 + 35, (3.13)

where
g2 = U + DXp1X02%23 4+ (U8 + DX1.1X12(X21 4 X0, + X23) (314)
— V3 (X101 + X12)(X11X10 + X2.1X02 + X2.1X23 + X2,0X2.3).
Proof. Straightforward computation. |

For more general quantum root vectors {E,gvs}fffw of U; (Lg,) defined by (2.25), their images under
¥ in S are not so well factorized as for the particular choices above. Nevertheless, what is actually
important is that they behave well under the specialization maps. For B € A, we shall use ¢z to denote

the specialization map ¢g with d = {dy = 8.0 }aca+-

Lemma 3.2. For any s € Z and any choices of s, and Ay in (2.24, 2.25), we have:

b (W (E) =wpyq, 1<1<2, (3.15)
P12/ (W Ep o) = By - Wi 4, (3.16)
$122) (¥ (E12.2)5)) = Bh(2u[2]o - W75 1, (3.17)
#1222/ (¥ (Ep 225 = (30522 - WS, 511 (3.18)
$1212,2) (¥ (E2,12,25) = (Ao (35252 - W5 1550 (3.19)
Thus, we have:
bp(W(Eps)) =5 wyy" Y (B,5) e AT xZ, (3.20)

where the constant ¢ is explicitly specified in (3.15)—(3.19), and «z is given by

-1 if 1,2,1,2,2
p = 1Bl . B#I[ ] ‘ (3.21)
Bl+1 ifp=[1,2,122]
Proof. This follows from straightforward computations and the fact that for any positive roots a1 < a
such that a1 + a7 is a root, we have

¢a1+a2 (\I’(Ea1,s1) * \I’(EO(Q,SZ)) =0 v S1,82 € Z.

The latter fact is a special case of Proposition 3.5. |

Let us now generalize the above lemma by computing ¢4 (¥ (Ey)) for any h € Hg 4. According to (2.39),
we have:

WED =[] (¥Enryinn)*- - * W (Enrndy)) -
pent
Here, the product refers to the shuffle product and the arrow — over the product sign refers to the order
(2.22). Thus, we can choose a special splitting such that the variables in W(Eg;, ) are taken to be the
group {xff's)}iig‘“, and under ¢, they are specialized as in (3.2).
Foreach 1 <1< 2, let us consider an order on all the variables

Xi:{xff*s)weA*,lfsgdﬁ,lftfvﬁ,i}, (3.22)
defined by (cf. (2.33))
b9 < xS (B,5) < (B,5) or (B,9)=(B,5),t<t. (3.23)

Lt
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Once we fix the above splitting of the x, ,-variables, the group & acts on each X; (1 < i < 2) by permuting
the tuples

{(B,sshe AT xNxN|1<s=<ds1<t=<vg} (3.24)

For any d € KP(k), let Shy C &, be the subset of “d-shuffle permutations”, defined via:

shy = o e & [of?) <o) Vi<t peatisssdy1=is2), (3.25)

where the order < on the variables is defined in (3.23). Then, by definition of the shuffle product (2.14),
we have:

W(ED = > o(Fx0D) = D Fu(fo i), (3.26)
ageShy oeShy
where
BP<B 9 1srsvpj (B0 _ ;7% 410
'7 (¥4 i J.r
Fo= [] YErnas) 1 IT 11 P Fa (3.27)
BeA+ BB eAT 1<i,j<2 1<l=<vg; 1,0 Jr
1<s=<dg 1<p=<ds,1<q=<dy

Let us now evaluate the ¢4-specialization of each term o (Fy) in the symmetrization (3.26), many of
which actually vanish. To this end, consider the elements o € & which satisfy the following condition:
as a permutation of the tuples (3.24) o fixes the indices g, t (as well as i) and only permutes the index s.
In other words, for each 8 € A* there is oy € &y, such that:

(8,9

(B.0p(s))
it i

o(x it

) =X VBeAt, 1<s=<dg ieB, 1<t=<ug; (3.28)
Such permutations o form a subgroup of & isomorphic to &4 = [[g.,+ Sa,, and we shall denote this
subgroup simply by &,.

In what follows, given a collection A of the variables x

the variables x™**

)E

(k%)
1%

with a fixed index j, we shall use the following notation:

with a fixed index i and a collection B of

yeB

Gj(A/B) =[] &jx/y)- (3.29)

XeA

Then, we have:

Lemma 3.3. ¢4(o(Fp) =0foro ¢ Sy.

Proof. Define the following sets of variables (cf. the notation (2.1)):

7P =(xP9 |1 <s<dg 1<t <y, VBeAT ieB, 3.30
i it B B,

ZP =XV |p<al<ss<dyicalst<v,) VBeAt,1<is<2 (3.31)

1

It suffices to show that ¢q (o (Fp)) # 0 onlyif (3.28) holds for every 8 € A*. We shall prove this by induction
on B with respect to the increasing order (2.22).

We note that Fj, contains ¢-factors ;12(2[11]/2;[1]), cf. (3.29), and clearly a(Z;m) = ng. Ifa(Z[ll]) £ z1,
then there is some xﬁ“’ such that o(xﬁ]'s)) = x({g” for some y > [1].In the latter case, o (Fy) contains the
¢-factor ¢1,(x7;” /x§;"”) and so ¢4(o (Fy)) = 0, which is a contradiction. This establishes (3.28) for g = [1],
which is the base of induction.

Let us now prove (3.28) for 8, assuming (3.28) holds for all « < 8. The only nontrivial check is for the
case B = [1,2,1,2,2]. Assuming by induction that for all s < sy there is s’ with 1 < s’ < dg such that
o(xfﬁ's)) = x%f‘sr) foranyie f,1 <t < vg;, we shall prove the same also holds for s = so. The base of
induction is s = 1, in which case the statement is vacuous.
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Let o (x{;*) = x{1™. By the induction hypothesis, we have (8,50) < (y1,71). Suppose o (x5 *") = xJ1.".
If B < B, then by the induction hypothesis we get 1 = g1 < B, a contradiction. On the other hand, if
p1 > B, then we note that F, contains the ¢-factors ¢1,(x{;*/Z3"), and thus o (F,) contains the factor
1™ /x4, which specializes to zero under ¢g, a contradiction. Thus, p1 = g. Similarly, there is
some x¥;* such that o (x{”) = xY"}]. Moreover, if so < s; or 51 < 55, then o (Fy) contains the ¢-factor
cLo Y xTE) or g, Q(X({; ™ /X341, which implies ¢a(o (Fp)) = 0, hence, a contradiction. Thus, we have
So > S1 > S;. If 51 < S0, then by induction hypothesis, we get a contradiction. Similarly, if s, < so, we also

get a contradiction. Thus, so = s1 = s,. If £ < £1, then x¥;” < x¥;*, and the condition o e Shy implies

(y1,711) S S T
ley/tllil — O'(X(ﬁ o)) < G(X(/j o)) (2/1 1)

)

a contradiction. Thus, ¢; < ¢,. Combining all the above, we get s1 = sy =50 and ¢1 < ¢5.
Similarly, let o (x{5"") = x"2™. Then, there are x{;*’, x{ (ﬂ ) with ¢} < ¢, and
4 oty

O'(X('B So)) ngm) p (X(Zﬂ(zO)) — X(yz,Tz)

' 2,th+1"

Note that1 < ¢, < ¢, <3and 1< ¢ <, <3. Then, we have three cases:

e if {1 = ¢, then ()n,11) = (3, 72) and t1 = ty, a contradiction.

e if {1 > ¢}, then ¢} = 1,81 = 2,0, = 3, ¢, = ¢; or {,. In either case, we get (y1,71) = (y2,T2). However,
since x(ﬁ S0) (1{25“) we have t; < t,; since x(ﬂ S0) (2f32’30), we have t, < t;, which is a contradiction.

o ifY < 132, then =10 =210=3. Slmﬂarly to above, we must have (y1,11) = (y2,72), t1 =1, ) = 2.
Then y1 =y, = B, which is precisely what we wanted.

This completes our proof of the induction step. |
Combining Lemmas 3.2-3.3, we obtain the following analogue of Lemma 2.6 for type G;:

Proposition 3.4. For any h € Hy4, we have

B<p
$aWEN = [ Gop- [1 (5 -Gs)- [] Pany (3.32)
BB eAt BeAt BeAt

where the factors {Py, , }pea+ are given by (2.47), the constants {cg}gea+ are as in Lemma 3.2, and
the factors Gg, Gg g are explicitly given in the proof below.

Proof. If o € &y, then in Fy the following factor is invariant under o

B8 et 1<q<dy 1<r<vy X(ﬁ \p) U"“u X_(ﬂ’,q)

[I I I 11 W (3.33)

B<B'" 1<p=<ds 1<ij<2 1<l<vg;

and we denote its ¢q-specialization by []4_4 Gs s (with matching indices g, #'). Thus, we only need to
prove the following equality for any g € A™:

90 (W (Eprinn * - % Epryinan)) =6 Go - Pay (3.34)

with the factor G4 being independent of ¢ € &g4. This is proved by straightforward computation.
Explicitly, we have the following formulas:
Gp =

o 1,for p=[1],[2],

* Tlicssreq, Wps — VoWp) - T2, wpy, for g =[1,2],

* Tlicopred, (Wps = VoWp ) (Wps — vwp )} - [17, w,, for g =[1,2,2],

* [licspreq, {(wps — VoW ) (Wps — viwg, ) (Wps — viwg)} - Hf'; wg'[, for g =[1,2,2,2],
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d,
b ngs#rsdﬁ {(W/j,s - Ugwﬁ,r)(wﬂ,s - U6W/5,v)2(wﬁ,s - U4Wﬁ,r)2(w/j,s - Uzwﬁ,v)} . Hzi1 W?;yey for g = [1: 2,1,2, 2]-

Gpp =

o TLosy Wps —v-Swy,), for g = [1] and p' = [1,2),

. HEE{Z {(wps — v Pwp N (Wps — VW N (Wps — Viwg ), for g =[1] and B =[1,2,1,2,2],
. Hgig‘ff {(Wps —V=0Wp ) (Wps — V2wy )}, for g = [1] and B’ = [1,2,2],

. HEE‘;‘; {(Wgs — v Owp ) (Wps — V2Wwp ) (Wss — viwg )}, for p=[1] and g’ = [1,2,2,2],

o TLEEY Wpe — wp,), for = [1] and p' = [2],

1<r<dgy _ _ _
* iz, {Wps = VPwp ) (Wps — V- oWp ) (Wps — VoWp N(Wps — U Wp ) (Wps — V 2wy}, for B = [1,2]

and g’ =[1,2,1,2,2],
<r<dy
. Hi;;;dﬂ {(U\)ﬁ’s — U76Wﬁr’r)(w)315 — Uéw;;f,r)(wﬁ,s — U*QUJﬁV’,)}, forp=1[1,2]and B’ =[1,2,2],

1<r<dgy
. ]'[1;;;[{; {wps—v=Swp ) (Wps—VoWs N (Wps—V2We ) (Wps —V2We )}, for g =[1,2]and p' = [1,2,2,2],

1<r<dgy
. ngggd‘; (Wgs — Vv 2wg ), for g =[1,2] and g’ = [2],
1<r<dg
o Iz {Wps—v=*wp D (Wps =W )2 (Wps = VoWp ) (W s =V~ W) Wi s — U Wy ) (Wp s — V2 W)},
forp=11,2,1,2,2]and p’' = (1,2, 2],

1<r=<dg
o M {Wps — vPwp DWps — V™OWe ) (Wps — VOWp ) (Wps — VW N(Wps — VW I(Wps —
vwg )2 (Wgs —v2wp )}, for g =1[1,2,1,2,2] and g’ = [1,2,2,2],
1<r<dgy
. ]'[1;;;[;; {(wps —vPwp N(Wps — v 2wy )}, for =[1,2,1,2,2] and B’ = [2],

1<r<dg _ _ —
* [lised, {Wps —v=*wp ) (Wps =V Wp ) (Wps =V~ Wp 1) (Wp,s — VW ) (Wps =V~ W)}, for = [1,2,2]

and g =[1,2,2,2],
<r<dy
o TIiey ps —v-*wp,), for p=[1,2,2] and p' = [2],
l<r<dy

* Iz, Wps — vbwg ), for g =[1,2,2,2] and g’ = [2].

This completes our proof. ]
Proposition 3.5. Lemma 2.7 is valid for type G, and specialization maps ¢, as in (3.2).

