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Abstract
Weconstruct Laxmatrices of superoscillator type that are solutions of the RTT-relation
for the rational orthosymplectic R-matrix, generalizing orthogonal and symplectic
oscillator type Lax matrices previously constructed by the authors in Frassek (Nuclear
PhysB, 2020), Frassek andTsymbaliuk (CommunMath Phys 392 (2):545–619, 2022),
Frassek et al. (Commun Math Phys 400 (1):1–82, 2023). We further establish factori-
sation formulas among the presented solutions.
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1 Introduction

1.1 Summary

The study of supersymmetric solutions to the Yang–Baxter equation goes back to the
works of Kulish and Sklyanin in the early 80’s, see e.g. [25], who introduced the R-
matrix that generates the supersymmetric Yangian of gl(n|m), see [30]. As common
for Lie superalgebras, the underlying vector space is equipped with a Z2-grading to
incorporate bosonic and fermionic degrees of freedom. Similarly to the purely bosonic
case, there exists an evaluation map ev : Y (gl(n|m)) → U (gl(n|m)) from the Yangian
of gl(n|m) into the universal enveloping algebra of the Lie superalgebra gl(n|m), see
[22, 30], which facilitates the study of the spectrum of supersymmetric spin chains. In
particular, the algebraic Bethe ansatz for a large class of representations in the quantum
space and the construction of the corresponding transfer matrices are well-understood,
see [22]. The same is true for the functional relations (T -systems and QQ-systems)
among such transfer matrices and Q-operators, see [26, 31–33] as well as [24] for an
overview.

The construction of the Q-operators has been carried out more recently in [13]
employing certain degenerate Lax matrices of superoscillator type (see also [23] for a
different approach). The Lax matrices for Q-operators in the trigonometric case were
obtained in [7] for n + m = 3 and in [34, 35] for arbitrary n,m. The degenerate
solutions of the Yang–Baxter equation with a rational (resp. trigonometric) R-matrix
arise naturally by taking certain limits of the evaluation representation of the Yangian
(resp. quantum affine algebra) in the parabolic Verma modules of the underlying Lie
algebra, realized in terms of superoscillator algebras. The crucial difference between
the solutions that arise from the ordinary Yangian and the degenerate solutions is
that the coefficients of the leading power of the spectral parameter are not of full
rank in degenerate case. Therefore, this class of solutions does not arise through the
ordinary Yangian, but is rather related to the so-called (RTT antidominantly) shifted
Yangians, as has been recently realized in [15] (cf. [8] for an interpretation via the 4d
Chern-Simons theory). The latter are usually defined in terms of Drinfeld’s current
realization, see e.g. [3, Appendix B], and the identification with the aforementioned
RTT ones goes through the Gauss decomposition of the generating matrix T (x) as
in the ordinary case [5], see [15, Theorem 2.54]. For the bosonic case of gl(n), the
degenerate Lax matrices that are linear in the spectral parameter were constructed in
[14], while the reconstruction of degenerate Lax matrices at any order of the spectral
parameter has been achieved in [15] using the results of [3]. Using the S(n)-invariance
of the rational R-matrix of gln one can further obtain other degenerate Lax matrices
which do not admit a Gauss decomposition (and thus are no longer directly related to
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the shifted Yangians). Thus, the transfer matrices are constructed from representations
of the ordinaryYangian, while the Q-operators are constructed from representations of
the shifted Yangian, cf. [20] and references therein. We note that this approach allows
to deduce functional relations among transfer matrices and Q-operators directly from
the Yang–Baxter equation using certain factorisation properties of the Lax matrices
combined with the BGG-type resolutions for the underlying Lie algebras, see [4, 6,
12].

The situation changes drastically for the Yangians of the orthosymplectic Lie super-
algebras osp(N |2m)which unify the bosonic cases in BCD-types, that is, Yangians of
orthogonal soN and symplectic sp2m Lie algebras. Similarly to BCD-type, the evalua-
tion map no longer exists and representations of the orthosymplectic Lie superalgebra
cannot be always lifted to representations of the corresponding Yangian. The R-matrix
in the defining vector representation was obtained in [1], generalizing the BCD-type
R-matrix of [37], but other solutions of the Yang–Baxter relation or the RTT-relation
(for the Laxmatrix) are scarce, see [11, 21] and references therein. The algebraic Bethe
ansatz has been obtained for spin chains in the defining vector representation in [19],
but little is known about other representations as well as the underlying functional
relations. A glimpse towards the latter appeared in the study [2] of the AdS/CFT-
correspondence in relation to the quantum spectral curve for AdS4/CFT3, but remain
to be confirmed from the first principles. Further results for more general Lie superal-
gebras were recently obtained in [36]. The full understanding of the QQ-system may
yield newmethods of solving Bethe equations similar to the method developed in [29]
for gl(n|m).

In this paper, we enlarge the class of representations of the orthosymplectic (shifted)
Yangians by introducing several Lax matrices of superoscillator type, which can be
used to construct transfer matrices and Q-operators. We anticipate the BGG-type
functional relations among those, generalizing our recent BCD-type results of [12].

Finally, let us note that there has been an increased mathematical interest in the the-
ory of quantum supergroups. In the context of orthosymplecticYangians of osp(N |2m)

specifically, their Drinfeld realizations were established recently in [28] and [27] for
the cases N = 1 and N > 3 with the standard parity, respectively. In the sequel paper
[17], we present uniform Drinfeld realizations of orthosymplectic Yangians for any
N ,m and, most importantly, any parity sequence.

1.2 Outline

The structure of the present paper is the following:

• In Sect. 2, we recall the key results of [13] on gl(n|m)-type Lax matrices that serve
as motivation and prototype for our new constructions in the orthosymplectic type.

• In Sect. 3,we set the notation for the orthosymplectic R-matrix and the corresponding
Lax matrices, as well as discuss the invariance of this R-matrix that is needed for our
latter results.

• In Sect. 4, we construct some linear superoscillator Lax matrices of orthosymplectic
type. First, we construct a degenerate linear Lax matrix in Theorem 4.11. Fusing two
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of those, we then construct a non-degenerate linear Lax matrix in Proposition 4.55,
whose normalized limits recover back the degenerate Lax matrices, see Remark 4.60.
In the special cases m = 0 or n = 0, we recover the corresponding orthogonal and
symplectic Lax matrices of [9, 12, 16], respectively.

• In Sect. 5, we investigate some quadratic orthosymplectic Laxmatrices of superoscil-
lator type. First, fusing two degenerate linear Lax matrices from Sect. 4, we construct
a Lax matrix of size (N + 2m) × (N + 2m) for even N in Theorem 5.44. We call this
matrix degenerate quadratic Lax as its diagonal is ∼ (x2, x, . . . , x, 1) with respect
to the spectral parameter x . A further degeneration of this matrix, depending only in
N+2m−2 pairs of superoscillators, is obtained in Proposition 5.52. A similar formula
provides an orthosymplectic Laxmatrix for odd N , seeConjecture 5.64. Finally, fusing
two degenerate quadratic Lax matrices we derive explicit non-degenerate quadratic
orthosymplectic Lax matrices in Proposition 5.80 and Theorem 5.85, whose normal-
ized limits recover back the degenerate quadratic Lax matrices, see Remark 5.90.

• In Appendix A, we present explicit formulas (A.1, A.2) and (A.4, A.5, A.6) for the
twists needed to define both the transfer matrices and the Q-operators, as mentioned
in the Introduction above.

While the constructions ofSects. 4–5 are presented for the specificparity sequences (3.4)
or (5.58), similar Lax matrices exist for other parity sequences as well, according to
Remarks 3.16, 4.62, 5.89.

2 General linear Laxmatrices

The first results on superoscillator type Lax matrices for Q-operators and their fac-
torisation formulas were presented in [13] for the rational R-matrices of gl(n|m)-type.
The Lax matrices for the trigonometric case were obtained in [7] for n + m = 3 and
in [34, 35] for arbitrary n,m. In this section, we briefly recall the results of [13] that
are relevant to the rest of the paper.

Fix n,m ≥ 0 and consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vn+m

such that each vi is either even (that is, vi ∈ V0̄) or odd (that is, vi ∈ V1̄) and
dim(V0̄) = n, dim(V1̄) = m. For 1 ≤ i ≤ n + m, we define |i | := |vi | ∈ Z2. We
define the parity sequence associated to V via

ϒV := (|v1|, . . . , |vn+m |) ∈ {
0̄, 1̄

}n+m
. (2.1)

For a superalgebra A and homogeneous elements a, a′ ∈ A, their supercommutator
is defined as

[a, a′] = aa′ − (−1)|a||a′| a′a , (2.2)

where |a| denotes the Z2-grading of a. Given two superspaces A = A0̄ ⊕ A1̄ and
B = B0̄ ⊕ B1̄, their tensor product A ⊗ B is also a superspace with (A ⊗ B)0̄ =
A0̄ ⊗ B0̄ ⊕ A1̄ ⊗ B1̄ and (A ⊗ B)1̄ = A0̄ ⊗ B1̄ ⊕ A1̄ ⊗ B0̄. Furthermore, if A and B
are superalgebras, then A⊗ B is also a superalgebra, called the graded tensor product
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of A and B, with the multiplication defined by

(a ⊗ b)(a′ ⊗ b′) = (−1)|b||a′| (aa′) ⊗ (bb′) (2.3)

for any homogeneous elements a ∈ A|a|, a′ ∈ A|a′|, b ∈ B|b|, b′ ∈ B|b′|.
Let P : V ⊗ V → V ⊗ V be the permutation operator defined by

P =
n+m∑

i, j=1

(−1)| j | ei j ⊗ e ji , (2.4)

whose action is explicitly given by:

P(v j ⊗ vi ) = (−1)|i || j | vi ⊗ v j . (2.5)

Consider the corresponding rational R-matrix (of general linear type, or super A-type
for short):

R(x) = RV(x) = xId + P , (2.6)

which satisfies the famous Yang-Baxter equation (with a spectral parameter):

R12(x)R13(x + y)R23(y) = R23(y)R13(x + y)R12(x) . (2.7)

For any superalgebra A, an even matrix L(x) = LV(x) = (Li j (x))
n+m
i, j=1 ∈ End V ⊗

A[[x, x−1]] is called an (A-valued) Lax matrix if it satisfies the corresponding RTT-
relation with R(x) of (2.6)

R12(x − y)L1(x)L2(y) = L2(y)L1(x)R12(x − y) , (2.8)

viewed as an equality in End V ⊗ End V ⊗ A[[x, y, x−1, y−1]]. Coefficient-wise, the
equation (2.8) is equivalent to (see [18]) the well-known system of equations for all
1 ≤ i, j, k, � ≤ n + m:

[Li j (x), Lk�(y)] = (−1)|i || j |+|i ||k|+| j ||k|

x − y

(
Lkj (y)Li�(x) − Lkj (x)Li�(y)

)
. (2.9)

Remark 2.10 (a) Here, we identify the matrix (Li j (x))
n+m
i, j=1 with

∑n+m
i, j=1(−1)|i || j |+| j | ei j ⊗ Li j (x). Evoking (2.3), the extra sign (−1)|i || j |+| j | ensures

that the product of matrices is calculated as usual. The above “even” condition means
that Z2-grading of all coefficients of Li j (x) is |i | + | j |.
(b) The data of a Lax matrix LV(x) = (Li j (x))

n+m
i, j=1 with Li j (x) ∈ δi j + x−1A[[x−1]]

for all i, j is equivalent to an algebra homomorphism Y rtt(gl(V)) → A from an RTT
super Yangian of gl(V).

