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1. Introduction
1.1. Summary

The quantum loop algebras associated to simple g admit two presentations: the orig-
inal Drinfeld-Jimbo realization UP?(Lg) and the new Drinfeld realization U, (Lg). The
explicit isomorphism can be upgraded to that of quantum affine algebras, cf. [3, Theo-
rem 3|:

U’ (8) ~ Uy (9)- (1.1)

Many internal algebraic properties are developed in the Drinfeld-Jimbo realization us-
ing a triangular decomposition

U (@) = U7~ (@) @ U0 (@) @ UM< (@). (1.2)

For example, Beck [1] constructed the PBW-type bases of each of these subalgebras.

On the other hand, the new Drinfeld realization U, (g) is key to the representation theory
of these algebras. In this realization, the infinite set of generators is nicely packed into
the currents e;(2), f;(2), ¢F (2) (which bore fruits in CFT already in the classical case).
It is thus natural to develop algebraic aspects of U, (g) intrinsic to the loop realization.
We note that a triangular decomposition

Uy(3) ~ U, (8) © U (8) @ Uy (9)

is not intertwined with that of (1.2) through the aforementioned isomorphism (1.1).

Besides the standard generators-and-relations presentation, quantum groups (or rather
their positive subalgebras) admit a more elegant combinatorial (dual) realization. For
finite quantum groups, this manifests in the algebra embedding (cf. [13]):

keN

Us(e) > F= P Q)-[ir...ikl, (1.3)

UL geney i €1

where [ is the set of simple roots of g and F is endowed with the quantum shuffie
product. As shown by Lalonde-Ram in [18], there is a bijection between the set AT of
positive roots of g and the so-called standard Lyndon words in I, such that the order
on AT induced from the lexicographical order of words is conver. As a consequence,
Lusztig’s PBW basis of U, (g) can be constructed purely combinatorially via iterated
v-commutators, see details in [19,23].

Using similar ideas, Feigin-Odesskii introduced the elliptic shuffle algebras in [8,9], whose
trigonometric counterpart (in the formal setup with Q[[R]] instead of Q(q)) was further
studied by Enriquez in [4,5]. Explicitly, this manifests in the algebra embedding
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:U>(Lg) = S, (1.4)

where S consists of symmetric rational functions in {:r”}:EGIZ subject to so-called pole
and wheel conditions, endowed with the shuffle product. Thus, it is a functional version

of (1.3).

The key benefit of (1.4) is that it provides tools to treat the elements of U,(Lg) given
by high degree non-commutative polynomials in the original generators. Within the
last decade, this approach has found novel applications in the geometric representation
theory, quantum integrable systems, and knot invariants. To make this approach self-
contained, it is important to have a description of the image Im(¥). In fact, Enriquez
conjectured [5, Remark 3.16]:

U: U (Lg) = S. (1.5)

To prove (1.5), one has to “compare the size” of U; (Lg) and S. For types A; and
A, this was accomplished in [21] by utilizing specialization maps analogous to those
from [7,11]. A similar approach was used later in [22] to prove (1.5) for types A,, and
A,,; for two-parameter and super counterparts of type A,, in [25]; for type (2, 1;6) in [6];
for types G2 and B, in the authors’ earlier work [15]. In the present note we generalize
this treatment to the remaining classical types C,, and D,,. We should emphasize right
away that unlike the aforementioned cases, the specialization maps have to be properly
normalized in the present setup, since they now require a two-step process in which
certain vanishing factors arising due to wheel conditions must be first canceled before
further specialization (as not to produce 0). The main technical aspect of this note is to
show that these normalized specialization maps still exhibit the same key properties as
those crucially used in [15,25] for types A,, By, Ga.

We conclude the summary by noting that while Enriquez’s conjecture (1.5) was recently
proved for all finite g in [23] using a very different approach, the present exposition has
its own benefits as it allows to upgrade our results to important integral Z[v, v—']-forms
of U; (Lg) as well as to the Yangian counterpart, none of which was possible through
the technique of [23].

1.2. Outline of the paper

The structure of the present paper is as follows:

e In Section 2, we recall the notion of quantum loop algebras U, (Lg) in the new Drinfeld
realization and shuffle algebras S, introduce certain families of quantum root vectors
(associated to specific convex orders on the set of positive roots), and state the key

results (PBWD bases and shuffle algebra isomorphism) for U;” (Lg) of types C,,, D,,. We
also introduce two integral forms and state the PBWD bases for those. We conclude this
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section with introducing the main tool, the specialization maps, and summarize their key
properties in Lemmas 2.9, 2.10.

e In Section 3, we establish the key properties of specialization maps for type C,,, and
use these to prove Theorems 2.2 and 2.3 for type C,,, see Theorem 3.9. We upgrade both
results to Lusztig form U? (Lsp,,,) and RTT form U, (Lsp,,,) in Theorems 3.12 and 3.14,
respectively.

e In Section 4, we establish the key properties of specialization maps for type D,,, and
use these to prove Theorems 2.2 and 2.3 for type D,,, see Theorem 4.7. We upgrade both
results to Lusztig form Uy (Log,) and RTT form U, (Losy,) in Theorems 4.10 and 4.12,
respectively.

e In Section 5, we generalize the results of Sections 3—4 to the rational setup by providing
the shuffle realization and constructing PBWD bases for the positive subalgebras of the
Yangians and their Drinfeld-Gavarini duals in types C), and D,,, see Theorems 5.11 and
5.13.

e In Appendix A, we use the RTT realization of U,(Lsp,, ), U,(Los,) from [16,17] to
explain the natural origin and the name of the RT'T integral forms U, (Lsp,,,), U, (Loay,).
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2. Preliminaries
2.1. Quantum loop algebras and shuffle algebras in types C,, and D,

Let g be a finite dimensional simple Lie algebra with simple positive roots {«;}icr-
We denote the set of positive roots by A*. Each 8 € AT can be uniquely expressed

as a sum of simple roots: 8 = ) ., vg.0; with vg; € N. We shall refer to vz ; as the

iel
coefficient of a; in B, and we shall use the following notation:

i€ B <= vg; #0.

The height of a root 3 € AT is:

18] = vg.. (2.1)

icl
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We fix a nondegenerate invariant bilinear form on the Cartan subalgebra b of g. This
gives rise to a nondegenerate form on the dual h*, and we set d; := w The choice of
the form is such that d; = 1 for short roots a;. Let A = (a;)i jer be the Cartan matrix
of g, so that d;a;; = (v, ;) = dja;;. In this paper, we consider simple Lie algebras of
types C,, and D,,. The corresponding Dynkin diagrams look as follows:

C,(n>3) O—O0— "+ —0<«0 (2.2)
(&5 (&%) Op—1 Qp
O
Qp—1
D,(n>4 O—O0— .+ —0—0 (2.3)
aq Q2 A2 Qi

For these types, we have
Cp-type (n>2): di=1(1<i<n-1),d,=2,
D, -type (n > 4)

dzzl(lgzgn)

Let v be a formal variable. We define v, = v(®®/2 for any a € A*, and denote
Vo, = v¥ simply by v; for any i € I. Let &,,, denote the symmetric group of degree m.
Let U7 (Lg) be the “positive subalgebra” of the quantum loop algebra U, (Lg) associated
to g in the new Drinfeld realization. Explicitly, U; (Lg) is the Q(v)-algebra generated
by {em}:eelz subject to the following defining relations:

(z — v w)e;(2)ej(w) = (v;7 2 — w)e;(w)e;(2) Vi, jel,
l—a”‘ 1
Sym Y (—1)* { ka”] ei(z1) - eizn)ej(w)ei(zur1) - €i(21-a,,) =0 Vi

217~~»721—aij k=0 i

Here, we use the following notations:

ut —ut ‘ ? (4],
u = ) ol = K], = )
= =TI [m] e
ei(z) = Z eirz ', Sym V(z,..., 2m) = Z V(Zo(1)s -+ Zo(m))-
T‘EZ Z1ye9%m UGGm

M)y =u™ —u™™ Vm € N. (2.4)

We define &y, := [[;c; S, for any k = (k1,...,kjy) € NI Associated to the Cartan
matrix A = (a;;)i,jer, we also have the (trigonometric version of the) Feigin-Odesskii
shuffle algebra S. To this end, consider the following N -graded Q(v)-vector space
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S=P Sk

keN{!
where Sj, consists of rational functions F' in the variables {x”}ff <M such that:
o F is Gp-symmetric, that is, symmetric in {x; ,}*_, for each i € I,
e (pole conditions) F has the form
1<r<k;
f({xi,’r‘}ie_;_ ) (2 5)
T e 20 p1<s<Fk; ’ :
Hi<j 1<r<k; (@i,r — @j,s)

where f € Q(v)[{xﬁ }gfﬁki]eﬁ and an arbitrary order < is chosen on I to make

sense of i < j (though the space Sy is clearly independent of this order),
o (wheel conditions) for any F € S, its numerator f from (2.5) satisfies:

1<r<k; —2a; —aij
f({xi,r}ie_lr_ ) =0 once w, = Uzgzi,sz == ¢ in7$1—ai_7' =, ¢ RS
(2.6)
for any i # j such that a;; #0, 1 < s1,...,814,; < ki, and 1 <7 < k.
Let ({;,5(2))i,jer be the matrix of rational functions in z given by
_ p—(aiey)
z—v
Cij(2) = ——— (2.7)

z—1
For k, 0 € N, let
k+ 0= (ki +4;)ier € N1,

Let us introduce the bilinear shuffle product x on S as follows: for F' € S; and G € S,
we set

F % G({x”}lérﬁkﬁ&,) _

i€l
1 g F 1<r<k; G kj<s<k;+l; g Tir (2'8)
wra Symen |\ Flzirkier =) - G{istier ) 11 11 ¢ (a: ) '
== ijel r<k; 58
Here, for k € N’ we set k! = [Lc; ki!, and define the symmetrization
SymG&(F({xi,r}f;Ski)) = Z F({wi,aj(r)}ileglrgki)‘ (2.9)

(01,--,011])ECE

This endows S with a structure of an associative unital algebra.
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Notation 2.1. To simplify our formulas below, we shall often use C(i‘i”‘) instead of
G (32)

This algebra (S, *) is related to U, (Lg) via the following result of [23] (conjectured
in [5]):

Theorem 2.2. The assignment e;, +— aczr,l € S, (i € I,r € Z), where 1; =
(0,...,1,...,0) with 1 at the i-th coordinate, gives rise to a Q(v)-algebra isomorphism

U: U>(Lg) = S. (2.10)

The key objective of the present paper is to extend the method used in [15] to the
remaining classical types C,, and D,,. This provides a new proof of Theorem 2.2 in these
types, different from [23], but more importantly also yields tools to treat integral forms
along the same lines.

2.2. Root vectors and PBWD bases in types Cy,, D,

Our construction of the specialization maps and PBWD bases is based on the specific
choice of a convex order on AT. The one that is best suited for our purposes is arising
through the lexicographical order on standard Lyndon words, see [18,19], as we recall
next. The labeling of simple roots in the corresponding Dynkin diagrams (2.2), (2.3)
provides a total order on the set I of those, and hence the lexicographical order on the
set of words in the alphabet I. According to [18, Proposition 3.2], there is a natural
bijection between the sets of positive roots AT and so-called standard Lyndon words.
Thus, the lexicographical order on the latter gives rise to an order < on A™, which is
convex by [19, Proposition 26] (cf. [23, Proposition 2.34]). Henceforth, we fix this convex
order on A' and use standard Lyndon words to parametrize positive roots.

Let us work this out explicitly for types C,, and D,, with the specific order on I as in
(2.2), (2.3). Applying [19, Proposition 25], we find the set of all standard Lyndon words:

Cp-type (n>3): At = {[i...j]|[1<i<j<n}
U{li...(n=1)n(n—1)...j]|1<i<j<n-—1}
U{li...(n=1)i...(n—1)n]|1 <i<n—1}.

Dy-type (n>4): AT = {[i...j]|1<i<j<n-1}U{[n]}

U{li...(n—=2)n]|1<i<n-2}

U{li...(n=2)n(n—1)...4]|1<i<j<n-1}.

For convenience, we shall use the following notations for positive roots in types C),
and D,,:
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e Type C:
[i,j]=1[i...5]  for 1<i<j<n,
[i,m,j] =[i...(n—1Dn(n—1)...7] for 1<i<j<n, (2.11)
[i,n,i] =[i...(n—1)i...(n—1)n] for 1<i<n.
o Type D,:
[i,5] =1[i...]] for 1<i<j<nori=j=n,
[i,n] =1[i...(n—2)n] for 1<i<n-2 (2.12)

[i,n,j] =[i...(n—2)n(n—1)...7] for 1<i<j<n.
The aforementioned specific convex order on A™ in types C,, D,, looks as follows:
o Type C:

N <,2 < -<[L,n=1<[Ln 1] <[,n] < [Lnn—-1]<--- <[1,n,2] (2.13)
<[2]<--<[n—=1,nn—1] <In].

e Type D,:

I <L2<---<[L,n=1<[Ln<[lnn-1<[lnn—-2]< - <[l,n,2]
<[2l<-r<n=2,n=1<[n—-2n]<[n-2,nn—-1 <[n—1] < [n].
(2.14)

We define the quantum root vectors {Eﬁ’s}ferA+ of Uy (Lg) in type Cy, D,, via iterated
v-commutators. Here, for z,y € U7 (Lg) and u € Q(v), the u-commutator [z,y], is

[z, y]y =2y —u-yz.

e Type C:
If B = [i1,..., 10 # [i,n,i], we choose a collection Ay,..., Ap—1 € vZ and a decompo-
sition s = 81 + - -+ + s¢ with s1,..., 8¢ € Z. Then, we define

Eﬁ,s = [ o [[611751,612752])\1 ’ 6i3753]>\2a T ’eibsz])\pr (2'15)

If 8 = [i,n,i], we choose A\ € v?, a decomposition s = s; + so with s1,59 € Z, and
any quantum root vector Ef; ,,_1]s,, Elin),s, defined by (2.15), and then define

EB,S = [E[i,nfl],slvE[i,n],SQ])\- (216)
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e Type D,:
For any 8 = [i1,...,i € A%, we choose a collection Aj,...,A\_; € vZ and a
decomposition s = s1 + + - - + sp with s1,...,s¢ € Z. Then, we define
Eﬁ,s = [ o [[67;1751,67;2752})\1 ) eis,ss]Aza T ’eie,szb\z—l' (217)

In particular, we have the following specific choices {Eis}EGEZA+ which will be used to
construct PBWD bases of the integral forms in Theorems 2.6 and 2.8:

e Type C:
For 8 = [i,7] with 1 < i < j < n and s € Z, we choose any decomposition s =
8; + -+ s;, fix a sign &, and define
Eii]ﬁ = [ e [[€i7si’ei+17si+1]’0i17ei+2;3i+2]vi1 y T 7ej7sj]'l)i1' (2'18)

For 8 = [i,n] with 1 <i < nand s € Z, we choose any decomposition s = s;+- - -+5p,,
fix a sign 4, and define

EN’[ﬂ;n]’S = [€iyss5 €id 1,550 Jotts " 3BT s_1 ) uELs €nysput2- (2.19)
For 8 = [i,n,j] with 1 < ¢ < j < n and s € Z, we choose any decomposition
s=8;+ +8j_1+25;+---+25,_1 + s,, fix a sign &, and define

== .
[i,n,4],8 [ o H[ o [ei,sﬂ ei+1,81‘+1]vi17 t 7en71y5n71]’l)i17 (220)
en,sn]viQ ) en—l,snfl]vilv Tty ej,s]-]vil-
For 8 = [i,n,i] with 1 < i < n—1and s € Z, we choose any decomposition
§=28;+ -+ 28,_1 + sp, fix a sign +, and define
ot —
E[i,n,i],s T [[ : '[ei,siv 6i+1,8i+1]vil )t 76n—175n—1]v117 (221)
([ [ei’sl-v ei+1,5i+1]vi1 ) 7enfl,snfl]vilaen,sn]vﬂ]'
e Type D,:

For 8 = [i,j] with 1 < i < j<n(ori=j=n)and s € Z, we choose any
decomposition s = s; + - - - + 55, fix a sign £, and define

E[:i:',j],s = [ o [[eiaSi’ ei+1,s7’,+1]v1176i+2,si+2]vil y T 7ej75_j]’l)j:1' (222)

For 8 = [i,n] with 1 < i < n—2 and s € Z, we choose any decomposition s =
Si+ -4 Sp—2 + Sy, fix a sign £, and define

E[fn],s =l e Citrsia ot en2,s, oot engs, Jota (2:23)
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For 8 = [i,n,n — 1] with 1 < i < n —2 and s € Z, we choose any decomposition
s=8;+ -+ Sn_2+ Sp_1 + Sn, fix a sign £, and define

E[:i:"n,nfl]’s = [H s [eiaSi’€i+175i+l]’l}i17 T 76n72,sn—2]vi1aen,5n]vi17enfl,sn—Jvil'
(2.24)
For 8 = [i,n,j] with 1 <i < j <n—2and s € Z, we choose any decomposition
§=8;+ - +8j_1+25+ 425,20+ sp—1 + Sp, fix a sign £, and define
+ — [

[in,g]s " L7 [[[ o [eiysi’ei+1:3i+l]'l)il )Tt 76771_2;57172]'0:&17

(2.25)

en,sn]vil y enfl,sn_l]uil st 76]',5.7']1;:*:1'

Evoking the specific convex orders < on A™ from (2.13)—(2.14), let us consider the
following order < on the set AT x Z:

(a,8) < (B,t) iff a<f or a=ps<t. (2.26)

Let H denote the set of all functions h: AT x Z — N with finite support. The monomials

—
B, = [ BN vhen (2.27)
(B,s)EATXZ

will be called the ordered PBWD monomials of U; (Lg). Here, the arrow — over the
product sign refers to the total order (2.26). Our second key result generalizes [25, The-
orem 2.16] and [15, Theorem 2.5] from types A,, By, G2 to types C,, and D,:

Theorem 2.3. The ordered PBWD monomials {Ep}nen of (2.27) form Q(v)-bases
of Uy (Lg) for g of type C,, and D,,.

2.83. Two integral forms in types Cy, and D,

Following [15,25], we shall also use shuffle approach to study integral forms of U; (Lg)
in types C,, and D,,. Consider the divided powers

Ll Viel, reZ, ke N.

Following [14, §7.7], we define:

Definition 2.4. For g of type C, and D,, the Lusztig integral form U (Lg) is the
Z|v,v~]-subalgebra of U, (Lg) generated by {EE?}feelNrez.

To construct PBWD bases of U_ (Lg), we define the following normalized divided pow-
ers of the quantum root vectors in types C,, and D,, (cf. (2.18)—(2.21) and (2.22)—(2.25)):
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B s i with 1<i<n
~ k. [ — 19T =
C, — type: B = gi Ug]:f’ . (2.28)
[k‘f’s : other cases
vB
. (E5)E
D,, — type: E?i’s(k) — [k@]’s' VB e AT, (2.29)
!

Completely analogously to [15, Propositions 3.8, 4.15], we have':

Proposition 2.5. In types C,, and D, for any B3 € AT,s € Z,k € N, the normalized
divided powers of quantum root vectors {E;Cy’s(k)}g§§+ scz defined in (2.28)-(2.29) belong
to U, (Lg).