Proof. Given d,d' € KP(k) with d' < d, and any o € &, we will show that ¢y (o (Fp)) = 0. Let x{%” be the
==k for ¢y (see (3.26, 3.27)) and let X% be any splitting of

=12
' for ¢y (see (2.40)). We consider the following sets of x%”-variables:

above special splitting of the variables {x;;}
1<l<k

the variables {x;}; 5

z7 9 = x& [@,n > @5} V@B eaTxNI<i<2 (3.35)

Let B be the smallest positive root such that dy < dg. Following Lemma 3.3, we can assume that
for any o < B the property (3.28) holds for the variables x%*, since otherwise the ¢,-specialization is
zero. Thus, without loss of generality, we can assume d;, = 0 for all « < 8. Then, we have the following
case-by-case analysis:

e Case g =[1]. Let o(x%’l)) = X’ﬁ’” for some y > B. Since F, contains the factor ;1,2(x(1‘?il)/22>(’3’1’), and
X307 € 0(Z;PY), we get ¢y (o (Fy)) = 0.

e Case p =11,2]. Let o (x{;") = x{;"” for some y > . Since F; contains the factor ¢1,(x{;"”/Z; "), we
have ¢y (o (Fp)) = 0 unless o (x¥}") = x;%". In this case, we again get ¢y (o (Fp)) = 0 as Fj contains the
factor £, (1" /Z; %) and 31} € 0(Z;%7).

e Case f =[1,2,1,2,2]. Let o (x{;") = X{%*™ for some y1 > B. Then, we get ¢y (o (Fr)) = O unless there

is some 1 < ¢ < £, < 3such that o (x¥;) = 31", o (x¥;) = X374 Similarly, let o (x{3") = x{72"

2t+1 "
for some y; > B, then ¢y (o (Fy)) = 0 unless there is some 1 < ¢3 < £4 < 3 such that a(xg’;;?) = xgy‘g’m,
a(xé@'j)) = x%fl) This implies that (y1,11) = (y2,72), t1 = 1, t, = 2, thus contradicting y; > 8. Hence,

éq (o (Fn)) = 0.

e Casep=11,2,2] Let a(x(ﬁl)) = x'ﬂ” for some y > . Then, we have ¢y (o (Fy)) = 0 unless a(xg{’f)) =
X;(H'Y) and a(X%D) = x/z(’yz'”. As F,, contains the factor ;zyz(xé‘?z'l)/zi(ﬂ'l)) and xgy’é’” € a(Zj(ﬂ'l)), we thus
again obtain ¢y (o (Fy)) = 0.

* Case g = [1,2,2,2]. This case is impossible with our assumptions d_; = 0 and dg # 0, as we have
dig - [2] = Xgenr dy - = S kit =3 p oo = di1222 - 11,2,2,2] +dpy - [2].
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This completes our proof. n

Proposition 3.6. Lemma 2.8 is valid for type G, and specialization maps ¢, as in (3.2).

Proof. The wheel conditions (3.1) for F € S, guarantee that ¢4(F) (which is a Laurent polynomial in the
variables {wg¢}) vanishes under specific specializations wg s = v* - wg ¢. To evaluate the aforementioned
powers # of v and the orders of vanishing, let us view ¢, as a step-by-step specialization in each interval
[B], ordered in the decreasing order with respect to

B,s) < (B,s) iff B<p or p=p ands <5s'.
We note that this computation is local with respect to any fixed pair (8,s) < (8/,s’). Consider

={(ds =2,d, = 0,a # B} € KP(R,), (3.36)
dy={ds =dp =1,d, = 0,0 # B, B} € KP(ky). (3.37)

For any Fy € S,, F2 € Sg,, it thus suffices to show that ¢g, (F1) is divisible by G if ¢4(F1) =0 forany d < d,
and ¢y, (F») is divisible by Gg ¢ if ¢4(F2) = 0 for any d < d,, cf. (3.32).
Ford, = {dg = 2, duzs = 0}, the nontrivial cases are g =[1,2,2],(1,2,2,2],(1,2,1,2,2].

B =[1,2,2]. For F1, under ¢4, the wheel condition F; = 0 once x;” = v®x;” = v*x¥;" becomes

¢4, (F1) = 0 once wg 1 = vPwpg 2, thus we get the vanishing factor (w,gyl —v wﬁyz), the Wheel condition

Fi = 0 once x¥3" = vxf}" = vixfy” = vox¥;” = v3x¥}? becomes ¢g, (F1) = 0 once w1 = viwy,,
thus we get the vamshmg factor (wg 1 — vtwg,). Since ¢4, (F1) is symmetric with respect to wg; and
wp 2, we also have the vanishing factor (wg 2 — v®wg 1) and (ws 2 — v*wp 1), thus we get the vanishing
factor Gg.

e B =1[1,2,2,2]. Besides the vanishing factors appearing in Gj1 ), the wheel condition F; = 0 once
XD = vl = v = vixf? = v becomes ¢y, (F1) = 0 once g1 = v?wpy, thus we get the
vanishing factor (wg1 — V2wg2)(Wp2 — V2w 1), and we get all the vanishing factors in Gg.

e 8=1[1,2,1,2,2]. Besides the vanishing factors in G172, the wheel conditions F; = 0 once x{

vexfy? = ng(ﬁ Yor xf; = vixly? = vl or x5 = vex{P? = v3xY;D give us the rest Vamshlng

factors in Gg.

Ford, ={dg =dg =1, daxpp = 0}, take F, € S, then

(;9 D _

* (8,8) = ([1],[1,2]). Under ¢4, the wheel condition F, = 0 once x/;" = véx{;" = v*x¥;"" becomes
¢4,(F2) =0 once wg 1 = v~%wg 1, thus we have the factor Gg 4.

e B8,8) = ([1],[1,2,1,2,2]). Besides the factor Gy 1, the wheel condition x(ﬁ D= = U3X(2'?2/'1)
gives the vanishing factor wg1 = v™*wgp 1. Let QS {d12) = 3, daxj1,2) = 0}, then d3 < dy, by ¢, (F2) =0
we know ¢, (F2) = 0 once wg1 = v*wp 1.

* (B,8) = ([1].[1,2,2]). Besides the factor G 1,9, let d3 = {dj1,5) = 2,daxp2 = O}, then d; < d,, by
¢4, (F2) = 0 we know ¢g, (F2) = 0 once wg1 = v’wg 1.

* (8,8)=([1],[1,2,2,2]). Besides the factor G [12 letds = {dp21,22 = 1,dax[121,22 = 0}, thend; < d,,
by ¢Q3 (Fp) = 0 we know ¢Qz (F2) =0once Wg1 = v? Wepr 1. Let d4 = {d[lyg] =1, d[l'z'z] =1, da#[l,Z],[l,Z,Z] =0},
then d, < d,, by ¢4, (F2) = 0 we know ¢y, (F2) = 0 once wg1 = viwp 1.

e (B,8) = ([1], [2]) Let Q3 = {d[LQ] = 1,da#[172] = 0}, then d3 < Qz, by ¢Q3(F2) = 0 we know ¢QZ(F2) =0
once wg1 = Wg 1.

* (B,8)=1(1,2],[1,2,1,2,2]). The factors in Gp 212,122 all appear in G1,122], and they appear due
to similar wheel conditions.

* (8,8) = ([1,2],]1,2,2)). Besides the factors in Gji g, let d3 = {dj12,1,22) = 1,daz1,2122 = 0}, then
ds < dy, by g, (F2) = 0 we know ¢y, (F2) = 0 once wg1 = v 2Wg 1.

e (B,8)= ([1, 2], [1, 2,2, 2]) Besides the factors in G[Lz],let% = {d[1,2,1,2,2] =1, d[Q] =1, d(x#[l‘z‘l‘lz L2l = O,
dy = {dp22) = 2,dazp22 = 0}, then ds,d, < dy. By ¢g,(F2) = 0 we know ¢y, (F2) = 0 once wg1 =
v~?wg 1, and by ¢4, (F2) = 0 we know ¢y, (F2) = 0 once wg; = v?wg 1, thus we get the vanishing
factor G[112]1[1,2'2'2]4

e (B,8)=1([1,2],[2]). Letd; = {d[1,2,2] =1, da#[l,z,z] =0}, thend; < d,, by ¢4, (F2) = 0 we know ¢4, (F2) =0
once wg1 = U 2Wp 1.
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e B8,8) = (1,2,1,2,2],[1,2,2, 2]) Besides the factors appearing in Gl,2,1,2,2] let dy = {dj129 = 3,
dasf1,22) = 0}, then ds < d,, by ¢y, (F2) = 0 we know ¢, (F2) = 0 once wg; = v2wg 1.

* (B,8)=1(1,2,1,2,2],[2]). Besides the factors appearingin Gp 21, let ds = {d[12,9] = 2, dax1,22] = 0},
then d; < d,, by ¢4, (F2) = 0 we know ¢g, (F,) = 0 once wg: = U=2Wg 1.

* (8,8)=1(1,2,2],[1,2,2,2]). The factors in G122} 1,222 all appear in G157, and they appear due to
similar wheel conditions.

e (B,8) = (1,2,2],[2). Let d3 = {dj1222) = 1,daxp222 = O}, then d; < d,, by ¢4, (F2) = 0 we know
$q,(F2) = 0 once wg1 = v *wp 1.

e (8,8)=1(1,2,2,2],[2]). The wheel condition F, = 0 once x(‘3 - U2X(ﬁ b U4X(2é2’1) = UGX(ﬂ D= ng(ﬁ D
becomes ¢g, (F2) = 0 once wg1 = v=we 1.

This completes our proof. |

Combining Propositions 3.4-3.6, we immediately obtain the shuffle algebra realization and the PBWD
theorem for U; (Lg,):

Theorem 3.7. (a) ¥: U; (Lg,) —> S of (2.16) is a Q(v)-algebra isomorphism.
(b) For any choices of s, and A, in the definition (2.24, 2.25) of quantum root vectors Egg, the
ordered PBWD monomials {Ep}ney from (2.34) form a Q(v)-basis of U (Lg,).

3.2 Integral form U (Lg,) and its shuffle algebra realization
Let us consider the divided powers

©_ o »
EY = Vi<i<2 reZ keN. (3.38)
RERLINS:
Following [16, §7.7], we define the integral form U3 (Lg,) as the Z[v, v=1]-subalgebra of U; (Lg,) generated
by {E(k)}ﬁil?IgQ,reZ' For any (8,s) € A" x Z, we define the normalized divided powers of the quantum root

vectors from (2.28)-(2.32) via:

(E5o* .
o if B=1[1],12],[%, 2]
- (Eis)k .
BN =1lgim  f8=1127] : (3.39)
(E5)F ’

m if8=101,2,2,2],[1,2,1,2,2]
Similarly to [31, Proposition 1.2], we have:

Proposition 3.8. For any # € A*,s € Z, k € N, we have Ej| ® e Uz (Lg,).

Proof. Let U7 (g,) be the “positive subalgebra” of the Drinfeld-Jimbo quantum group of g,. Thus, U; (g,)
is the Q(v)-algebra generated by {Eq, E»} subject to the v-Serre relations:

- % ..

Z( 1)k [ QU} EEE T =0, %) (3.40)
Vi

Let UZ (g,) be the Lusztig integral form defined as the Z[v,v~']-subalgebra of U (g,) generated by the

divided powers

EF
E® = Vi<i<2 keN.
(k]!

Recall our specific convex order (2.22) on A*. Let {Eg}ﬁeN denote Lusztig's quantum root vectors of
U; (g,) associated to this convex order (defined through the use of Lusztig’s braid group action; see [23,
§37.1.3]). According to [22, Theorem 6.6], we have:

. Bk
E;'(k) — (Eg) c U (gy) VBeAT, keN. (3.41)

(Rv, !
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On the other hand, let us define another set of quantum root vectors {Eg}ﬁew in U7 (g,) using v-
commutators similar to (2.28)—(2.32):

Ej=E, 1=<i<2 Ej,=[EElys; Ej,y =I[[E,Elys, Eals;

] ) (3.42)
E[_1,2,2,2] = [[[E1, EZ]U’3 ) EQ]U’l ) EZ]U; E[_1,2,1,2,2] = [[El, EZ]U’3 ) [[Ely EQ]U’3 ) EZ]U*]\%

Due to [21, Proposition 5.5.2], the quantum root vectors E; and E; differ only by a scalar multiple for
any B € AT. These scalars are determined explicitly for Drinfeld-Jimbo quantum groups of any simple
Lie algebra g in [2, Theorem 4.2] (note that the parameter q of [2] equals our v™'). Specifically, in our
case we have:

E; if g =[1],12],11,2]
By =1[21'E;  ifp=[1,22] . (3.43)
BL'E;  ifp=1[1,222][1,21272]

Let us now pass from the finite to the loop setup. First, we note that comparing the coefficients of

z %z w2 in (2.9) for any si, S, € Z, we obtain:
U

1-ay
1—aj 1-a;-k .o
Z(—l)k[ , U} e el =0, i#].
v,

k=0

i

Thus, the assignment E; + ey, Es > €35, gives rise to an algebra homomorphism
Nsus: - Uy (82) —> Uy (Lgo).
Clearly, we have ns, 5, (U7 (g2)) C U (Lg,). Combining (3.41)-(3.43) with (3.39), we thus get:

By = s, ;) € U (L)

To prove the other inclusions f:;'s(k) € U;(Lg,), let us consider the convex order on A* opposite to
(2.22):
2] <[1,2,2,2] <[1,2,2] <[1,2,1,2,2] < [1,2] < [1]. (3.44)

Let {E}}ﬂey denote the set of Lusztig's quantum root vectors associated to that convex order, and define
another set of quantum root vectors {EE},SGN via v-commutators:

F
Egy

EEQQ] = [EZv [EQ, El]u*]u*1 = [[Ely EZ]U3 ) EZ]U;