(c) Unless we want to emphasize the dependence on ϒV , the superscript V will be
ignored.
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Remark 2.11 Let Ṽ be another superspace with a C-basis ṽ1, . . . , ṽn+m such that each
ṽi is even or odd and dim(V0̄) = dim(Ṽ0̄), dim(V1̄) = dim(Ṽ1̄). Pick a permutation
σ ∈ S(n + m) such that vi ∈ V and ṽσ(i) ∈ Ṽ have the same Z2-grading for all

1 ≤ i ≤ n + m, and define a superspace isomorphism Jσ : V ∼−→ Ṽ via vi 
→ ṽσ(i).
The corresponding R-matrices (2.6) are related via

RṼ(x) = (Jσ ⊗ Jσ ) RV(x) (Jσ ⊗ Jσ )−1 . (2.12)

As a result, if LV(x) = (Li j (x))
n+m
i, j=1 is a solution of (2.8), then L

Ṽ(x) := Jσ LV(x)J−1
σ

is a solution of (2.8) for Ṽ used instead of V. In other words, having constructed some
Lax matrices, a natural S(n+m)-symmetry allows for analogous Lax matrices for all
parity sequences (2.1).

Among other Lax matrices, the following family {LV
a (x)}n+m

a=0 was constructed
in [13]1:

La(x) = LV
a (x) =

⎛

⎜
⎝

xIda − K̄K K̄

−K Idn+m−a

⎞

⎟
⎠ (2.13)

with

K̄ =

⎛

⎜⎜
⎝

ξ̄1,a+1 ξ̄1,a+2 · · · ξ̄1,n+m

ξ̄2,a+1 ξ̄2,a+2 · · · ξ̄2,n+m
...

...
. . .

...

ξ̄a,a+1 ξ̄a,a+2 · · · ξ̄a,n+m

⎞

⎟⎟
⎠ (2.14)

and

K =

⎛

⎜⎜
⎝

(−1)|1|ξa+1,1 (−1)|2|ξa+1,2 · · · (−1)|a|ξa+1,a

(−1)|1|ξa+2,1 (−1)|2|ξa+2,2 · · · (−1)|a|ξa+2,a
...

...
. . .

...

(−1)|1|ξn+m,1 (−1)|2|ξn+m,2 · · · (−1)|a|ξn+m,a

⎞

⎟⎟
⎠ . (2.15)

Here, (ξi j , ξ̄k�) are superoscillators with Z2-grading |ξi j | = |i | + | j | and |ξ̄k�| =
|k| + |�| that obey the following commutation relations:

[ξi j , ξ̄k�] = δi�δ jk , [ξi j , ξ�k] = 0 , [ξ̄k�, ξ̄ j i ] = 0 (2.16)

for any 1 ≤ j, k ≤ a < i, � ≤ n + m, with the supercommutator [−,−] defined
in (2.2).

It was further noticed in [13] that for any 0 ≤ a ≤ n + m, one has a total of(n+m
a

)
Lax matrices analogous to (2.13), see [13, (2.12)] onwards, corresponding to

the number of choices to distribute a spectral parameters x on the main diagonal of

1 It is obtained from the linear canonical L-operator of [13, (2.20)] for the trivial representation of the
additional generators of gl(p|q) in loc.cit., i.e. setting Eab 
→ 0, and an appropriate shift of the spectral
parameter x .
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the Lax matrix of size n + m. Evoking the invariance of the R-matrix (2.6) under
the symmetric group S(n + m), see (2.12), these Lax matrices can be obtained by
permuting rows and columns of the one in (2.13), see Remark 2.11. The following
family of such Lax matrices will be relevant to us in the following:

L̄a(y) = L̄V
a (y) =

⎛

⎜
⎝

Ida K̄

K yIdn+m−a + KK̄

⎞

⎟
⎠ . (2.17)

Let us first explain how these Laxmatrices are related to those in (2.13). To this end,
let V̄ be the superspace with a basis {v̄i }n+m

i=1 whose parity sequence (2.1) is opposite
to that of V, that is

|v̄i | = |vn+m+1−i | ∀ 1 ≤ i ≤ n + m . (2.18)

The corresponding rational R-matrices are related via (2.12)with σ(i) = n+m+1−i ,
so that

Jσ = Jn+m =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 · · · 0 1

... . .
.

. .
. 0

0 . .
.

. .
. ...

1 0 · · · 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (2.19)

Then, as noted in Remark 2.11, the matrix L̂ Ṽ
n+m−a(z) obtained from (2.17) through

L̂ V̄
n+m−a(x) = Jn+m L̄

V
a (x)J

−1
n+m (2.20)

is Lax and has opposite Z2-grading to that of L̄V
a (x), i.e. the underlying vector super-

spaces have opposite parity sequences. Using the notation ā = n + m − a and
i ′ = n + m + 1 − i , we find that

L̂ V̄
ā (x) =

⎛

⎜
⎝

xIdā + QQ̄ Q

Q̄ Idn+m−ā

⎞

⎟
⎠ (2.21)

with

Q̄ =

⎛

⎜⎜
⎝

ξ̄(ā+1)′,1′ ξ̄(ā+1)′,2′ · · · ξ̄(ā+1)′,ā′
ξ̄(ā+2)′,1′ ξ̄(ā+2)′,2′ · · · ξ̄(ā+2)′,ā′

...
...

. . .
...

ξ̄(n+m)′,1′ ξ̄(n+m)′,2′ · · · ξ̄(n+m)′,ā′

⎞

⎟⎟
⎠ (2.22)
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and

Q =

⎛

⎜⎜
⎜
⎝

(−1)|(ā+1)′|ξ1′,(ā+1)′ (−1)|(ā+2)′|ξ1′,(ā+2)′ · · · (−1)|(n+m)′|ξ1′,(n+m)′
(−1)|(ā+1)′|ξ2′,(ā+1)′ (−1)|(ā+2)′|ξ2′,(ā+2)′ · · · (−1)|(n+m)′|ξ2′,(n+m)′

...
...

. . .
...

(−1)|(ā+1)′|ξā′,(ā+1)′ (−1)|(ā+2)′|ξā′,(ā+2)′ · · · (−1)|(n+m)′|ξā′,(n+m)′

⎞

⎟⎟
⎟
⎠

.

(2.23)
Applying further the particle-hole transformation

ξ̄i ′ j ′ 
→ −(−1)| j ′|ξi j , ξ j ′i ′ 
→ (−1)|i ′|ξ̄ j i ∀ 1 ≤ j ≤ ā < i ≤ n +m , (2.24)

we obtain the Lax matrix of (2.13) defined on the vector space V̄ with the opposite
grading, i.e.

L V̄
ā (x) = L̂ V̄

a (x)|p.h. . (2.25)

It thus follows that LV
a (x) of (2.13) and L̄V

a (x) of (2.17) satisfy the same RTT-
relation (2.8).

Remark 2.26 The Lax matrix (2.17) is obtained through a particle-hole transforma-
tion (2.24) from that of [13, (3.4)] for I = {1, . . . , a}, J = {a + 1, . . . , n + m}, the
trivial representation of the additional copy of gl(p|q), and an appropriate shift of the
spectral parameter, cf. Footnote 1.

Let us now consider two copies of mutually supercommuting superoscillators{(
ξ

[r ]
i j , ξ̄

[r ]
j i

)}a<i≤n+m
1≤ j≤a , where the superscript r = 1, 2 indicates whether they appear

in LV,[1]
a (x) or L̄V,[2]

a (y), respectively. The subsequent factorisation was considered
in [13, §3.1]:

LV,[1]
a (x)L̄V,[2]

a (y) =

⎛

⎜
⎜
⎝

xIda − K̄′
1K

′
1

(
(y − x)Ida + K̄′

1K
′
1
)
K̄′
1

−K′
1 yIdn+m−a + K′

1K̄
′
1

⎞

⎟
⎟
⎠

⎛

⎜
⎝

Ida K̄′
2

0 Idn+m−a

⎞

⎟
⎠

(2.27)

where
K′

1 = K1 − K2 , K̄′
1 = K̄1 ,

K̄′
2 = K̄2 + K̄1 , K′

2 = K2 ,
(2.28)

and the subscript r = 1, 2 denotes the corresponding family of oscillators. As noted
in [13, §3.1], the generators (2.28) are related to those in (2.13)–(2.17) through a
similarity transformation:

K′
r = SaKrS−1

a , K̄′
r = SaK̄rS−1

a (r = 1, 2) (2.29)

with

Sa = exp

⎡

⎣
a< j≤n+m∑

1≤i≤a

ξ̄
[1]
i j ξ

[2]
j i

⎤

⎦ . (2.30)
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We note that all the summands in the exponent above are bosonic2 and pairwise
supercommute.

Remark 2.31 It immediately follows from (2.29), but can be also directly checked
from (2.28), that the entries of the matricesK′

r , K̄
′
r encode mutually supercommuting

pairs of superoscillators.

It follows that for any x1, x2 ∈ C, the matrix

Lx1,x2(x) = LV
x1,x2(x) =

⎛

⎜
⎝

(x + x1)Ida − K̄1K1
(
(x2 − x1)Ida + K̄1K1

)
K̄1

−K1 (x + x2)Idn+m−a + K1K̄1

⎞

⎟
⎠

(2.32)
is a solution to the RTT-relation (2.8), hence, is Lax. Moreover, it arises through the
fusion

LV,[1]
a (x + x1)L̄

V,[2]
a (x + x2) = Sa LV

x1,x2(x)

⎛

⎝
Ida K̄2

0 Idn+m−a

⎞

⎠S−1
a (2.33)

with the similarity transformation Sa of (2.30).

Remark 2.34 Similarly to [12, §8], we note that we can vice versa obtain the degen-
erate linear matrices LV

a (x) and L̄V
a (x) of (2.13, 2.17) from the non-degenerate linear

Lax matrix LV
x1,x2(x) of (2.32) via the renormalized limit procedures (which clearly

preserve the property of being Lax):

LV
a (x) = lim

t→∞
{
LV
0,t (x) · diag

(
1, . . . , 1︸ ︷︷ ︸

a

; 1
t , . . . ,

1
t︸ ︷︷ ︸

n+m−a

)}
,

L̄V
a (x) = lim

t→∞
{
diag

(
1
t , . . . ,

1
t︸ ︷︷ ︸

a

; 1, . . . , 1︸ ︷︷ ︸
n+m−a

)
· LV

t,0(x)
}∣∣∣

ξ̄i j 
→−ξ̄i j , ξi j 
→−ξi j
.

(2.35)

3 Orthosymplectic Laxmatrices

In this section, we set the notation for the orthosymplectic R-matrix and the corre-
sponding Lax matrices, as well as discuss the invariance of this R-matrix that will be
instrumental later on.