For € € {£}, define the ordered monomials (cf. (2.27))
E, = [[ EY vhen (2.30)
(B,8)EATXZ
Our third key result upgrades Theorem 2.3 to the Lusztig integral form U (Lg):

Theorem 2.6. For e € {£}, the ordered monomials {E§ }ner of (2.30) form a Z[v,v=1]-
basis of U. (Lg) for g of type Cp, and D,,.

Let us now introduce another integral form of U (Lg). For € € {+£}, define the
following normalized quantum root vectors in types C, and D, (cf. (2.18)—(2.21) and
(2.22)—(2.25)):

5 2),-E5, ifB=
C, — type: Efs = @) _Pos if 5 =In] , (2.31)
' (1)v - B, other cases
D,, — type: Es. =) E5, V(B,s)eAT xZ. (2.32)

The origin of these normalization factors (as well as the terminology “RTT” below) is
explained in Appendix A.? Similarly to (2.27), we consider the ordered monomials

.
& =[] @E )" VheH. (2.33)
(B,8)EATXZ

Definition 2.7. For g of type C, and D,, and fixed ¢ € {£}, the RTT integral form

U7 (Lg) is the Z[v,v!]-subalgebra of U (Lg) generated by {555}266ZA+

L This relies on [2, Theorem 4.2] that identifies ]:]?;,’0(1) with Lusztig’s quantum root vectors E; of Uy (g).
2 We also note that 5;0 = (vg — v;l)EA'ét, with E‘;‘f being the Lusztig’s quantum root vector of U, (g).
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We note that the above definition depends on the choices of quantum root vectors
n (2.18)—(2.21) or (2.22)-(2.25), as well as of e € {£}. Our fourth key result shows
that Definition 2.7 is well-defined and upgrades Theorem 2.3 to the RTT integral form
Uz (Lg):

Theorem 2.8. Let g be of type C,, or D,,.

(a) U7 (Lg) is independent of € € {x} and the choice of {EE}S}EEZAJF from (2.31) or
(2.32).

(b) For ¢ € {+}, the ordered monomials {Ef}nem of (2.33) form a Z[v,v~']-basis of
Uy (Lg).

2.4. Specialization maps in types Cp, and D,

Following [15], we shall use the technique of specialization maps to prove all theorems
above. We shall now briefly introduce those and state their key properties in the end of
this subsection.

Identifying each simple root «; (i € I) with a basis element 1; € N’ (having the i-th
coordinate equal to 1 and the rest equal to 0), we can view N/ as the positive cone of the
root lattice of g. For any k € N7, let KP(k) be the set of Kostant partitions, i.e. unordered
vector partitions of k into a sum of positive roots. Explicitly, a Kostant partition of &
is the same as a tuple d = {dg}pgen+ € NA" satisfying dierkici = s+ dgB. Our
specific convex order (2.13)—(2.14) on A" induces a total order on KP(k):

{ds}penr <{dglpear <=3y € AT st.d, <d,and dj = dg for all § <~. (2.34)

Let us now define the specialization maps in types C), and D,,. For any F' € Sj and

d € KP(k), we split the variables {xi’g}ggfgki into the disjoint union of » 5 »+ dg groups

(8,5)
2,

)

iengtSVW}, (2.35)
BeAT

where the integer vg ; is the coefficient of a; in 8 as defined in the beginning of Subsec-
tion 2.1. For F' € Sk, let f denote its numerator from (2.5). Then, the specialization map
¢a(F') is defined by successive specializations ¢ ; of the variables (2.35) in f as follows:

o Cp-type.
For 8 # [i,n,i], we define ¢ s(F') by specializing the variables {x(ﬁ S)HE{KUB ff
as:
xéis)l — ol éwgls, méi’n)z v Q"M_lwgs, xﬁffq) = v "Mwg . (2.36)

For 8 = [i,n, ], the specialization ®3,s is more complicated and is constructed in two
steps. First, we define ¢ 1)( F) by specializing the variables {x(ﬁ S)}11€<It<yﬁ of fas:
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xl(giz)l = v " wg mg;ﬁfl)Q — ol ewﬁ o 2 Be) v Mwy (2.37)

n,l
According to wheel conditions (2.6), ¢(1)S( F) is divisible by
Bg = {(wp,s — v *wp ) (ws,s — Ung,s)}n_i_l. (2.38)

Then, the second step of the specialization, denoted ¢E321, is defined by first dividing
’ (1)( F)
Bg

qﬁ(Bl)s(F) by Bs and then specializing the variable wj , in to v2wg 5. In this

way, we get the overall specialization ¢g s(F):

036 (F) =05, (65L(F)) = (2.39)

e D,-type.
For 8 # [i,n,j] with i < j < n — 2, we define ¢p s(F) by specializing the variables

B,s)iel .
{27 e, of f as:
xzifl)l — ol ngvs, xﬁff’) — vzfnw/;,s. (2.40)

For 8 = [i,n,j] with 1 < i < j < n — 2, the specialization ¢g , is again defined in
two steps. First, we define ¢gl(F) by specializing the variables {xgi’s)}§€<€<uﬁ Jof f
as:

(B,s) —0 (B,9)

2—n (B,s) 043—2n, 1
Ty Ly vl Was, Tpi VT "WEs, Tyt jgna U Wp - (2.41)

According to wheel conditions (2.6), ¢(51)S(F ) is divisible by

n—2

Bs = 1_[(1057S — v2£+4’2”w%75)(w5,5 — v%*?"wgﬁ). (2.42)
=3

Then, the second step of the specialization, denoted ¢(B2,)s’ is defined by first dividing

)
¢§311(F) by Bg and then specializing the variable wj _ in %g—éF) to wg,s. In this way,

we get the overall specialization ¢g 4(F'):

@) (1) ¢Eal)s()
0p.0(F) 1= 05 (#0(F) ) = L2~ (2.43)

’
wB,S»—VwB)S

Finally, the specialization map ¢4(F) is defined by applying those separate maps ¢z s
in each group {x%s) ’i€<1t<l,ﬁ . of variables (the result is independent of splitting as F' is

symmetric):
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1<s<dg

¢a(F) = [[ ¢s.s(F).

BeAT
We note that ¢4(F) is symmetric in {wﬁ,s}gL for any B € AT. This gives rise to the

specialization map ¢g4: Sy — Q(v)[{wii}éélﬁdﬁ]Gi

We shall further extend it to the specialization map ¢4 on the entire shuffle algebra S:

$a: S — Qu)[{whl} eSS

by declaring ¢q(F’) = 0 for any F’ € S, with £ # k.

Let us state the key properties of specialization maps ¢4 defined above: their proofs
constitute the key technical part of this note and will imply our main results similarly
to [15] (see the paragraph following Lemma 2.8 in [15]). For any h € H, we define its
degree deg(h) € N2 as the Kostant partition d = {dg}pea+ with dg =) ., h(B,s) €
N for all 3 € A*, and the grading gr(h) € N’ so that deg(h) € KP(gr(h)). For any
k € N and d € KP(k), we define the following subsets of H:

Hy, = {h € H|gr(h) =k}, Hy g = {h € H |deg(h) =d}. (2.44)

Then we have the following “dominance property” of ¢g4:
Lemma 2.9. For any h € Hy 4 and d' < d, cf. (2.34), we have ¢4 (V(Ep)) = 0.
Let S;, be the Q(v)-subspace of Sy spanned by {¥(E})}nem,. Then, we have:

Lemma 2.10. For any F € Sy, and d € KP(k), if ¢par(F) = 0 for all d' € KP(k) such
that d' < d, then there exists Fy € Sy such that ¢4(F) = ¢a(Fy) and ¢4 (Fg) =0 for all
d < d.

3. Shuffle algebra and its integral forms in type C,,

In this section, we establish the key properties of the specialization maps for the
shuffle algebras of type C),. This implies the shuffle algebra realization and PBWD-type
theorems for U, (Lsp,,,) and its integral forms.
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3.1. U7 (Lspy,) and its shuffle algebra realization
In type Cy, for any F' € Sy with k € N”, the wheel conditions are:

1§7"Ski . .2 — 1
F({xi,r}lgign )=0 once z;1 =0vw;2=0vx41,1 forsome 1<i<n-—2,
or T = v2mi,2 =ovzx;_1; forsome 2<¢<n-1,
_ .4 _.2
or Tnpi1=7vV Tp2=7"V Tpn-1,1,
2 4 2
or Tp-11=0V Tp-12=V Tp-13 =7V Tn,1-

We also recall the notations (2.11) for positive roots in type C,. Henceforth, we shall
use the notation = as in [15, (2.44)]:

A=B if A=c¢-B forsome ce Q* vl (3.2)

First, let us compute the images of the quantum root vectors ~{E~'i’s}ZEEZAJr of (2.18)—(2.21).

We shall use denomg to denote the denominator in (2.5) for any F' € Sg, e.g. for F =
U(ES,).

Lemma 3.1. Consider the quantum root vectors {Ei’s}ffezé‘+ of (2.18)~(2.21). Their im-

ages under ¥ of (2.10) in the shuffle algebra S of type C,, are as follows, cf. (2.4):

o IfB=Ti,jl withl <i<j<mnori=j=n, then for any s = s; +---+ s; used
in (2.18):

~ . 1)J-1 ) 141 s
U ( [er,] )= L .xffl . ..xj_flll xjfl,
Jh denomy; ;1 ’ ' '
j—i
\I/( [— - <1>% L opSi pSikitl x§j+1
[4,4],s denom[w-] 4,1%7i4+1,1 7,1

o If B = [i,n] with 1 < i < n, then for any decomposition s = s; + -+ + s, used
in (2.19):

—i—1
-+ - <1>n ) <2>v 5 +1 Sn—1+1l s,
\I/( [i,n],s/ T devnom[i’n] ~QS;1 ""Tn—ll,l zi,lv

[— - <1>’$_i_1<2>v s; Sit1t+1 Snt+1
\P(E[L"]ﬁ)i—denom[m] TiiTir11 T -

o IfB=i,n,j] withl <i<j<mn-—1, then foranys=s;+ -+ s;_1+25;+---+
28p—1 + S$n used in (2.20), we have:
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(=i,

U(EF )= T4 02z s o — v , ,
( [ww],s) denomy, , ;1 91 [( +v7)zj1T52 — v; 171(33],1"‘33],2)]
n—2
< T Qe me2, wesr1, w1 2),
=
-\ S v 5
U(E, )=+ Y g [(1+0)zi_11 —v(x; T
(B gi.s) denomy 2 (L +v*)zjo10 = v(zjn +2j2)]
n—2
X H Q(xe1, T2, Tet1,15Te41,2)s
£=j
where
Q(z1,m2,y1,52) = (L +0*) (@122 + Y132) — v(w1 + 22) (Y1 + ¥2) (3.3)
and
J—1 n—1
== @iawin) [ (@eazen)ag™,
f=i f=j+1

n—1
H xsﬁ»l xZ1w£2)sg+1msn1+1.

ni
Z 1+1 l=j

o IfB=[i,n,i] with1 <i<n-—1, then for any decomposition s = 2s;++-++28,_1+8n
used in (2.21), we have (cf. (3.3)):

- (1)2n—2i=2(9)2 n—l o n-2
(BT . i¥~nxaj st xs”H Tp1,%p2,T T
( [z,n,l],s) denom[l-yn’i] EZi( 2,1 572) n,1 il Q( 0,1,L0,2, Le4+1,15 €+1,2),
(3.4)
; -1
— - <1>12)n_21_2<2>3 S g se+1,.5n+2
U(E 0 0.s) = demompng (i,12i,2)" H (Te1e2)™ T 2y
s t=i+1
n—2
< ] Q@ea we2, wor11, 2esa ).
=i

Proof. We shall present only the derivation of the formula for \I/(E[JZr il ), while the

other formulas are obtained in a similar (but simpler) way. The proof proceeds by a
descending induction in i. The base case : = n — 1 is derived as follows:

l:[/(‘E[J'rrzfl'n.nfl] )
_‘Il(en 1,8n— 1)*\I/(E

+
p-tndsnatsn) ~ Y E 1] s ps,) * Y(En—15,)
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<2>v(xn—lylxn—lﬂ)snfle{fl

denom[n, 1,n,n—1]

Sym

Tp—1,1,Tn—1,2

<33n1,2(90n1,1 — U_2$n71,2)(90n71,1 — U2$n,1) n

Tn—1,1 — Tn—-1,2

Tn—1,1(Tn_1,1 — U_2$n71,2)($n,1 — U2$n1,2))

Tn—-1,1 — Tpn—-1,2

- <2>12; . (.’E 1 1Tp1 2)sn,1+1xsn )
denom[nfl,n,nfl] e ol

As per the step of induction, let us assume that (3.4) holds for any j +1 <i<n —1.
Due to

Sym

1,T2

((371 — v 2my) (21 — vy2) (Va2 — Y1)
r1 — T9

) = Q(xlaxZaylva)

with Q(z1,z2,y1,y2) defined in (3.3), we obtain:

W(EE )= ()3 (zj1250)%
l4,m,4],s7 Ht:l,Q

Q@ 1, w2, w11, T ,2)  W(E i e, )-
o=12(Tjs — Tj41,t)

Using the induction hypothesis for \I/(E[—;-&-l,n,j-&-l],s—%j)’ we derive (3.4) fori=j. O

For more general quantum root vectors {E@S}SGGZA+ of U (Lsp,,) defined in
(2.15)—(2.16), their images under ¥ are not so well factorized as for the particular choices
above, but what is actually important is that they behave well under the specialization
maps:

Lemma 3.2. For any choices of si and A in (2.15)~(2.16), we have:

$p(W(Eps)) =cg-wyy™  V(B,s) € AT x Z,

where {Kkg}gen+ are explicitly given by

j—i if B=1[i,j] withi<j
kg=<Sdn—i—3j—1 if B=[i,n,j] withi<j (3.5)
2n — 21 if 8=[i,n,i

and the constants {cg}gea+ are explicitly given by
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<wm1 if 3= [i,j] or B = [n]
o= M%), it B = [i,n]

MP22), TS {2 = D24 — D) if B=T[i,n, j]

<1> (2) if 8=1i,n,i]

(3.6)
where || denotes the height of B, cf. (2.1).

Proof. Tt suffices to consider only 8 = [i,n, i], as for the other roots the proof is analogous
to that of [15, Lemma 4.2]. For 8 = [i,n, ], recall that Eg s = [E}; ;,—1],s,, E}in],s,|x With
A€ vl s = s1 4 59, so that W(Eg,) = V(Ejn-1)5) * Y(Ejins) — AV(Ejins,) *
U(Epn—1],s)-

First, let us prove that ¢5(W(E};n—1),s,) * Y(Ejin),s,)) = 0. Consider
Fg = V(Eyn11,s) (@it Tn-1,1)Y(Ein)sp) (Ti25 - o Tno1,2, Tpy1) X
o) T (e ()29}
Tp—1,2 Tn,1 s T2 Te41,2 T2

According to (2.8)—(2.9), we have

\II(E[i,n—l],sl) * lIl(E[i,n],sz) =

Z F5 (%i00(1) Tiros(2) - » T 1,00 1 (1)> Tne1,0m_1(2)> Tn1 ) -
(CisesOn—1)EST "
(3.7)
Using o to denote (0y,...,0,_1) € G4, we can write each summand above as o(Fj).

We note that evaluating the ¢g-specialization of o(Fg) in (3.7) is equivalent to eval-
uating the ¢g-specialization of Fj with respect to different splittings of the variables

(’8’1)};;;<V’3 ‘. To this end, we shall write o(ngk**)) = 1 if a variable a:( ) is plugged
into W(EY}; 1,5, ), and o(xfk***)) = 2if it is plugged into W(Ej; p),s,). According to (2.37),

the ¢g)-specialization of the corresponding summand vanishes unless
8,1 8,1 B,1 8,1 8,1 1
ofafiV) = o)) = - = o@Vy) and o(al}V) = o(a)) = = ofa)),).
We still have two cases to consider:

)1 1 )1 1
-ﬂdilh=-~=o<$&>=2mﬂdé§h=~~=o<$&>:LtMn

o(z,, (’6 ’1 ) = 2, and the gi)(ﬁ )_specialization of the corresponding summand vanishes
(8.1

due to ¢ < ’;Bﬁf)

n,1

1 : 1 , 1
» i oafy) = o = o(@"Vy) = Land o(a3V) = - = o(w,s) = o)) = 2,
then the product of (-factors
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2 (00 N o)

, +
H{C <x<ﬂ,1>>c< @, ))C( <51>>} (3.8)
=i 0,2 Tyl Zyo

contributes Bz of (2.38) towards the gf)g)—specialization of the corresponding

summand, and so the overall ¢g-specialization vanishes due to the (-factors
(5.1) 2B
4("& %f)c( <>)
n—1,2 5
This completes the proof of ¢g(V(E[; —1],s,) * Y (Ein),s,)) = 0.
The evaluation of ¢g(¥(E};n)s,) * ¥(En-1]s,)) is analogous. We shall write

o(xif;*)) =1if ngf;*) is plugged into W(E; ,),s,), and o(xif;*)) = 2 if it is plugged into

U (L, —1],5,)- As before, the (b(ﬁl)—specialization of the corresponding summand vanishes

unless
1 1 1 , , ,1
o(x V) = o)) = = o)) and o(a{}V) = o(@1)) = - = o(all),)
We have two cases to consider:
- ,1 1 1 1
e ifo(@{}V) = - = o(@MY)) = @ﬂh—laﬂd Gy == o)) = 2,

then the product (3.8) contributes Bg to the qb 5 —bpemahzatlon of the corresponding
summand, and so again the overall ¢g-specialization vanishes due to the (-factor
2B
C ( 5, 11)1 ) ;
Ty — 1,2
. 8,1 B, 8,1 B, 8,1
o i oY) = = oMV = 2 and o(wy) = - = o)1) = o(x)}Y) = 1.
then this is the only summand that does not vanish under the specialization ¢g, and
its qbg)—specialization is

mnylv—w*"wg,l
= U (Ein),s0) U(En—1),s,)

ﬂcg#,,L,lel*Z'w};J g1 twg 1

(wlﬁ,l - ”7210,6’,1)(“’/5,1 - v4w5,1)

/
Wg 1 — Wp,1

><Bg~

Dividing by Bg and specializing further wj ; — v>wpg 1, we thus get
G5(Y(Elin,sn) * V(Ejin-1),s,)) = (D27 7272(2)7 - w7
v

This implies the desired result ¢g(¥(Egs)) = (1)27~2072(2)2. w;ﬁf" g

Let us generalize the above lemma by computing ¢4(¥(E}p)) for any h € Hy 4. Note
that
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—

U(E) = [[ (W(Esrynn) > *¥(Esrynan)  Vh€ Heg. (3.9)
peAt

Here, the product refers to the shuffle product and the arrow — over the product sign
refers to the order (2.13), and rg(h, 1) < --- <rg(h,dg) is obtained by listing all integers
r € Z with multiplicity h(ﬁ, r) > 0 in the non-decreasing order. Denote the variables
in W(Egz,,n,s) by {z }11€<,8t<uﬁ’ (as we reserve {x(ﬁ S)}jggguﬁ'i for the variables of
splittings below), and let

Fr= ] ¥(Esrns) 11 II IT ¢ )

BeAnt 8,8’ eAt i€f 1<t<vg; g r
1<s<dg 1<p<ds,1<q<dg

B.p)<(B'yq) jep' 1Sr<vgs < (B p) )

where the order (8,p) < (f',q) is as in (2.26). Then we have

V(B = Y o(F{ET)) = Y Fu({on))). (3.10)

gEG) 0c6y

To evaluate the ¢4-specialization of each term o(F},) in (3.10), it is equivalent to evaluate

the ¢g4-specialization of Fj, with respect to different splittings of the variables xff). We

shall write o(x,(k***)) = (B, s) if a variable m( ) is plugged into U(Eg,4(n,s))- Then, we

have:

Proposition 3.3. For a summand o (F},) in the symmetrization (3.10), we have ¢4 (Fr)) =0
unless for any 8 € AT and 1 < s < dg, there is s' with 1 < s’ < dg so that

o(xl(-ﬁt’sl)) =(8,s) foranyie B and 1 <t <wvg,, (3.11)

s

that is we plug the variables xi{j;s/) into the same function V(Eg ., (n.s))-
Proof. We prove this result by an induction on n.
Step 1 (base of induction): Verification for type Cs.
In this case, AT = {[1] < [1,2,1] < [1,2] < [2]}. For 8 = [1,2,1], Bg of (2.38) is
trivial, and the specialization map ¢g s is

x(l’gls) — wg.s, xgﬁé )y v2w57s, xé’gl’ )y wg,s- (3.12)

o Casel: g =1].
If (3.11) fails for 5 = [1], then there is a variable xln ") with 7 > [1] and o(xlntr)) =

([1], ) for some 1 < s < dj1;. We can also assume that s is the smallest number with

this property, which means for any 1 < s’ < s, we already plug a variable x(ﬁ ™) into
V(Eg yn,sy)- I n = [1,2] or n = [1,2,1] and t = 2, then ¢q(o(Fy)) = 0 due to
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) (n,™)
the (-factors ¢ ( (: T)> or ¢ (Jfr)) respectively. Otherwise n = [1,2,1] and ¢t = 1,

so that o(acgn;)) > O(J;Y'l’ ) (by the minimality of s), and ¢4(c(Fp)) = 0 due to
(n,r)
G (W)
o Case 2: §=11,2,1].
Assuming (3.11) holds for any ([1],s) with 1 < s < dpj, let us prove that
¢a(o(Fr)) = 0 unless (3.11) holds for any ([1,2,1],s) with 1 < s < djjoq.