=E, 1<i<2; E[+1,2] = [Ez, E1]ys = [E1, Eas;

) (3.45)
Ef} 500 = [E2, [E2, [E2, Ex]o-2]v-1]v = [[[Ex, Eo]ue, Ealv, Eo]u-1;
E[JE,ZL?,Q] = [[E2, [E2, Ea]ys]u-1, [E2, Eav-s]u = [[E1, Eo]ue, [[Ex, Ealus, EaJu]u-r-

Then, due to [22, Theorem 6.6] and [2, Theorem 4.2] the analogues of (3.41) and (3.43) with the superscript
— replaced by + hold. Therefore, we likewise obtain:

B0 =g BEO) € Uz (Lgy).
This completes our proof. -

For any k € N?, consider the Z[v, v=!]-submodule S; of S, consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

fezp, v LI5S (3.46)

1<i<2
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(2) For any d € KP(k), the specialization ¢,(F) is divisible by the product

IT &, (3.47)

BeAt

where we define {Cg}gea+ Via {cg}pea+ Of Lemma 3.2:

Cs if p=11],2],[1,2]

G=1ph ifA=[1272 . (3.48)

B ifA=101,222][121272]
We define S := @y Sk. Then, we have:
Proposition 3.9. ¥ (U7 (Lg,)) CS.
The proof is based on the following simple “rank 1” computation from [31, Lemma 1.3]:

Lemma 3.10. Forany ¢ > 1,r€ Z,and 1 <1 < 2, we have

=1

XigxeowXig =0 7 [y i xi)” (3.49)
—
¢ times
Proof of Proposition 3.9. Foranym e N, 1 <iy,...,im <2,71,...,Tm €Z,€1,...,Lm € N, let

Fim W(E® ...E ),

11,11 ImyTm

(£q)

1.m), then we shall use the

and f be the numerator of F from (2.12). If a variable x{%* is plugged into W(E
following notation:

oot =4 650
Thus, ox?”) = g means that in the corresponding summand from the symmetrization of
WES)- - WE!™ ) (rational factor), this x-variable is placed as an argument of \II(E;:”YL).

According to Lemma 3.10:

(e ) 7£q(£q717
a)y _ 2 S X Tq
v (Eiqy,q) =V, Xig 1+ Xig ) vi<qg=sm,

hence, the condition (3.46) holds. To verify the validity of the divisibility (3.47), it suffices to show that
forany B € At and 1 < s < dg, the total contribution of ¢4-specializations of the ¢-factors between

the variables {xff's)}f‘fsv‘” is a multiple of ¢. This is obvious for g = [1],[2],[1,2]. Let us now treat the

remaining three cases:

e B =11,2,2].Inthis case, the ¢4-specialization of the corresponding product of the ¢-factors vanishes
unless

ox{1?) = o) = o x5,
On the other hand, o(xff‘s)) #* o(xf,ﬁt’,s)) for i # 1. Thus, we only need to deal with the case
o(xff)) > o(xg}f‘)) > o(x(z'?z's)).

In this case, the product of the ¢-factors

022 /%8 - 225 /2
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has a numerator

(X(ﬂ S) nggéf))(x(z‘,g;) _ U3x(ff)),

which contributes precisely the factor (3),(2)y = Cj1,5,2) under ¢q.
e B = [1,2,2,2]. In this case, the ¢4-specialization of the corresponding product of the ¢-factors
vanishes unless

o(x(fl's)) > o(Xé‘?f’) > o(xé‘?ﬁs)) > o(x(z’;'S)).
In the latter case, the product of the ¢-factors
0210057 /XY - 21 (f5Y /%P - G0 (Y /2

has a numerator

) 33BN (B ( B9 _ 13,89
(st uxff)(xfzs) Uxfm)(x’js uxff),

which contributes precisely the factor (3)y(2)y(1)y = C1,2,2,2] under ¢g.
e B =11,2,1,2,2]. In this case, the ¢4-specialization of the corresponding product of the ¢-factors
vanishes unless

oxf}) > 0x¥?) = 0x¥;”) = 0xfy)) and o) > ox¥y), (3.52)

If oxs”) > o(x¥;”), then the product []}55 21(x%” /x$Y) has a numerator

1<l<3

H (X (B,s) USX%S))’

1<k<2

which contributes precisely the factor (4),(3)2(2)2(1), = Cl12,1,2,2) under ¢g. On the other hand, if
o(x ‘“)) < o(x 55)) then we have

O(X(ﬂ S>) ~ O(X(ﬁ S)) > O(X(ﬁ S)) - O(X(ﬂ S)) > O(X(ﬂ S))

(ﬂ s)

in which case the ¢g4-specialization of the ¢-factors between the x;.;”’-variables contributes a total

of [3]y - 2,122

This completes the verification of the divisibility (3.47), thus concluding the proof. |

For any h € H, define the ordered monomials (cf. (2.34))

— —
o =+, (h(B,s) P _ z—.(h(8,9)
Er = [] E , E. = [] E. . (3.52)
(B.S)EA+XZ (B.S)EATXZ

According to Proposition 3.9, we have Ef € S. For any ¢ € {}, let S be the Z[v, v!]-submodule of S
spanned by (W (E¢ i) neH, - Then, the following analogue of Lemma 2.8 holds

Proposition 3.11. For any F € Sy and d € KP(k), if ¢4 (F) = 0 for all d’ € KP(k) such that d’ < d, then
there exists Fj € SE such that ¢, (F) = ¢4(Fy) and ¢4 (Fg) = 0 for all d <d.

Proof. Combining (3.39), (3.48), and Proposition 3.4, we obtain:

B<p
$aWEN = ] Gos- [1CF -Go) - [] Punse (3.53)

BB et BeAt BeAt
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where

-2
Wgi—Ug " Wgi
P, pOD L T e ‘”), (3.54)

1
= —=—=———Symg_ (W
HreZ[h(:Bvr)]Uﬂ! y S < P 1<i<j=d Wi — Wg,
<l<j=dg
cf. (2.38). As {Ps, , }nen,, form a Z[u,v="]-basis of Z[v, U*ﬂ[{mﬁ}fﬁ1 S4 (this is a “rank 1” computation, cf.
[31, Proposition 1.4, Lemma 1.14]), the claimed result follows from Proposition 3.6 and conditions (3.46,

3.47). [ |
Combining Propositions 3.9 and 3.11, we obtain the following upgrade of Theorem 3.7:

Theorem 3.12. (a) The Q(v)-algebra isomorphism W: U; (Lg,) — S of Theorem 3.7(a) gives rise
to a Z[v, v~1]-algebra isomorphism ¥: U3 (Lg,) — S.

(b) For any choices of s1,s; in (2.29)-(2.32) and € € {£}, the ordered monomials {f!;}th of (3.52)
form a basis of the free Z[v, v=!]-module U3 (Lg,).

4 Specialization Maps for Type B,

In this section, we define specialization maps for the shuffle algebras of type B, and verify their key
properties. This implies the shuffle algebra realizations and PBWD-type theorems for U; (Logn41), as well
as for its two integral forms U (Looni1) and U7 (Loopy1). Using arguments similar to those from Section 3
we establish the counterparts of Lemmas 2.6, 2.7, 2.8 for B, case, and then use induction to treat the
general B, case.

4.1 U; (Losnyq) and its shuffle algebra realization
In type By, for any F € S, with k € N", the wheel conditions are:

P({XL,}%EEE‘) =0 once xj;=vu'xy=v’x,,, forsome 1<i<n-1,

or xi; =vu'x,=0%x_1, forsome 2<i<n-1, (4.1)

O Xp1=VU2Xn2 = U¥Xn3 = UPXn_11.

For any k € N" and d € KP(k), the specialization map ¢y as in (2.43) is defined by the following
specialization of the x"-variables (replacing (2.41) for type Ay):

X9

A v %wgs, X8V s T2y, o VB e AT 1<s<dg, i€ 4.2)

i2

Lemma 4.1. Consider the particular choices (2.26)—(2.27) of quantum root vectors {E§,5}222A+~ Their
images under V¥ in the shuffle algebra S of type B, are as follows:

e If g =1i,j], then for any decomposition s = s; + - - - + s; used in (2.26), we have:

_1+1_s
5 (2), B xS IS
+ - 1,1 j—1,1 71
‘I’(E[i,}],s) = ] , (4.3)
i Xe1 — Xeg1,1)
_ 1 si+1
N TR T R
_ . , ) )1
"I/(E[i,j],s) E (4.4)

1
[T (Xeq — Xer11)

e If B =[i,n,j], then for any decomposition s = s; + - -+ 4 sj_1 + 25; + - - - 4+ 25, used in (2.27), we have:

[BI-1 . T4 _ 4 _
wE - (2)y 91 - IS W1 = Xe2) (U Xe2 = Xe1)

injls’ — n—1 ’
bl (iq = Xi1,) - Ko — X,0 &1 — X5 1S Tiareeo Rer — Xe1,0)

w(E

- (207 ga - TS (001 = Xe2) (VR0 — X1)
[injls

= n-1 ’
&g = Xip1,1) - Kor1 = X0 o110 = X2 TS T e Rer — Xerr,0)
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where
n
. Sj_14+2
HXS . }] il (X,1%5,0)% - H (Xe1Xe2)™ T,
£=j+1
(4.7)
X H X H(Xl 1xe )"
=i+1 =j
Proof. Straightforward computation. |

For more general quantum root vectors {E,gys}fffA+ defined by (2.24), we have the following counterpart
of Lemma 3.2:

Lemma 4.2. For any choices of s, and Ay in (2.24), we have:
bp(W(Eps)) =Cp-wyy" Y (B,5) €At xZ, 4.8)

where {kg}gea+ are explicitly given by

e A o= (4.9)
Bl+2(n—)) -1 if p=1i,n,j]
and the constants {cs}gea+ are explicitly given by
(2)U\A‘3\—1 g =1
p= R P _ . . {, ] o (4.10)
@ TS {2 - s — Y if g =[in,j]

Proof. The proof is by induction on n, the base case n = 2 being obvious. Let us now assume that
the result holds for types B, (m < n). In what follows, we shall use the following special case of
Proposition 4.5: for any positive roots a1 < a, such that a4 + «; is a root, we have

Gos ey (W(Egy ) % W(Eg, 5,)) =0 Vs1,S) € Z.

If B =[i,j] with 1 <i <j < n, then (4.8) follows from the A, type; see [30, Lemma 3.14]. If 8 = [i,n,]]
with 1 <1 <j <n, then (4.8) likewise follows from the B,_; case. Therefore, it remains to treat the cases

=[1,njlwith2<j<n

If B =[1,n,n], then

Eﬁ,S = [[[ o [[elyle 92,52]11, e3,33]l2v T enfl;snfl]xnfz’ eH,Sn]lnq ’ eﬂ,SnH]ln

with s =s; + -+ +sp1. Consider « = [1,n], r =51 + - -+ + Sp_1 + Sp, and

EM’ = [[ T [[elysl’ 62,32])»1 ) e3133]kzv A enflysnfl];WHZ ’ en,sn]}hv\fl'
Then, we have:
s (W(Eﬁ,s)) =¢p Q4 (Ea,v) * \I’(en,snﬂ ) — )an}(en,s,H] ) * \D(Ea,r))
= dp(W(ens,,,) * V(Ear))
= ¢ (symcz (W(Eu r)(x(ﬂ Dysnet Cane 1(X(f3 o) /X(ﬂ 1)1)§n n(x“; 1>/X<ﬁ 1>)))

(ﬂ 1 () B v2 (30}
= g (‘P(E e Cad SOl 2 ))
- a.r n,2 1 1 1 1

(X(ﬁ ) _ ;ﬂ 1)1)(X('3 ) “,32 ))

. 1 +1B1-1
N <2)UW . w;sﬁ,llﬂl

(4.11)

)
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where we plug the variables {x{"};_i, into W(E,,), the variable x;" into W(e,s,,,), Syme, denotes

the symmetrization with respect to the variables {x;", x;"}, and the last line follows by applying the

validity of (4.8) for («,r) established above. We also note that the second equality in (4.11) used the
vanishing ¢g(W(Ey, ) * ¥(engs,,,)) = 0, due to

B G (57 /305570 = 0 = (610 (50T /50 (4.12)
Ifg=[1n,jlwith2 <j<n-1,then
Egs=1[[-[[--lersi, e28]n, s linss ensialin - €150 T 10 8isanis o
with s =s1+--- +55,_j41. Consider e = [1,n,j 4+ 1], T =1 + - -+ 4 5y,j, and
Egr=[--[[--[e1si €25 ]n0 s @nslrns Cnsnaa S -+ 5 G155 Lo

Note that ¢g(gs1,( J(ﬁf)z/x(ﬂ 1))) =0= ¢ﬂ(§”+1( x& 1)/x(lel)l)), cf. (4.12). Thus, we have:

By (W (Eps) = bp(W(Ear) # V(s ) = hon W (€, ) * W(Ear)
= dp(¥(es,, ) % W(Ea)
= g (Symes, (W Ean) @y yw g x5 iy

(1)(1) (1)(1) (1)(1)
G5 DG a0 T e 0 /xiu))

1 1 _ 1
\Il(Ea,T)(X;é ))s;n,,u (X(ﬁ ) v 4X(ﬁ )) (4.13)
=98 6D (,3 7
Xj.l X] P
B 24,81 BL _ 2 (ﬁ jy) B _ 2 (ﬂ 8]
(X -V X} 11)(X' J+1 1)(X )+1 2)
B _ ﬂl) B _ ﬂl) B _ /91)
50 =0T =) = x )

Q)Ulﬁ\—l 3 H {(U—4n+4é—2 _ 1)(U—4n+4£+6 1)} S+\ﬂ\+2<n—l) 1
t=j

1

where we plug the variables {x; B ‘9 1)}1<F5”ﬂ:‘ ~into W(E,,), the variable x)fﬂ’ ) into V(es,00)s SYMe,

1<i=n,i#j
denotes the symmetrization with respect to the variables {x(ﬂ D (’3 1)} and the last line follows by
applying the induction hypothesis for ¢, (¥ (Ey ;). |

Let us now generalize the above lemma by computing ¢4(¥ (Ey)) for any h € Hy 4. Similarly to type G,
we choose a special splitting such that the variables in W (Eg, rs(hs)) are taken to be the group {x“ S)}Ef:‘“ ,
and under ¢, they are specialized as in (4.2). For each 1 < i < n, we define the set X; as in (3.22), and the
total order on X; as in (3.23).