3.1 Orthosymplectic setup

Fix N ,m ≥ 0, and consider the set I := {1, 2, . . . , N + 2m} equipped with an
involution ′:

i ′ := N + 2m + 1 − i . (3.1)

2 Elements of a superalgebra are called “bosonic” or “fermionic” if their Z2-degree is 0̄ or 1̄, respectively.
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Let V be a superspace with a Z2-homogeneous basis v1, . . . , vN+2m such that

dim(V0̄) = N , dim(V1̄) = 2m , (3.2)

and the grading is Z2-symmetric in the following sense:

|vi | = |vi ′ | ∀ 1 ≤ i ≤ N + 2m . (3.3)

For the major part of our constructions (except for Sects. 5.3–5.4), we shall assume
that N is even: N = 2n. In this case, we pick the following specific Z2-grading of V :

|i | := |vi | =

⎧
⎪⎨

⎪⎩

0̄ for 1 ≤ i ≤ n

1̄ for n + 1 ≤ i ≤ n + 2m

0̄ for n + 2m + 1 ≤ i ≤ 2n + 2m

(3.4)

which corresponds to the following parity sequence, cf. (2.1):

ϒV =
(
0̄, . . . , 0̄︸ ︷︷ ︸

n

, 1̄, . . . , 1̄︸ ︷︷ ︸
2m

, 0̄, . . . , 0̄︸ ︷︷ ︸
n

)
. (3.5)

Similarly to (2.4), we consider the permutation operator P : V ⊗ V → V ⊗ V
defined by

P =
N+2m∑

i, j=1

(−1)| j | ei j ⊗ e ji . (3.6)

We also consider the operator Q : V ⊗ V → V ⊗ V defined by

Q =
N+2m∑

i, j=1

(−1)|i || j |θiθ j ei j ⊗ ei ′ j ′ . (3.7)

Here, the sequence θ = θV = (θ1, . . . , θN+2m) of ±1’s is determined uniquely by the
conditions

θi ′ = (−1)|i |θi , θ≤(n+m) = 1 , (3.8)

so that
θ = θV =

(
1, . . . , 1︸ ︷︷ ︸

n+m

,−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

)
(3.9)

for the specific Z2-grading (3.4). Explicitly, the action of Q is given by:

Q(va ⊗ vb) =

⎧
⎪⎨

⎪⎩

0 if b 
= a′
∑N+2m

i=1 θi vi ⊗ vi ′ if b = a′ , a > n + m

(−1)|a| ∑N+2m
i=1 θi vi ⊗ vi ′ if b = a′ , a ≤ n + m

. (3.10)
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We also introduce a constant κ via:

κ = N

2
− m − 1 = n − m − 1 . (3.11)

Consider the rational R-matrix (a super-version of the one considered in [37]):

R(x) = RV (x) = x(x + κ)Id + (x + κ)P − xQ , (3.12)

which satisfies the Yang–Baxter equation with a spectral parameter (2.7) according
to [1].

For any superalgebra A, an even matrix L(x) = LV (x) = (Li j (x))
N+2m
i, j=1 ∈

End V ⊗ A[[x, x−1]] will be called an (orthosymplectic) Lax matrix if it satisfies
the RTT-relation (2.8) with R(x) of (3.12). Coefficient-wise, this is equivalent to the
following system of relations (see [1]):

[Li j (x), Lk�(y)] = (−1)|i || j |+|i ||k|+| j ||k|

x − y

(
Lkj (y)Li�(x) − Lkj (x)Li�(y)

)

+ 1

x − y + κ

⎛

⎝δki ′
N+2m∑

p=1

L pj (x)L p′�(y)(−1)|i |+|i || j |+| j ||p|θiθp

−δ� j ′
N+2m∑

p=1

Lkp′ (y)Lip(x)(−1)|p|+| j |+|i ||k|+|i ||p|+| j ||k|θpθ j

⎞

⎠ .

(3.13)

Remark 3.14 The data of a Laxmatrix (Li j (x))
N+2m
i, j=1 with Li j (x) ∈ δi j+x−1A[[x−1]]

is equivalent to an algebra homomorphism X rtt(osp(V )) → A from an RTT extended
orthosymplectic Yangian.

Remark 3.15 We recover orthogonal and symplectic types as special cases of the above
setup:

• For m = 0, we have θ = (1, . . . , 1︸ ︷︷ ︸
2n

) and |i | = 0̄ for all 1 ≤ i ≤ 2n, so that R(x)

of (3.12) coincides with the Dn-type rational R-matrix of [12, (1.19)].
• For n = 0, we have θ = (1, . . . , 1︸ ︷︷ ︸

m

,−1, . . . ,−1︸ ︷︷ ︸
m

) and |i | = 1̄ for all 1 ≤ i ≤ 2m,

so that our R(−x) of (3.12) coincides with the Cm-type rational R-matrix of
[12, (1.19)].

Remark 3.16 Let Ṽ be another superspace with a C-basis ṽ1, . . . , ṽN+2m satisfy-
ing (3.2, 3.3). Pick a permutation σ ∈ S(n + m) such that vi ∈ V and ṽσ (i) ∈ Ṽ
have the same Z2-grading for all 1 ≤ i ≤ n +m, and extend it to σ ∈ S(N + 2m) via
σ(i ′) = σ(i)′. Define a superspace isomorphism J̃σ : V ∼−→ Ṽ via vi 
→ ṽσ (i). The
corresponding R-matrices (3.12) are related via

RṼ (x) = (J̃σ ⊗ J̃σ ) RV (x) (J̃σ ⊗ J̃σ )−1 . (3.17)
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As a result, if LV (x) = (Li j (x))
N+2m
i, j=1 is a Lax matrix corresponding to the fixed

parity ϒV , then LṼ (x) := J̃σ LV (x)J̃−1
σ is a Lax matrix corresponding to the parity

ϒṼ , cf. Remark 2.11.

3.2 Symmetries of the orthosymplectic R-matrix

In this section, we establish the invariance of the R-matrix (3.12) under certain graded
permutationmatrices that will be used in the later constructions. The proofs are based
on direct computations of the commutators of the corresponding operators with P,Q
of (3.6, 3.7). To this end, let us recall the explicit formulas for the action of P and Q,
cf. (2.5, 3.10):

P : vi ⊗ v j 
→ (−1)|i || j | v j ⊗ vi ,

Q : vi ⊗ vi ′ 
→ (−1)|i |θi
N+2m∑

j=1

θ j v j ⊗ v j ′ , vi ⊗ vj 
=i ′ 
→ 0 .
(3.18)

Henceforth, Jr will denote the r × r matrix with “1” on the antidiagonal, cf. (2.19).

Lemma 3.19 The R-matrix (3.12) commutes with the tensor product of two matrices

Jθ =
⎛

⎝
0 −Jn

Jn+2m 0

⎞

⎠ (3.20)

that is, [R(x), Jθ ⊗ Jθ ] = 0.

Proof The tensor product of the matrices Jθ acts explicitly via

Jθ ⊗ Jθ : vi ⊗ v j 
→ (−1)δi>n+2m+δ j>n+2m vi ′ ⊗ v j ′ . (3.21)

We thus have:

P (Jθ ⊗ Jθ ) : vi ⊗ v j 
→ (−1)|i ′|| j ′|+δi>n+2m+δ j>n+2m v j ′ ⊗ vi ′ , (3.22)

(Jθ ⊗ Jθ )P : vi ⊗ v j 
→ (−1)|i || j |+δ j>n+2m+δi>n+2m v j ′ ⊗ vi ′ , (3.23)

so that [P, Jθ ⊗ Jθ ] = 0 since |ι| = |ι′| for all ι.
To check the invariance of Q, we first note that

Q (Jθ ⊗ Jθ ) (vi ⊗ vj ) = 0 = (Jθ ⊗ Jθ )Q (vi ⊗ vj ) for j 
= i ′.
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It thus remains to compare the images of vi ⊗ vi ′ under both Q (Jθ ⊗ Jθ ) and
(Jθ ⊗ Jθ )Q:

Q (Jθ ⊗ Jθ ) : vi ⊗ vi ′ 
→ (−1)|i ′|+δi>n+2m+δi ′>n+2m θi ′
N+2m∑

j=1

θ j v j ⊗ v j ′ , (3.24)

(Jθ ⊗ Jθ )Q : vi ⊗ vi ′ 
→ (−1)|i |θi
N+2m∑

j=1

(−1)δ j>n+2m+δ j ′>n+2m θ j v j ′ ⊗ v j . (3.25)

The right-hand sides of (3.24, 3.25) coincide due to the first equality in (3.8) and the
identity

(−1)δi>n+2m+δi ′>n+2m = (−1)δi>n+2m+δi≤n = −(−1)|i |

that follows immediately from (3.4). This verifies [Q, Jθ ⊗ Jθ ] = 0.
As Jθ ⊗ Jθ commutes with both P and Q, so it does with the R-matrix (3.12). ��

Lemma 3.26 The R-matrix (3.12) commutes with the tensor product of two matrices

J̃ =

⎛

⎜⎜⎜
⎝

0 0 1

0 IdN+2m−2 0

1 0 0

⎞

⎟⎟⎟
⎠

(3.27)

that is, [R(x), J̃ ⊗ J̃] = 0.

Proof The tensor product of the matrices J̃ acts explicitly via

J̃ ⊗ J̃ : vi ⊗ v j 
→ vĩ ⊗ v j̃ with ĩ =
{
i ′ if i = 1, 1′

i if i = 2, . . . , 2′ . (3.28)

We thus have:

P
(
J̃ ⊗ J̃

) : vi ⊗ v j 
→ (−1)|ĩ || j̃ | v j̃ ⊗ vĩ , (3.29)
(
J̃ ⊗ J̃

)
P : vi ⊗ v j 
→ (−1)|i || j | v j̃ ⊗ vĩ , (3.30)

so that [P, J̃ ⊗ J̃] = 0 since |ι̃| = |ι| for all ι.
To check the invariance of Q, we first note that

Q
(
J̃ ⊗ J̃

)
(vi ⊗ vj ) = 0 = (

J̃ ⊗ J̃
)
Q (vi ⊗ vj ) for j 
= i ′.

123



   49 Page 14 of 39 R. Frassek, A. Tsymbaliuk

It thus remains to compare the images of vi ⊗ vi ′ under both Q
(
J̃ ⊗ J̃

)
and

(
J̃ ⊗ J̃

)
Q:

Q
(
J̃ ⊗ J̃

) : vi ⊗ vi ′ 
→ (−1)|ĩ |θĩ
N+2m∑

j=1

θ j v j ⊗ v j ′ , (3.31)

(
J̃ ⊗ J̃

)
Q : vi ⊗ vi ′ 
→ (−1)|i |θi

N+2m∑

j=1

θ j v j̃ ⊗ v j̃ ′ , (3.32)

and the two images coincides as θĩ = θi (which uses that |v1| = 0̄).
As J̃ ⊗ J̃ commutes with both P and Q, so it does with the R-matrix (3.12). ��

Lemma 3.33 The R-matrix (3.12) commutes with the tensor product of two matrices

Ĵθ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 Gn−1,m 0

0 Jn+m−1 0 0

0 0 0 −1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

with Gn−1,m =
⎛

⎝
0 −Jn−1

Jm 0

⎞

⎠

(3.34)
that is, [R(x), Ĵθ ⊗ Ĵθ ] = 0.