Suppose o(x ("p)) = ([1,2,1],1). From (3.12), we see that ¢4(c(Fp)) = 0 un-

less o(xg[_llm] S)) > 0($§[712’2’1]’5)) > o(ngll’2’l]’S)) for any 1 < s <

df1,2,1]’ due to

S{L211) L(12.119) )
the (-factors ¢ [12 7= | ¢ (1[{“,271] 5 |. Since 1 € n and n > [1,2,1], we have

2 € n and we can assume that 0(:L“§77 p)) > o(xg?l’p)), as otherwise ¢g(c(Fp)) =
0, so that o(xé”l’p )) = ([1,2,1],1). Yet there is another variable that satisfies
o7y = ([1,2,1),1). It (n,p/) # (n,p), then we have o(z{"")) < o(a$}"")
and so ¢g(o(Fr)) = 0. If (', p’) = (n,p), then n = [1,2,1], and so all the variables
xi“,f’””’) are plugged into W(Ep o1, —_— 1](h71)). Proceeding the same way, we get
¢a(o(Fp)) = 0 unless (3.11) holds for any ([1,2,1],s) with 1 < s < djy 21

o Case 3: 5 =11,2].
Assuming (3.11) holds for § = [1] and 8 = [1,2,1], choose a variable satisfying
o(x ("p)) ([1,2],1). Asn > [1,2] and 1 € n, it must be n = [1,2], ¢ = 1. And
we know ¢4(c(Fy)) = 0 unless o(z{"") > o(z{;”), so that o(z{}") = ([1,2],1).
Proceeding the same way, we get ¢q(o(Fp)) = 0 unless (3.11) holds for any ([1, 2], s)
with 1 <s < d[172].

o Case 4: §=[2].
If (3.11) holds for any 8 < [2], then it must also hold for 5 = [2].

This completes the verification of the result for Cs.

Step 2 (step of induction): Assuming the validity for type C,,_1, let us prove it for C,.
Fix vy € A" and 1 < p < d,. Then, it suffices to prove that if for any (8,s) < (v,p),

we already chose s’ such that all the variables xgﬁ;sl) are plugged into W(Eg ., (n,s)), then

¢a(o(Fr)) = 0 unless we choose p’ and plug all the variables x('yp) into W(E, . (hp))-
To this end, we present case-by-case study:

o Case 1: v =[1,7] with 1 < j <n —1, and suppose o(xgt'gq)) = (v,p) with n > .
If n =[1,¢] with j < £ <mn, then t =1 and ¢4(c(F)) = 0 from type A,, results.
If n = [1,n,1] and t = 2, then ¢4(c(F)) = 0 unless 0(3:(1"2‘1)) > > 0(157111),2) >

) 2 (D)
o(z S”f ) due to the (-factors C( (n 5] ¢ (%) As o(at(”’q)) = (v,p) and

we already plugged variables into all V(E3,4(n,s)) With (8,5) < (7,p), we get
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¢4a(o(F)) = 0 unless 0(m§72’q)) = ... = O(xgl",’ql),g) = 0(335:’1‘1)), which is impossible

as n ¢ 7. Thus ¢4(c(F)) = 0.
If n =[1,n,1] and ¢t = 1, then we likewise get ¢q(c(F')) = 0 unless

o(al’3") 2 - 2 o(w,",) = o, i) > oal) = - = 0@, 1) = (7,).
3.13)
_9 2 (.9 G
The product of (-factors (cf. (3.8)) [T, {( (%) ¢ (%) ¢ (iﬁ—:;)} con-
z Toy1,2 Ty2

(n, q)

[(n.q) 219
tributes the B, factor of (2.38), while the remaining ¢-factors ¢ ( n=Ll ) ¢ ( "“)

contribute 0 when specializing w%’q to v2 Wy,q (cf. (2.39)), and so ¢q(c(F)) = 0.
If n=[1,n, ] with 2 <j <n—1, then we similarly get ¢4(c(F)) = 0 unless
o(@{) =+ = o(@”) = o(a\11y) = -+ = o(a3V) = (7,p),

which is impossible, as n ¢ ~.

Finally, if n = v = [1, j], then ¢4(c(F')) = 0 unless o(xg'qu)) ce= o(x%’q)) = (v,p),
that is we plug all the variables :cgl;(J) into W(E, . (h,p))-

Case 2: v = [1,n, 1], and suppose o(acg gq)) (v,p) with n > ~.

Since v,,1 = 2, there is another variable z1 t’q ) with o(zgt't/,’q,)) =(v,p). i n,n >,
then t = ¢ =1 and ¢4(c(F)) = 0 unless

(1,p) = 0(@") = . = 0(@™?) and  (,p) = o(a{")) = - = o(aT}!)),
(3.14)

which is impossible as v, , = 1.

If exactly one of n,7n’ is ~, then without loss of generality we can assume n = ~
and 1’ > ~, so that ¢/ = 1. If ¢ = 1, then the same analysis as after (3.13) implies
¢a(o(F)) = 0. If t = 2, then the same analysis as after (3.14) implies ¢4(c(F)) = 0.
If n =n' =~ and q # ¢, then we consider three cases depending on the values of ¢,
t'. If t =t/ = 2, then analysis similar to that after (3.14) implies that ¢4(c(F)) = 0.
If exactly one of ¢,t' is equal to 1, then the same analysis as after (3.13) implies
¢4(0(F)) = 0 again. Finally, if t = ¢’ = 1, then we know ¢4(c(F)) = 0 unless

’

(1,p) = 0o@h?) = - = 0@™D)) and  (7,p) = o(z{}")) = - = o(z{" ).

)

> (v,p) or o(:csgl’q )) > (v,p), and
therefore the same analysis as after (3.13) 1mphes ¢a(o(F)) = 0.

Finally if n =7’ =~ and ¢ = ¢/, then ¢4(c(F)) = 0 unless we plug all the variables
mi'y*q) into W(E, ;. (hp))-

Case 3: v = [1,n] or v = [1,n,j] with 2 < j < n — 1. We also suppose o

(v,p).

Since v, = 1 and ¢ # ¢/, we have 0(3:( ’q))

(z (WZ)) _
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If n=[1,n,k] > ~, then ¢4(c(F)) = 0 unless
o@l"?) = - = o) = o(afD ) = - = o(a}s") = (1.p).

The latter is impossible for k < j as v, = 1. Thus ¢4(c(F')) = 0 unless n = v and
we plug all the variables xsﬁ’ﬂ;q) into \I/(E%H(h,p)).

o Case 4: v =[1,n,2], and suppose o(x(lzjq)) = (y,p) with n > ~.
If (3.11) holds for any (5, s) < (v,p), then we must have n = v and so ¢4(c(F)) =0
unless we plug all the variables mi?;q) into W(E, ;. (hp))-

o Case 5: vy > [1,n,2].
If (3.11) holds for any (8, s) < (]2],1), then we can use the induction assumption for
Ch—1 to conclude that ¢g4(o(F')) = 0 unless (3.11) holds for all (v, p).

This completes the proof. 0O

Combining Lemma 3.2 and Proposition 3.3, we obtain the formula for ¢4(¥(E},)) with
h e Hﬁ,d:

Proposition 3.4. For any h € Hy 4, we have

B<p’
) d
¢a(W(EW)) = [ Gop- I[ (5 Go)- [ Pons (3.15)
B,Brent BeA+ peA+
with {Py, ,}gea+ given by
ra(h,1) r4(hods) Wg,i — UBZUJBJ
Py, =Syme, | wiy"™ e wfy) T ==L, (3.16)

Wa + — Wa »
1<i<j<dg B,i B3

where {rg(h, s)}}éiﬁdﬁ are defined after (3.9), the constants {cg}gea+ are as in
Lemma 3.2, and the terms Gg g, G are products of linear factors wg s and wg,s —
vPwg: o which are independent of h € Hy 4 and are &q-symmetric (the factors G are
specified in Remark 3.7).

Remark 3.5. Proposition 3.4 (cf. [25, Lemma 3.17]) features a “rank 1 reduction”: each
Py, , from (3.16) can be viewed as the shuffle product el wo g gre(hds) in the

shuffle algebra of type A1, evaluated at {wpg s gil.

Using the same arguments as in the proof of Proposition 3.3, we can now evaluate
dq (V(Ey)) for any d' < d € KP(k) and h € Hy, 4:

Proposition 3.6. Lemma 2.9 is valid for type C,,, with ¢4 of (2.36)~(2.39).
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Proof. Given d' < d € KP(k), let v € AT be the smallest root such that dﬁy < d, and
let

1<s<d)
2 (Bss)
it

iel1 gtguﬂ’i}

peA+t
be any splitting of the variables for ¢4 . To evaluate the ¢4 -specialization of each sum-
mand o(F}y) in the symmetrization (3.10), we write o(zlfi’*)) = (B, s) if a variable a:;(:*)
is plugged into W(Eg ,,(n,s))- Arguing as in the Step 1 of the proof of Proposition 3.3,
we know that Lemma 2.9 is valid for type Cy. Now assuming that Lemma 2.9 is valid
for type C,_1, let us prove its validity for type C,,. First, according to the proof of
Proposition 3.3, we know ¢y (o(F}),)) = 0 unless for any (3,s) < (v,d,), there is some
1< < d'ﬁ such that all the variables xisf’s,) are plugged into W(Eg, ., (n,s))- Then there
is 7>~ and 1 < ¢ < d;, with o(m/lff’q)) = (7,d,, 4+ 1). Using the same analysis as in the
Step 2 of the proof of Proposition 3.3, we then get ¢4 (c(F}p)) = 0. This completes the
proof. O

Remark 3.7. The factors {Gg}gea+ featuring in (3.15) are explicitly given by:
e If f=i,j]with1 <i<j<mnori=j=n, then

Gs = H wgi H (wp.s — v2wg o )70 (3.17)

1<s5<dp 1<s#s'<dg

o If B =[i,n] with 1 <¢ < n, then

Gp = H wgfs H {(wp,s — v?wp,e )" (wp,s — viws,e) }. (3.18)

1S5§dﬁ lgs;és’gdﬁ

o If f=1[i,n,j] with1 <i<j<n-—1,then

Go= [T win, TI {(wss—vPwse)® 7 (wp,s —vtwge)}x

1<s5<dg 1<s#s'<dg
n—2 n—1 (319)
1T [T ws.s =0 ws o) [T (ws.e — 0> > Fws o)
1<s#s'<dg | £=j =j
o If B =[i,n,i with 1 <i<mn, then
Go= J[ wit I (wss—v wse)™ 7 x
1<s<d 1<s#s'<d
’ ’ (3.20)

[T {wss—wse) " Hwps — viwse)" '}
1<s#s'<dg
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The factors Gg g featuring in (3.15) can be computed recursively, which shall be used
in the proof of our next result:

Proposition 3.8. Lemma 2.10 is valid for type C,,, with ¢4 of (2.36)-(2.39).

Proof. The wheel conditions (3.1) for F' € S, together with the condition ¢4 (F') = 0 for
any d' € KP(k) satisfying d’ < d, guarantee that ¢4(F) (which is a Laurent polynomial
in the variables {wgs s}) vanishes under specific specializations wg s = v# - wg . To
evaluate the aforementioned powers # of v and the orders of vanishing, let us view ¢4 as
a step-by-step specialization in each interval [3]. We note that this computation is local
with respect to any fixed pair (3,s) < (8',5"). We set Gg g = Gg. For any pair § < 3/,
consider

d =

{d/g =2, and d = 0 for other fy} it p=p
{dg =dg =1, and d, = 0 for other v} if 3 <3

and let d € KP(k). According to Proposition 3.4 and Remark 3.5, it suffices to show
that for any F' € Si, the specialization ¢q(F) is divisible by G g if ¢4 (F') = 0 for any
d' < d. Using A,-type results and the induction (i.e. assuming the result holds for type
Cpn—1), we still have the following cases to analyze (henceforth, we shall use the notation
w — vE*w’ to denote the product (w — vFw’)(w’ — vFw)):
e f=p0 =[1,n,j] with1 < j <n.

If j =n—1, then

Gp = whwho(ws — v 2w ) (wsa — v wp2) - Go with = [1,n].
For any F' € Si, as we specialize all the variables but {a:gf_ 11) 95 xﬁf_?z}, we know that
the wheel conditions involving the specialized variables produce the factor G, by the

induction assumption. As we specialize x,(f _’11)72, the corresponding wheel conditions

(8,2) B,

n—2,1» n—

(8,1)

8,1) _ .2 (82 _ ) 2 (82 _ a4 (B1) _ 2
Ty 1=V Ty 11 =0V , 1=V Ty 190 =V Ty

contribute the new factors wg 1 — v0wg 2, wg 1 — vV?wg 2 to pg(F). By symmetry, as
we specialize the variable xflﬁ 7’21)’2, we also get new extra factors wg 2 — v%wgs 1 and
wga — v2wg 1. Thus ¢g(F) is divisible by (wg1 — vF2ws2)(ws1 — v0wg2) - Ga,
hence by Gg.

If2<j<n-2 then
Gp = wj wh,(ws 1 —v2wg 2) (w1 — vEC g o) (ws — vECTTH D, 5) - G,

with @ = [1,n,j 4+ 1]. For any F € Sj, as we specialize all the variables but
Ty ), 33%2)} we know that the wheel conditions involving the specialized variables
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produce the factor G, by the induction assumption. When we specialize x;ﬁz’l), the
new wheel conditions

(8,1) 2, .(8,2) (8,2) (8,2) 2, (B,1) _ 8,2) (8,1) 2 (5 2) (8,1)
Ti2 =V T i =Y x;g (

vriih, Ty = VT T, = VT = 085

2n—2j+4 2n—2j 2
It hwg0, we —v Jwg,2, wg,1 — vV Wg,2, respec-

tively, into ¢4(F). Then from symmetry (using a;ff instead of w;g’l)L we see that
¢q(F) is indeed divisible by Gg.

B=p = [1777" 1]'

If o = [2,n,2], then we have

contribute the factors wg; —v

Gp = wh 1wj o (wp1 — wp ) (wsa — v 2wg2)* (s — v wp2) - Ga.
For any F' € Sk, as we specialize all the variables but {x (1) xgﬂzl),zgﬂf),xl 22)}
we know that the wheel conditions involving the bpeaahzed variables produce the
factor G, by the induction assumption. As we specialize the variables x(15 1’1) xgﬁ 2’1) ,
the wheel conditions at

)1 1 1 8,1 8,1 8,1
5 =20 =0, a0 = ol =

contribute the factor Bg/B, = (wg1 —p*2

¢ ( ), cf. (2.37). Then in the second step of the specialization, cf. (2.39), we divide
by Bg/B, and specialize wj ; = wg 1, wj 5 = wg 2. The wheel conditions at

wj ) to the first step of the specialization

)2 ,1 ,1 ,2 8,1 1
oGP =0t =03V 2B = 03V =l
(8,2) 2 (8,1 8,1 (8,2) 2_(B,1) (8,1)

Lo =0V Zg,Q ) = W"%,Q )7 Loao =V Xgg =VTp9

contribute the overall factor (wg 1 —wg 2)(ws1—v 2ws ) (ws1 —v " tws2) to da(F).
Then from symmetry (using xﬁ” xgﬁ;) instead of x(ﬁ b x§521)) we see that ¢q(F)

is indeed divisible by (w1 — ws.2)?(ws1 — v 2ws 2)2(ws1 — vF*wp2) - Ga, hence
by Gpg.
/B:[]'??:]’ 5/:[1771’71]'

If : = 1, that is 8 = [1], then

Gppr = (wp1 — wg1)(wp1 — v 2w 7).

([3 A) 2 (1) (/3, )

The wheel conditions F' = 0 at ;" = v*z) 7’ = vxy;" and x(ﬁ N = 21:%{31’1) =

vx%’ ) imply that pa(F) is d1v151ble by Gg g
If2 <i<n-—2, then

Gpp = (wp1 —wpr 1) (wp1 —vwgr 1) (wpy —v'wg 1) Ga g with a=[1i—1].
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(B b , we know that the wheel conditions involv-

As we specialize all the variables but ,
ing the specialized variables produce the factor G, by the induction assumption.

As we specialize x(ﬁ = , the wheel conditions F' = 0 at

28D = 20D =02, 2B = 2D = 0l
’ ’ (3.21)
o) = 28D = 22BN wal®) = 2D = 2

contribute the factor (wg 1 — wgr 1)(wp1 — vF2wgr 1) (w1 — viwgr 1) to ¢a(F), and
so ¢g(F) is divisible by G .
If i =n—1, that is 8 = [1,n — 1], then

Gpp = (wg1 —v2wg 1) (w1 — v wg 1) Gy with a=[1,n—2].