For any d € KP(k), we define the subset Shy c &, of “d-shuffle permutations” as in (3.25):
Shy = {a = Gk’o(xfﬁ's)) <oe®) Vpeat l<s<dp2<is n}. (4.14)
Then from (2.14), we have:
W(E) = D o (FB@xD) = D Fu(lo ), (4.15)
seShy oeshy

where

(a,p)<(B,9) Qjjzo  1=<r=<vg; X(O‘ D) U_au X(ﬁ,q)

Fy = H ‘I’(Eﬁ,rﬁm,s)) H H H (ap)il(ﬂ}q; (4-16)
,T

BeA™ a,BeAt 1<ij<n 1=€=v,
l<s<dg 1<p=dy,1<q<dg
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Let us consider the elements of & satisfying (3.28), which form a subgroup isomorphic to &4 (we
shall denote this subgroup by &4). Then, similarly to Lemma 3.3, we have:

Lemma 4.3. ¢4(c(Fp) =0foro ¢ Sy.

Proof. The proof is by induction on n. Arguing alike in the proof of Lemma 3.3, the result is clear for
B,-type. Let AT = {[1, ]} 1<j<n U {[1, 1, j]}1<j<n. It suffices to show that ¢4(o (Fy)) # O only if (3.28) holds for
every g € AT, as for g > [1,n, 2] we can apply the induction hypothesis for B,_;-type. We shall now prove
that (3.28) holds for any x| ’3 51) , assuming it holds for any x; ’3 ) with (B',s") < (B,s1). Similar to (3.35), we

define the following sets of x<* ¥ -variables:
z;”’v” ={x"" @, > B,5) VE@seatxNl<i<n (4.17)
e Case . B = [1j]with1 < j < n— 1 Let ox{;") = x¥;” with y > p. Since F, contains the

factor ¢1,(x{; /25 V), we have ¢;(o(Fn)) = 0 unless o (x¥;") = x§;”. Proceeding as this, we get
¢d(o(Fp)) = 0 unless U(X(ﬁ Uy = X(y " for any ¢ < j. If y > g, then we get ¢s(o(Fy)) = 0, since Fy
contains the factor ¢jj;1(x] x4 sl)/Z>(ﬂ sl)) and X(H)1 € (Z:f V) hence, a contradiction. Thus, y = 8,
and (3.28) holds for any x“? 5

e Case2:8=[1,n]. Let a(x(ﬁ 51)) = x(” " with y = B. Then, similar to above, we get ¢, (o (Fy)) = 0 unless

a(x(ﬂ sy — zyl') forany ¢ < n. If y > B, then we get ¢4(c(Fy)) = O, since F, contains the factor
;n,n(xfls“/zﬂﬂ'so) and X(”) € 0(Z;*Vy, a contradiction. Thus, y = g, and (3.28) holds for any x%".

o Case3: g =[Lnjlwith2 <j<n Let o) = x¥}” with y > . Then, ¢4(c (F)) = 0 unless there
exist {te,1, teo})_ such that

o =x" ifl<e<j-1,

4.18
(B,51) ( )
Lten

.n (y ]

a(xftfl“) X7, o) =x; ifi<e<n

Iftyo <tyr forsome £ € {j,j+1,...,n}, then x(ﬁ s“ < xfts” and the condition o € Shy implies

X%ﬁ) _ a(x(ﬁ 51)) - a(x(ﬂ sn) _ X(V "
a contradiction. Hence, t,1 < t, foranyj <¢ <n,sothatt,; =1,t,p =2foranyj<¢<nlIfy > g,

then we get ¢4 (o (Fy)) = 0, since Fy contains the factor ¢j; 1(x; x S”/Z>(’s S0y and x(ﬂg co (Z;(f's”), a

contradiction. Thus, y = 8, and (3.28) holds for any x5

This completes our proof. u
Combining Lemmas 4.2 and 4.3, we obtain the following analogue of Lemma 2.6 for type By:

Proposition 4.4. For any h € Hy 4, we have

B<p
$aWEN = ] Gop- [T G- [] Py (4.19)
BB et peat Beat

where the factors {Py, , }pea+ are given by (2.47), the constants {cg}sea+ are as in Lemma 4.2, and
the terms Gg 4, G4 are products of linear factors wgs and wg s — 2wy ¢ Which are independent
of h € Hy4 and are S4-symmetric (the factors G4 are explicitly computed in (4.36)).

Proposition 4.5. Lemma 2.7 is valid for type B, and specialization maps ¢y as in (4.2).

Proof. The proofis by induction on n with the base case of B,-type being clear, cf. the proof of Lemma 4.3.
Given d, d’ € KP(k) with d' < d, let B € A* be the smallest root such that dj < dy. We can assume
that 8 € A7, as otherwise the induction hypothesis for B,_; type will apply. Slmllarly to the proof of
Proposmon 3 5, without loss of generality, we can assume d, = O for all & < 8. Let x%” be the above
special splitting of the variables for ¢, and x4 be any splitting of the variables for ¢4. Then, we have
the following case-by-case analysis:
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$1) = %" for some y > B.Since Fy

e Casel:p=[1,j]with1l <j <n-1.Since0=dj < ds, we have o (x{
contains the ¢-factor £, (x¥;" /x54”) forany (,s) > (8, 1) and 1 < t < 2, we have ¢4 (o (F)) = Ounless

(8, 1)) /(y.1) ®, 1))

X" Proceeding as this, we get ¢y (o (Fp)) = 0 unless o (x{ ’“’ " for anyl<i<j.In

v, r)
I+ 1

e Case2: g =[1,n].Leto(x{;"”) = x{;"” for some y > . Arguing as above, we have ¢y (o (Fp)) = O unless
o(X<ﬁ Dy = x’(V D forany1<i<n. If (8, is such that o (x%*)) = x5, then we have (8',s) > (8, 1).
(88"
).

o (X,

the latter case, we still obtain ¢4 (o (Fp)) = 0, since F, contains the factor {)Hl( x50

Therefore, we still get ¢4 (o (Fy)) = 0, since F, contains the factor {nn(x(ﬂ 1)/x
. Case 3: 8 = [1,n,j] with 2 < j < n. Similar to above, ¢4 (o (Fp)) = 0 unless there is ¥y > B such that
xA)y = x7" for 1 < i < n,oxhY) = x" for j < i < n. In the latter case, we again obtain
¢d’ (a(Fh)) =0, since Fn contains the factor ¢ 1(x x# 1>/><’(V "
e Case 4. B = [1,n,2]. This case is impossible as O = d’ = d fore < pand 0 = dy < dg (indeed,
ki =, 5d, <X ,pde =k1asd,d eKP(k), a contradiction).

This completes our proof. n
Proposition 4.6. Lemma 2.8 is valid for type B, and specialization maps ¢, as in (4.2).

Proof. Similarly to the proof of Proposition 3.6, we only need to prove the lemma to be true for any pair
of roots (B < B'). Firstlet d; = {dg = 2,dy = 0,V # B} € KP(ky) and F; € Sp,. We can assume g = [1,n,]]
forsome?2 <j<n.Ifj>2lety =[2,n,j],and d; = {d, = 2,d;) = 2,d, = 0,V # y,[1]}. By induction we
know ¢g, (F1) has the factor G, (here we change the variable w, s in G, by wgs). Moreover, we have

Gp = (Wp1 — U™ twp2)(Wp1 — Utwgo) - Gy, (4.20)
The wheel condition F; = 0 once x{;" = vx{? = v2xf}" or x¥}? = vix{;? = v2x¥}? becomes ¢y, (F1) = 0

once wg; = viwgyorwg =v 4w,3'2, thus giving us the requlred vamshmg factors. Ifj=21ety =[1,n,3]
(here we assume n > 3), then

Gg = (W1 — vEAOwg ) (wp 1 — vEDwg ) (wp 1 — vHwgo) - G, (4.21)

(ﬂ 1 (ﬂ 2) _

The wheel condition F; = 0 once x; corxfi = vy = v
v?x{y” give us the vanishing factors above. Thus, the lernma is true for pairs (8, B).

Now for any pair (8 < #),letd, = {dg =dp = 1,dagp s =0} € KP(ky) and F € Sg,, we prove ¢g, (F) has
the vanishing factor Gg g if ¢q(F2) = 0 for any d < d,. By induction we know it is true for any (8 < 8
with [2] < B. And by results on type A,, we know it is true for any (8 < g') with 8 = [1,j], 8’ = [1',J'] for

some 1 <7,j,j/ <n.

G =vixf? = v ,OI Xy = Utxy

e B=[1,j]forsomel<j<n B =[,nn]forsomel<i<n-1
Lety = [i,n]. If ] < n—1then Ggp = Gg, and ¢, (F2) has the factor Gy for the same reason. If
j=n-1,then

Gpp = (Wp1 — VW 1) - Ggy, (4.22)

and by induction we know ¢q, (F2) has the factor Gg,. Set d; = {dj1n = 2,dezpy = 0} if i = 1, or
d3 = {dpnn = Ldjn-1 = 1, daginnin-1) = 0} if 1 # 1. Then for each case, we have d; < d, and
¢4, (F2) = 0 implies that ¢4, (F2) = 0 once wg 1 = v?wg 1. Ifj=nandi=1,then

Gpp = (Wp1 —V°Wp 1) Gy, (4.23)

where Gg g4 is obtained by changing the variable wy, in Gg by wy 1. By induction we know ¢, (F2) has

the factor Gy s. Also the wheel condition F, = 0 once x/;” = v2x? = v4ix?" = v’x*?, becomes
¢4,(F2) =0 once wgy =V~ 2wg 1. If j=nandi> 1, then
Gpp = (Wp1 —Wp 1) - Gp,y- (4.24)

Let QE = {d[l,n,n] = 1, d[i,n] = 1»da#[1,n,n],[i,n] = O}, then d3 < QQ and ¢Q3 (Fz) =0 1mphes that ¢Qz (FQ) =0
once wg 1 = Wg 1.
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e B=[1,j]forsomel<j<n B =[i,n¢ forsomel<i<t<n.

We already prove ¢ = n case, so we can use induction. If j < £ — 2, then Gg g = Gg [i,—1) and ¢g, (F2)
has the factor Gg g for the same reason. If j > £ + 1, then

Gﬂ,ﬂ’ = (Wﬂﬂ — U(“"*"’Q)wﬁ,yl)(wm — U(4£’4”+6>wﬂ,‘1) . G,B,[i,n,(Jrl]' (425)

By induction we know ¢, (F») has the factor Gg [y ¢+1), and the wheel conditions F, = 0 once x(’j D

(ﬁll) 2 (ﬁ 1) (ﬁ i) (ﬁ D 2,81
Z.

=vx7)) or /) =vix/)” =vx/), give the additional vanishing factors. If j = £ — 1, then

Gﬂyﬂ' = (ngﬂ — U(4l74n+2)w5r,1) . Gﬂ,[i,n,€+1]< (426)

By induction we know d)gz (F») has the factor Gﬁy[iyny[*,l]. Let QB = {d[Lg] = d[iynyg+1] =1, da#[lyg]y[iynyg+1] =0},
then d; < d, and ¢g, (F;) = 0 implies that ¢g, (F;) = 0 once wg1 = v~ Dwy 1. If j = ¢, then

Gpp = Wp1 — V" Dwg 1) - G fineras (4.27)

ﬁ D /31) 2 (ﬂl)

and the wheel condition F, = 0 once x/;~ = v*x,;” = v2x,/}’, gives the additional vanishing factor.
B =[1,n,j]forsome2 <j<nandp _[1 e]forsome2<1<£<n

We only need to prove 8 = [1,n, n] case, other cases can be proved by induction as above. If £ <n-—2,
then Gg g = Gj1,n-1)p and the vanishing factors appear for the same wheel conditions. If £ =n —1,
then

Gpp = (W1 — V'Wg 1) - G p- (4.28)

Let QS = {d[lvym,l] = d[i,n—z] = Lda#[l,n,n—l],[i,n—z] = 0}, then Q3 < dz and ¢43(F2) = 0 implies that
¢4,(F2) = 0 once w1 = v?wg 1. If £ =n, then

Gpp = Wp1 — v W 1) - Gy i), (4.29)

and the wheel condition F, = 0 once x,;
Wp1 =V W 1.