Proof As Ĵθ = J̃ · Jθ , the result follows immediately from the previous two lemmas.
��

Lemma 3.35 For N = 0, the R-matrix (3.12) commutes with the tensor product of
two matrices

Idθ =
⎛

⎝
Idm 0

0 −Idm

⎞

⎠ (3.36)

that is, [R(x), Idθ ⊗ Idθ ] = 0.

Proof For N = 0, the θ of (3.9) are given by θi = (−1)δi>m , so that

Idθ ⊗ Idθ : vi ⊗ v j 
→ θiθ j vi ⊗ v j . (3.37)

The commutativity [P, Idθ ⊗ Idθ ] = 0 follows immediately from

P (Idθ ⊗ Idθ ) : vi ⊗ v j 
→ (−1)|i || j |θiθ j v j ⊗ vi , (3.38)

(Idθ ⊗ Idθ )P : vi ⊗ v j 
→ (−1)|i || j |θiθ j v j ⊗ vi . (3.39)
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Similarly, for the operator Q we have:

Q (Idθ ⊗ Idθ ) : vi ⊗ vi ′ 
→ (−1)|i |θi ′
2m∑

j=1

θ j v j ⊗ v j ′ , (3.40)

(Idθ ⊗ Idθ )Q : vi ⊗ vi ′ 
→ (−1)|i |θi
2m∑

j=1

θ j ′ v j ⊗ v j ′ , (3.41)

and the two images coincide as θι = −θι′ for all ι. This implies [Q, Idθ ⊗ Idθ ] = 0.
As Idθ ⊗ Idθ commutes with both P and Q, so it does with the R-matrix (3.12). ��

Remark 3.42 (a) More generally, the R-matrix (3.12) commutes with
∑n+m

i=1 (ai eii +
bi eii ′ + ci ei ′i + di ei ′i ′) with either ai , di ∈ {±1} and bi = ci = 0 (for which we set
γi := aidi ) or bi , ci ∈ {±1} and ai = di = 0 (for which we set γi := (−1)|i |bi ci ),
and such that γi are the same for all 1 ≤ i ≤ n + m.

(b)According toRemark3.16, using someother permutationmatrices (J̃σ from loc.cit.)
will rather produce orthosymplectic Lax matrices for other Z2-gradings of V , see
Remarks 4.62 and 5.89.

4 Linear orthosymplectic Laxmatrices

In this section, we construct some linear orthosymplectic Lax matrices of superoscil-
lator type.

4.1 Degenerate linear orthosymplectic Laxmatrices

In this subsection, we construct a degenerate linear orthosymplectic Laxmatrix for the
parity sequence (3.5). To this end, let us consider first bosonic pairs of superoscillators:

{
(ai j , ā j i )

∣∣∣ n+2m+1 ≤ i ≤ 2n+2m−1 , 1 ≤ j ≤ n−1 , i + j ≤ 2n+2m
}

,

(4.1)

{
(bi j , b̄ j i )

∣∣∣ n + m + 1 ≤ i ≤ n + 2m , n + 1 ≤ j ≤ n + m , i+ j ≤ 2n + 2m + 1
}
,

(4.2)

with |ai j | = |ā j i | = |i | + | j | = 0̄, |bi j | = |b̄ j i | = |i | + | j | = 0̄, and the only nonzero
supercommutators

[ai j , ā j i ] = ai j ā j i − ā j iai j = 1 , [bi j , b̄ j i ] = bi j b̄ j i − b̄ j ibi j = 1 . (4.3)
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In addition, we also consider fermionic pairs of superoscillators

{
(ci j , c̄ j i )

∣∣∣ n + m + 1 ≤ i ≤ n + 2m , 1 ≤ j ≤ n
}

(4.4)

with |ci j | = |c̄ j i | = |i | + | j | = 1̄ and the only nonzero supercommutators

[ci j , c̄ j i ] = ci j c̄ j i + c̄ j ici j = 1 . (4.5)

We encode the above bosonic and fermionic generators by the corresponding three
pairs of matrices:

Ā =

⎛

⎜⎜
⎜
⎝

ā1,n+2m+1 · · · ā1,2n+2m−1 0
... . .

. 0 −ā1,2n+2m−1

ān−1,n+2m+1 0 . .
. ...

0 −ān−1,n+2m+1 · · · −ā1,n+2m+1

⎞

⎟⎟
⎟
⎠

, (4.6)

A =

⎛

⎜⎜
⎜
⎝

an+2m+1,1 · · · an+2m+1,n−1 0
... . .

. 0 −an+2m+1,n−1

a2n+2m−1,1 0 . .
. ...

0 −a2n+2m−1,1 · · · −an+2m+1,1

⎞

⎟⎟
⎟
⎠

(4.7)

that are (skew-symmetric along the antidiagonal) n × n matrices encoding (4.1),

B̄ =

⎛

⎜⎜⎜
⎝

b̄n+1,n+m+1 · · · b̄n+1,n+2m−1 2b̄n+1,n+2m
... . .

. 2b̄n+2,n+2m−1 b̄n+1,n+2m−1

b̄n+m−1,n+m+1 2b̄n+m−1,n+m+2 . .
. ...

2b̄n+m,n+m+1 b̄n+m−1,n+m+1 · · · b̄n+1,n+m+1

⎞

⎟⎟⎟
⎠

, (4.8)

B =

⎛

⎜⎜
⎜
⎝

bn+m+1,n+1 · · · bn+m+1,n+m−1 bn+m+1,n+m
... . .

. bn+m+2,n+m−1 bn+m+1,n+m−1

bn+2m−1,n+1 bn+2m−1,n+2 . .
. ...

bn+2m,n+1 bn+2m−1,n+1 · · · bn+m+1,n+1

⎞

⎟⎟
⎟
⎠

(4.9)

that are (symmetric along the antidiagonal) m × m matrices encoding (4.2),

C̄ =
⎛

⎝
c̄1,n+m+1 · · · c̄1,n+2m

...
. . .

...

c̄n,n+m+1 · · · c̄n,n+2m

⎞

⎠ , C =
⎛

⎝
cn+m+1,1 · · · cn+m+1,n

...
. . .

...

cn+2m,1 · · · cn+2m,n

⎞

⎠ (4.10)

that are n × m and m × n matrices encoding (4.4).
Now we are ready to present the main result of this subsection:
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Theorem 4.11 The following is a solution to the RTT-relation (2.8) with the R-
matrix (3.12):

L(x) =
⎛

⎜
⎝

xIdn+m − K̄K K̄

−K Idn+m

⎞

⎟
⎠ (4.12)

with

K̄ =
⎛

⎜
⎝

C̄ Ā

B̄ −JmC̄t Jn

⎞

⎟
⎠ and K =

⎛

⎝
C −B

A JnCt Jm

⎞

⎠ . (4.13)

Here, t denotes the standard (bosonic) transpose, Jn is the n × n matrix with “1” on
the antidiagonal, and the matrices Ā,A, B̄,B, C̄,C are as in (4.6)–(4.10).

Proof The proof is straightforward and is analogous to that forC- and D-types, directly
verifying the commutation relations using Lemma 4.24 below. In the first step, we
insert the relations (4.25) and (4.26) into (3.13) and split the resulting equations into
4 × 4 block structure according to the block structure of the Lax matrices (4.12).
The supercommutator on the left-hand side of (3.13) indicates that the right-hand
side is symmetric under the combined exchange of i ↔ k, j ↔ � and x ↔ y when
multiplied by the factor−(−1)(|i |+| j |)(|k|+|�|). This symmetry also holds for both terms
individually on the right-hand side. For the first term, proportional to (x − y)−1, the
symmetry follows from the relation

Lkj (y)Li�(x) − Li�(x)Lkj (y) = Lkj (x)Li�(y) − Li�(y)Lkj (x) . (4.14)

For the second term, proportional to (x − y + κ)−1, the symmetry is less obvious. It
follows by noting that

1

x − y + κ

∑

p
L pj (x)L p′�(y)(−1)| j ||p|θp + (−1)|�|| j |

y − x + κ

∑

p
L p�(y)L p′ j (x)(−1)|�||p|θp

= δ j�′θ j ′
κ(x + y + κ)

(x − y + κ)(y − x + κ)
(4.15)

and

1

x − y + κ

∑

p
Lkp′ (y)Lip(x)(−1)|i ||p|θp′ + (−1)|i ||k|

y − x + κ

∑

p
Lip′(x)Lkp(y)(−1)|k||p|θp′

= δi ′kθi
κ(x + y + κ)

(x − y + κ)(y − x + κ)
. (4.16)

These equations are verified using Lemma 4.24. Thus, the 4×4 = 16 equations arising
from the block structure are reduced to 10 equations. In the following, we verify the
remaining commutation relations.

We start with the “diagonal terms” where the indices are chosen such that the
commutator on the left-hand side is among the elements of the Lax matrices within
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the same block. In this case, the second term on the right-hand side always vanishes
because of the Kronecker deltas. Further, unless we are considering the upper left
block the first term on the right-hand side has to vanish as the entries of the Lax matrix
will not depend on the spectral parameter. The case with 1 ≤ i, j, k, � ≤ n + m
follows from the following equality:

[
(K̄K)i j , (K̄K)k�

] = (−1)|i || j |+|i ||k|+| j ||k| (δk j (K̄K)i� − δi�(K̄K)k j
)

. (4.17)

This equality follows in turn from

Kn+m−i+1, j K̄k,n+m−�+1 − (−1)(|i |+| j |)(|k|+|�|)K̄k,n+m−�+1Kn+m−i+1, j =
(−1)| j |δi�δ jk − (−1)|i || j |+| j |δikδ j� (4.18)

for 1 ≤ i, j, k, � ≤ n + m, or equivalently (written in terms of the Lax matrix)

[
L(x)i ′ j , L(y)k�′

] = (−1)|i || j |+| j |δikδ j� − (−1)| j |δi�δ jk . (4.19)

This leaves us with 6 equations to verify. The case

[Li j (x), Lk�′ (y)] = 1

x − y
(−1)|i || j |+|i ||k|+| j ||k|(Lkj (y)Li�′ (x) − Lkj (x)Li�′ (y)

)

− 1

x − y + κ
θ j (−1)| j |+|i ||k|+| j ||k|δ� j

∑

p

Lkp′ (y)Lip(x)(−1)|p|+|i ||p|θp

(4.20)
with 1 ≤ i, j, k, � ≤ n + m is reduced to proving

[(K̄K)i j , K̄k,n+m−�+1] =
(−1)|i || j |+|i ||k|+| j ||k|δk j K̄i,n+m−�+1 + (−1)(|i |+| j |)|k|δ� j ′ K̄k,n+m−i+1 . (4.21)

Similarly, the case

[Li j (x), Lk′�(y)] = 1

x − y
(−1)|i || j |+|i ||k|+| j ||k|(Lk′ j (y)Li�(x) − Lk′ j (x)Li�(y)

)