Then the first three wheel conditions from (3.21) imply that ¢4(F) is divisible by
(wp1 — vF2wgr 1) (ws1 — viwg 1), hence by Gg 4.

B= [1’i]? B = [Lnaj]'

Ifi <j—2,then Gg g = Gg 1 -1, and so ¢g(F) is divisible by G5 5/ from type A,,.
Ifi=j—1, then

Gpp = (wp1 — vPwp 1) (wp — v 2" 2w 1) - Gap with a=[1,j-2].

As we specialize all the variables but 113; ’1)1, we know that the wheel conditions

involving the specialized variables produce the factor G g/ by the induction assump-

tion. As we specialize mg-é’i)l, the wheel conditions F' = 0 at m(ﬁ 1{ = vzxﬁ%)l

(90 G50 _ 20 BNC: Y

vy, w7y = v?x” ) = way” | contribute the extra factor (wg1 — v wg 1)
into ¢q(F). Moreover if we consider d = ={d,; = dy, 4 = Land & =
0 for other v}, then d < d and ¢4 (F) = 0 implies that ¢4(F) is divisible by
wg — v 22 2wg 4. Thus, ¢4(F) is divisible by Gg g/, as claimed.

Ifi=j5<mn-—1, then

Gpp = (wpy —v " g 1) - Ggo  with a=[1,n,j+1].

(B)

As we specialize all the variables but z; 5", we get the factor G, by the induction

assumption. As we specialize x% ), the Wheel condition F' = 0 at xgﬁz - vzxﬁ’l) =

(5’1)1 implies ¢q(F) is divisible by wg — v=2n+2i-4

wg 1, hence by Gg g .
If i=j=n—1,then Gz = (wg,1 — v %wg 1) - Gg 1, From the wheel condition

=0 at x(ﬂ 1) = v23:£Lﬁ_11) 25’2 1 and the induction assumption, we get that
qbi( ) is d1V1Slble by Ggpr.

If i = j4+1=nmn, then Ggp = (wg1 — vF*wg 1) - Gj1 _1),5- Due to the induction

assumption and the wheel conditions at x(ﬁ Y=y m(ﬁl D = v2x(5 1)) and x(ﬁ D =

v4x(ﬁ V= vzxff | )2, we see that ¢4(F) is divisible by Gg g.
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Ifi >j+land 1 < j < n-—1,then Ggp = (wg1 — v 2" wg 1) (w1 —

v_2”+2jw51’1) GB [1,n,j+1]- By the induction assumption and the wheel condition at
5611) = v2x§-’g’l) = vxg’ill)l or x(ﬁ - v2x(ﬁ’ ) = Uac(ﬁ’ )1, we see that ¢4(F) is

divisible by Gg s-.

8 =1[1,n,1], 8 =[1,n].

If we set a = [2,m,2], & = [2,n], then we have:

Gpp = (w1 —wg 1) (w1 —vFwpr 1) (w1 — v wpr 1) - Gaar

From the wheel conditions at

,1 "1 ,1 ,1 B8’,1 1
$§B1 = vzxg,ﬂl )= vwéﬁ )v xgﬁz ) = 92x§,1 ) = ”xé,ﬂz )>

B,1 8,1 2. (8,1 B _ (B1) _ 2 (B1)
vxil )= x;,l )= v xé,l )a ngz =To1 T U Xgo

and the induction assumption, we see that ¢4(F) is divisible by Gg g.

6 = [1an7 1]76/ = [1,71,]]
If j > 2, then the same arguments as for the case (5,8') = ([1,n,1],[1,n]) above

apply.
If j =2 and n = 3, then we have

G = (wp1 — v 2w 1) (wp1 — v wgr 1) (wpr — v wpr 1) - Gz e
From the wheel conditions at

B'1 2 (81 8,1 B',1 2, (8,1) (8,1)
$§,2 ' = xé,l )= 'ng,l )v zéz ' = Logg =UVL1g ",

)

8,1 2 (B,1) _ a4 _(B,1) _ 2 (B8,1)
xé,z ) = v 37(271 =V X399 =V T3q 7,

and the induction assumption, we see that ¢4(F) is divisible by Gg gr.
If j =2 and n > 3, then we have

Gpp = (wp1 —v " wer 1) (V" wg 1 — vwer 1) (ws g — v 2" wg1) - Ga i)

From the wheel conditions at

xég’l) — x(ﬁll) _ ngﬂ, )’ 33575271) _ v%é@’l) _ v:vgg’l),
1 )1 1 "1 1 1
’0293%?2 )= xéﬁl )= vngl )v ”255&{32 )= méﬁz )= Ux:(fz )>

and the induction assumption, we see that ¢4(F') is divisible by Gg g.

6 = [1,77,,]43], ﬂ/ = [Lna]]
If j > 2, then Gg g = (wp1 — v 2wg 1) - Gl2.n.k],[2,n.5], and so ¢4(F) is divisible by

Gg,5' due to the induction assumption and wheel condition at x(ﬁ V= vgx(ﬁ D =

U.Tg{jl D or Z‘( - UQQI‘(B D ’Ul‘gil).
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If j =2 and k > 3, then

—2n+4

Gppr = (wg,1 — v > wg 1) (wp1 — v wpr1) - Gl k), 1n,3]5

and so ¢4(F) is divisible by Gg g due to the induction assumption and wheel con-

dition at x(ﬁ R v%cég’l) = vxéi’l) or x(ﬁ - Qxéjﬁl’l) = vxﬁ’l).

Ifj=2, kf3andn>4,then

Gpp = (w1 — v 2w 1) (wp 1 — 0> Pwg 1) (wen — 0™ Cwpr 1) - Glanag1n,2)-

From wheel conditions at

B _ 2 (81 _  (B1) B _ 2 (81 _  (B1)
Lgo =V T3y  =Vlyq1 7, Lgo =V Xzg " =Vlyqo 7,
2 (B _ (B . (B.1) 2 (81 _ (81 _ . (81)
VT3og =T3p " =VT4q 7, VT3 =Tz  =VIyy 7,

and the induction assumption, we see that ¢4(F) is divisible by Gg g
Ifj =2,k =3and n =4, then Gg g = (w1 —v 2w 1)(ws 1 7v6wﬁ/71)~G[174]7[174,2},
and ¢g(F) is divisible by G, s/, due to the induction assumption and wheel conditions

ot 2530 = PN = gD I D gl G gl
v (ﬂ 1) _ 2 (ﬂ’,l)_
- Bz [ | > 8.
If 3 =[1] and B = [2,n,2], then Gp g = (wg1 — wg 1)(ws,1 — v2wgs 1). Consider
d = {d}, ) = djz,,,—y) = 1, and d’, = 0 for other v}, so that d < d. Then ¢4(F) is
divisible by Gg g due to the condition ¢4 (F) = 0 and wheel condition at x(B b =
w2 = palfD),

If =1, and B = 12,n,j], then Ggp = (w1 — wy 1) - Gpay,pr- Consider d' =
{d}; ,,.;) = djz,y =1, and d’, = 0 for other v}. Then d' < d and ¢4(F) is divisible by
Gp,p due to the induction assumption and ¢4 (F') = 0.

If 5 =[1,n,i] and B’ = [2 n,j] with j < i, then Gg g = (wg1 — wp 1) - G[Q’n’i]“@/.
Consider d' {d[1 il = EQ,M] = 1,and d,, = 0 for other v}. Then d' < d and
¢4(F') is divisible by Gg g due to the induction assumption and ¢4 (F) = 0.

For all other cases, the divisibility of ¢4(F) by Gg g follows from the induction
assumption and proper count of wheel conditions similarly to the cases above.

This completes our proof. O

Combining Propositions 3.6 and 3.8, we immediately obtain the shuffle algebra real-
ization and the PBWD theorem for Uy (Lsp,,, ):

Theorem 3.9. (a) ¥: U; (Lsp,y,) —= S of (2.10) is a Q(v)-algebra isomorphism.
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(b) For any choices of s and A in the definition (2.15)~(2.16) of quantum root vec-
tors Eg s, the ordered PBWD monomials {Ep}nhen from (2.27) form a Q(v)-basis of
U7 (Lspsy,)-

3.2. Shuffie algebra realization of the Lusztig integral form in type C

For any k € N, consider the Z[v,v™!]-submodule Sj of S consisting of rational
functions F' satisfying the following two conditions:

(1) If f denotes the numerator of F' from (2.5), then
f € Zv, v [z hEiE 1. (3.22)
(2) For any d € KP(k), the specialization ¢4(F) is divisible by the product

IT . (3.23)

peAt

where we define {¢g}gen+ via {cg}gen+ of (3.6):

Cg—

_ [gi, if f=1[,n,i withl<i<n-1 (3.24)
cg otherwise . ‘

Define S := @,y Sk and recall the Lusztig integral form U7 (Lsp,,,) from Defini-
tion 2.4. Then, similarly to [15, Proposition 4.17], we have:

Proposition 3.10. ¥ (U (Lsp,,)) C S.
Proof. Forany m e N, 1 <iy,...,0pm <n,71,...,7m € Z, and {1,..., 4, € N, let

F=w(E") ...E") ),

11,71 Tm,Tm

and f be the numerator of F' from (2.5). The validity of the condition (3.22) for f follows
from the equality of [26, Lemma 1.3]:

Lg(Lqg—1)
\IJ(E(ZQ) y=v,  *

1q,"q 2q

(i1 -2y 0,)" Vi<qg<m. (3.25)

To verify the validity of the divisibility (3.23), it suffices to show that for any 8 € A™

and 1 < s < dg, the total contribution of ¢4-specializations of the (-factors between
the variables {xgi’s)}fggyﬁ " of f is divisible by ¢g. It suffices to treat only the cases

B = [i,n,j] with 1 < i < j < n, since the cases when § = [i, j] are treated completely

(#,%) *)

analogously to type A,,. Henceforth, we write o(zs ') = ¢ if a variable mi** is plugged

into \I'(ngqzq) We consider the cases i # j and i = j separately:
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e B=1[i,n,j] with1<i<j<n.

According to (2.36), the ¢g4-specialization of each summand in F' vanishes unless

o(@yV) = - 2 oal1Y) 2 o(w}7) 2 ofally) = - > olaf3Y).

= = Ly — 1,1 n,
ﬁs) (B,3) S .
Since o(z;,") # o(w;, ;") for i # i, we actually have:
o7y > - > 0o(@))) > 0@y) > o(alYy) > - > o(2l).

The ¢4-specialization of the product of the following (-factors

n—2 (8,9) (/315) n—1 x§ﬁ18)
HC((/&, ) C((Bs))'{nc<x(ﬁs>>}
Loy, 2 n—1,1 t=it1 —1,1
contributes (1)2"~1=3=2(2), . Likewise, the ¢g4-specialization of
n—1 2(Ps) 2(Bs) (/373)
B,s B,s B,s
l=j xgq,)l xé,l ) §+1)1

contributes szjl {(v¥=26 —1)(v? =24 — 1) }. This overall yields ¢, ; of (3.24).
B =[i,n,i] with 1 <i<n.

According to (2.37), the ¢g4-specialization of each summand in F' vanishes unless

o(@y) > o(alTP) > - 2 0(@PY)), o@lF) > 2 0(@lY,) > o(@l).

Since o(xgﬁ’s)) # o(m(,ﬁt,)) for i # 4/, we again have strict inequalities:

o(@7?) > o) > - > oY), 0@y > > 0@l Y,) > 0@ ).

L1 n n,
For any i < ¢ < n — 2, let us consider the (-factors between the variables

B,s B,s B,s
{mé,l g xéz ) $é+1)1axé+1)2

With symmetry in the above variables, we may assume that o(xf 1’5)) > o(m%s))
the following analysis. We have two cases to consider:
— if o(x%S)) > o(xﬁf)l) then we have o(xé’ﬂl’s)) > o(x, (’6 S)) > 0( ’@ S) )& o(atse+1 2)

5,9) (8,9)
and C (%;ﬂz) ¢ (ZE;;J) contributes (wg s — vzwﬁ’s)(w&s - ’072105’8) into the

10) Bl)—spemahzation;
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- if o(xgif)l) > o(x%s)) then o(ac((fls)) > o(ng_f)l) > 0(;10%’5)) > o(xéf_’f’g), and
(8,9) £(8:9) (8,9)
¢ (xi§1f> ¢ ( f;lf) ¢ (ﬁf[fg) ) contributes (wg,s —UQUJ%VS)(’LU@S —v_2w;37s) into

1,1 41,1

the ¢/(61)—spec1ahzat10n.
The above analysis shows that the ¢gl)—specialization of that summand is divis-
ible by Bg of (2.38). Now let us consider the (-factors between the variables
{z\” i)l,xff 61)2, 5?15 boIf o(z (ﬂf)) > o(x Ef"?l) then the ¢g4-specialization of that

289
summand vanishes due to the {-factor ¢ < e i)l) if o(z,, (4, S)) o(x (Bj)l) then the

2(89) (8,9)
(-factors ¢ ( s ) ¢ < Tl ) contribute (1), (2), into the overall ¢4-specialization.

Loy — 1,1 n—1,2
Along with the specialization of the (-factors (which have not been considered

20859 20859

above yet) Z;f {§ <%) ¢ ( ’5&51)2)} shows that ¢4(F) is indeed divisible by
Te,1 ) N

<1>Lﬁ|_2(2>v, which is precisely é}; , i of (3.24).

This completes our proof. O

Recall the normalized divided powers (2.28) of the quantum root vectors

{E; i(k }g§§+,sez and the ordered monomials {E§}sen of (2.30). For e € {+}, let

St be the Z[v,v"!]-submodule of S; spanned by {¥(E)}nep,. Then, the following
analogue of Lemma 2.10 holds:

Proposition 3.11. For any F € Sy, and d € KP(k), if ¢4 (F) =0 for all d' € KP(k) such
that d' < d, then there exists Fy € Sf, such that ¢4(F) = ¢a(Fa) and g (Fg) =0 for all
d < d.

Proof. Completely analogous to that of [15, Proposition 3.11]. O

Combining Propositions 3.10 and 3.11, we obtain the following upgrade of Theo-
rem 3.9:

Theorem 3.12. (a) The Q(v)-algebra isomorphism ¥: U (Lsp,,) = S of Theo-

rem 5.9(a) gives rise to a Z[v,v~1]-algebra isomorphism ¥: U (Lspy,) — S.
(b) Theorem 2.6 holds for g of type C,.

3.3. Shuffle algebra realization of the RTT integral form U, (Lsps,,)

To introduce the RTT integral form of the shuffle algebra S, we first recall the vertical
specialization map (cf. [26, (1.59)]):

— 1<s<d — 1<r<#
@2 Llv, v 1][{w5i,1s}BEA_+ ?194 — Z[v,v 1][{2,;1}[%&;6]_ (3.26)
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For d € KP(k), pick any collection of positive integers t = {tﬁ,r}/léffﬁ ({g € N)

satisfying
s
dg=> tg, VBeAT. (3.27)
r=1

For any 8 € AT, we split the variables {w575}§21 into £g groups of size tg, each (1 <
r < {3) and specialize the variables in the r-th group to

2 —4 72tﬁ7,«
Uﬁ ZB,rs Uﬁ ZBry e ’Uﬁ ZB,r-

For any g € Z|v, v*l][{wﬁi‘ls ;éfjﬁ]eﬁ, we define w;(g) as the above specialization of g.
Recall the factors {cg}gea+ of (3.6). When g = [i,n, j] with 1 <1i < j < n, we have

n—1

os = (O @), - T {22 — 24 1))

t=j
= <1>L6|—2<2>v . (U2n—2j+4 _ 1) . 1:[ {<U2n—2€ . 1)(vzn_ze+2 _ 1)} .
=5

For any k € N", consider the Z[v,v~!]-submodule Sy of Sj. consisting of rational func-
tions F' satisfying the following three conditions:

(1) If f denotes the numerator of F' from (2.5), then

fenitrtheonyin . 2, o {af hEE 1 (3.28)
(2) For any d € KP(k), the specialization ¢4(f - <1>;k17"'7k"*1 (2)7*n) is divisible by
1<i<n 1<i<j<n
Ag= [ v ] @rEtt-on®
=[i,n,i]eATt =[i,n,j]€eAt
B=I 2 le B=li,n.jle (3.29)
X H {(UQTL*ZZ _ l)dg (,U2n72f+2 _ l)dﬂ}.
l=j

(3) F is integral in the sense of [15, Definition 4.12]: the cross specialization

- $a(F)
TQVE(F) — Wi <<1>51++kn1<2>5n . AQ . H56A+ Gﬁ) (330)

is divisible by H;Effﬂ [ts.r]v;! for any d € KP(k) and ¢t = {tﬁm}géffﬁ satisfy-

ing (3.27), with Gg of (3.17)—(3.20); the divisibility of ¢4(F) by Gz is proved in
Proposition 3.13.
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We define S := @, cnn Sk- Recall the RTT integral form U (Lsp,,) from Defini-
tion 2.7. Then, similarly to [15, Proposition 4.13], we have:

Proposition 3.13. ¥ (U, (Lsp,,)) C S.

Proof. For any e € {£}, m €N, B1,...,8m € AT, r1,...,7 €Z, let

= \Ij(gglﬂ"l -..gEm1Tm)7

and f be the numerator of F'. We set k = Z;’;l Bq- Henceforth, we shall use the notation
0(:5& M )) = ¢ if a variable x&f,’k*) is plugged into \I!(é:f;q’rq) for some 1 < g < m.

First, due to Lemma 3.1 and our choices of the normalized quantum root vectors of
(2.31), f is divisible by (1)5* T *=1(9)kn thus implying (3.28).

Next, for any d € KP(k), we show that ¢¢(f/<1)’51+"'+k”’1(2)5") is divisible by A4
of (3.29). We consider the ¢4-specialization of each summand from the symmetrization
featuring in f.

o B =1[i,n,j] with 1 <i< j<n such that dg # 0.
Fix any 1 < s < dg. We can assume that

o) = - = o(@)1Y) = 0@} > o(w2Y,) > - > ofaff;”)

)

as otherwise the ¢g-specialization of the corresponding summand vanishes. Let us

now consider the (-factors arising from the variables {xgﬁ f)l, x§ﬁ 1 S), x;g,s)}:
- If 0(3:5.71})1) = o(xﬁs)), then o(x 56 f)l) = o(x;ﬁs)) = o(x ;’g’s)), and from

Lemma 3.1 we know that the corresponding summand is divisible by

(1—|—v) (8, s)x%s) Yis)l( i )—|—z§f32’s)) or (1+02)z§[i’f?1—v( (5, 6)—|—£L‘(B s)),
(3.31)
and so the ¢4-specialization is divisible by v?"=2/+4 — 1.
205
— If o(z{"})) > o(z3”), then from the (-factor g( . ) we know that the ¢g-

_] 1,1
specialization of the corresponding summand is divisible by v2"~27+4 — 1.