B=[1n,j]forsome2 <j<n,p =[in ¢ forsomel <i<f<n.
Ifj>3andi> 2, then Ggg = Gppjp and they appear for the same reason.
Let us consider now j > 3 and i = 2. Then if ¢ < j, we have

D = 2D = vix®D = vx%), becomes ¢y, (F2) = 0 once

Gpp = (Wpg1 —Wp 1) - Gpanj e, (4.30)

Let 43 = {d[l,n,l] = d[Z,n,j] = 1:da#[1,n,l],[2,n,j] = 0}, then Q3 < QZ and ¢Q3 (F2) = 0 implies that &4, (F;) =0
once Wg1 = Wp 1. If £ >j+ 2, then

Gpp = (Wp1 — U4”’4”2w;;/,1)(w5,1 _ U4”’4}’6Wﬂ’y1) “Gnj+1)8 (4.31)
and the wheel condition x)(‘g b u4x}(ﬂ D sz)('g M or x(ﬂ » u4x}(ﬂ b UQX(ﬂ ") gives the vanishing
factors. If ¢ = j + 1, then

Gﬁ,ﬂ’ = (wﬂ,l — u4"’4”2wﬁ,11)(w,3,1 - U4n74}76Wﬂr11)(Wﬁy1 - U4UJﬂr’1) . G[l,n,j+1],ﬂ'v (432)

then the wheel condition for (4.31) and x;, = u4x(f112) v2x" give the vanishing factors. If ¢ =,
then

Gpp = Wp1 =V we 1) -Gpg, (4.33)
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and the wheel condition x¥;” = v*x%;" = v2x;” give the vanishing factor.

Ifj>3andi=1, then¢ <j.If £ > 3, we have
Gpp = Wp1 —V " Wp 1) (Wp1 — U*Wp1) - Gpomjl 2 (4.34)

and the wheel conditions for (4.20) give the additional factors. If ¢ = 2, then for j > 3, we can use
induction. If £ = 2,j = 3, then

Gﬁ'ﬁf = (U.]ﬁyl — U’4wﬂ171)(wﬁ,1 — U74n+6w‘gry1)(w‘g'1 — U’4”+14wﬁ/,1) . Gﬂyﬂ. (435)
The wheel conditions for (4.25) and the wheel condition x{; " = v*x$3" = v’x{;" give the additional

factors. Now let B = [1,n, 2], then i > 2.If ¢ > 3 then we can use induction. If ¢ = 3, then 8/ = [2,n, 3],
and similar wheel conditions for (4.35) apply.

This completes our proof. n

Using formulas (4.20)—(4.21), we obtain the following explicit formulas for the factors G4 (which shall
be used in Subsection 4.2):

Corollary 4.7. The factors {Gglgea+ featuring in (4.19) are explicitly given by:

dg
Gp =[whe [ ps—viwpe)™ ifp=[ijl,
s=1 1<s#s'<dg
dp
4n—i—3j+1 —ij
Gp =[Jwss ™ [T {wss —viwpe)™ P wps — v?wpe)}x (4.36)
s=1 1<s#s'<dg

n-1
H H {(wﬂ,s _ U4n74[+2w,9,s’)(wﬂ,s _ U4n74876wﬁ,s')} lfﬂ — [I, Vl,j].

1<s#s'<dg (=]

Combining Propositions 4.4-4.6, we immediately obtain the shuffle algebra realization and the PBWD
theorem for U; (Logns1):

Theorem 4.8. (a) ¥: U; (Loony1) —> S of (2.16) is a Q(v)-algebra isomorphism.
(b) For any choices of s, and A in the definition (2.24) of quantum root vectors Ez, the ordered
PBWD monomials {Ep}hey from (2.34) form a Q(v)-basis of U (Lognt1).

4.2 RTT integral form U/ (Lo,,,1) and its shuffle algebra realization

For € € {#}, we define
o= B, V(B eATxZ, (4.37)

cf. (2.26)—(2.27). Similarly to (2.34), we also consider the ordered monomials

—

&= J] &9 vheH, (4.38)

(BS)eAt xZ

with the arrow — over the product sign indicating the order (2.33) on A* x Z.

Remark 4.9. The reason for the extra factor (2), in the definition (4.37) is explained in the
Appendix A; see Corollary A.5 and Proposition A.6.

We define the RTT integral form U (Lony1) as the Z[u,v~!]-subalgebra of U (Logny1) generated by
{SE,S}ZZZN- We note that the above definition depends on the choices of quantum root vectors in (2.26)-
(2.27) as well as of € € {#}. The main goal of the present subsection is to prove the following theorem
by simultaneously establishing the shuffle algebra realization of ¢ (Loons1), Which is of independent

interest:
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Theorem 4.10. (a) U (Loon41) is independent of the choice of quantum root vectors {EE,S}ZEEZN-

(b) For any choices of s; in (2.26)-(2.27) and ¢ € {£}, the ordered monomials {£] }ren Of (4.38) form
a basis of the free Z[v, v=']-module U (Logny1)-

For any k € N", consider the Z[v, v=']-submodule S, of S, consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

fe @z, v S5 S, (4.39)

1<i<n

where |k| = |(k1, ..., k)| =Ry + -+ + k.
(2) For any d € KP(k), the specialization ¢a(f - (2), ")) is divisible by

n-1
H H {(U—4n+4£—2 — 1y (pintaeEs _ 1)dﬂ}. (4.40)

p=linjlea* e=j
We define & := @y Sk Then, we have:
Proposition 4.11. W (Logny1)) C S.

Proof. Foranye e {+},me N, B1,...,Bm € AT, T1,...,Tm € Z, let

(8;71 e gfém.w)'

and f be the numerator of F from (2.12). We set k = Zq 1 By. Similarly to (3.50), if a variable x{" is
plugged into \IJ(EEQ_YQ) for some 1 < q < m, then we shall use the notation

o(x%?) = q.

Due to Lemma 4.1, f is divisible by (2),*, hence, the condition (4.39) holds. Now for any d € KP(R),
consider each summand from the symmetrization featuring in f. Pick any g = [i,n,j]with1 <i<j <n
such thatds # 0. Forany 1 < s < dg andj < £ < n, it suffices to show that the contribution of the
¢q-specializations of ¢-factors between the variables

no oo

B B (CORNED) (8.5 8.5
X200, x5 X Xe+12vxe2 }
is divisible by [TI-H (U442 — 1)(u~#"+4+6 _ 1)} The proof is by induction on ¢, where the base step
¢ =nis vacuous.

We first note that this ¢4-specialization vanishes unless

(B.s) (B.5)

x> o(xg}l’s)) > ox! ‘“)) > o(x! ﬁs’) >z o(xY) = o(x{ ﬂs))

If ox{}?) = 0(x{3”), then due to Lemma 4.1, this ¢4-specialization contains the required factor
.
H{(U—4n+4t—2 _ 1)(U—4n+4t+6 - D).

If ox{}”) > o(x{3”), then we have the following two cases to consider:

(B.9) )

* Case l:o(x/ 1) = o(xfz's)). Then we have

(B.5) (B, SJ B.9)

, : D)
0(Xpy71) = 0(Xg{ 5 1) c=0(Xp1p) =0(X3 £9).
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According to Lemma 4.1, the corresponding ¢4-specialization is divisible by

n—-1
H (U442 gy (dnHaes )
t=e+1

On the other hand, the ¢4-specialization of the product of ¢-factors

(B.5)

(B.5) B (B.5) /5,(B.S) (B.5) (B.5)
Q,e—l(xg'z /Xg,l'l)Q,l(Xz_z /Xl,l )Q+1.((XZ+12/XL1 )

contributes the remaining required factor (U142 — 1)(y=#+4+6 _ 1),

o Case 2: o(x;7)) > o(x{;”). Then the ¢y-specialization of the product of ¢ -factors

(B.5) /5,(B.S) 8) /3, (B,S) )S) 1 (B,S)
Q,l—l(x/fz /Xgﬁ_l,l)Q,Z(ng /Xgﬁ )Q,Hl(xgz /Xzﬁ.11

contributes the factor (u=#+4-2 — 1)(u=*#+4+6 _ 1) Considering the contribution of the ¢g-
specializations of ¢-factors between the variables

(B,s5) (B,5) B,5) ,(B,S) (B,5) (B,5)
{X » Xg11 » X o Xng e Xgglnos Xgi1

and using the induction hypothesis, we get the remaining required factors
n—-1
H (U442 _ 1y aanks _ gy
t=C+1
This completes our proof. n
We shall now introduce a certain refinement of & in order to describe the image WU, (Logns1)). Pick
any F € S and d € KP(k). First, according to (4.39) and (4.40), ¢4(F) is divisible by
Ai = (Q)Ulk\ ) H H {(U—4n+4£—2 _ 1)dﬂ (U—4n+4£+6 _ 1)015}' (4_41)

p=linjleat t=j

Second, following Corollary 4.7 (based solely on the wheel conditions), the specialization ¢,(F) is also
divisible by the product

:HGﬂ'

BeAt

with G computed explicitly in (4.36). Combining these two observations, we can now define the
following reduced specialization map

1<s<dﬂ]ei . ¢d(F)

£: 8 — Z[v, v [{wj i) gons via &)=

(4.42)

Let us introduce another type of specialization maps. Pick any collection of positive integers t =
1<r<tg

{tsripear’ (€s € N) satisfying

s
dp=D "ty VPeA’ (4.43)
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For any g € A*, we split the variables {wﬁys}fil into ¢4 groups of size tg, each (1 < r < ) and specialize
the variables in the r-th group to

_ _ 2ty
V52Zpr, VgtZpr, ... Vg Mz (4.44)

For any g € Z[v, U‘l][{wﬂ};iﬁd“]gé, we define wy(g) as the corresponding specialization of g. This gives
rise to the vertical specialization map

_ <s<d _ <r<t
oy: 2o, v Wil S5 — 2z, vz s ). (4.45)

Finally, given any d € KP(k) and a collection of positive integers t = {tg, ,}/9E =% satisfying (4.43), we
combine (4.42) and (4.45) to define the cross specialization map

Yar: S — Zv, v liZE i) via Yau(F) = oy (F)). (4.46)
Similarly to [29, Definition 3.37], we introduce:
Definition 4.12. F € &, is integral if Y4, (F) is divisible by H;iff" [tg+]v,! for any d € KP(k) and

l<r<ty

t={tgr)pcar satisfying (4.43).
Let S ¢ S denote the Z[v, v~!]-submodule of all integral elements. Then, we have:
Proposition 4.13. WU (Loont1)) C S.

Proof. Foranye e {},meN, B1,...,Bm € AT, 11,...,Tm € Z, let

(5;] Ao g;m Ym)

Forany g € AT and 1 < < {4, we need to show that under Yy, the contribution of the ¢-factors between
the variables x{*” that got specialized to v’z is divisible by [ts]y,!. For 8 = [i,j] with 1 < i <j < n, this
follows from [30, Lemma 3.51] (note that vy = vj).

It remains to treat the case g = [i,n,j] with 1 <1i <j < n. We note that vg = v? for this 8. Without loss
of generality, we may assume that under the ¢4-specialization:

(B.5) —2i (8,9 -2n (ﬁ s) —-2n+2 (B.s) —4n+2j+2
X P U Was e, Xy P U W, X5 > U Wps, oo Xy P> U T W s
for 1 < s < tg,, while under the w;-specialization:
W > U zgy, oo, Wey,, > Uz

Fix any 1 < s # s’ < tg,. First, let us consider the relative position of the variables

x5 (ﬂ s)

x5 xS 4.47
Xii100 X )

J+1,27 72

that is, compare their o-values with o(x(* 9y defined now as in the proof of Proposition 4.11. We can
assume that

(B,s"

ox!7,) z ox5”) and ox7)) = ox5),

as otherwise the corresponding term is specialized to zero under ¢g. If o(x;/;*” )= o(x;g'sr) ) then, according
to Lemma 4.1, the corresponding term is divisible by

(U4 (ﬁ S) _ (ﬁs))(UA‘ (ﬁS) '(,I;S))'
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whose ¢4-specialization contributes the factor (Wgss — V*wps)(Wps — Viwgs). If o(xj(é's)) £ o(x}é’s/)), then
without loss of generality, we can assume o(x;é’”) > o(x}.(g'sr) ). Then:

o If o(x‘ff;) > o(x;’;'s)), then the ¢q4-specialization of the product of ¢-factors

(ﬂS) (B8 (ﬂS) (ﬂs)
C)Hl( /X+12) C)JH( /X+1z

contributes the factor (wgs — V*wg ) (Wpy — U*Wg ).

. Ifo(x“‘ 9y > o(x(ﬁf;) then the ¢4-specialization of the product of ¢-factors

<ﬁs> (85 KB B9
G057 %07 - G jr (X7 /X 0)

contributes the factor (wgs — v*wp e )(Wpe — Uiwgs).