+ 1

x − y + κ
(−1)|i |+|i || j |θiδki

∑

p

L pj (x)L p′�(y)(−1)| j ||p|θp

(4.22)
with 1 ≤ i, j, k, � ≤ n + m is reduced to proving

[(K̄K)i j ,Kn+m−k+1,�] =
− (−1)|i || j |+|i ||k|+| j ||k|δi� Kn+m−k+1, j − (−1)| j |+|i |+|i || j |δki Kn+m− j+1,� . (4.23)

Both equations (4.21) and (4.23) can be derived directly from (4.18).
The case with i, j ′, k′, � for 1 ≤ i, j, k, � ≤ n + m is verified using (4.19) and

Lemma 4.24, while the remaining three equations follow directly from Lemma 4.24.
This completes our proof of the theorem. ��
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Lemma 4.24 For the matrix L(x) of (4.12), we have the following matrix equalities:

θ j ′
∑

p
(−1)| j ||p|θp L pj (x)L p′�(y) =

⎛

⎜
⎝

−(x − y + κ)Jn+mK (x + κ)Jn+m

yJn+m 0

⎞

⎟
⎠

j,�

(4.25)

and

θi
∑

p
(−1)|p|+|i ||p|θp Lkp′ (y)Lip(x) =

⎛

⎜
⎝

(x − y + κ)K̄Jn+m yJn+m

(x + κ)Jn+m 0

⎞

⎟
⎠

k,i

. (4.26)

Proof Let us verify (4.25). For the lower right block, we use that

(−1)|i || j |θi ′Li ′ j (x) + (−1)| j |θ j L j ′i (x) = 0 for n + m + 1 ≤ i, j ≤ 2n + 2m ,

(4.27)
which can be shown using the equality

K̄ j,n+m−i+1 = −(−1)|i || j |K̄i,n+m− j+1 for 1 ≤ i, j ≤ n + m . (4.28)

For the upper right block, we use that

(−1)| j ||�|+| j |θ jθ� L� j (x) +
n+m∑

p=1

θ j (−1)| j ||p|+| j |+|p|θp L p′ j (x)L p�′(y) = (x + κ)δ j�

(4.29)
for any 1 ≤ j, � ≤ n + m. The proof of this follows from the equality

−
n+m∑

p=1

(−1)| j ||p|+| j |+|p| Kn+m−p+1, j K̄p,n+m−�+1 − (−1)| j ||�|+|�|(K̄K)� j = κ δ j�

(4.30)
for any 1 ≤ j, � ≤ n + m. For the lower left block, we use the relation

L j�(y) + θ j

n+m∑

p=1

(−1)| j ||p|θp L pj ′(x)L p′�(y) = yδ j� for 1 ≤ j, � ≤ n + m

(4.31)
based on

(K̄K) j� +
n+m∑

p=1

(−1)| j ||p| K̄p,n+m− j+1Kn+m−p+1,� = 0 for 1 ≤ j, � ≤ n + m ,

(4.32)
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which follows from (4.28). Finally, for the upper left block, we note that

n+m∑

p=1

(−1)| j ||p|+| j |L pj (x)L p′�(y) +
n+m∑

p=1

(−1)| j ||p|+| j |+|p|L p′ j (x)L p�(y) =

−(x − y + κ)Kn+m− j+1,� (4.33)

for any 1 ≤ j, � ≤ n + m. This relation is equivalent to

n+m∑

p=1

(−1)| j ||p|+| j |(K̄K)pjKn+m−p+1,� +
n+m∑

p=1

(−1)| j ||p|+| j |+|p| Kn+m−p+1, j (K̄K)p�

= −κ Kn+m− j+1,�. (4.34)

Due to the symmetry

(−1)| j ||�|+| j |+|�| Kn+m−�+1, j = −Kn+m− j+1,� for 1 ≤ j, � ≤ n + m , (4.35)

the relation (4.34) can be easily verified using (4.30).
The proof of (4.26) is completely analogous; we leave details to the interested

reader. ��
Remark 4.36 In particular, we recover orthogonal and symplectic degenerate linear
Lax matrices:

• For m = 0, we recover precisely the Dn-type Lax matrix of [16, (2.231)], con-
structed first in [9, (4.3)].

• For n = 0, we get

L(−x) =
⎛

⎝
−xIdm + B̄B B̄

B Idm

⎞

⎠ = −LFKT (x)

⎛

⎝
Idm 0

0 −Idm

⎞

⎠ , (4.37)

where LFKT (x) is the Cm-type Lax matrix of [12, (8.55)], discovered first in [16,
(3.50)]. We note that the constant matrix above is Idθ of (3.36) and hence it can
be dropped out of the RTT-relation due to the invariance [R(x), Idθ ⊗ Idθ ] = 0
established in Lemma 3.35.

4.2 Non-degenerate linear Laxmatrix through the fusion of two degenerate

Similarly to the gl(n|m)-case of Sect. 2, one can fuse two degenerate orthosymplectic
Lax matrices to obtain a non-degenerate linear one. The main result of this subsection
is Proposition 4.55.

Evoking the Lax matrix L(x) of (4.12), we define

L̄θ (x) = Jθ L(x)J−1
θ (4.38)
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with Jθ as in (3.20):

Jθ =
⎛

⎝
0 −Jn

Jn+2m 0

⎞

⎠ , J−1
θ =

⎛

⎝
0 Jn+2m

−Jn 0

⎞

⎠ . (4.39)

Due to the invariance [R(x), Jθ ⊗ Jθ ] = 0 of the orthosymplectic R-matrix (3.12),
established in Lemma 3.19, the matrix L̄θ (x) in (4.38) is a solution to the same RTT-
relation (2.8), hence, is a Lax matrix.

Remark 4.40 In contrast to (2.20), Z2-gradings of the Lax matrices L̄θ (x) and L(x)
coincide.

Explicitly, we have:

L̄θ (y) =
⎛

⎜
⎝

Idn+m Kθ

K̄θ yIdn+m + K̄θKθ

⎞

⎟
⎠ (4.41)

with

K̄θ =
⎛

⎜
⎝

C̄t JmB̄Jm

−JnĀJn JnC̄Jm

⎞

⎟
⎠ and Kθ =

⎛

⎝
Ct JnAJn

JmBJm −JmCJn

⎞

⎠ . (4.42)

We further apply the fermionic particle-hole transformation

ci j 
→ c̄ j i , c̄ j i 
→ ci j for 1 ≤ j ≤ n , n + m + 1 ≤ i ≤ n + 2m , (4.43)

as well as the bosonic particle-hole transformation

ai j 
→ −ā j i , ā j i 
→ ai j for 1 ≤ j ≤ n − 1 , n + 2m + 1 ≤ i ≤ 2n + 2m − j , (4.44)

bi j 
→ (1+δi j ′)b̄ j i , b̄ j i 
→ − 1

1 + δi j ′
bi j for n+1 ≤ j ≤ n+m < i ≤ 2n+2m+1− j .

(4.45)
This yields the following Lax matrix:

L̄(y) = L̄θ (y)|p.h. =
⎛

⎜
⎝

Idn+m K̄

K yIdn+m + KK̄

⎞

⎟
⎠ (4.46)

with K̄,K precisely as in (4.13).

Remark 4.47 In particular, we recover orthogonal and symplectic degenerate linear
Lax matrices:
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• For m = 0, we recover precisely the Dn-type Lax matrix L(−,...,−)(x) of [12,
(8.84)] (after swapping indices in the generators, i.e. ai j 
→ a j i , ā j i 
→ āi j ).

• For n = 0, we get

L̄(−x) =
⎛

⎜
⎝

Idm B̄

−B −xIdm − BB̄

⎞

⎟
⎠ =

⎛

⎝
Idm 0

0 −Idm

⎞

⎠ L−
FKT (x) , (4.48)

where L−
FKT (x) is the Cm-type Lax matrix equivalent to L(−,...,−)(x) of [12,

(8.56)] (after swapping indices and redistributing factor 2, i.e. bi j 
→ (1+δi j ′)b j i ,
b̄ j i 
→ 1

1+δ j i ′
b̄i j ).We note that the constantmatrix above is Idθ of (3.36) and hence

it canbedroppedout of theRTT-relationdue to the invariance [R(x), Idθ⊗Idθ ] = 0
established in Lemma 3.35.

Let us now consider two copies of mutually supercommuting superoscillators
labelled by the extra superscript i = 1, 2, which will be now encoded by the cor-
responding matrices Āi ,Ai , B̄i ,Bi , C̄i ,Ci , hence also, the subscript in K̄i ,Ki . We
consider the following two orthosymplectic Lax matrices:

L [1](x) =
⎛

⎜
⎝

xIdn+m − K̄1K1 K̄1

−K1 Idn+m

⎞

⎟
⎠ ,

L̄ [2](y) =
⎛

⎜
⎝

Idn+m K̄2

K2 yIdn+m + K2K̄2

⎞

⎟
⎠

(4.49)

of (4.12, 4.46) with

K̄i =
⎛

⎜
⎝

C̄i Āi

B̄i −JmC̄t
i Jn

⎞

⎟
⎠ and Ki =

⎛

⎜
⎝

Ci −Bi

Ai JnCt
i Jm

⎞

⎟
⎠ . (4.50)

TheLaxmatrices in (4.49) obey the following factorisation formula, cf. (2.27, 2.28):

L [1](x)L̄ [2](y)

=
⎛

⎜
⎝

xIdn+m − K̄′
1K

′
1

(
(y − x)Idn+m + K̄′

1K
′
1

)
K̄′

1

−K′
1 yIdn+m + K′

1K̄
′
1

⎞

⎟
⎠ .

⎛

⎜
⎝

Idn+m K̄′
2

0 Idn+m

⎞

⎟
⎠

(4.51)

where we set
K′

1 = K1 − K2 , K̄′
1 = K̄1 ,

K̄′
2 = K̄2 + K̄1 , K′

2 = K2 .
(4.52)
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Moreover, similarly to (2.29, 2.30), the transformation (4.52) can be expressed through
a similarity transformation in the superoscillator space:

K′
i = SKiS−1 , K̄′

i = SK̄iS−1 (i = 1, 2) (4.53)

with

S = exp

⎡

⎣
∑

i, j

ā[1]
j i a

[2]
i j +

∑

i, j

b̄[1]
j i b

[2]
i j +

∑

i, j

c̄[1]
j i c

[2]
i j

⎤

⎦ , (4.54)

where the indices i, j take all possible values as given in (4.43)–(4.45). We note that
all the summands in the exponent above are bosonic and pairwise supercommute.

We thus obtain the key result of this subsection:

Proposition 4.55 (a) For any x1, x2 ∈ C, the matrix

Lx1,x2(x) =
⎛

⎜
⎝

(x + x1)Idn+m − K̄1K1
(
(x2 − x1)Idn+m + K̄1K1

)
K̄1

−K1 (x + x2)Idn+m + K1K̄1

⎞

⎟
⎠

(4.56)
is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix.

(b) The Lax matrix from (a) is a fusion of two degenerate Lax matrices in (4.49)
through:

L [1](x + x1)L̄
[2](x + x2) = SLx1,x2(x)

⎛

⎜
⎝

Idn+m K̄2

0 Idn+m

⎞

⎟
⎠S−1 (4.57)

with the similarity transformation S of (4.54).