Next, for each j < ¢ < n — 2, let us consider the (-factors arising from the variables
(8,8) ,.(Bs) .(B,s) .(Bs)
{m ETASKTEIACICIETE }- (3.32)

- Ifo(z (B’S)) = o(acéils)l) o(mgifg) = 0(96%8)) then by Lemma 3.1 we know that
the corresponding summand is divisible by Q(me h s xé o s) xéif)l, xﬁf)z) cf. (3.3),
and so the ¢g4-specialization is divisible by

Q(Ul—l U—2n+£—1 ,U—Z U—2n+£) - (,U2n—2€ _ 1)(U2n—2£+2 _ 1)

)
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~ Io(x(y?) > o(z{l)) = o(aV])y) = o(x5?)), then Q(z, v+t =t p=2nt) =

(8,9) (8,9)
(x — v~ 20 L) (202642 _ 1) together with ¢ (x‘;§1)2> ¢ (%) contribute the
) Te1

same factors (v2" =26 —1)(v?"=2+2 1) into the ¢g-specialization of this summand.

- If o(xgﬂls)) = o(xﬁ’if)l) = o(z%fg) > o(x%s)) then Q(v'=% x,v=¢ v 2"+ =

) (8,)
(x—v~ 1) (0?2642 1) together with ¢ ( G ) ¢ (%) contribute the same
Tyt Ty
factors (v2"2¢ — 1)(v2"=2+2 — 1) into the ¢g-specialization of this summand.

= I ofaffh) > olw{yy) or o(fY) > o(efly)) = o(r(lly) > o(afy”), then
@) (8.9) (8,9)
(-factors ¢ ( - b)> ¢ (I{ﬁzb) ) ¢ (i‘é};f) contribute the same factor (v?"~2¢ —
1) (22642 — 1) into the ¢g-specialization of this summand.

o B=1i,n,i with1<4i<nanddsg#0.
Fix any 1 < s < dg. We can assume that

o(@y) = - oY), o(wy”) =z o(@Yy) = o)),

)

First, let us consider the (-factors arising from the variables

(B:5) .(Brs) .(Bys) .(B.s)
{xi,l z+1817x72,28 737i+1s,2 .

25 25 2(8:9)
- Wofaly”) # ofali}), then the Gtuctors ¢ (2454 ) or ¢ (252 ) ¢ (2457 con-

? i+1,1
tribute (wg,s — vzw//g,s) into the gf)g)—speciahzatlon of this summand. Similarly, if
(B,s) (B:5) Y then the ¢-fact 20 e 28
o(z;y") # o(x;}13), then the (-factors ¢ S | or ¢ (ﬁ = | ¢ (ﬁ o | con-
Tia Tit12

tribute (wg,s — *ng ) into the gb(l)—specialization of this summand.
- I o) = o(a)) and o(alf* N = ofe {3h), then

o}y = o(aly?) = o(zlP)) = o(al1) = 4.

By Lemma 3.1, we know that \11(55 r,) contains the factor Q(z Eﬁl ) xgg’s), :cl(-ﬁ’i)l,
285

;11 ), which contributes (wgp s —v* w ) (wg,s— -2

w%s) into the ¢§3 -specialization
of this summand.

- If o(z; (B S)) =o(x (f_’l 1) and o(z; (B s)) # o(x Ef_fé) then we have

(@77) = o) = o(xTh) > o),

o(@}*) > o(al5?) = o(al?)) = o(@lh) = 4.

or o) > o(w}37) = o)) > 0w lTh).

q=o(x

or
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1 2

For the first case, from Q(w,w’,v " w,r) = (w — v?w’)(w — v~'x) and the (-

(P

factor ¢ ( G ﬁlgf ) we see that the ¢gl)—specialization of this summand is divisible by

(wg,s —Uzwﬁvs)(w@ s —v_ng o); for the second case, from Q(z,w’, v w, v w') =

RERS)
(w'—v2z) (w'—v~2w) and the (-factor ¢ ( 7(215)2) we see that the (b(ﬁl)—specialization

2

of this summand is divisible by (wg s — vwj ) (wg,s — v2

wy ); finally, for the

third case above, the qbg)—specialization of the (-factors

B,s B,s B,s B,
¢ <x£+1)2> ¢ ('rz('+1,)2> ¢ (xEJrl,)l) ¢ (3352 )>
2 25 2 RED

2
contributes % (wg, s—v2w5 <)(was— _2w£, <). Thus, the ¢(ﬁl)—specialization

of this summand is divisible by (wg, s — v? wj ) (wp,s — v*2w’675), and the denomi-
nator wg s — wj , will be canceled (up to a monomial) with (1), in the numerator
when specializing w’ﬁ — v2w5 s in the second step of specialization ¢g, cf. (2.39).

- Ifo(x; (6 s)) # o(x Ef_f)l) and o(z; (’8 s)) =o(z Ef_f)z) then we can use the same analysis

as for the above case to get that the gzﬁg -specialization of this summand is divisible
by (wﬂ s ,U2w2‘3 s)(wﬁ s 72’10% s)

Along with similar (-factors arising from the variables {xzﬁ =) glhs) g (hs) g (88) }

Ty %e2 > Tei2
for any ¢ < ¢ < n — 1, we see the ¢(B )—spe(:lahzatlon of any summand is di-
visible by Bg of (2.38). Now let us consider the (-factors between the variables

{ziﬂ_sl) ;B sl) (’8 s)}, we can assume that o(z 5{6”1)1) > o(xi{g_sl)Q) > o(ngis)), as
otherwise the correspondmg term is specialized to zero under ¢4. Then:

(8:)
- If o(x,, (Bs 1)’2) > o(x(ﬁ )) then (( h §)2> contributes a factor (2), to the ¢g4-

specialization of that summand.
(8.5) (8,5) 3 @iy 2, .
- If o(x,”7,) > o(x,”Vy) = oz, 1), then ¢ (’[3 o8 ¢ E‘B 5= | contribute a

Thn—1,1

factor (2), to the ¢g- spe(nalization of that summand.
- If o(z ﬁs)l) o(z, B, s) ) = o(z, (5, S)) = ¢, then we know f; = [i,n,j] with i <
Jj <mnor [i,n,i]. Accordmg to Lemma 3.1, if By = [i,n,j] with j < n — 2, then

\I’(géq,rq) contains the factor Q(x,y,xfffl)’l,xfff'l)g), which contributes a factor

[2], into ¢q(F); if By = [i,n,n — 1] with i < n — 1, then \I’(g/;q r,) contains
the factor (1 + v?)x ;‘3 1)13351 1) —vy(x ff_ )1 _1_36;[3,81)72) or (1+v3)y —v(z gf 1)1 +
iﬁ 1)2) which contributes a factor [2], into ¢4(F); finally, if 8, = [i,n, ], then
(é'ﬂq)rq) is divisible by (1)27=2=1(2)2 which contributes a factor [2], into ¢q(f -

(1) 17T (g) ke,

v

The above overall analysis shows that the ¢g4-specialization of f is divisible by Ay
of (3.29).
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Next, let us verify that ¢q(F') is divisible by [[gca+ G, where G are as in
(3.17)=(3.20). We can expand [];-, E’ELW as a linear combination of monomials
H;f:l €ips, Over Zv,v ], with k = 25:1 a;,. Then it suffices to prove that each
a(Y(€eiy s, - €ips, ) is divisible by Gg for any 8 € AT. For 8 = [i,j] with 1 <4 < j <n,
this follows from [25, Lemma 3.51]. It remains to treat the 8 = [i,n,j] (1 < i< j < n)
and 8 = [i,n,4] (1 < i< n) cases. Henceforth, we shall use the notation 6(ac>(k>f;*)) =qif
a variable ng;*) is plugged into W(e;, s, ) for some 1 < g < k.

e B=1i,n,j]. Fixany 1 < s # s’ <dg, we can assume that

o@y) > > 0@ ) > a2 > o(2lYy) > - > 625,

o2y > > 0@ > 0@y > 0@l > > o@(5).
Let us first consider the variables

{2072, a8 a0 2030 (3.33)

s

B,S’)
+1,1
=)
1

- If 6( (8, S)) < 0( (ﬂ ° )) then the (Z) lizati f 1+ 5-‘?—1Q)1 ~
Tit1 J-specialization of ¢ (ﬁ 5) ¢ FB LL ] con

Without loss of generality, we can assume that 6(x§ﬁ’1s’)1) ( ;

tributes the factor (wg s — v2wg o )(wg,s — v2wg 5).
2B

1t o)) > o), then the dy-specialization of ¢ ( “iat ) ¢ (i
i1 J-specialization of ¢ O ¢ —o) X

Titi

28 )

¢ ( 1 | contributes the factor (wg s — viwg ¢ ) (ws,s — viwg ).
7,+1 1

Similarly, the ¢4-specialization of the (-factors arising from the following quadruples

(8,5) (B,s) (B,s’ 2B ") ,8) (Bs) (B,s") _(Bs")
{xzﬂ 1> L2715 szrl 1 y Liga, 1} { 291 Tl mn—2,1’$n—171}’
(B,s) (8,s) (B,s") (8,8 (B,s) (ﬁ ")
{ 7éi2 xn; n3127 nz }’ {$j+127 ',S j+127 ) }

along with the contribution of the (-factors arising from (3.33) above, yields the
overall contribution of the factor {(wg s — viwg ¢ )(wp,s — viwg ) }2n 7772,

Next, let us consider the (-factors arising from the variables
R e e I RN R 38 (3.34)

Without loss of generality, we can assume that 6(177(5 is)) > 6(3:7(16 i )). First, we note

NERD 285 235 ’
that ¢ ( R ) ‘ < e I*f) ¢ (I@xiiz contributes (wg,« — v*wp,s)(ws,e — viwg,s)
Tn 1 n—1,1

into the ¢4- specialization. Now we consider four cases.
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’ ’ 2B 289
— I o(@y)) > o(@Y)y) & o)) > o(2}”), then << & z/?) C( 2 ;/?> .

s
Tn1 Tp—1,1

0
xl??) . 9 4 . S
¢ | &%y | contributes (wg,s — v wg o )(wg,s — v wg, s ) into the ¢4-specialization.
T

n12 —12

S, A S A ,S, S E-Lﬁ S,) (ﬁ SI)
1 6@) < o@D, & 6a@®Y)) > o(@), then g( ;f)c( i ) x

¢ I”ji, contributes (wg,s — v2wg, ¢ )(wg s — viwg ) into the p4-specialization.

~ 1t 6(@)) < 0@y & 623 < 6(x ), then

(8,s") (8,5") (B,s") (B,s")
C (xnsl,2> C <xn 15 > C (‘wn,lS ) C <xn i,l)
B, B, ,
fcslji),z gf S1)2 xims) ffrfls)
contributes (wg s — v2w[37$/ (wg,s — v4w5 into the ¢g4-specialization.

) s)
— 1 o) > 6(a,) & 0@ < 6(2 ), then

289 2B CED) ERD)
<. Lp—1 ,2 C Lp—1 ,2 C n,1 C n—1,1
D) 2B S’) 2B:9) R
n 1 Lp— 1,1 n 1 n,1
contributes (wg s — v2wgs ¢ )(ws,s — viwg o) into the ¢y-specialization.
We thus conclude that the ¢4-specialization of the {-factors arising from (3.34) con-

tributes the overall factor

(wp,s — v?wp o) (wp,e — v?wg ) (wp s — v'wg o) (wp o — viwg ).

Similarly to the above analysis, the ¢4-specialization of the (-factors arising from
the tuples

B,s B,s ,8 B,s’ s’ .S s
{ 5 1%, §1 ),x;ﬁz )} and {x( ) ef-11)’x§i1,)2»x(ﬁ )} (j<t<n-2)

produces an overall factor

n—2 n—1
H (wg,s — U%iﬂwﬂ,S’) H (wg,s — U2n722+4w6,s/)-
i=j =

This completes the verification of divisibility of ¢4(F) by Gg of (3.19), up to a
monomial.
o f=1[i,n,d. Fixany 1 < s # s’ < dg. We can assume that

%t)) > > 6(x£LL1),2) > 6(x(ﬁ Y for t=sors.

~ 8, A
oy > >0 ), olal

)

First, let us consider the (-factors arising from the variables
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(B,5) .(B.s) (B,s") .(B:s")
{xi,l Tit1,100%i1 %411 }

Without loss of generality, we can assume that o(x; (B )) > o(x; (B * )).
(B,s")

JRER)
- If 6(x; (5 B )) > o(x £+1)1) then ¢ ( ‘J;lsi > ¢ ( ”1:1) contributes the factor (wg s —

(55"
i1

v wg, 3/)(w5 & —v2wg 5) into the ¢4-specialization.
(ﬁ s') A(o.(B:5) =i B 955,;31’3/) e ) .
= If 6(z;1" ") < o(z;[1}), then ¢ ) ¢ mER ¢ RE) contributes the
factor (wﬁ,s —v2wg ¢ ) (wg,e — v2w573) into the ¢g4-specialization.

Likewise, we conclude that the ¢4-specialization of the (-factors arising from

(ol 22, 280,20} < e <mm, 158 59)

produces the overall factor of

2n—2i—2
{(wss = v wp o) (wp,e — w5}
Analogously, the ¢4-specialization of the (-factors arising from the quadruples

B,s B,s’ B,s B,s’ B,s .
{x§,1 g xé-u)lvx((zz )xé+12)} {x” xé+1)27xg1 ) g+1i} (i<f<n-2)

produces a total factor of

—i—1
{(ws,s —wp o) (wp,s —wp,s)(wp,s — viwp,)(wp,s —vtwgs)} "
Next, let us consider the ¢4-specialization of the (-factors arising from the variables

5?51)175525 1)2v (ﬁs)a (’,)px( )2 (Bs)}. (3.35)

We can assume that

o@ ) > oY) > o)y and  a(@l5)) > o2 )) > o),

n—1, n—12 n,

as otherwise the corresponding term is specialized to zero under ¢4. Without loss

= @) SRR
of generality, we can assume that 6(x, ;") > é(x, ;”’). Then ¢ T )¢ %, )

Tn_11

Tpn_1,2

contributes (wg ¢ — v2wp 5)(ws ¢ — viwg.s).

_ (8:5") (8) i ; o it o(z P
Ifo(z, 1 5) > 0(x, 1), then ¢ ) contributes (wg s—viwp «); if 6(x, 7 5) <
Tyn_1 ,2
ERD) (85" (8,s")

o(xy1”), then ¢ ( 7ﬁ1>2> ¢ (w?afiig) ¢ (m?ﬁ 3>2) contributes (wg s — vwg,«).

n—1,1

’ s) ’
— Ifo(2?3)) > 6(2'%)), then ¢ ( - S/)> contributes (wg s—v2wg ¢ ); ifé(xibﬂ_’i)l) <

n)
n—1,1

6(z), then ¢ i’i ¢ ) (= 2 contributes (w50 — vPws.s)
B,5) 2P 2B Bss Bis' )

,1 Tp_1,1
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We thus conclude that the ¢4-specialization of the {-factors arising from (3.35) con-
tributes the overall factor

(wg,s — v*wp o) (wp,e — v?wg ) (wps — v'wp o) (wp o — viwp ).

This completes the verification of divisibility of ¢4(F) by Gg of (3.20), up to a
monomial.

Finally, to prove that F is integral, we need to show that for any 3 € AT and
1 < r < {3, the contribution of the (-factors between the variables x*f,;*) that got
specialized to v’ 23, into Yg(F) is divisible by [tg.],,!. For 8 = [i, ], this follows from
[25, Lemma 3.51]. For § = [i,n,j] with ¢ < j < n, we have vg = v; = v, and in the
% (with 1 < s # s’ < dg) for the

divisibility of ¢4(F) by Gg (see the analysis for the variables (3.33)). For 8 = [i,n,1],

(B:9)

above analysis we never used the (-factors ¢

(8,9)
. . xr
we have vg = v,, = v?, and in the above analysis we never used the (-factors ¢ ({;—1,)>
Ty, 1

(with 1 < s # &' < dg) for the divisibility of ¢4(F) by Gs (see the analysis for the
variables (3.35)). We can thus appeal to the “rank 1” computation of [25, Lemma 3.46]
to obtain the claimed divisibility by [t5,].,!. O

Combining Propositions 3.4, 3.6, 3.8, 3.13, we obtain the following upgrade of Theo-
rem 3.9:

Theorem 3.14. (a) The Q(v)-algebra isomorphism U : U, (Lsp,,, ) —= S of Theorem 3.9(a)
gives rise to a Zlv,v~-algebra isomorphism V: U; (Lsp,,) —= S.
(b) Theorem 2.8 holds for g of type C,.

4. Shuffle algebra and its integral forms in type D,

In this section, we establish the key properties of the specialization maps for the
shuffle algebras of type D,,. This implies the shuffle algebra realization and PBWD-type
theorems for U; (Los,) and its integral forms.

4.1. U7 (Logy,) and its shuffle algebra realization

In type D, for any F' € S, with k£ € N™, the wheel conditions are:

1<r<kiy _ .2 _ .
F({z;r, 1§i§n’) =0 once x;1 =v°T;2 =011 forsome 1<i<n-—2
or m;q = vzzw =vx;—1; forsome 2<i<n-—1,
_ .2 _
or ITp—21=7vV Tp-22 = "VTn1,

2
Oor Tpil1 =V Tnp2="0UTn-2,1-
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Recall the notations (2.12) for positive roots in type D,,. Similarly to type C, we shall use
denomg to denote the denominator in (2.5) for any F' € Sg, for example for F' = \IJ(EEES)

Lemma 4.1. Consider the particular choices (2.22)-(2.25) of quantum root wvectors
{EfS}ZEGZA+. Their images under ¥ of (2.10) in the shuffle algebra S of type D, are
as follows:

o IfB=1i,j]l withl <i<j<mnori=j=n, then for any s = s; +---+ s; used
in (2.22):

j—i

Dy = L si+1  si—1tl s

V(B 5,5) = denomy; Tia Ti—11 ¥
2,7

. (1)i— , _

— K v si . Sip1t+l sj+1

U(Ey .6) = denomy, ;| .]' ittitr T
v

o IfB=1i,n] with1l <i<n-—2, then for any s = $;+ -+ + Sp_2 + S, used in (2.23):

\I/(EJF ); <1>2_i_1 s+l sn—2tl sy,
lin],s) = 4denom[i,n] L1 Tn—2,1 Tn,1s
\IJ(~_ e <1>17]7,72'71 8 Sipitl o snootl s, 41
linls) = denomy; ,, TEITEHLL T 21 Tt

o If B=i,n,n—1] with1 <i<mn-—2, then for any s=8;+ -+ Sp—2 + Spn—1 + Sn
used in (2.24):

n—i
-+ - <1>v si+1 Sn—3+1l Sn_242 Sp_1 s,
\IJ( [17n7"—1]75) - denom[- 1 L1 T Tp_31 Tp—21 Tp—11Tn 1>
i,m,n—
U E* . <1>2_i s; Sig1+1 Sn—2+1_sp_1+1 _s,+1
( [i,n,nfl],s) "Ti1%it11 0 Tn—21 Tp—11 Tna -

denom[im,n,l]

o If B =1li,n,j] with1 <i < j <mn—2, then for any decomposition s = s; + -+ +
Sj_1 428+ +28p_2+ Sp—1 + Sp, used in (2.25), we have:

ot (Lgr—ia-t s 2 2
VB ) = Genomy @ L1070 — )t = 22)
=j
c_ n—2
e B (1)zn—izi—t 2 2
VB ) = Gonomy 0 L1070 — 2Pt —20)

where
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n—2
sp+1, 8j—1+2 S5 +1 Sn—1t1_sp,+1
Hx x5 T (wjm2)% (Teame2)™ Ay
0=j+1
n—2
S/Jrl sz+1 Sp—1+1 sn+1
92_3311 H Ly 36@,156@,2) L 1,1 nl .
l=i+1 l=j

Proof. Straightforward computation. 0O
For more general quantum root vectors Eg ; defined in (2.17), we have:
Lemma 4.2. For any s € Z and any choices of si and N, in (2.17), we have:
65 (¥ (Eg) = (1wt v(8,s) e AT x 2, (4.1)

Proof. It suffices to treat the cases of § = [i,n,j] with i < j < n — 2, since the other
cases follow from type A, _ results of [26, Lemma 1.4].