Similarly, considering the ¢4-specialization of the ¢-factors arising from the following quadruples

(ﬂ s) (}3 S) (B,8) (8,8 (B,5) (ﬁ s) B,s ) (ﬂ s')

X220 Xy Xiho00 Xjp1200 oo (X057 %00 Xns  Xn1n

(ﬂ s) (/3 s) (/S s') B.s) (ﬂ s)  L(B.S) BS) ,(BS)
(Ko Xt Xl o) -0 X0 Xy X ’Xi+1,1}’

along with the contribution of the tuple (4.47) considered above, they produce a total contribution of
the factor

(wﬂ,s _ U4wﬂ’sl)2n—i—j—1(wﬂ’s/ _ U4wﬁys)2n—i—j—1.
Second, let us consider the relative position of the variables

(ﬁS) (ﬁS) (ﬂS) (ﬁS) (ﬁS) (B8
{n 1,1 nl ’ YIZ ) n 1,1 nl 'XH,Z } (4-48)

We can assume that
ox#s) D)= o(x(ﬂ ) > o(x“‘3 ) and o(xffiﬁ)l) > o(x(’“)) > o(x(ﬁs)), (4.49)

as otherwise the corresponding term is specialized to zero under ¢4. Then:

. Ifo(x(ﬁ 9y < o(x(’3 Sy or o(x(ﬁ ) < ox? S)l), then the ¢4-specialization of ¢-factor
{n,n(X(’S 9 /xS Y or 1(X(ﬁ s )/X(ﬂ 9y

respectively, contributes the factor wgs — v*wg . Otherwise, o(x(ﬂ ) > o(x(ﬂs)) > o(x(ﬁ S)l), which
together with (4.49) implies:

s )] (
oty = oY) = oxfi) = 0xf5).

(* *)

But there are at most two variables x,;” plugged into each \D(égq,,q), a contradiction.

o fox’s) < oxfy ) or ox}Y) < o(x(ﬁS )) oro(xYy ) < o(x”,), then the ¢;-specialization of ¢-factor
GO X0 o LB xS or G (U5 xE )

respectively, contributes the factor wss —v-2wp . Otherwise, if o(x’s”) > o(xy’ 0, ox5) = oxfy? 9y,

and o(x’y’ ) > o(x?,), then according to (4.49) we have

o(x7) = o(xyli”) = 0ox (3 = 0x/5”).
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The latter can not occur for the same reason as above, hence, a contradiction.

Swapping the roles of s and s’ in the above two bullets, we thus conclude that the ¢4-specialization
of the ¢-factors arising from (4.48) contributes the factor

(Wps =V Wps) (Wp s — VW) Wps — VW) Wps — VW)
Finally, for any j < ¢ < n, let us consider the relative position of the variables

B8 ,(BS) Bs)  BS)
{57, %200 x5 )G )

We can assume that o(xfﬁ'i:)l) > o(xff/)) > o(xfﬁ'i/y)l), as otherwise the corresponding term is specialized
to zero under ¢g. If o(x%s)) = o(x%’s,)), then the corresponding term has the factor

} 4B . B o
(X%S) —y Xglls ))(X%S) —v 4X2f,31s ))

as in Lemma 4.1, and so its ¢4-specialization produces the factor

An—4e+2 4n—40—6

(Wps —v Wps)(Wps —U Wpg).

If ox3”) < o(xé’y’fl)) or o(x{”) > o(xé’y’f”), then the ¢4-specialization of the products

oo xSy 0 T P or G BT xEGD)  cee T x )
respectively, contributes the required factor

An—4¢+2 An—40—6

(wﬂ,s —U wﬂ,s’)(wﬁ,s —U wﬂ,s')<
All these contributions overall produce exactly the factor Gg from Corollary 4.7. However, we
have not used yet the factors {ii(xf‘i’s)/xﬁ’sl’). We can now appeal to the “rank 1” computation of [30,

Lemma 3.46] to deduce the required divisibility by [t ]y !. |

Finally, combining Propositions 4.5, 4.6, and 4.13, we obtain the following upgrade of Theorem 4.8
(we note that divisibility (4.39, 4.40) is precisely matching the constants of (4.10), while the divisibility
condition from Definition 4.12 is precisely matching the “rank 1” formula (3.49)):

Theorem 4.14. (a) The Q(v)-algebra isomorphism W: U; (Logyy1) —> S of Theorem 4.8(a) gives rise
to a Z[v, v~!]-algebra isomorphism ¥: U (Logn1) —> S.
(b) Theorem 4.10 holds.

4.3 Integral form U} (Lo, 1) and its shuffle algebra realization

Similarly to (3.38), we consider the divided powers

k

ex
(k) . ir ;
E” = @, vVi<i<n reZ keN. (4.50)

Likewise, we define the integral form U3 (Logny1) as the Z[u, v~*]-subalgebra of U (Logy1) generated by
{Eﬁ)}’;iﬂ\’q oz FOr any (8,s) € A* x 7, we define the normalized divided powers of the quantum root vectors

from (2.26)-(2.27) via:

ifp=[ijjwithli<j<n
e (4.51)

T, ifp=[injwithi<i<j<n
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Similarly to Proposition 3.8, we obtain:
Proposition 4.15. For any 8 € At,s € Z, k € N, we have E;’s(k) € UZ (Logny1).

Proof. The proof is similar to that of Proposition 3.8. Let U] (0on4+1) be the “positive subalgebra” of the
Drinfeld-Jimbo quantum group of type B,. Thus, U} (02n11) is the Q(v)-algebra generated by {E;}; subject
to the v-Serre relations. Let U3 (02n41) be its Lusztig integral form, defined as the Z[v, v~!]-subalgebra of
U; (0on41) generated by the divided powers

K Ef
ER = I vi<i<nkeN.
! [ky,!

Recall our specific convex order (2.21) on A™T. Let {Eg},seN denote Lusztig's quantum root vectors
of Uj(oon41) associated to this convex order. We also define {E;}lgEN as the following iterated v-
commutators similar to (2.26)-(2.27):

E[:)] = [ o [[Ei: Ei+1]u*2 ) Ei+2]v*2 ) ij]u*Zy
(4.52)

E[:n)] = [ o [[[ o [Ei, Ei+1]u*7y te )EH]U’Zy En], En—l]u*zy te ,Ej]u*z-

Then, according to [21, Proposition 5.5.2] and [2, Theorem 4.2], we have:

- & ifg=[ijljwithi<i<j<n
Es=12 . . [4}]< . J=n (4.53)
[Q]U!Ef3 ifg=[njlwithl<i<j<n

To pass from the finite to the loop setup, we note that for any s = (s1,...,sp) € Z", the assignment
E1+> e1q,...,En > eng, gives rise to an algebra homomorphism

ns: Uy (02n41) — Uy (Loong1),

such that ns(UJ (02n4+1)) C U (Loons1). As f!;v'sfk) = ng(ﬁ;(k)) and f:;‘k) € U (09n41) by [22, Theorem 6.6], we
get fl;y's(k) € U7 (Logny1). Using similar arguments and the convex order on A™ opposite to (2.21), we also
obtain f:;';k) € U3 (Logny1). This completes our proof. [ |

For any k € N", consider the Z[v, v~1]-submodule S; of S; consisting of rational functions F satisfying
the following two conditions:

(1) If f denotes the numerator of F from (2.12), then

f ez, v e S (4.54)

i,r J1<i<n
(2) For any d € KP(k), the specialization ¢,(F) is divisible by the product
H (2), 90 0B1I=D) H {(2),%B1-2 (1), }

p=lijlent p=linjleat
(4.55)

n-1
H H {(U—4(n—[,)—2 _ 1)d,, (U—4(n—()+6 _ 1)d,,}'
B=[injleat t=
Remark 4.16. We note that this definition is much simpler than that of S, in Definition 4.12.

We define S := @y S- Then, similarly to Proposition 3.9, we have:

Proposition 4.17. ¥ (U7 (Logn41)) C S.
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Proof. Foranyme N, 1 <iy,...,im <N, T1,...,Tm €Z, {1,...,m €N, let

Fi=w(EY ...E™)

13,11 T, Tm/?
and f be the numerator of F from (2.12). According to Lemma 3.10:

_ tqttg-D

\II(E“ D=V T K X))t Visqgsm,

hence, the condition (4.54) holds. To verify the validity of the divisibility (4.55), it suffices to show (see
Lemma 3.2 for g = [i,j]) that forany g = [i,n,j] (1 <i<j <n),and 1 < s < dg, the total contribution of

¢q-specializations of the ¢-factors between the variables {x(ﬂ S)}:ﬁm‘“ is divisible by

( Yo 1Bl1— 2<1 H{(U—4(n 0)-2 1)(U—4(n 0)+6 1)} (456)
t=j

We shall now use the notation o(x{*;”) defined as in (3.50). The ¢;-specialization of the corresponding
product of ¢-factors vanishes unless

o) 2 o) 2 - 2 0) 2 06 2 -+ 2 o) = 0

Since the equality above can occur only in a single spot, due to o(x(’S ) £ o(x(ﬁ 9y for i # 1, we need to
treat the following two cases:

(1) o(x<ﬂ 9y > o(xfﬁf)l) > o(x('g ) > o(x“g > > o(xff)z) > o(x(’s ).
(2) o(x! “S)) > o(xﬁfﬁ) > > o(xfP) = ox ,55)) S>> o(x}ﬁf)z) > o(x/“))

In the first case, the ¢q-specialization of each ¢-factor
G iy XA, b 8 D), e Do/, g (5T /X))
as well as of the product
eSS/ ED) - Gy () xS

contributes a multiple of (2),, thus totalling (2),¥'~1. On the other hand, for any j < ¢ < n — 1, the
¢q-specialization of the product of ¢-factors

L1 x5 X0 - o 1xED) b Y x5

contributes precisely the required factor (u=#"=9-2 — 1)(y=#1-0+6 _ 1),

For the second case, the only difference is that we replace the product of two ¢ -factors &, »(x; S)/x;’?f)).
tnno1 (x5 /x3) with a single &1 (x5 /xP9), so that the first contribution of (2,1~ is now getting
replaced with (2)UW 2 (1)y.

This completes our verification of the divisibility (4.55), thus concluding the proof. |

For any h € H, define the ordered monomials (cf. (2.34))

— —

B+ — g+ (1(B,9)) - — g (h(B.9)

Ef = [] ESY E = [] ESYY. (4.57)
(B,S)EAT XZ (B,S)EAT XZ

For any e € {£}, let S be the Z[v,v~ 11-submodule of S; spanned by {W(E¢ #)Iner, - Then, the following
analogue of Lemma 2.8 holds:

Proposition 4.18. For any F € S; and d € KP(k), if ¢4 (F) = 0 for all d’ € KP(k) such that d’ < d, then
there exists Fj € S; such that ¢4 (F) = ¢4(Fy) and ¢ (Fg) = 0 for all d <d.
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The proof of this result is completely analogous to that of Proposition 3.11. Combining Proposi-
tions 4.17 and 4.18, we obtain the following upgrade of Theorem 4.8:

Theorem 4.19. (a) The Q(v)-algebra isomorphism W: U; (Losny1) — S of Theorem 4.8(a) gives
rise to a Z[v,v1]-algebra isomorphism ¥: U (Losni1) —> S.

(b) For any choices of s in (2.26)—(2.27) and € € {+}, the ordered monomials {ﬁ;}th of (4.57) form
a basis of the free Z[v, v=']-module U3 (Log41).

5 Yangian Counterpart

In this section, we generalize the results of Sections 3—4 to the Yangian case, thus establishing shuffle
algebra realizations of Yangians and their Drinfeld-Gavarini duals in types B, and G,. This should be
viewed as the “rational vs trigonometric” counterpart, where we replace factors Z —vf by z—w — £h.In

(ei,)-1
z

particular, ¢;;(z) of (2.13) will be replaced by Z'I'J'(Z) =14+ —5—.