Remark 4.58 Similarly to Remarks 4.36 and 4.47, we note that the orthosymplectic
Lax matrix Lx1,x2(x) of (4.56) generalizes the authors’ previous work for orthogonal
and symplectic types:

• For m = 0, we recover precisely the Dn-type Lax matrix of [12, (6.2)] when
setting x1 = t and x2 = −t − n + 1.

• For n = 0, setting x1 = −t and x2 = t + m + 1, we recover the Cm-type Lax
matrix LFKT (−x) of [12, (5.3)]:

Lx1=−t,x2=t+m+1(x) =
⎛

⎜
⎝

(x − t)Idm + B̄B B̄
(
(2t + m + 1)Idm − BB̄

)

B (x + t + m + 1)Idm − BB̄

⎞

⎟
⎠

= −LFKT (−x) .

(4.59)
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Remark 4.60 Similarly to Remark 2.34 and generalizing [12, §8], we can vice versa
obtain the matrices L(x) and L̄(x) of (4.12, 4.46) from the non-degenerate linear
Lax matrix Lx1,x2(x) of (4.56) via the renormalized limit procedures (which clearly
preserve the property of being Lax):

L(x) = lim
t→∞

{
L0,t (x) · diag

(
1, . . . , 1︸ ︷︷ ︸

n+m

; 1
t , . . . ,

1
t︸ ︷︷ ︸

n+m

)}
,

L̄(x) = lim
t→∞

{
diag

(
1
t , . . . ,

1
t︸ ︷︷ ︸

n+m

; 1, . . . , 1︸ ︷︷ ︸
n+m

)
· Lt,0(x)

}∣∣∣
K̄ 
→−K̄ ,K 
→−K

.
(4.61)

Remark 4.62 According to Remark 3.16, the Lax matrix L(x) from Theorem 4.11
and the Lax matrix Lx1,x2(x) from Proposition 4.55(a) give rise to the corresponding
degenerate and non-degenerate linear Lax matrices for all Z2-gradings of V .

5 Quadratic orthosymplectic Laxmatrices

In this section, we investigate some quadratic superoscillator orthosymplectic Lax
matrices.

5.1 From linear to quadratic Laxmatrices

In this subsection, we consider a factorisation formula different from the one presented
in Sect. 4.2 that allows to derive a degenerate quadratic Lax matrix, see Theorem 5.44.

Consider the Lax matrix of (4.12) written in the block form with blocks on the
diagonal of size 1× 1, (n +m − 1) × (n +m − 1), (n +m − 1) × (n +m − 1), and
1 × 1, respectively:

L(x) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

x − v̄v −v̄K◦ v̄ 0

−K̄◦v xIdn+m−1 − K̄◦K◦ + Jn+m−1v̄tvtG
−1
n−1,m K̄◦ −Jn+m−1v̄t

−v −K◦ Idn+m−1 0

0 −vtG−1
n−1,m 0 1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

.

(5.1)
Here, we expressed K̄,K of (4.13) via

K̄ =
⎛

⎝
v̄ 0

K̄◦ −Jn+m−1v̄t

⎞

⎠ , K =
⎛

⎜
⎝

v K◦

0 vtG−1
n−1,m

⎞

⎟
⎠ (5.2)

with

Gn−1,m =
⎛

⎝
0 −Jn−1

Jm 0

⎞

⎠ (5.3)
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as in (3.34), and used the (n + m − 1)-dimensional vectors

v̄ = (
c̄1,n+m+1 · · · c̄1,n+2m ā1,n+2m+1 · · · ā1,2n+2m−1

)
, (5.4)

v = (
cn+m+1,1 . . . cn+2m,1 an+2m+1,1 · · · a2n+2m−1,1

)t
. (5.5)

Finally, the submatrices K◦, K̄◦ of K, K̄ appearing in (5.2) read as follows:

K̄◦ =
⎛

⎜
⎝

C̄◦ Ā◦

B̄ −Jm(C̄◦)t Jn−1

⎞

⎟
⎠ and K◦ =

⎛

⎝
C◦ −B

A◦ Jn−1(C◦)t Jm

⎞

⎠ ,

(5.6)
where the block matrices Ā◦,A◦ and C̄◦,C◦ encode the bosonic and fermionic super-
oscillators via

Ā◦ =

⎛

⎜⎜⎜
⎝

ā2,n+2m+1 · · · ā2,2n+2m−2 0
... . .

. 0 −ā2,2n+2m−2

ān−1,n+2m+1 0 . .
. ...

0 −ān−1,n+2m+1 · · · −ā2,n+2m+1

⎞

⎟⎟⎟
⎠

, (5.7)

A◦ =

⎛

⎜⎜
⎜
⎝

an+2m+1,2 · · · an+2m+1,n−1 0
... . .

. 0 −an+2m+1,n−1

a2n+2m−2,2 0 . .
. ...

0 −a2n+2m−2,2 · · · −an+2m+1,2

⎞

⎟⎟
⎟
⎠

, (5.8)

C̄◦ =
⎛

⎝
c̄2,n+m+1 · · · c̄2,n+2m

...
. . .

...

c̄n,n+m+1 · · · c̄n,n+2m

⎞

⎠ , C◦ =
⎛

⎝
cn+m+1,2 · · · cn+m+1,n

...
. . .

...

cn+2m,2 · · · cn+2m,n

⎞

⎠ , (5.9)

while the block matrices B̄,B encoding the bosonic superoscillators are precisely as
in (4.8, 4.9).

To construct the degenerate quadratic Lax matrix, we define

L̂θ (x) = Ĵθ L(x)Ĵ−1
θ (5.10)

with Ĵθ as in (3.34):

Ĵθ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 Gn−1,m 0

0 Jn+m−1 0 0

0 0 0 −1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

, Ĵ−1
θ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0

0 0 Jn+m−1 0

0 Gt
n−1,m 0 0

0 0 0 −1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎠

(5.11)
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as Gt
n−1,m = G−1

n−1,m . The matrix L̂θ (x) in (5.10) is again a solution to the RTT-
relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix. This follows from the
invariance [R(x), Ĵθ ⊗ Ĵθ ] = 0 of the orthosymplectic R-matrix (3.12), established in
Lemma 3.33.

We rename the fermionic superoscillators

ci1 
→ ci ′1 , c̄1i 
→ c̄1i ′ for n + m + 1 ≤ i ≤ n + 2m (5.12)

and also rename the bosonic superoscillators

ai1 
→ −ai ′1 , ā1i 
→ −ā1i ′ for n + 2m + 1 ≤ i ≤ 2n + 2m − 1 . (5.13)

We further apply the following particle-hole transformation of the remaining super-
oscillators:

ci j 
→ c̄ j i , c̄ j i → ci j for 2 ≤ j ≤ n , n + m + 1 ≤ i ≤ n + 2m , (5.14)

ai j 
→ −ā j i , ā j i → ai j for 2 ≤ j ≤ n−1 , n+2m+1 ≤ i ≤ 2n+2m− j ,

(5.15)

bi j 
→ (1+δi j ′ )b̄ j i , b̄ j i 
→ −1

1 + δi j ′
bi j for n+1 ≤ j ≤ n+m < i ≤ 2n+2m+1− j .

(5.16)
Applying the above operations (5.12)–(5.16) to (5.19) yields the following Laxmatrix:

L̂(y) = L̂θ (y)|p.h. =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

y − w̄w w̄ w̄K̄◦ 0

−w Id K̄◦ 0

−K◦w K◦ yId + K◦K̄◦ + G−1w̄twt J G−1w̄t

0 0 wt J 1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

(5.17)
with

w̄ = (
ā1,2 · · · ā1,n c̄1,n+1 · · · c̄1,n+m

)
, (5.18)

w = (
a2,1 . . . an,1 cn+1,1 · · · cn+m,1

)t
, (5.19)

and the (n + m − 1) × (n + m − 1) matrices Id, J, G defined via:

Id = Idn+m−1 , J = Jn+m−1 , G = Gn−1,m . (5.20)

Similarly to (2.27) and (4.51), let us factorise the product of the Lax matrices in
(5.1) and (5.17). As before, we shall use the subscript i = 1, 2 to distinguish between
the superoscillators and the corresponding matrices (using i = 1 in the context of
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L(x), i = 2 in the context of L̂(y)). One has the following factorisation:

L [1](x)L̂ [2](y) = L′(x, y)

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0

0 Id (K̄◦
2)

′ 0

0 0 Id 0

0 0 0 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

(5.21)

where
(K̄◦

2)
′ = K̄◦

2 + K̄◦
1 , (K◦

2)
′ = K◦

2 , (5.22)

and L′(x, y) is further factorised as

L′(x, y) =

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 ū′ 1

2
ū′M(ū′)t

0 IdN+2m−2 M(ū′)t

0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜⎜
⎝

x · y 0 0

0 L′(x, y) 0

0 0 1

⎞

⎟⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0

−u′ IdN+2m−2 0

1

2
(u′)t Mu′ −(u′)t M 1

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

(5.23)

with

M =
⎛

⎝
0 −J

G−1 0

⎞

⎠ . (5.24)

Let us now describe ū′,u′, and L′(x, y) featuring in (5.23). The first two are defined
via

ū′ = (
w̄′ v̄′ ) , u′ =

(
w′
v′

)
, (5.25)

where the vectors v̄′, v′ and w′, w̄′ are given by (cf. (5.4, 5.5, 5.6, 5.18, 5.19))

v̄′ = v̄ − w̄K̄◦
1 , v′ = v , (5.26)

w′ = w + K̄◦
1v , w̄′ = w̄ . (5.27)

The matrix L′(x, y) in the middle factor of the factorisation (5.23) reads (cf. (4.56))

L′(x, y) =
⎛

⎜
⎝

xId − (K̄◦
1)

′(K◦
1)

′ (
(y − x)Id + (K̄◦

1)
′(K◦

1)
′) (K̄◦

1)
′

−(K◦
1)

′ yId + (K◦
1)

′(K̄◦
1)

′

⎞

⎟
⎠ (5.28)

where
(K◦

1)
′ = K◦

1 − K◦
2 + vw̄ − G−1w̄tvtG−1 , (K̄◦

1)
′ = K̄◦

1 . (5.29)
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Remark 5.30 In the derivation of (5.23), we used the following two equalities:

(v̄′)t = v̄t − JK̄◦
1G

−1w̄t , (w′)t = wt + vtG−1K̄◦
1J , (5.31)

where v̄′ and w′ are given by (5.26) and (5.27), respectively. To verify (5.31), we use

w̄Jv̄t = −v̄G−1w̄t , wt Jv = −vtG−1w , (5.32)

as well as

vtG−1K̄◦
1v = 0 = w̄K̄◦

1G
−1w̄t and w̄J(w̄K̄◦

1)
t = 0 = (K̄◦

1v)
t Jv , (5.33)

where we take into account theZ2-grading of the superoscillators. It also follows from
(5.33) that

ū′M(ū′)t = ūM(ū)t , (u′)t Mu′ = (u)t Mu (5.34)

with

ū = (
w̄ v̄

)
, u =

(
w
v

)
. (5.35)

Let us also note that the first and third terms in the right-hand side of the factorisation
(5.23) can be written as exponential expansions that truncate after the second term,
cf. [9, (3.2)].