Let us first verify (4.1) for 8 = [i,n,n — 2]. Recall that Eg s = [Ear,en_2s, ;2]
with a = [i,n,n — 1], 7 = 81 + --- + 8,,_i41, and A € vZ, so that

¢5(\IJ(EB,S)) = ¢B (\P(Ea,r) * \Ij(en_27sn—i+2)) - /\(Z)B (\Il(en—Q,sanz) * ‘11<Ea,7‘)) .

First, we claim that ¢g (V(Eq,) * ¥(en—2,s,_,.,)) = 0. To this end, we note that

\I](Ea,r) * \Ij(en72,sn_71+2) = Z Fﬁ( <y Tn—2,6(1)) Ln—2,0(2)s -+ - )ﬂ (42)
AP

where

FB = \I’(Ea,'r')(xi,lv e 7xn,l)\ll(en—Q,sanz)(xn—2,2)X
Tn-3,1 Tn—-21 Tn—1,1 LT, 1
C (Zn—2,2> C (mn—2,2> ¢ <$n—2,2> ¢ <$n—2,2) -

Let us show that the ¢g-specialization of each o(Fjs) in the symmetrization (4.2) vanishes:

o if xﬁfflz)Q is plugged into ¥(E,, ,), then xgi;)l is plugged into ¥(e,—2s,_,,,) and so

the gi)(ﬁl)—specialization of the corresponding summand vanishes due to the (-factor

1
C Lizﬁ 3)1 .
VK
’VL
a0 | . B (00 (2
o if "5, is plugged into ¥(e,—2,5, ,,,), then ¢ 7 5 ¢ Y ¢ —@1. | con-
nf ,2 n—2,2

n22

tributes By 5,n—2) = (wp,1 — wg7l)(wﬂ,1 - v_4w;371) into the qb(ﬁl)—speciahzatlon of the
corresponding summand, and so the ¢g-specialization vanishes due to the (-factor

2B
¢ =5 )-
wn—2,2
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The evaluation of ¢ (¥(en—2.5, .,2) * W(Eq,r)) proceeds in a similar way, treating two
cases:

B,

o if x( )2 is plugged into ¥(E, ), then x(ﬁ )1 is plugged into ¥(en_25,_,,,) and so

the gbﬁ —spec1ahzat10n of the corresponding summand vanishes due to the (-factor

( L(BD) )
C n—2,1
GO E
n—ll
(8,1) 2 12)2 x([€’12)2 $([3‘12)2
o ifx, "y, is plugged into ¥(en—2,5, ,,), then ¢ e ¢\ =tmi™ ) ¢ | taiy™ ) con-
n—2,1 n—1,1

tributes By; » n—2) into the ¢>§3 )—specialization of the corresponding summand, so that

the overall ¢g-specialization of the corresponding summand has the form

. . +la|=1 n—i - - +|B]-1
= Ll )2 (= vPwpa) | = WP w1

’
wﬁJ»—)wBJ

)= (T wl e

where we used ¢ (E and utilized the remaining (-factor

1
C wslB—Q),Q
a5 )

This completes our proof of (4.1) for g = [i,n,n — 2].

We now verity (4.1) for g = [i,n, j] assuming it holds for any 8" = [i,n, k] with j < k <
n—2. Recall that Eg s = [Ear, €y, , ;I Witha = [i,n,j+1],7 =51+ +82n_i—j_1,
and \ € vZ. Similarly to the previous case, we claim that oF (\II(EW«) * \Il(ejﬁz”fifj)) =
0. Indeed:

(/3, ) 8,1)

o if z; is plugged into ¥(E, ), then x&l is plugged into ¥(ej,, , ;) and so

the ng —Specialization of the corresponding summand vanishes due to the (-factor

( (Bl))
C j—1,1
(B,1)

o if g:(’B’ is plugged into W(e; s,,_,_ ), then the (b(ﬂl)—specialization of the corresponding

(8.1)
. . T
summand vanishes again, due to the presence of the (-factor ¢ < 2 >
l‘j,Q

The evaluation of ¢z (¥(e;, ) * U(E,,)) proceeds by analyzing similar two cases:

S2n—i—j

(b’)

o if w;5 is plugged into V(E,,,), then x(ﬁ Y is plugged into V(ej sy, ;) and so

the (% —bpecialization of the corresponding summand vanishes due to the (-factor
2V
¢ ( & )
Tit1ia
o if x(ﬁ Y is plugged into V(ej,s5,_;;), then by the induction we know that
8)( U(E,,)) is divisible by B,, and thus evoking the product of (-factors
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JREEY LB 2B ) o
¢ {le) ¢ {;’1) ¢ (5 o ) we see that the ¢, -specialization of the corre-
Spondlng summand is d1v181ble by Bg. Moreover, after dividing by Bg, we know
by the induction assumption that the overall ¢g-specialization of the corresponding

summand is
- la|—1, r+lal=1/ 7 Nsop—i—j(rj+3—2n, 1 _  j+5-2n, 1
= { O ) (0 — g
wﬁvlr—nﬂ[jyl

. - +18l-1
:<1>|v/3\ 1.w271‘5| 7

where we used ¢ (Eq ) = (1>LO‘|71 . w:rlla‘*l and utilized the remaining (-factor
(8.1)
"IJ]‘,2
()
This completes our proof of (4.1) for any 5 = [i,n,j] withi < j<n—-2. O

Let us now generalize the above lemma by computing ¢4(V(E}p)) for any h € Hy 4.
Similarly to Proposition 3.3, we have:

Proposition 4.3. For a summand o(F},) in the symmetrization (3.10), we have ¢pq(o(Fp)) =
0 unless for any B € AT and 1 < s < dg, there is s with 1 < s’ < dg so that

O(xgi’sl)) =(B,s) foranyie B and 1 <t <wvg;, (4.3)

that is we plug the variables x B’ )

into the same function ‘I’(Eﬁ’rﬁ(h,s)).

Proof. We shall use the same notation and argument as in the proof of Proposition 3.3.
Fix (v,p) with v € AT and 1 < p < d,,. It suffices to prove that if (4.3) holds for any
(B,s) < (7v,p), then ¢q(c(Fy)) = 0 unless (4.3) holds for (v, p). The proof proceeds by
an induction on n.

Step 1 (base of induction): Verification for type Dy.

e Case 1: v < [1,4,2]. Suppose o(xgnl’ )) = (v,p). I n # [1,4,2], then due
to the As-type results we know that ¢g4(o(F))) = 0 unless n = 7 and we
plug all the variables xﬂ;r) into W(E, , () If 7 = [1,4,2], then due to the

) OR) L7
¢-factors C( = T)> (( f:lr)> C( f:%), we know that ¢g(o(Fr)) = 0 unless

o(xﬁr)) > o(z g’l )) > o(zy (" ) )&0( ) Since we already plugged variables into
all W(Eg ., (n,s)) With (8, ) (*y,p), we must have

o(@) = o(@dy") = o(a{") = o(z{") = (4,p),

)
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™) (n,7) (n,m)
and o(xg’;)) > (v,p). Then the (-factors ¢ < o T)> ¢ (xf,,lr)) ¢ (x?;llm)> contribute
)2 T2,2

By = (wy,r — w), ) (wy» —v~*w), ) into the qbg, )—specialization of the corresponding

2T
summand, and so the overall ¢,-specialization vanishes due to the {-factor ¢ ( 47,1” >

o Case 2: v = [1,4,2]. Suppose 0(1:57’1’ ) = (v,p). Since 1 € n and we already plugged
variables into all W(Eg ,.,n,s)) With (3,s) < (v,p) satisfying the rules (4.3), we have
7 = ~. By the above argument in Case 1, we know that ¢4(c(Fp)) = 0 unless we
plug all the variables xﬁﬁ;’”) into W(E, ;. (hp))-

o Case 3: v > [1,4,2]. We can use type A, results.

Thus the proposition is true for type Dy.

Step 2 (step of induction): Assuming the validity for type D,,_1, let us prove it for D,,.
To this end we present case-by-case study:
o Case 1: v < [1,n, 3]. Suppose o(xgnl )) (v,p), so that n > .
— If n < [1,n,n — 1], then the result follows from A, _;-type case.

- If n =[1,n,n — 2|, then we know that ¢4(c(F)) = 0 unless

(7,p) = o(a{})) = -+ = o(x(") ) = o(z).

If 0(335;7_’7“2)72) # (v, p), then o(as(n’ ) 2) > (7,p), and so the product of (-factors

¢ <x57_721> ¢ <x£:7_’21> ¢ (mi".’?;) ¢ < 5652717-) )
5”57—722 335:7—722 5:7’72),2 mgln—’g),z
4 /

COntributeS (w'r] r—U n,r)(wU7T - w;%"‘)

mand. Since the factor (2.42) contains a single copy of (w,,, — wy, ), we thus get

¢a(o(Fy)) = 0.
- If n = [1,n,j] with 2 < j < n — 2, then by the induction assumption applied to

7 = [1,n,j + 1] we know that ¢4(c(Fp)) = 0 unless

2 into the ¢£71)-specialization of the sum-

(v,p) = o(a{;") = -+ = o(z() = 0@ ) = 0@ ) = - = o(al7),).

)
trolalfy”) # (up).then ofalf”) > (1.p) and s0 du(a () =D to ¢ (422 ).
o Case 2: v = [1,n,2]. Suppose 0(.1‘§nl’ )) = (v,p). If (4.3) holds for any (8, s) < (v,p),
then n = v and ¢4(c(F)) = 0 unless we plug all the variables x& 2" into V(E, . (hp))-
o Case 3: v > [1,n,2]. If (4.3) holds for any (8,s) < ([2],1), then we can use the

induction assumption for D,,_1 to conclude ¢4(c(F)) = 0 unless (4.3) holds for all
(7, p)-
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This completes the proof. 0O

Completely analogously to Propositions 3.4 and 3.6, one can use Proposition 4.3 to
evaluate ¢z (U(Ey)) for any d' < d € KP(k) and h € Hy, 4:

Proposition 4.4. (a) For any h € Hy q, we have

B<p’
. d —
0a(W(E) = [ Gow- I (007 Go) T Pose (49)
B.prent Bet Beat

where the factors {Py, ;}gea+ are given by (3.16), the terms Gg g, Gpg are products
of linear factors wg s and wg,s — vEwg o which are independent of h € Hy 4 and are
&4-symmetric.

(b) Lemma 2.9 is valid for type D,,, with ¢4 of (2.40)-(2.43).

Remark 4.5. The factors {Gg}gea+ featuring in (4.4) are explicitly given by:

o If B#[i,n,j] with 1 <i<j<n-—2, then

_1 _
Go= I wil™' I (wps—v?wps)?. (4.5)
1<s<dg 1<s#s'<ds

o If 6=[i,n,j] with 1 <i < j<n-—2 then

—1 —
Gﬁ: H U)/lgﬁ’L H (wﬁv“‘;i?}?wﬂas/)‘ﬂl 1><

1<s<dg 1<s#s'<dg

n—2
H H {(wB,s _ UQn_%U/B,s’)(wB,s _ v2n—2€—4w6’5/)} )

1<s#s'<dg l=j
(4.6)

The factors Gg g featuring in (4.4) can be computed recursively, which shall be used
in the proof of our next result:

Proposition 4.6. Lemma 2.10 is valid for type D,,, with ¢4 of (2.40)~(2.43).

Proof. The proof closely follows that of Proposition 3.8. In particular, for any pair § <
3, let us consider

de {ds =2, and d, = 0 for other v} it =0
h {ds =dg =1, and d,, = 0 for other v} if 3 <f
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as before, and let d € KP(k). Similarly to C-type, it then suffices to show that for any
F € Sy, ¢q(F) is divisible by Gg g if ¢4 (F) = 0 for any d' < d, where we use Gg 5 = G.
Using type A, results and the induction, we still have the following cases to analyze:

o f=0 =[1,n,j]with2<j<n-2.
According to Remark 4.5, we have

Gp = wpwpa(ws1 — vFPws o) (we — vEC" 2D wg o) (wey — vECT D wg ) - Gy

for « [1,n,5 + 1]. For any F € S, as we specialize all the variables but
{xg 5 ), gﬁf }, the wheel conditions involving the specialized variables produce the
factor G, by the induction assumption. As we specialize xy; 1), the wheel conditions
(8,1) 2,81 _ (81 (8,1) 28,1 _ (81
Tj2 =V T =00 Tjg T U 9 = VT

contribute the factor Bs/Ba = (wg1 — v > ¥ wj ) (wp1 — v~ 2" T2 ) to the
first step of the specialization ¢,(6,1)(F), cf. (2.41). Then in the second step of the
specialization, cf. (2.43), we divide by Bg/B, and specialize wj ; wﬁyl,wém —
wg,2. Then the wheel conditions

(8,1) 2..(8,2) B,1)

20D, =222, —pBD | 2D Z 20D P 8D 2,00 (00

(8,2) _
Lj1 =UT; 471, L =V Tj9 =VT;54q7,

contribute the factor (wg1 — v2ws2)(ws1 — V™" Hwg o) (w1 — v "2 4wg5) to

¢4(F'). Thus, from the symmetry, we see that ¢4(F) is indeed divisible by Gp.

e B=[1,4, 8 =[1,n,n—1].
If i <n—3, then Gg g = G[1,4,[1,n—2), 50 ¢a(F') is divisible by G g due to type A,.
If i =n — 2, then

G/gwg/ = (w/g,l — wﬂ/71) . G/g,a with o = [l,n — 1].
As we specialize all the variables but mif 1’1), the wheel conditions involving the
specialized variables produce the factor G by the induction assumption. As we
specialize x(ﬁ Y consider d' = {dy ,_1y =dj ,y =1, and d = 0 for other v}. Then
d < dand ¢d/( ) = 0 implies that QSQ( ) is divisible by wg 1 — wg 1, and hence by
GB76/ .
If i =n—1, then

Gg’ﬁr = (w/m — ’U_ngl’l) . GB’Q with o = [l,n].

By the induction assumption and the wheel conditions /' = 0 at xif 7’117)1 = v’z 11 1=

5{8’2)1, we see that ¢4(F') is divisible by Gg g.
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If i = n, then
Gpp = (wp1 —vF2wpr 1) - Goor with a=[1,n—-2],a" =[1,n].
By the induction assumption and wheel conditions F' = 0 at ng_lQ)l = v%if_ ’217)1 =
1(1’6 11)1 and x(ﬁ D= vzxfil) = vx(’B’Q)l we see that ¢4(F') is divisible by Gg g.
6—[ il, ' =[1,n,n -2,

If i <n—4,then Gg g = G[1,4,[1,i+1], 50 ¢a(F) is divisible by G g, due to type A,.
If i = n — 3, then

Ggp = (wg,l — U_2w5/71) -Gg,a with o = [l,n,n — 1].

Consider d' = {df1 neg] = dil 1] = =1, and di/ = 0 for other v}. Then d’ < d and
dg (F) = 0 implies that ¢4(F) is divisible by wg 1 — v~ 2wg 1, and hence by G s
If i =n — 2, then

Gpp = (w1 —v *wp 1) Gaa with o =[1,n,n—1].

From induction assumption and the wheel condition ' = 0 at z;ﬂ_ 21)2 = 1)21,(1/3_’12)1 =
vz

x, "3, we see that ¢q(F') is divisible by G g
Ifz—n—l, then

Gﬁﬁ/ = (Wﬁ,l — wg/,l)(wg,l — v*4wﬁ/71) . G&a with o = [l,n,n - 1}

Due to the induction assumption and the wheel conditions F© = 0 at ;z:iﬂ_l 21)2 =

2P —vx(ﬁ’ ) ; and x(ﬁ ) —v2x(ﬁl ) = vz e see that ¢pa(F) is divisibl
n—2,1 n—3,1 n—1,1> d 1S d1visible

by Gﬁ,ﬁ"

If i = n, then

G /zwl—vizw/l-Ga/ with a=[1,n—2|.
B,8 B, B8, B

By the induction assumption and the wheel conditions F' = 0 at xiﬁ 1’1) = v%ﬁf il) =

(,6_12) and x(ﬁvl) ’(}21'( 21) — Ux(ﬁv ) we see that ¢Q(F) is lelSlble by Gﬁ,ﬂ"
5*[ i, 8/ =1, n]}w1th2§j§nf3.

If i <j—2,then Gg g = G[14,1,j—1), and so ¢4(F) is divisible by Gg .
Ifi=j—1and j> 3, then

—2n+2j+2

Gpp = (wp1 — v2wg 1) (wp g — v wp 1) G j—2),p-

As we specialize the remaining Varlable xgﬁ ‘11, the wheel conditions F' = 0 at

mgﬁ,lli = ’U2$§B %)1 = (’B Y and x 1)1 =0 x(ﬂ 11{ = vmgﬁ 212 contribute the fac-

tor (wg1 — v 2wer ) 1nt0 ¢a(F). Conblder d ={d, , =d =1,and d, =

1] = "[mng+1]
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0 for other v}. Then d' < d and ¢y (F) = 0 implies that ¢4(F) is divisible by
wg1 — v*2”+2j+2w5/,1. Combining this with the induction assumption we see that
¢q(F') is divisible by G gr.

Ifi=j—1and j =2, then 8 = [1], and Ggp = (wg1 — v " Pwg 1) - Gy 0,3
Consider d' = {dim} dh’n’:,’] = 1,and d), = 0 for other v}. Then d < d and
¢a(F) = 0 implies that ¢4(F) is divisible by wg1 — v~?""%wg ;. Combining this
with the induction assumption we see that ¢4(F) is divisible by Gg g

If i = j, then G 3 = (wp1 — v~ 2" Hwy 1) - Gg 1,0 j41]- From the wheel condition
F =0 at xgg’l) = vgxg-ﬁ’l) = ’U:L‘;ﬁ_’i?l, we see that ¢4(F) is divisible by (wg1 —
2Nt wgr.1), which together with the induction assumption implies the divisibility
by Gﬁﬁ/.

Ifi>j+1, then

Gpp = (wg,1 —v*2”+2jw5/71)(w¢;71 —072"+2j+4wﬁ/71)~G¢;7a with a=[1,n,7+1].