5.1 The Yangian Y; (g) and its shuffle algebra realization

We still use the notations from Section 2. Let g be a finite dimensional simple Lie algebra of type B, or
G,. Following [3], the “positive subalgebra” of the Yangian of g in the new Drinfeld realization, denoted
by Y; (g), is the Q[h]-algebra generated by {x;,}/<' subject to the following defining relations:

iel

dia;h .
[Xir+1, Xis] — [Xiy, Xjsa] = %(Xi'r){j's + XjsXir) vijelrsel, (5.1)

Sym  [Xig,, [Xis, - » [Xi,SHU VX1l =0 Vi#j,S1,..., S1-a;, T € N. (5.2)

Analogously to (2.24)(2.25), let us now define the root vectors {Xs 151 . of Y3 (g):

BeAn+t
* B,-type.
For any B = [i1,...,1)] € A" from (2.18) and s € N, choose a decomposition s = s; + --- + s; with
S1,...,S¢ € N. Then, we define
Xﬁ_s = [ o “XH,Sl’ Xizysz]' Xiz,Sa]v e iny.SJ' (53)
e Go-type.
For g =[i1,...,1] #[1,2,1,2,2], s € N, the elements X ; are defined exactly as in (5.3).
For B =[1,2,1,2,2] and s € N, we choose a decomposition s = s1 + -+ + S5 with s1,...,85 € N, and
define
Xps = [[X151, X2, ], [[X15, X2,5, ], X255 ]]- (54)

We will also need the following specific choices {X5s)5N, of (5.3)~(5.4):

BeAt
* B,-type.
Xijs = [ [Kis Xiy10), Xivaol, -, Xjol, 1<i<j<n, (5.5)
Kinjis = [ ([ [Kis: Xix10], -+ Xnol, Xnol X1l -+, X0, 1<i<j<n (5.6)
e Go-type.
Kijs =%is, 1<1<2, (5.7)
Ky = [X15,%20], (5.8)
X005 = [[X1s, 2.0, X2.0], (5.9)
K025 = [[[¥15, %2,0], X2,0], X20], (5.10)
K212 = [[X1s, X20], [X10, X2,0], X2,0]]- (5.11)
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Let H denote the set of all functions h: A* x N — N with finite support. For any h € H, we consider
the ordered monomials

— —
h(B, S Sh(B.s)
Xp= ] %% and K= ] Ko (5.12)
(B,s)eAt xN (B,s)eAt xN

Then, similarly to [19] (cf. [14, Theorem B.3]), we have:

Theorem 5.1. The elements {Xp}nen form a basis of the free Q[h]-module Y7 (g).
Proof. Comparing X, to the root vectors ejgs’ used in [14, (A.11)], we see that the only difference is in
the root vectors X15,1,2,9)s in Go-type. However, the two key properties (B.1) and (B.2) of [14, Appendix B]
still hold for the new root vectors, cf. Remark 5.15. Hence, the proof of [14, Theorem B.2] and thus of
[14, Theorem B.3] still goes through. This proves that {Xn}nen form a basis of the free Q[h]-module Y7 (g).
The proof of the fact that the ordered monomials {Xj}nen in more general root vectors of (5.3)—(5.4) also
provide a basis will be derived from the shuffle algebra realization of Y} (g); see Theorem 5.14. [ ]

We define the shuffle algebra (W, ) analogously to the shuffle algebra (S, ) of Section 2 with the
following modifications:

(1) All rational functions F € W are defined over Q[h].
(2) The matrix (¢j(z));je is defined via

N (aj,0j) - h
;i,j(z) =14+ 722 . (513)
(3) (pole conditions) F € Wy has the form
1<r<k,
x; ik
= Wof ({IQS}S‘EJI A (5.14)
Hi<j Hlsvsk\ Xy = Xjs)
where f € Q[h][{xi,}g'fkl]ek and < is an arbitrary order on L.
(4) (wheel conditions) Let f be the numerator of F € W;, from (5.14), then
l<r=<k; diaij
Fdxirhig =o0once X5 = Xjs, +dih=---= Xigy o — diagh = x;, — 7 h (5.15)
for any i # j such that a; # 0, pairwise distinct 1 < s1,...,81-q; <kj,and 1 <7 <k;.

5) The shuffle product is defined like (2.14), but ¢;;(3r) are replaced by &i:(Xiy — Xi s).
12 J\x p y I 7>
.S

Similarly to Proposition 2.1, we have:

Proposition 5.2. The assignment x;; — x/, € Wy, (i € LT € N) gives rise to a Q[h]-algebra
homomorphism

U Y:(g) — W, (5.16)

Let us adapt our key tool of specialization maps to the Yangian setup. In type G», the specialization
maps ¢4 are defined via the following specialization of the x{*;”-variables, cf. (3.2):

B wps+th, 1<t<2

X
(5.17)
x> wps — 3h+th, 1<t<3.
In type By, the specialization maps ¢4 are defined via the following specialization of the x{;”-variables,

cf. (4.2):

X9 s wps —ih, x5V whs—(@n—i-1Dh  VBeAT, l<s<ds ieph. (5.18)
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In what follows, we will use the notation = to denote an equality up to Q* (cf. (2.44)):
A=B if A=c-B forsomeceQ*. (5.19)

Remark 5.3. We emphasize thatcin (5.19) is a nonzero element of Q rather than Q[h]. Most impor-
tantly, the appearance of such constants occurs from the “rank 1” computations. Explicitly, the
formula (3.49) in the shuffle algebra S is now replaced by the equality

Xigxoex Xl = (X)) (5.20)

N —
£ times
in the shuffle algebra W for any i € I,r > 0,¢ > 1; see [30, Lemma 6.22]. Thus, the product of
quantum integers in the trigonometric case is now replaced by the product of integers.
We have the following straightforward analogues of Lemmas 3.1 and 4.1:

Lemma 5.4. For type G,, we have:

V) x5, 1<i<2, (5.21)
U LT 5.22
Xpaps) = X1 — %01’ (5.22)
- hzxi .
(X = . , 5.23
X229 (X1,1 — X2,1)(X1,1 — X2,2) (5.23)
- h3X51 ]
V(X = : , 5.24
Kpn22215) (X1,1 — X2,1)(X1,1 — X22)(X1,1 — X2,3) ( )
5 . o gxarn x001553)
VX 212008) & iz, (5.25)
ngéz(xl,v —Xat)
where g € Q[h][{x1, X2,1}15:53] 2% S* (we do not really need an explicit formula for this g).
Lemma 5.5. For type By, we have:
- hj’ixs1
W(Kjijs) = . , 5.26
s (X1 — Xig1,1) - Ko — X5,1) (5.26)
- R xs T2 2R 4 X — Xe2)(2h — X1 + Xe.2)
Y Kiinjs) = B (5.27)

n—1 .
&ig = Xip1,) - Ko = X0 Korn = X50) TSy Tlhar e Rer = Xer10)

As follows from the above two lemmas, the images W (X, ) are divisible by h''=*. This is actually true
for any root vectors X s defined in (5.3)—(5.4):

Lemma 5.6. For any g € A* and s € N, W(X;,) is divisible by h'#"=.
Proof. The proof is similar to that of Lemma 4.2, and follows immediately from the equality
(a3, )

5j@ —§i(-2) = h. ]

Furthermore, invoking the constants ks given by (3.21) in type G, and by (4.9) in type B,, we have the
following straightforward analogue of Lemmas 3.2 and 4.2:

Lemma 5.7. In both types G, and B, we have:
dp(W(Xps)) =N - pgs(Wp 1) V(B,5) € AT xN, (5.28)

where pgs(w) € Q[h][w] is a monic degree s polynomial in w over Q[h].
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Recall that H denotes the set of all functions h: A* x N — N with finite support. For any k € N
and d € KP(k), we define the subsets Hy, Hy 4 of H similarly to (2.37), but with h € H been replaced by
h € H. Using Lemma 5.7 and arguing exactly as in Sections 3—4, we obtain the following analogues of
Lemmas 2.6 and 2.7 for the Yangians of types G, and By:

Lemma 5.8. For any h € Hg4, we have

B<B
(W (X)) = et 4 [T Gy T Gs- [T P (5.29)
BB eA+ BeA+ BeA+

where Ggp, Gy are independent of h € Hpy and are rational counterparts of Gsp, Gy from
Lemma 2.6 (obtained by replacing factors (x — v'y) with (x —y — $h)), while

dg

« B)-h
Py = Symes,, (Hpﬁ.v,,m_s)(w,s,s) IT (+ M)) . (5.30)
s=1 ,S T

1<s<r=dg

This again features a “rank 1 reduction”: each f’w from (5.30) can be viewed as the shuffle product

Pprsn1y)(X) % -+ % P rundy (X) In the Aq-type shuffle algebra W, evaluated at {wﬁys}gil. The following result
is a Yangian counterpart of Lemma 2.7 for types G, and B,:

Lemma 5.9. For any h € Hyg and d’ < d, we have ¢y (W (X;)) = 0.

Combining Theorem 5.1 and Lemmas 5.8-5.9, we obtain (cf. [30, Proposition 6.16]):

Proposition 5.10. The homomorphism W of (5.16) is injective.

Following [29, Definition 3.27], we introduce:

Definition 5.11. F € W, is good if ¢4(F) is divisible by hZe=s* %% for any d € KP(k).

Let Wy, be the Q[h]-submodule of all good elements in Wy, and set W := Py We.

Proposition 5.12. W (Y7 (g)) C W.
Proof. Foranym € N, iy,...,in €, 11,...,Tm € N, set F .= W(xy, ,, - - - X, ), and let f be the numerator of F
from (5.14). Setk = X)L, o;, € N}, and choose any d € KP(k). It suffices to show that the ¢4-specialization

of each summand in the symmetrization from f is divisible by hZs+ % _Similarly to (3.50), if a variable

x is plugged into W(x;, r,) for some 1 < q < m, then we shall use the notation ox) =q.
In type By, the case of g = [1,]] is analogous to A,-type. Thus, it remains to treat the case of g = [i,n,j]

with dg # 0. For any 1 <'s < dg, the ¢4-specialization of the corresponding summand vanishes unless

(B.5)
i+1,1

) > > o)) > oxfs)) > - > o(x(F)

) > 0 h).

(B,
oxh?) > o(x o

In the latter case, the ¢;-specialization of the ¢-factors between pairs of the x¥,” -variables contributes
precisely the required factor h**.

In type G,, the only nontrivial check is for 8 = [1, 2,1, 2, 2] case. Suppose dg # 0. For any 1 < s < dg,
the ¢¢-specialization of the corresponding summand vanishes unless

o) > 0ox¥i?) > 0(x¥y”) > 0(x¥s”) and o(x¥5) > oxFs).
In the latter case, the ¢;-specialization of the £-factors between pairs of the x% -variables contributes
precisely the required factor h® = h** as well. |

Let W’k be the Q[h]-submodule of Wy spanned by {W (Xy)}nen, - Then, the following Yangian counterpart
of Lemma 2.8 holds true in types G, and B, (cf. Propositions 3.6 and 4.6):
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Proposition 5.13. For any F € Wy, and d € KP(k), if ¢y (F) = 0 for all d’ € KP(k) such that d’ < d, then
there exists Fq € W), such that ¢4(F) = ¢a(Fa) and ¢y (Fg) = 0 for all d <d.

Proof. Since Fis good, the specialization ¢,(F) is divisible by hZsear 4% On the other hand, arguing as in
the proofs of Propositions 3.6 and 4.6 (which utilized only wheel conditions), we conclude that ¢4(F) is
also divisible by [],_4 Gop - [pen- Gp. Therefore, we have:
B<p
¢a(F) = hZsesr @ TT Gy [] Go-G (5.31)
B.BeAT e+

for some symmetric polynomial G € Q[h][{wﬁys};iiid"]ei. Combining (5.31) with Lemma 5.8 (and the

“rank 1” counterpart from [29, end of proof of Lemma 3.18]), we see that there is a linear combination
Fg = ZthM cnXp such that ¢4 (F) = ¢4(Fg). On the other hand, the equality ¢4 (Fg) = 0 for all d' < dfollows
from Lemma 5.9. |

Combining Propositions 5.12-5.13, we immediately obtain the shuffle algebra realization and the
PBW theorem for Y; (g) in types G, and By:

Theorem 5.14. (a) The Q[h]-algebra embedding W: Y; (g) — W of Proposition 5.10 gives rise to a
Q[h]-algebra isomorphism W: Y7 (g) — W.

(b) The ordered monomials {Xu}pen of (5.12) form a basis of the free Q[h]-module Y7 (g),
cf. Theorem 5.1.

Proof. According to Lemma 5.9 and Proposition 5.10, {¢(Xp)}hen C W are linearly independent.
On the other hand, by iterated application of Proposition 5.13, we also get that {W(Xp)}nen span
W over Q[h], cf. [31, Proposition 1.6]. Thus, {¥(Xp)}nen form a basis of W. Combining this with the
injectivity of the homomorphism ¥: Y;(g) — W from Proposition 5.10 (which uses the validity of
Theorem 5.14(b) only for the particular choices X5, see Theorem 5.1), we immediately obtain both parts
of Theorem 5.14. [ |

Remark 5.15. We note that Theorem 5.14(b) can be proved directly as Theorem B.3 in [14]. The
proof of the latter relied only on (B.1) and (B.2) of loc.cit. The former of these holds true in our
setup without any changes: A(Xgs) = Xps ® 1 + 1 ® Xps + lower order terms, where A is the
coproduct on the Yangian and we use the standard filtration on the Yangian. On the other
hand, (B.2) fails on the nose, but what we really need is the property stated after (B.2) which
does still hold: “for any PBW monomial y, the expression z,(y) is polynomial in the variable a,
has a maximal degree of a equal to the filtered degree of y, and the coefficient of this leading
power of a equals y which is obtained from y by replacing all x;, with x;,".

5.2 The Drinfeld-Gavarini dual Y; (g) and its shuffle algebra realization
For any (B,s) € At x N, define X € Y7 (g) via

Xgs =h-Xps. (5.32)

We define Y; (9), the “positive subalgebra” of the Drinfeld-Gavarini dual, as the Q[h]-subalgebra of Y7 (g)
generated by {)_{,g,s}fi%‘ For any h € H, define the ordered monomial (cf. (5.12)):
o= ] %o (5.33)
(B,5)eAt xN

Similarly to [14, Theorem A.7], we obtain:

Theorem 5.16. (a) Y; (g) is independent of the choice of root vectors Xz in (5.3)~(5.4).
(b) For any choices of s in (5.3)~(5.4), the ordered monomials {Xj}ne; form a basis of the free Q[h]-
module Y; (9).