Finally, we note that there is a similarity transformation in the superoscillator space
such that

(K◦
1)

′ = SK◦
1S

−1 , (K̄◦
2)

′ = SK̄◦
2S

−1 , (K̄◦
1)

′ = SK̄◦
1S

−1 , (K◦
2)

′ = SK◦
2S

−1 ,

w′ = SwS−1 , v̄′ = Sv̄S−1 , w̄′ = Sw̄S−1 , v′ = SvS−1 .

(5.36)
Here, S is given explicitly by

S = S◦S3 (5.37)

with
S3 = exp

(−w̄K̄◦
1v

)
(5.38)

and

S◦ = exp

⎡

⎣
∑

i, j

ā[1]
j i a

[2]
i j +

∑

i, j

b̄[1]
j i b

[2]
i j +

∑

i, j

c̄[1]
j i c

[2]
i j

⎤

⎦ , (5.39)

where the indices i, j take all possible values as they appear in (5.6). It is obvious
that the summands in the exponents of (5.38) and (5.39), respectively, are bosonic and
pairwise commute (however, S◦ and S3 do not commute!).
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Remark 5.40 The equalities in (5.36) are verified by direct computations. Let us only
evaluate the transformation of K◦

1 under S3 (the rest of computations being much
simpler), cf. (5.29):

S3(K◦
1)i jS

−1
3 = (K◦

1)i j − w̄K̄◦
1v(K

◦
1)i j + (K◦

1)i j w̄K̄
◦
1v

= (K◦
1)i j − w̄k(K̄◦

1)k�v�(K◦
1)i j + (K◦

1)i j w̄k(K̄◦
1)k�v�

= (K◦
1)i j − w̄k(K̄◦

1)k�v�(K◦
1)i j + (−1)(|n+m−i+1|+| j+1|)|k+1|w̄k(K◦

1)i j (K̄
◦
1)k�v�

= (K◦
1)i j + vi w̄ j − (G−1w̄t )i (vtG−1) j ,

(5.41)
where we summed over all possible k, �. The last equality above follows from (4.18)
which yields

(−1)(|n+m−i+1|+| j+1|)|k+1|w̄k(K◦
1)i j (K̄

◦
1)k�v�

= w̄k(K̄◦
1)k�v�(K◦

1)i j + vi w̄ j − (−1)|n+m−i+1|+| j+1|w̄n+m−ivn+m− j

(5.42)

with

(G−1w̄t )i = −(−1)|n+m−i+1|w̄n+m−i , (vtG−1) j = −(−1)| j+1|vn+m− j .

(5.43)

We thus obtain the key result of this subsection:

Theorem 5.44 (a) For any x1, x2 ∈ C, the matrix

Lx1,x2 (x) =
⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

1 ū
1

2
ūM ūt

0 IdN+2m−2 M ūt

0 0 1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

(x + x1)(x + x2) 0 0

0 Lx1,x2 (x) 0

0 0 1

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0

−u IdN+2m−2 0

1

2
ut Mu −ut M 1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

(5.45)

with

ū = (
w̄ v̄

)
and u =

(
w
v

)
, (5.46)

cf. (5.4, 5.5, 5.18, 5.19), and Lx1,x2(x) being the linear osp(2n − 2|2m) type Lax
matrix of (4.56):

Lx1,x2(x) =
⎛

⎜
⎝

(x + x1)Id − K̄◦
1K

◦
1

(
(x2 − x1)Id + K̄◦

1K
◦
1

)
K̄◦

1

−K◦
1 (x + x2)Id + K◦

1K̄
◦
1

⎞

⎟
⎠ , (5.47)

cf. (5.28) is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a
Lax matrix.
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(b) The Lax matrix from (a) is a fusion of two degenerate Lax matrices through:

L [1](x + x1)L̂
[2](x + x2) = SLx1,x2(x)

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0

0 Id K̄◦
2 0

0 0 Id 0

0 0 0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

S−1 (5.48)

with the Lax matrices L(x), L̂(x) of (5.1, 5.17) and the similarity transformation S of
(5.37)–(5.39).

Remark 5.49 For m = 0, we recover precisely the Dn-type Lax matrix of [9, (5.24,
5.25)] when setting x1 = s, x2 = −s − n + 2.

5.2 Degenerate quadratic Laxmatrices: even N case

Dropping the index 1 in the oscillators of (5.4, 5.5, 5.18, 5.19), we consider the vectors

u = (
a2 . . . an cn+1 · · · cn+m cn+m+1 · · · cn+2m an+2m+1 · · · a2n+2m−1

)t

(5.50)
and

ū = (
ā2 · · · ān c̄n+1 · · · c̄n+m c̄n+m+1 · · · c̄n+2m ān+2m+1 · · · ā2n+2m−1

)
,

(5.51)
cf. (5.46) so that a j = a j,1, c j = c j,1, ā j = ā1, j , and c̄ j = c̄1, j .

As an immediate corollary of Theorem 5.44, we obtain the following result:

Proposition 5.52 The matrix

L(x) =

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

1 ū
1

2
ūM ūt

0 IdN+2m−2 M ūt

0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜⎜
⎝

x(x − κ + 1) 0 0

0 xIdN+2m−2 0

0 0 1

⎞

⎟⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0

−u IdN+2m−2 0

1

2
ut Mu −ut M 1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

(5.53)

123



Orthosymplectic superoscillator Lax matrices Page 31 of 39    49 

with u of (5.50), ū of (5.51), M of (5.24), is a solution to the RTT-relation (2.8) with
the R-matrix (3.12), hence is a Lax matrix. It can be explicitly written as

L(x) =

⎛

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

x(x − κ + 1) − x ūu + 1

4
ūM ūtut Mu x ū − 1

2
ūM ūtut M

1

2
ūM ūt

−xu + 1

2
M ūtut Mu xIdN+2m−2 − M ūtut M M ūt

1

2
ut Mu −ut M 1

⎞

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎠

.

(5.54)

Proof According to Theorem 5.44, the matrix Lx1,x2(x) of (5.45) is a solution to the
RTT-relation (2.8) with the R-matrix (3.12). The superoscillators used in u and ū pair-
wise supercommute with the ones used in the construction of Lx1,x2(x). Furthermore,
the coefficients of the latter generate an orthosymplectic subalgebra. To prove that the
matrix L(x) in (5.53) is a solution to the same RTT-relation, we consider the trivial
representation of the aforementioned orthosymplectic subalgebra. It is obtained from
the action of the Lax matrix Lx1,x2(x) on the Fock vacuum |0〉 (in the Fock module
for the superoscillator algebra generated by the entries of K◦, K̄◦ from (5.6) so that
K◦|0〉 = 0), and further fixing x2 = x1 − κ + 1 with κ = n − m − 1 as in (3.11).
Using the simple equalities

K◦K̄◦|0〉 = (κ − 1)Id|0〉 , K̄◦K◦K̄◦|0〉 = (κ − 1) K̄◦|0〉 , (5.55)

we find
Lx1,x2=x1−κ+1(x)|0〉 = (x + x1)IdN+2m−2|0〉 . (5.56)

Specializing further x1 = 0, we conclude that (5.54) is indeed an orthosymplectic Lax
matrix. ��

Remark 5.57 For m = 0, we recover precisely the Dn-type Lax matrix of [9, (4.12)].

5.3 Degenerate quadratic Laxmatrices: odd N case

In this subsection, we consider the case N = 2n + 1. In this setup, the operators
P,Q are defined as in (3.6, 3.7), where we choose the following Z2-grading of the
superspace V :

|i | := |vi | =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0̄ for 1 ≤ i ≤ n

1̄ for n + 1 ≤ i ≤ n + m

0̄ for i = n + m + 1

1̄ for n + m + 2 ≤ i ≤ n + 2m + 1

0̄ for n + 2m + 2 ≤ i ≤ 2n + 2m + 1

. (5.58)
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This Z2-grading corresponds to the parity sequence

ϒV =
(
0̄, . . . , 0̄︸ ︷︷ ︸

n

, 1̄, . . . , 1̄︸ ︷︷ ︸
m

, 0̄, 1̄, . . . , 1̄︸ ︷︷ ︸
m

, 0̄, . . . , 0̄︸ ︷︷ ︸
n

)
(5.59)

and the following choice of θi ’s:

θ = θV =
(
1, . . . , 1︸ ︷︷ ︸
n+m+1

,−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

)
. (5.60)

In this case, we upgrade (5.50, 5.51) by adding extra bosonic superoscillators:

u = (
a2 . . . an cn+1 · · · cn+m an+m+1 cn+m+2 . . . cn+2m+1 an+2m+2 · · · a2n+2m

)t
, (5.61)

ū = (
ā2 · · · ān c̄n+1 · · · c̄n+m ān+m+1 c̄n+m+2 · · · c̄n+2m+1 ān+2m+2 · · · ā2n+2m

)
.

(5.62)
We also modify (5.24) by introducing the following (N + 2m − 2) × (N + 2m − 2)
matrix:

M =

⎛

⎜⎜
⎜
⎝

0 0 −J

0 −1 0

G−1 0 0

⎞

⎟⎟
⎟
⎠

. (5.63)

Conjecture 5.64 The matrix L(x) given by (5.53, 5.54) with u of (5.61), ū of (5.62),
M of (5.63) is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is
a Lax matrix.

Remark 5.65 (a) This has been confirmed for n,m ≤ 2, but a general proof is currently
missing.

(b) For m = 0, we recover precisely the Bn-type Lax matrix of [12, (9.1)].

5.4 Non-degenerate quadratic Laxmatrix through the factorisation

In this subsection, we present a factorisation formula for quadratic Lax matrices that
yields a non-degenerate quadratic orthosymplectic Lax matrix of superoscillator type.
We uniformly treat both cases of even and odd N , assuming the validity of Conjec-
ture 5.64.

The factorisation is analogous to that for the linear case from Sect. 4.2. As before,
we first introduce another solution to the same RTT-relation via a proper conjugation
of the degenerate Lax matrix L(x) from Proposition 5.52 or Conjecture 5.64. To this
end, recall the matrix J̃ of (3.27):

J̃ =

⎛

⎜
⎜⎜
⎝

0 0 1

0 IdN+2m−2 0

1 0 0

⎞

⎟
⎟⎟
⎠

. (5.66)
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The R-matrix (3.12) commutes with J̃ ⊗ J̃: for even N this is proved in Lemma 3.26,
while for odd N the argument is the same. Thus, we get another solution to the same
RTT-relation (2.8) via

L̃(x) = J̃L(x)J̃−1 = J̃L(x)J̃ . (5.67)

We further apply the particle-hole transformation

ai 
→ āi ′ , āi 
→ −ai ′ , (5.68)

ci 
→ θi c̄i ′ , c̄i 
→ θici ′ , (5.69)

to obtain the following Lax matrix:

ˆ̃L(y) = L̃(y)|p.h.