(13 1)

As we specialize all the variables but z; the wheel conditions involving the

specialized variables produce the factor GB o by the induction assumption. As we

(’6 Y| the wheel conditions at x(ﬂ’ ) = 112935-)51/’ ) = vxgﬁ 1% and x;ﬁ/’l) =

vzx% N = Umgilli contribute the factor Bg/Ba = (wpr1 — v " 2wy, ) (wpr 1 —
v 2y, ) to the first step of the specialization (/b(ﬁl)(F)7 cf. (2.41). Then in
the second step of the specialization, cf. (2.43), we divide by Bg//B, and specialize

wyp, ; — wpr1. The wheel conditions F' = 0 at x(ﬁ R 1)2:5(5 = vwgﬁ i)

5’8’1) vz (B N = msg’i’l)l contribute the extra factor (wg 1 —v 2" 2 wg 1)(wp1 —
v_2"+27+4w5r ) into ¢q(F'). Thus ¢4(F) is divisible by G 4.
B=[1nn-1], 8 =[1,n,j] with2 <j <n-—2.

If j = n — 2, then

specialize T

; and

Gpp = (wpa —wa 1) (wga — v wer 1) (w1 — v wgr 1) - G

By the induction assumption and the wheel conditions F' = 0 at

(ﬂy 8,1 8,1 B',1) 8,1 (ﬂy
Ly — 2)1 v? gz 2,)2 = ngl 1 ), Lp_22 = U2$5L—2),1 Ly — 3),17
(ﬁ 1) 0228 (ﬁ ,1)
1,2 — n—1,1 — L 2,2
we see that ¢4(F) is divisible by Gg g
If j <n—2, then
—2n+2j+4

Gppr = (wp1 — v " P wg 1) (w1 — v wgr1) - G [1,n,5+1]

and we can apply the same arguments as for (3,3') = ([1,j + 1], [1,n, j])-
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e f=[1,n,k], B =1[1,n,J]].
If j > 2, then Gg g = (wg1 — v 2wg 1) “G2,n,k],[2,n.5]> and so ¢a(F) is divisible by

Gga,p due to the induction assumption and wheel conditions at SL‘(B Y=y x(ﬁ D =
51731 D and a: 1) 02 gil) — vx(ﬁ D}

Ifj =2and k > 3, then G 3 = (wg 1 —U_2"+4w5/71)(w571 —v 2" Bwg 1) G 1,n,3-

From the wheel conditions F' = 0 at x(ﬁ N = ng’i’l) = vx%’i’l), xé’i’l) = vzxég’l) =

vxéﬁ 1 Y and the induction assumption we see that ¢4(F) is divisible by G .

Ifj—2andk:3,then

Gpp = (w1 — v2we 1) (wp1 — 0> Cwe 1) (wpa — 0¥ Pwsr 1) - Gnag 0,2

Due to the induction assumption and the wheel conditions F' = 0 at

m:(fél) _ U2x(ﬁ 1) vxi 1) v2$:(31’3271) _ ng;»l) _ vxé 8 1)
B _ 2 (81 (8.1) 2 (1) _ (B (B.1)
Tgo =V T3y " =VTyp 7, VXzo =T3y  =VT4y 7

we see that ¢4(F) is divisible by G .

. B =[2> 8
If 3 =[1,4] and B’ = [2,n, ], then Gg g = (w1 — wpr 1) - G[z4,5 - Consider d =
{d}; .5 = dppy =1, and d’, = 0 for other v}. Then ¢¢(F) is divisible by G 5 due
to the induction assumption and ¢4 (F') = 0.
If 3 =[1,n,3] and B = [2,4], then Gp 5 = (wg1 — v 2wp 1) (ws 1 — V2" Swe 1) -
G,[3,5- Consider d = {dfl,n,z] = dfg,j] =1, and d, = 0 for other v}, so that d <d.
Then ¢4(F) is divisible by G g due to the induction assumption, the condition

¢ (F') = 0, and wheel conditions at x(ﬁ D — 22800 = vx(ﬁ b v2x(ﬁ’1) =z =
2,1 2,1 2,1

If 3 =[l,n,i and B' = [2,n, ] with i > j, then G5 = (wg1 — wp 1) - Glan,ip-
Consider d' ={d;,; = dy,, = L and d}, = 0 for other v}, so that d < d.
Then ¢4(F) is d1v151ble by Gpg, g due to the mduction assumption and the condition
¢a (F) = 0.

For all other cases, the divisibility of ¢4(F) by Gg g follows from the induction
assumption and proper count of wheel conditions similarly to the cases above.

This completes our proof. O

Combining Propositions 4.4 and 4.6, we immediately obtain the shuffle algebra real-
ization and the PBWD theorem for U, (Lo2y,):

Theorem 4.7. (a) V: U; (Los,) —> S of (2.10) is a Q(v)-algebra isomorphism.
(b) For any choices of sy and A, in the definition (2.17) of quantum root vectors Eg s,
the ordered PBWD monomials {Ep}hen from (2.27) form a Q(v)-basis of Uy (Loay,).
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4.2. Shuffle algebra realization of the Lusztig integral form in type D

For any k € N, consider the Z[v,v~!]-submodule S of Sj consisting of rational
functions F' satisfying the following two conditions:

(1) If f denotes the numerator of F' from (2.5), then
fezho, v e his 1o (4.7)
(2) For any d € KP(k), the specialization ¢4(F’) is divisible by the product

BeAt

Define S := P,cnn Sk and recall the Lusztig integral form U7 (Log,) from Defini-
tion 2.4. Then, similarly to Proposition 3.10, we have:

Proposition 4.8. ¥(U; (Loy,)) C S.
Proof. Forany m e N, 1 <iy,....0m <n, 71,...,"m €Z, l1,..., 4y € N, let

F=w(E) BT ),

and f be the numerator of F from (2.5). The validity of the condition (4.7) for f follows
from (3.25). To verify the validity of the divisibility (4.8), we need to show that for any
B € AT and 1 < s < dg, the total contribution of ¢4-specializations of the (-factors
between the variables {xﬁﬁ’s)}fggyﬁ”’ of f is divisible by <1>Lﬁ|71. It suffices to treat
only the cases § = [i,n,j] with 1 < i < j < n — 2, since the other cases are treated
completely analogously to type A,. Similarly to the proof of Proposition 3.10, we shall
use the notation o(xg M )) = ¢ if a variable :c( ) s plugged into \I/(E%"T)q)

According to (2.41), the ¢g4-specialization of any summand in F' vanishes unless

o(@{y™) 2 0@l 2 - 2 o(a(2)) 2 oY) & o)),

o<“$>>ow$§>>~~>d%%%.

Tp—22) = —32) =2 =

Since 0( B s)) # 0(1: b ) for i # i', we have strict inequalities:

o(w7”) > o) >+ > o(@9)) > 0w 21) & oY),

n)

o(2\5)5) > o(@l5,) > - > 0@V,

(B:5) 1 (B.s) (B:) )

With symmetry between the variables x, "y ,z, ;" , we may assume that o(z, "7,
(2337
n,

o(x in the following analysis. We have the following three cases to consider:
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n—2,2

2B RERS)
o if o(x gL 2) > o(z, (5, ) 1) > o(x(’Bls)) then the (-factors (( P 31)1) C< o ) con-

tribute (wp,s — wj ,)* to the ¢B )_specialization of the summand, and consecutively
(wp,s — wj ;) to the dg-specialization (as Bg of (2.42) contains only one factor
(wp,s — wj ), so that the ¢4-specialization of the corresponding summand in F
vanishes;

o if o(z, (63) 1) > oz, (8, ) 2) >o(x (Bs)),then

o(@y) > > 0@ ) > 0@ )) > o(@lY,) > o(@ly) > - > o2,

so that the (-factors

e AL AW A
I1 {4 (xu%s) > ¢ (N, )) ¢ (wdf,s) )} (4.9)
i=j —11 01 4+1,1

contribute Bg to the ¢(ﬁl)—specialization of the summand, and thus the ¢g4-

specialization of the corresponding summand in F vanishes due to the remaining
e
(-factor ¢ (B 5

Ty — 2,2
o if o(w,71) > ofw)s) > ofa}3),), then
ofay) > - > o(w,23y) > o)1) > o(w, ;) > o(ay7)y) > - > o(aly?).

k) n7

The (-factors of (4.9) contribute Bg to the (bg)-specialization, and the remaining

xéﬁg 5) Rl 229, 2
Z-I—l 2 l=i+1 £— 1 1 n,l Ly 2 1

contribute <1>|U/3\—1

(-factors

to the ¢4-specialization of the corresponding summand in F'
This completes our proof. O

Recall the normalized divided powers (2.29) of the quantum root vectors
{E; i(k }g§§+ ez and the ordered monomials {Ef}ren of (2.30). For e € {+}, let
St be the Z[v,v~!]-submodule of S; spanned by {¥(E)}nem,. Then, the following

analogue of Proposition 3.11 holds:

Proposition 4.9. For any F € Sy and d € KP(k), if ¢4 (F) =0 for all d' € KP(k) such
that d' < d, then there exists Fy € Si, such that ¢4(F) = ¢pa(Fy) and ¢pg (Fg) = 0 for all
d < d.
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Combining Propositions 4.8 and 4.9, we obtain the following upgrade of Theorem 4.7:
Theorem 4.10. (a) The Q(v)-algebra isomorphism ¥ : U; (Loay,) —> S of Theorem 4.7(a)
gives rise to a Z[v,v~-algebra isomorphism ¥: U (Loa,) == S.

(b) Theorem 2.6 holds for g of type D,,.
4.3. Shuffle algebra realization of the RTT integral form in type D

For any k € N™, consider the Z[v,v~!]-submodule Sy of Sj consisting of rational
functions F' satisfying the following two conditions:

(1) If f denotes the numerator of F' from (2.5), then
f e 2o, v e HEE TS (4.10)

where ‘E| = |(k17 v 7kn)‘ = kl + -4 kn
(2) F is integral in the sense of [15, Definition 4.12]: the cross specialization

o ¢a(F)
YTai(F) = <<1>LE| ] H/BeA* Gg)

is divisible by H;éggfﬁ [ts.+]! (note that vg = v for any 8 € AT in type D,,) for
any d € KP(k) and t = {tﬁ,r}géffﬁ satisfying (3.27), with w; of (3.26) and Gpg

of (4.5), (4.6); the divisibility of ¢4(F') by Gg is proved in Proposition 4.11.

We define S := @ cnn Sk- Recall the RTT integral form U (Loz,) from Definition 2.7.
Then, similarly to Proposition 3.13, we have:

Proposition 4.11. ¥ (U, (Loa,)) C S.
Proof. For any e € {+}, m € N, B1,...,8m € AT r1,... .1 € Z, let
F= (&5, €6 i)

and f be the numerator of F'. We set k = Z;"Zl Bq. First, we note that the condition
(4.10) follows from Lemma 4.1.

Next, we show that ¢q(F) is divisible by [[5cp+ G With Gp of (4.5)—(4.6). Sim-
ilarly to the proof of Proposition 3.13, we can expand HZ”ZI EEMZ as a linear com-
bination of monomials Hif:l €iys, Over Zlv, v, with k = Zle a;,, and prove that
each @q(¥(eiy s, "+ €ip.s,)) is divisible by Gg for any f € A*. For 8 = [i,j] (with
1 < i < j < n) this follows from [25, Lemma 3.51]. It remains to treat the cases
B =Tli,n,n—1] with 1 <i<n-—2,and 8 = [i,n,j] with 1 <i < j <n — 2. Henceforth,



528 Y. Hu, A. Tsymbaliuk / Journal of Algebra 690 (2026) 475-546
we shall use the notation 6(x5:;*)) = ¢ if a variable x,(:,;*) is plugged into W(e,, s,) for
some 1 < q< k.

o f=[i,n,n—1]. Fix any 1 < s # ¢’ < dg. We can assume that

as otherwise the corresponding term is specialized to zero under ¢4. Using the same
analysis as for the variables (3.33) in type C,,, we see that the ¢g4-specialization of
the (-factors arising from the quadruples

Bs B,s B,s’ B,s’ . Bs B,s B,s’ B,s’
{xél ) 352+1)1a3721 )xfmf} (i<l<n-2), { gl 2)17 21), 7(172,)1@51,1 )}

produces a total factor {(ws s — v2wgs o )(wp e — v2wg )} %, which is G of (4.5),
up to a monomial.

o f=1[i,n,j|. Fixany 1 < s # s’ <dg. According to (2.41), (2.43) and the analysis in
the proof of Proposition 4.8, we can assume that

5(951(,[3170) > o(z Ef—lt)l) > >5(x§zﬁig),1) > 6(552[1?1) & 6($£zﬁ,it)) >
(B,t) _ /
i ), t=sors,

as otherwise the ¢g4-specialization of the corresponding summand vanishes. Then,
similarly to 8 = [i,n,n — 1] case, the ¢4-specialization of the (-factors arising from

the following quadruples
s s s’ B,s s B,s’ B,s’
{‘Tél ) méil)pngﬁl ) xéi i} (i<f<n-2), { gz 2)1» 5?1)7 gl 2)1795( )}

B,s B,s B,s . B,s .S B,s B,s’
{$2+1)2aw22 ) x§+12)7x§52 )} (J<L<n-3), {xifl),pngi;,w 51 1) ; 2)2}

produces a total contribution of the factor {(wg s—v?wg ¢ )(wg s —v?wg ¢ ) 27971
Next, for any 7 < ¢ < n — 2, let us consider the (-factors arising from the variables

(B,s) (8,s") (8,s") (8,s")
{xe v Lo_1,19 x 0,1 xe+191} (4.11)

)

where we recall that o(xéﬁf/f) > o(x, (B ? )) ( )

< /> (8,s") (8,8")
- If 6(x2752’s)) > o(zf’1 i) then the (-factors ¢ ( ) ¢ <IZ<§ o) ) ¢ (1%1@1) con-
tribute the overall factor (wg s — vznfﬂwﬁ’s/)(wgvs - 1)2"*2“4111[375/) into the ¢g-

specialization.
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_ (8.5") (B.5) (8.5) wy” A
If o(zy)7 1) > o(wy5 ") > o(x,)) 1), then the (-factors (| =25 | ¢ me
To—1,1 2,2

,U2n722 ,U2n72574

contribute the overall factor (wg s — wg,¢) into the

wg,s’ ) (wﬂ,s -
¢a-specialization.

) (5.9) ) 20859 RERS
- If o(le 1) > 6(z/5"), then the (-factors ¢ ( 5 s,>) C( (zﬁzs/)> C( (zﬁzg/)) con-

041,1 1,1
U2n72€wﬁ,s/)(wﬁ,s o ,02n72éf4

tribute the overall factor (wg s — wg,¢) into the ¢g4-
specialization.
Thus the ¢g4-specialization of the (-factors arising from the quadruples (4.11)

produces a total contribution of the factor H?:_f{(w@s — 22w ) (wps —

v2" =245 o)}, Therefore, the above contributions produce exactly the factor Gg

of (4.6), up to a monomial.

Finally, to show that F' is integral, it suffices to prove that under the Y4, the con-
tribution of the (-factors between the variables x(* *) that got specialized to v?z&r is
divisible by [tz ,],! for any f € AT and 1 <r < g, cf. (3.26). For 8 = [4, j], this follows
from [25, Lemma 3.51]. Similarly, for § = [i,n,j] with i < j < n, we have not used

2(8:)
¢ | & ) with 1 < s # ¢ <dg for the divisibility of ¢4(F) by Gg, thus we can appeal
</3 s7) B B

to the ‘rank 1”7 computation of [25, Lemma 3.46] to deduce the required divisibility by
[tﬁ,r}v“ Od

Combining Propositions 4.4, 4.6, and 4.11, we obtain the following upgrade of Theo-
rem 4.7:

Theorem 4.12. (a) The Q(v)-algebra isomorphism V:U_ (Loa,) == S of Theorem 4.7(a)
gives rise to a Z[v,v~]-algebra isomorphism W: U; (Loa,) == S.
(b) Theorem 2.8 holds for g of type D,,.

5. Yangian counterpart

In this section, we generalize the results of Sections 3—4 to the Yangian case, thus
establishing shuffle algebra realizations of Yangians and their Drinfeld-Gavarini duals in
types Cp, D,. This should be viewed as the “rational vs trigonometric” counterpart,
where we replace factors Z — v* by z — w — £h. In particular, ¢; ;(2) of (2.7) will be

replaced by ; ;(2) =1 + 7(aig.;7)'h
5.1. Yangians and their shuffle algebra realization

We still use the notations from Section 2. Let g be a finite dimensional simple Lie
algebra of type C), or D,,. Following [3], the “positive subalgebra” of the Yangian of
g in the new Drinfeld realization, denoted by Y~ (g), is the Q[h]-algebra generated by
{xi7r}:§}\1 subject to the following defining relations:
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diaijh

[Xi,r+1,xj,s] — [Xi,ra Xj,s+1] = (Xi,rxj,s + Xj,sxi,r) V’L,] € I, r,s e N,

Sym [Xi,817[xi,s27“' 7[Xi,817aij7xj,7‘]"'” =0 V’é?éj781,...,81,aij,7"€N.

S1ye81—ay;

Analogously to (2.15)—(2.17), let us define the root vectors {X/g,s}geeNAJr of Y7 (g) in types
Chn,Dy:

o C,-type.
For = [i1,...,1¢] # [i,n,i] and s € N, we choose a decomposition s = s + -+ -+ s¢
with s1,...,8¢ € N. Then, we define

X57S = [ o [[Xi1751 ) Xi2782]7xi3783]7 T ’Xii,sé]' (5'1)

For 8 = [i,n,i] and s € N, we choose a decomposition s = s + so with s1,s2 € N,
and consider the root vectors Xp; 1] s,, X[i,n],s, defined in (5.1). Then, we define

X,B,s = [x[i,n—l],spx[i,n],sQ]‘ (52)

o D,-type.
For any 3 = [i1,...,i] € AT and s € N, we choose a decomposition s = s; +-- -+ sy
with s1,...,s¢ € N. Then, we define

Xﬁvs = [ o [[Xibsl’Xi2752}’xi3>53]7 T 7Xiz,5e]' (5'3)

In particular, we have the following specific choices of root vectors {Xﬁys}z’eeNAJr:

e For 8 =[i,n,i] and s € N (g is of type C,,), we define

Xiinilys = ([ [Xi,00%i41,00, s Xn—1,0], [+~ [Xi,0, Xi1,0]5 5 Xn—1,0], Xn,s]]-
o Otherwise, for 8 = [i1,. ..,/ and s € N, we define
Xp,s = [ [Xir 5 Xin,00s Xig 0]+ 5 X 0]-

Let H denote the set of all functions h: AT x N — N with finite support. For any h € H,
we consider the ordered monomials

— —
Xp = H ngf’s) and X, = H Xg(fs) (5.4)
(B,5)€AT XN (8,5)eAt xN

Then, similarly to [20] (cf. [12, Theorem B.3]), we have:

Theorem 5.1. The elements {Xp,}nen form a basis of the free Q[h]-module Yy (g).
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Proof. Comparing Xz . to the root vectors e’ used in [12, (A.11)], we see that the only
difference is in the root vectors X[i,n,i],s in C,-type. However, the two key properties
(B.1) and (B.2) of [12, Appendix B] still hold for our root vectors. Hence, the proof of

[12, Theorem B.2] and thus of [12, Theorem B.3] still goes through. O

We define the shuffle algebra (W, «) analogously to the shuffle algebra (S,*) of Sec-

tion 2 with the following modifications:

o All rational functions F' € W are defined over Q[h].
o The matrix (@’j(z))i’jel is defined via

(O[Z',O[j) -h

C@j(Z) = 1+ 2

o (pole conditions) F € W), has the form

Fzinhicr=")

794 70 Tp1<s<k; ’ (5.5)
Hi<1j¢ ngrgkj (Tir — 2j,5)
where f € Q[A] [{xm}gg{éki}eﬁ and < is an arbitrary order on I.
o (wheel conditions) Let f be the numerator of F € W}, from (5.5), then
1<r<k; diaij
flairtici =) =0once is, = x5, +dih =+ =5, —diagh =1, — 5 h
(5.6)

for any i # j such that a;; # 0, pairwise distinct 1 < s1,...,81-4,; < k;, and

].S’)"Skj.