Proof. The arguments of [14, Appendix A] apply directly to the particular choice {)?ﬁ_s};ﬂ% The general

case can be derived from the shuffle realization of Y; (g); see Theorem 5.20. [ |
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Remark 5.17. We note that Theorem 5.16 can be proved directly as Theorem A.7 in [14]. The proof
of the latter relied only on the validity of properties (As1, As2, As3) from loc.cit. In the present
setup: (Asl) is obvious, (As2) is established in Theorem 5.14(b), (As3) is verified precisely as in

[14, Lemma A.6] since all our Xz,'s are still iterated commutators of x;,’s.

Following [29, Definition 3.8], we introduce:

Definition 5.18. F ¢ W, is integral if F is divisible by h® and ¢,(F) is divisible by hZsea+ %+ for

any d € KP(k).

Let Wy, C Wy be the Q[h]-submodule of all integral elements, and set W := @, .y Wi. Then, following

Lemmas 5.6-5.7 and the proof of Proposition 5.12, we obtain:
Proposition 5.19. W(Y; (g)) ¢ W.

Finally, we have the following upgrade of Theorem 5.14:

Theorem 5.20. The Q[h]-algebra isomorphism W: Y (g) — W of Theorem 5.14(a) gives rise to a

Q[h]-algebra isomorphism ¥: Y; (g) = W.

Proof. It remains to prove the opposite inclusion W < lIl(Yg (g)). To this end, it suffices to show that
for any F € Wy and d € KP(R), if ¢4 (F) = 0 for all d' € KP(k) such that d' < d, then there exists F; €
Wi N \I/(Y; (9)) such that ¢4(F) = ¢a(Fg) and ¢y (Fg) = 0 for d < d, cf. (2) after Lemma 2.8. The proof
of this result is analogous to the proof of Proposition 5.13, except that the factor hx#ses* %% in (531) is

getting replaced by h2sear 4+

A The RTT Realization in Type B,

In this section, we recall the RTT realization of U, (Loany1), established in [17], and use it to explain the

natural origin and the name of the integral form ;" (Loy,41) from Subsection 4.2.

RTT realization of Uq(Looy41)
Set N=2n+1.For 1 <i< N, we define i and i via:

' =N+1-1
d,...Ny=mn-3,....30-3...,-n+1).
To follow the notations of [17], we also define:

q:=v? (sothatv=qg?), ¢:=¢*N

Consider the trigonometric R-matrix with a spectral parameter Ryg(u) given by

_ _g! — g YHu-—
U1R+qq P(CIQ)(M 1

Reg®) = g T R i — g T wa— e hw—8)

Q

see [17, (3.1)], where P,Q, R € (End QV)®? are defined via (with q = v? as in (A.3)):

P = Z ejj ® &ji,

1<i,j<N
Q= > qey@e;
1<ij<N

itn+l i)

R = z ql_‘s“““eﬁ ® e + Z eii ® g + q‘l z e ® ey +

1<i<N 1<ij<N i#n+1

@-aHD ey@e—(@-q > q ey e

i<j i>j

(A1)

(A2)

(A.3)

(A.4)

(A5)

20z 1udy 60 uo isenb Aq #¥9€1.9//6529/./¥20z/a 101 e/ulwl/wod dno-oiwapese//:sdpy woly papeojumoq



6298 | Y.Huand A. Tsymbaliuk

This Reng(u) satisfies the famous Yang-Baxter equation (with a spectral parameter):
Ririg:12 (U/V) Rerigi13 (u/W)Rerigios (V/W) = Ririgyo3 (U/W)Rerigi13 (U/W)Rerigy12 (U/V). (A.6)

Following [17] (with the conceptual ideology going back to [12]), we define the RTT integral form of
the quantum loop algebra of oy, denoted by U: (Loy), to be the associative Z[v, v~—*]-algebra generated

by {E?[q:r]}’é%iN with the following defining relations:

zg[O]:z};[O]:o fori<i<j<N,

¢E0]eF[0]=1 for 1 <i<N,

Resg(2/W) L5 @) L3 () = L3 W)LE@DReig 2/0), )

Rerig(2/w) LT (2) L5 (W) = L5 W) LT (2)Rerig (z/w),
as well as

LEWDLTuE)'D™T = DL ue)' DL W) =1, (A.8)
where t denotes the matrix transposition with E}j = Ej; and D is the diagonal matrix

D =diag(q', q% ..., q").
Here, ££(u) € UM (Loy)[[u, u~?]] ® End QN is defined by
L = Y ei(u) ®E; with €W = Zzu Frlu (A.9)

1<ij<N =0

We also define the Q(v)-counterpart U (Loy) := U (Lon) Qzpyu-1) Q).

Remark A.1. The last two relations in (A7) are commonly referred to as the RTT relations. However,
without imposing (A8), one actually gets an extended version of that algebra featuring an extra
Heisenberg algebra factor.

Let Uy(Loy) be the quantum loop algebra of type B, in the new Drinfeld realization. It is a Q(v)-

algebra generated by {Xliy, @ik, ik, kﬂ};izlffN with the relations as in [17, §1]. Identifying xJr with our e;,

the subalgebra of U, (Loy) generated by {x{ r}ﬁZ}(n recovers U (Loy) from Subsection 2.1. In what follows,

we will consider the following generating series:

KW= xuT, e = e,y = gt

reZ k=0 k=0

The relation between the algebras U, (Loy) and U2 (Loy) was recently established in [17]. To state the
main result, we consider the Gauss decomposition of the matrices £%(u) from (A.9):

LEW) =FEu) - HE(w) - EX (u).
Here, F£(u), HE (W), B (u) € U (Loy)[[u, u~]] ® End QN are of the form

F*(u) = Z Ei+ D ffw®E;, H W= Z (W ®Eii, E*w) = Z Ei+ > ef(w ®E;.
i>j i<j
Theorem A.2 ([17]). There is a unique Q(v)-algebra isomorphism
0: Uy(Lon) = UM (Lon)
defined by

€l () — €, (ug) 49D — fipy,(uq)

n i ) _
X (W= q-q° X W Qo2 — g2 (A.10)

Yi(w) = o, (ughhy ug) ™, i) = 1 ughHhfugh ™

where q = v? asin (A3).
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Remark A.3. We note right away that [17] established a similar isomorphism for centrally
extended algebras, and also that they used slightly rescaled formulas for the images of x£(u).

The RTT realization of /; (Loo,4+1)

Let U™ (Loy) be the Z[v,v~!]-subalgebra of U (Loy) generated by the coefficients of {e?(u)}lfkjsN, the
matrix coefficients of E*(u). The key goal of this appendix is to highlight the natural origin of the integral
form U (Loonyq) introduced in Subsection 4.2 and its specific quantum root vectors (a special case of
(4.37))

Efs = 2o~ [+~ [leis, eiv1oluz, €ia 0l -+ €oluz,
(A.11)
g[rlt;}] s = (2)11 . [ o [H . [ei,Sr ei+1,0}u2, Y en,O]uzy en,O], en—l,O]Lﬂ P @j,o]u2~
Let us express the matrix coefficients of E*(u) as series in u*! with coefficients in U™ (Loy):
ew=> ¢, egw=>¢'u’ Visi<j<N. (A12)
>0 >0
We also define ej(u) = eg(u) - ei)’.(u) The key technical result of this subsection is:
Proposition A.4. For any 1 <i <j <n, we have:
ij 0 0 0
s = A= @7 - [ [fegirn @, €% o0, 6% sl €0l (A13)
and
ei,j’ W = q(1 _ qZ)Hj—Zn—l(_l)j—n—lX
0 0 0 0 0
[0 [ei,i+1 (w), e§+)1,i+2]qy ceey e;vr)l.g]q, e,(q,,:.u]y ei(’l—)l,ﬂ]q’ e 'e;,jirl]q (A.14)

Proof. Due to the “rank reduction” embedding homomorphisms of [17, §3.2, Proposition 4.2], it suffices
to prove both formulas (A.13) and (A.14) fori=1and 1 <j <n.

We prove (A.13) for i = 1 by induction on j > 1, the base case j = 1 being vacuous. Comparing
the matrix coefficients (v; ® vj|-- - |v; ® Uj;1) of both sides of the RTT relation Rtrig(z/w)[l[(z)[lg (w) =
L5 W)LY (2)Reng(z/w), we get:

zZ—w (q—qHz
W @5, (W) + 7q5 @, (W) =
(A.15)
Z—Ww q-q Hw _
w-qw 5 (W)E;(2) + ﬁ i (W54 (2).
Expanding all rational factors as series in z/w and evaluating the [w°]-coefficients, we obtain:
QZIJ(Z)KJ}+1[O] = qE;JJrl[O]ZIj(Z) + (1 - )Z [0]¢ 1J+1(Z) (A.16)

Likewise, comparing the matrix coefficients (1 ® vj| - - - [v; ® v;) of both sides of the same RTT relation,
we also get:

z-—w Q-9 bz
men(z)‘ﬁ w) + ﬁe @)5W) = £ W)Ly (2). (A.17)

Expanding both rational factors as series in z/w and evaluating the [w°]-coefficients, we obtain:

aty;@)e; [0] = & [O]KI).(Z), (A.18)
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or equivalently:

1

510 52 = a7 @65 (0] (A.19)
0 - _ © _ 0©
Let h;[0] be the u -coefficient ofh (w). Then, £5[0] = h-[0] and ¢;;,,[0] = h[O]e;,, = ¢;[Ole; ;. Thus,
multiplymg (A.16) by 1 [0]7 on the left and applying (AA19), we obtain:
- 0
(1-aMe;,,@ = [6,@,e5, ]a- (A.20)
Here, ZUH(Z) =h; (z)eUH(Z) and £; (z) = hy (2)e}, (z) As hj (z) commutes with e; J+1(w) forl<j<?2,we
derive:

@ =01-a)"[e;@,e7) ]o. (A.27)

Arguing in the same way, but using the other RTT relation Riig(z/W) LT (2)£5 (W) = L5 (W)L (2)Rerg(z/w),
we also obtain:

efa@=01-a)" [ef@,e] o (A.22)
Subtracting (A.21) from (A.22), we finally get:
€11 = (1=a)7" - ey (@), €7, ]o. (A.23)

Applying the induction assumption for e;j(z) completes our proof of (A.13) for i =1.
+ (0)
To prove (A.14) for i = 1, we note first that ey, (2) = % forn+1 <k < 2n, similarly to (A.21)-
(A.22). But according to [17, Proposition 5.4] (corrected by replacing —e¥ | (uq®"~?) with —ef(utg”") in

i © ©) .
loc.cit), we have e, = —e,’ . Therefore, we get:

@ =—-1-g)" [gh@.e o (A.24)

Finally, a special care should be taken of the k = n + 1 case as in that case the matrix coefficient
(V1 @ Uny1] L5 (w)ﬁf(z)}img(z/w)wnﬂ ® Un41) 18 given by a different formula:

B _ o Gt (Z/W)
V1 ® Unt1|L; WLT @Ruig@/W) | Vst ® Vnat) = ; o q“% s Gy (WG, (@), (A25)

where

Q7w -8@E/w-D+E-1Q?-Dz/w fi=n+1
Ains1 (Z/W) = 1 (@2 — DG E - (z/w — 1) ifi<n+1. (A.26)
q?- 1)qf*'lTl S(z/w = Dz/w ifi>n+1

Expanding all rational factors in z/w and evaluating the w®-coefficient, only the i = n+ 1 term will have
a nontrivial contribution. Explicitly, we obtain the following analogue of (A.18):

qeli,n+1 (Z)e;+1,n+1[ ] qzn+1 n+1 [O]Zl n+1 (Z) (A'27)

so that (A.19) will get replaced by

-1
£n+1 n+1 [O] 1 n+1(z) = an-%—‘l (Z)[YH—l n+1 [O] (A-28)

This establishes (A.14) for i = 1 and j = n, while (A.24) establishes it then for 1 <j < n. |
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Combining Proposition A.4 with g(xj(u)) = :—gzei_m(uqi) of (A.10), the definition (A.11), and identifi-
cation of the present currents xi+ (u) with the currents e;(u) of (2.10), we obtain:

Corollary A.5. Forany 1 <i<j<nands € Z, we have:

o€l =€, and o0 =€, (A.29)

Since the elements (A.11) are specific case of quantum root vectors (4.37), we finally obtain:
Proposition A.6. o(U (Loon1)) = U™ (Logny1).

This result explains why we called U (Losny1) the RTT integral form of Uj(Logni1). Moreover,
Theorem 4.10(b) implies the PBWD theorem for U™~ (Log,11), cf. [14, Theorem 3.25]:

Corollary A.7. The ordered monomials in {efj’) |i<jsuchthati+j<N,r e Z} form a basis of the

free Z[v, v=1]-module U™ (Logni1).
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