=

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1 ū
1

2
ūM ūt

u yIdN+2m−2 + uū yM ūt + 1

2
uūM ūt

1

2
ut Mu yut M + 1

2
ut Muū y(y − κ + 1) + yut MM ūt + 1

4
ut MuūM ūt

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

(5.70)

Similarly to (2.27, 4.51, 5.21), let us factorise the product of theLaxmatricesL[1](x)
and ̂̃L

[2]
(y) from (5.54) and (5.70), with two families of superoscillators encoded by

(u1, ū1) and (u2, ū2), respectively. Explicitly, one obtains the following factorisation:

L[1](x) ˆ̃L[2](y) = L′(x, y)H ′ (5.71)

with

L′(x, y) =

⎛

⎜
⎜⎜
⎜⎜
⎝

1 ū′
1

1
2 ū

′
1M(ū′

1)
t

0 IdN+2m−2 M(ū′
1)

t

0 0 1

⎞

⎟
⎟⎟
⎟⎟
⎠

· D′(x, y) ·

⎛

⎜
⎜⎜
⎜⎜
⎝

1 −ū′
1

1
2 ū

′
1M(ū′

1)
t

0 IdN+2m−2 −M(ū′
1)

t

0 0 1

⎞

⎟
⎟⎟
⎟⎟
⎠

(5.72)

where

D′(x, y) =

⎛

⎜⎜⎜⎜
⎝

x(x − κ + 1) 0 0

−xu′
1 xyIdN+2m−2 0

1
2 (u

′
1)

t Mu′
1 −y(u′

1)
t M y(y − κ + 1)

⎞

⎟⎟⎟⎟
⎠

,
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M is given by (5.24) for N = 2n or by (5.63) for N = 2n + 1, and

H ′ =

⎛

⎜⎜⎜⎜
⎜
⎝

1 ū′
2

1

2
ū′
2M(ū′

2)
t

0 IdN+2m−2 M(ū′
2)

t

0 0 1

⎞

⎟⎟⎟⎟
⎟
⎠

. (5.73)

Here, we introduced the following notation:

u′
1 = u1 − u2 , ū′

1 = ū1 , (5.74)

and
ū′
2 = ū2 + ū1 , u′

2 = u2 , (5.75)

cf. (2.28). Furthermore, we used the following simple properties:

ū2M ūt1 = ū1M ūt2 , ut1Mu2 = ut2Mu1 . (5.76)

Finally, we note that there is a similarity transformation in the superoscillator space
such that

ū′
i = SūiS−1 , u′

i = SuiS−1 (i = 1, 2) . (5.77)

cf. (2.29, 2.30). For even N = 2n, it reads

S = exp

[
n∑

i=2

ā[1]
i a[2]

i +
n+m∑

i=n+1

c̄[1]
i c[2]

i +
n+2m∑

i=n+m+1

c̄[1]
i c[2]

i +
2n+2m−1∑

i=n+2m+1

ā[1]
i a[2]

i

]

,

(5.78)
while for odd N = 2n + 1, we have

S = exp

[
n∑

i=2

ā[1]
i a[2]

i +
n+m∑

i=n+1

c̄[1]
i c[2]

i + ā[1]
n+m+1a

[2]
n+m+1 +

n+2m+1∑

i=n+m+2

c̄[1]
i c[2]

i +
2n+2m∑

i=n+2m+2

ā[1]
i a[2]

i

]

.

(5.79)

We thus obtain the key result of this subsection:

Proposition 5.80 For any x1, x2 ∈ C, the matrix

Lx1,x2 (x) =

⎛

⎜⎜
⎜⎜
⎜
⎝

1 ū1 1
2 ū1M ūt1

0 IdN+2m−2 M ūt1

0 0 1

⎞

⎟⎟
⎟⎟
⎟
⎠

· Dx1,x2 (x) ·

⎛

⎜⎜
⎜⎜
⎜
⎝

1 −ū1 1
2 ū1M ūt1

0 IdN+2m−2 −M ūt1

0 0 1

⎞

⎟⎟
⎟⎟
⎟
⎠

(5.81)
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with

Dx1,x2 (x) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

(x + x1)(x + x1 − κ + 1) 0 0

−(x + x1)u1 (x + x1)(x + x2)IdN+2m−2 0

1
2 u

t
1Mu1 −(x + x2)u

t
1M (x + x2)(x + x2 − κ + 1)

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix.
Furthermore, it obeys the factorisation formula

L[1](x + x1)
ˆ̃L[2](x + x2) = SLx1,x2(x)HS−1 (5.82)

with L(y) of (5.54), ˆ̃L(y) of (5.70), S of (5.78, 5.79), and H given by

H =

⎛

⎜⎜⎜⎜⎜
⎝

1 ū2
1

2
ū2M ūt2

0 IdN+2m−2 M ūt2

0 0 1

⎞

⎟⎟⎟⎟⎟
⎠

. (5.83)

Remark 5.84 For m = 0, we recover the soN -type Lax matrix L−x1,−x2(x) of
[12, (7.3)].

5.5 Full non-degenerate quadratic Laxmatrix through the factorisation

For even N = 2n, the constructions from the previous subsection admit straightfor-
ward generalizations when replacing L(x) with Lx1,x2(x) of (5.45):

Theorem 5.85 For N = 2n and any x1, x2, y1, y2 ∈ C, the matrix

Lx1,x2,y1,y2 (x) =
⎛

⎜⎜
⎜
⎜
⎜
⎝

1 ū1
1
2 ū1M ūt1

0 Id2n+2m−2 M ūt1

0 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠

· Dx1,x2,y1,y2 (x) ·

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 −ū1
1
2 ū1M ūt1

0 Id2n+2m−2 −M ūt1

0 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠

(5.86)
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with

Dx1,x2,y1,y2 (x)

=

⎛

⎜
⎜
⎜
⎜⎜
⎝

(x + y1)(x + y1 − κ + 1) 0 0

−Lx1,x2 (x + y1)u1 (x + y2)Lx1,x2 (x + y1) 0

1
2u

t
1Mu1 −(x + y2)u

t
1M (x + y2)(x + y2 − κ + 1)

⎞

⎟
⎟
⎟
⎟⎟
⎠

andLx1,x2(x)being the linear osp(2n−2|2m) typeLaxmatrix of (5.47), is a solution to
the RTT-relation (2.8)with the R-matrix (3.12). Furthermore, it obeys the factorisation
formula

L[1]
x1,x2(x + y1)

ˆ̃L[2](x + y2) = SLx1,x2,y1,y2(x)HS−1 (5.87)

with ˆ̃L(x) of (5.70), H of (5.83), and Lx1,x2(x) of (5.45).

Remark 5.88 For m = 0, we recover the Dn-type Lax matrix Ln,s(x) of [9, (5.36,
5.37)], depending on the extra parameters x1, x2,when setting x1 = s, x2 = −s−n+2,
y1 = −x1, y2 = −x2.

Remark 5.89 According to Remark 3.16, the Lax matrix Lx1,x2(x) from Theo-
rem 5.44(a), the Lax matrix L(x) from Proposition 5.52, and its generalization for
odd N from Conjecture 5.64 give rise to the corresponding degenerate quadratic Lax
matrices for any other Z2-grading satisfying |v1| = 0̄. Likewise, the Lax matrices
Lx1,x2(x) from Proposition 5.80 and Lx1,x2,y1,y2(x) from Theorem 5.85 give rise to
the corresponding non-degenerate quadratic Lax matrices for all Z2-gradings of V .

Remark 5.90 Similarly to Remarks 2.34, 4.60, we can obtain the degenerate Lax
matrices (5.53) and (5.70) from the non-degenerate Lax matrix (5.81) through the
renormalized limit procedure:

L(x + x1) = lim
x2→∞

{
Lx1,x2(x) · diag

(
1, x−1

2 , . . . , x−1
2︸ ︷︷ ︸

N+2m−2

, x−2
2

)}∣∣∣
u1 
→u , ū1 
→ū

,

ˆ̃L(x + x2) = lim
x1→∞

{
diag

(
x−2
1 , x−1

1 , . . . , x−1
1︸ ︷︷ ︸

N+2m−2

, 1
)

· Lx1,x2(x)
}∣∣∣

u1 
→−u , ū1 
→−ū
.

(5.91)
Analogously, for even N = 2n, the degenerate Lax matrices (5.45) and (5.70) can be
obtained as the renormalized limits of the full non-degenerate quadratic Lax matrix
Lx1,x2,y1,y2(x) from (5.86).

Appendix A Twists for transfer matrices and Q-operators

In analogy toBCD-type spin chain transfermatrices, see [12, (8.69, 9.19)], the diagonal
twists D for the finite-dimensional transfer matrices should be of the following form:
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• For N = 2n

D = diag
(
τ1, . . . , τn, τn+1, . . . , τn+m, τ−1

n+m, . . . , τ−1
n+1, τ

−1
n , . . . , τ−1

1

)
(A.1)

• For N = 2n + 1

D = diag
(
τ1, . . . , τn, τn+1, . . . , τn+m, 1, τ−1

n+m, . . . , τ−1
n+1, τ

−1
n , . . . , τ−1

1

)

(A.2)

On the other hand, the twist Dosc used to construct Q-operators from the mon-
odromy matrices

M(x) = L(x) ⊗ · · · ⊗ L(x)︸ ︷︷ ︸
N⊗

of degenerate Lax matrices L(x) is determined through the following invariance con-
dition:

DL(x)D−1 = D−1
oscL(x)Dosc , (A.3)

cf. [12, (8.68, 9.18)]. Here, the twist D of (A.1, A.2) acts only on the matrix space,
while the twist Dosc acts only on the oscillator space. We thus derive the following
explicit formulas:

• For N = 2n and the linear Lax matrix of (4.12), Dosc is given by

Dosc =
⎛

⎝
∏

1≤i< j≤n

(τi τ j )
−āi j ′ a j ′ i

⎞

⎠

⎛

⎝
∏

n+1≤i≤ j≤n+m

(τi τ j )
−b̄i j ′b j ′ i

⎞

⎠

⎛

⎝
n∏

i=1

n+m∏

j=n+1

(τi τ j )
−c̄i j ′ c j ′ i

⎞

⎠

(A.4)

which is a mixture of the corresponding D-type and C-type formulas [12, (8.66,
8.90)]

• For N = 2n and the quadratic Lax matrix of (5.53, 5.54), Dosc is given by

Dosc = τ
−∑n

j=2(ā j a j+ā j ′a j ′ )−
∑n+m

j=n+1(c̄ j c j+c̄ j ′ c j ′ )
1

⎛

⎝
n∏

j=2

τ
ā j a j−ā j ′a j ′
j

⎞

⎠

⎛

⎝
n+m∏

j=n+1

τ
c̄ j c j−c̄ j ′ c j ′
j

⎞

⎠

(A.5)

which is an analogue of [12, (9.16)]

• For N = 2n + 1 and the quadratic Lax matrix of Conjecture 5.64, Dosc is alike
given by

Dosc =

τ
−ān+m+1an+m+1−∑n

j=2(ā j a j+ā j ′ a j ′ )−
∑n+m

j=n+1(c̄ j c j+c̄ j ′ c j ′ )
1

⎛

⎝
n∏

j=2

τ
ā j a j−ā j ′ a j ′
j

⎞

⎠

⎛

⎝
n+m∏

j=n+1

τ
c̄ j c j−c̄ j ′ c j ′
j

⎞

⎠

(A.6)
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