« The shuffle product is defined like (2.8), but ¢; j(Z:2) are replaced by G j (i, —2;j.5)-

Tj,s

This definition is precisely engineered, so that the assignment x;, — @7, € W1, (with

i € I,r € N) gives rise to a Q[h]-algebra homomorphism

Y7 (g) — WL (5.7)

Henceforth, we shall use the notation = as in [15, (5.19)] (cf. (3.2)):

A= B if A=c-B forsomececQ*.

We shall also use denomg to denote the denominator in (5.5) for any F € Wp.
Then, we have the following straightforward analogues of Lemmas 3.1 and 4.1:
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Lemma 5.2. For type C,,, we have:

J—1% .8
h zi,

denom [4,4]

[le

U (X 5,5 for i <j<n,
- hanifjxil

U (Xin.gls) = (2zj_11 —xj1 —Tj52)

denomy; ,, ;)
n—2

X H Q(xe1,Te2,Toq1,1,Tet1,2) for i < j <,
=j

h2n 21 s -
H xé,laxé,27$€+1,1,$e+172) for i <n,
=i

U(Kjjnis) = — b
( ['L,Tlﬂ]vS) denOm[znZ]

where Q(z1,22,y1,2) = 4(x122 + y1y2) — 2(z1 + 22) (Y1 + y2) + A2,

Lemma 5.3. For type D,,, we have:

. RlIBlI=1, L
U(Xp,s) = den—om;’ for g =[i,j] or [i,n,n — 1],
B p2n—i—j—1 n-2
\P(X[i7naj]73) = 7den0m[i,n7j] $i,1 g(h—F Te1 — 33@72)(]3, —Ze1 —+ 1‘572) for 12 < 7 <n—1.
Moreover, due to the equality flj(z) — fjl(—z) = (a“a’)h for more general root

vectors Xg s defined in (5.1)—(5.3), we have:
Lemma 5.4. For any § € A" and s € N, U(Xg ) is divisible by RlIBI=1,

Let us now adapt our key tool of specialization maps to the Yangian setup. For any
F € Wy, and d € KP(k), let f be the numerator of F from (5.5). The specialization map
¢q(F') is defined by successive specializations ¢3 s of the variables m(B ) in f for each
B €At and 1 < s < dg as follows (cf. (2.36)—(2.43)):

o Cp-type.
For (3 # [i,n, 1], we define ¢ s(F) by specializing:

B,s /-1 B,s 2n+1—1¢ 5 s n
xé;én)l — wg,s — Th, ;;én)Z > wg,s — fh, ( ) > wg,s — §h.
For 8 = [i, n,i], we first define d)(ﬁl)s(F) by specializing:
(8,5) t-1 (8,5) t-1 (50 n
Ty fpln P> WE,s — 2 h, xe;énQH Bs_ —h x, Hwﬂs §h
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According to wheel conditions (5.6), qﬁgl)g(F) is divisible by

n—i—1
Bg = {(wg,s — wy , + h)(wss —wps o — h)} :

Then the overall specialization ¢g s(F) is defined by

@) () O
Ba.5(F) = 95 (5(F)) = 5=

wg,sﬁwﬁ)erh

e D,-type.
For 8 # [i,n, j] with i < j <n — 2, we define ¢ ;(F') by specializing:

(8,5) _t-1 20 _n-2,
, 5 h, = Wg,s 5 .

For 8 = [i,n,j] with 1 <1i < j <n — 2, we first define qf)gl(F) by specializing:

(8.5) (-1 w@ n—2

x#nl»—)wﬁgs——h Tyl Frwgs — 5 h,
(8,5) -3¢
xé;é:L 1&n,2 = wﬁ s 2 h.

According to wheel conditions (5.6), cb(l)( F) is divisible by

n—2

By = [[(wp.s —wh,— (n— €= 2)h)(ws.« — wh , — (n— O)h).
l=j

Then, the overall specialization ¢g s(F) is defined by:

(1)
(2 () — ¢B’S(F)
¢ﬁ,s(F) = ¢[3,s (¢ﬁ,s(F)> - B—ﬂ

’
U)B,S>—)wﬁ)5

For d € KP(k), the specialization map ¢q(F) is defined by applying those separate maps
i€l

¢p,s in each group {f 1<t<vg

~of variables (the result is independent of splitting):

)

a: Wi — QAl[{wg,s}serns 15

and we extend it by zero to all other components V_[Q with £ # k. Then, we have the
following straightforward analogues of Lemmas 3.2 and 4.2:
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Lemma 5.5. If g is of type C,, or D,,, then we have:
$p(¥(Xp,s) = B -pgs(wg1)  V(B,s) € AT x N,

where kg is given by (3.5) in type Cp, kg = |B| — 1 in type D, and pg s(w) € Q[A][w] is
a monic degree s polynomial in w over QIA].

For any k € N’ and d € KP(k), we define the subsets Hy, H, 4 of H similarly to (2.44),
but with h € H been replaced by h € H. Using Lemma 5.5 and arguing as in Sections 3—4,

we obtain the following analogues of Propositions 3.4, 3.6, 4.4 for the Yangians of types
Cn,Dy:

Proposition 5.6. Let g be of type C,, or D,,. Then we have:
(a) For any h € Hg 4, we have

B<p’
Ga(W(Xp)) = hpear dorn . TT Goo- T Gs- T Pavss
B,8'eAt BeEAT BeA+

where éﬂﬁg é’g are independent of h € Hy 4 and are rational counterparts of Gg g/, Gp

from Propositions 3.4, 4.4 (obtained by replacing factors (x — vty) with (x —y — %h)),

while
dg
. (8,8) - h
Prs=Symay, ([T psrontss) T1 (150,20 ) (5.8)
s=1 1<s<r<dg Bss B,r

(b) For any h € Hy 4 and d' < d, we have ¢g (¥ (X)) = 0.

This features a “rank 1 reduction”: each PA,L , from (5.8) can be viewed as the shuffle
product pg . (n,1)(%) %+ * Pg.rs(n,ds) (T) in the Aj-type shuffle algebra W, evaluated at

{wg7s}(siil. Therefore, combining Proposition 5.6 with Theorem 5.1, we obtain:
Proposition 5.7. The homomorphism ¥ of (5.7) is injective.
Following [24, Definition 3.27], we introduce:
Definition 5.8. F € W}, is good if ¢4(F) is divisible by hi-sea+ 9%5 for any d € KP(k).
Let W}, be the Q[A]-submodule of all good elements in Wy, and set W := Dren: Wk
Then analogously to our proofs of Propositions 3.10 and 4.8, we obtain (cf. [15, Propo-

sition 5.12)):

Proposition 5.9. U(Y,”(g)) C W.
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Let W}, be the Q[A]-submodule of W}, spanned by {¥(Xy)}ren,- Then, the following
Yangian counterpart of Lemma 2.10 holds true in types C,, and D,:

Proposition 5.10. For any F € Wy, d € KP(k), if ¢a(F) = 0 for all d' € KP(k) such
that d' < d, then there exists Fy € Wy, such that ¢4(F') = ¢a(Fya) and ¢4 (Fyg) =0 for all
d < d.

Proof. The proof is analogous to that of [15, Proposition 5.13]. O

Combining Propositions 5.9-5.10, we immediately obtain the shuffle algebra realiza-
tion and an upgrade of Theorem 5.1 for Y, (g) in types C,, and D,,, cf. [15, Theorem 5.14]:

Theorem 5.11. Let g be of type C,, or D,,. Then we have:

(a) The Q[h]-algebra homomorphism ¥: Y;” (g) — W of (5.7) gives rise to a Q[h]-algebra
isomorphism U: Yy (g) = W.

(b) The ordered monomials {Xp, }nen of (5.4) form a basis of the free Q[h)-module Y;” (g).

5.2. The Drinfeld-Gavarini dual Y; (g9) and its shuffle algebra realization
For any (8,s) € AT x N, define Xg 5 € Y (g) via
Xﬁ,s =h- X&S.

We define Y7 (g), the “positive subalgebra” of the Drinfeld-Gavarini dual, as the Q[h]-
subalgebra of Y;”(g) generated by {Xg,s}ZGENA+. For any h € H, define the ordered
monomial (cf. (5.4)):

R
Xpi= [ X (5.9)
(B,s)eAtxN

Following [24, Definition 3.8], we introduce:

Definition 5.12. F € W), is integral if F is divisible by 7%l and ¢4(F) is divisible by
hpeat d8(istl) for any d € KP (k).

Let Wy, C WE be the Q[h]-submodule of all integral elements, and set W :=
®E€NI Wj,. Then, due to Lemmas 5.4-5.5 and Proposition 5.9, we have the following
upgrade of Theorem 5.11 (cf. [15, Theorems 5.16, 5.20]):

Theorem 5.13. Let g be of type C,, or D,. Then we have:

(a) Y7 (g) is independent of the choice of root vectors Xg s in (5.1)(5.3).

(b) The Q[h]-algebra isomorphism V:Y,” (g) —> W of Theorem 5.11(a) gives rise to a
QlH]-algebra isomorphism ¥: Y3 (g) > W.
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(¢) For any choices of sy in (5 1)-(5.3), the ordered monomials {XpYnen of (5.9) form a
basis of the free Q[h]-module Y7 (g).

Appendix A. The RTT realization in types C,, and D,

In this section, we recall the RTT realization of U, (Lsp,,,) and U,(Los,), established
n [16,17], and use it to explain the natural origin and the name of the integral forms
U7 (Lsp,y,,) and U (Logy,) from Definition 2.7 and Subsections 3.3, 4.3. While the analysis
is very similar, we shall start with D,,-type, which ends up in slightly simpler formulas.
A.1. RTT realization of U,(Loay,)

Set N =2n. For 1 < i < N, we define i’ and 7 via:

"=N+4+1-1, (A.1)
(1,...,N):=(n—-1,...,1,0,0,—1,...,—n +1). (A.2)

To follow the notations of [17], we also define
£=v2"N.

Consider the trigonometric R-matrix with a spectral parameter ng(z) given by

_ z—1 v—ov1 (v—v ) (z—1)¢
R ri = R P— B A3
g () zv—v~1 * zv—v~1 (zv —v=1)(z = &) @ (4.3)
where P,Q, R € (End C")®? are defined via:
P= 3 e®eci Q= Y vley@ey,
1<4,j<N 1<4,j<N
i£5.5'
R =v Z €ii @ € + Z ei ®ejj +v! Z €ii @ €yrir +
1<i<N 1<i,j<N 1<i<N
(v—v~ Ze”@@eﬂ— v—v" Zv’ Je”/®e”
1<j i>7

This Riyig(2) satisfies the famous Yang-Bazter equation (with a spectral parameter):

Rtrig;lZ(Z)Rtrig;IS(Zw)Rtrig;23 (w) = Rtrig;23 (w)Rtrig;l3(zw)Rtrig;12(Z)- (A4)

Following [17] (with the conceptual ideology going back to [10]), we define the RTT
integral form of the quantum loop algebra of oy, denoted by U (Loy), to be the
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associative Z[v,v~1]-algebra generated by {Kf; FT]H%%S n Wwith the following defining

relations:

@_j[o] ;00 =0 for 1 <i<j<N,

625[0%,- 0] =1 for1<i<N,

Ruvig (2/0) L (2) L2 (w) = L3 (w) LE(2) Ry (2/0),
Rivig( T /

(2)L5 (w) = Ly (w) L] (2) Resig(2/w),
(the last two are commonly called the RTT relations) as well as
LE(2)DLE(2E)' D =1, (A.6)

where t denotes the matrix transposition with Et = Fjy and D is the diagonal matrix

D :diag(vi,vé,...,v]v).

Here, £(2) € Ut (Loy)[[2F!]] @ End C¥ is defined by

Z Eiij (2) ® Eyj with Z EU Friz (A.7)

1<i,j<N r>0

We also define the C(v)-counterpart U}*(Loy) := U (Lon) @zv,0-1] C(v).
Let U,(Loy) be the quantum loop algebra of type D,, in the new Drinfeld realiza-

tion. It is a C(v)-algebra generated by {xzir, Di— ks Vi, k" ;E%jfo with the relations

as in [17, §1]. Identifying ;7 with our e; ., the subalgebra generated by {x }’{iﬂn re-

covers our U (Loy) from Subsectlon 2.1. In what follows, we will consider the following
generating series:

P Z) = ini,rz_rv <pl(2) = Z Soi,—kzk, wz(z) = Z'(/)i,kz_k~ (AS)

reZ k>0 k>0

The relation between the algebras U,(Loy) and U (Loy) was established in [17].
To state the main result, we consider the Gauss decomposition of the matrices £F(2)
from (A.7):

LE(z) = FE(2) - HE(2) - B (2).

Here, F*(z), HE(2), E*(2) € U:*(Loy)[[z*!]] ® End C¥ are of the form

ZE“"’_Z - Eij, Hi(z):Zhli(z)-Eii,

>

ZE’1+26U ’J'

1<J
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Theorem A.1 ([17]). There is a unique C(v)-algebra isomorphism

0: Us(Loy) = U;"(Loy)

defined by
el (2vf) —e (20 (20 = fo (20
xj'(z) — z,z+1( ) 71,1-&-1( ), xz_ (Z) — fz—i—l,z( ) {H—l,z( )’
v—ov—1 v—ov1 (A.9)

Gil2) o by (0T (20) 7 pilz) o B (20 (201)

for1<i<n and

i (0" = e (")
bt It n(2) b (" ()

"Ei(z) — n+1

)

f;+1’n71(21;”*1) - fn+1,n71(zvn71)

7 (2) ——

s n(2) bl (20" TR (20" T T
(A.10)

A.2. The RTT realization of U, (Loay,)

Let U:*> (Lo ) be the Z[v,v~!]-subalgebra of U:* (Lo ) generated by the coefficients
of {elij (2)}1<i<j<n, the matrix coefficients of E¥(z). The key goal of this Appendix is to
highlight the natural origin of the integral form U, (Los,) introduced in Definition 2.7
and its specific quantum root vectors (a special case of (2.32))

“,E] s = (Vo[- [leis, €it1,0l0, €it2,0l0, s €5,0]0s
TZ“;LL <1>v : H o [ei,sy eiJrl,O]'ua e 7en72,0]v7 en,O]v, (All)
5[?751,j],8 = (Lo - [l [ei,s,€i+1,0]u, T 7en—2,0]v7€n,0]vaen—l,O]va T aej,O]v
for any 1 <i < j < n. We also express the matrix coefficients of E*(2) as series in z*!:
=S el )= ellem ¥1<i<j<AN. (A.12)
>0 >0

Finally we define e;;(2) := e (2) — e;;(2). The key technical result of this subsection is:

Proposition A.2. (a) For any 1 <i < j <n, we have:

i 0 0 0
eijr1(z) = (1 - 02) Il [[@i,i+1(z)7€§+)1,z'+2]vaez(+)2,i+3]va T 76§3J)+1]v' (A.13)

(b) For any 1 <i<n—1, we have:

i—n 0 0 0
Cint1(2) = (1 =02 [ ferinn (2), €D ipalos o v g no o €01 palo- (AL14)
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(¢) For any 1 <i < j <n, we have:

eigr(2) = (1 —v?) T2 (=1)T 7" x
0 0 0 0 0

[l e @ e ialo e oo el el el (A15)
Proof. Due to the “rank reduction” embeddings of [17, §3.2, Proposition 4.2], it suffices
to prove formulas (A.13)—(A.15) for ¢ = 1. In fact, both (A.13) and (A.15) for ¢ =1 are
proved exactly as [15, (A.13, A.14)]. Thus, we shall only provide details for ¢ = 1 case
of (A.14).

Comparing matrix coefficients (v1 ® vp_1|- -+ |Up—1 ® v11) of both sides of the RTT

relation Riyig(2/w)Ly (2)Ly (w) = Ly (w)L] (2) Riyig(2/w), we get:

z—w _ (v—v Yz, _ _
vr =i i1 (Al (W) + gl 1 () (w) =
z—w _ (v—v Hw _
v o=ty -t (W1 (2) + el (W) (2).

Expanding all rational factors as series in z/w and evaluating the [w°]-coefficients, we
obtain:

vly 1 ()0 1 [0 = vl 1 [016, 1 (2) + (1 — U2)€;71,n71[0}€17,n+1(2)~ (A.16)

Comparing matrix coefficients (v1 ® vp_1|- - |vp—1 ® v,—1) of the same RTT relation,
we get:

z—w (v—o71)

_ _ z _
mel,nfl(z)enfl,nfl(w) + o — v_lwgnfl,nfl(z)gl,nfl(w)

=L, (W), 4 (2)

Expanding both rational factors as series in z/w and evaluating the [w®]-coefficients, we
obtain:

_ -1, 1 _ -1
gn—l,n—l[o] El,n—l(’z):U 1gl,n—1(z)£n—1,n—1[0] (A17)

Multiplying both sides of (A.16) by é;_lm_l[O]_l on the left and applying (A.17), we
obtain:

(1= ) i1 (2) = (1 (2)s e ii)o-

As 07,01(2) = Wi (2)eT g1 (2), €L 1(2) = BT (2)eT,_1(2), and [h7 (2),el” ) . 11] = 0,
we get:
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1 () = (1 =) e, (2), e ilo (A.18)

Arguing in the same way, but using Riig(z/w)LT (2)L5 (w) = L5 (W)LY (2) Ririg(2/w)
instead, we also obtain:

efni1(z) = (1= el 1 (2), e ple (A.19)

Subtracting (A.18) from (A.19), we finally get:

erni1(2) = (1= 0°) 7 fernoa(2), 0 1 o
Applying formula (A.13) for e1 ,—1(z) completes our proof of (A.14) fori=1. O

Combining Proposition A.2 with identification (A.9), (A.10) and formulas (A.11), we
get:

Corollary A.3. For any 1 <i < j <n and s € Z, we have:

Q(E[rz‘t,gms) = 653‘)“7 9(5{;;]73) = ez(‘,sr)mv Q(E[Yit,%,j],s) = 653)

Since the elements (A.11) are specific case of quantum root vectors (2.32), we finally
obtain:

Proposition A.4. o(U; (Loa,)) = US> (Loay,).

This result explains why we called U, (Log,) the RTT integral form of U; (Loay,).
Moreover, Theorem 2.8(b) implies the PBWD theorem for UL~ (Losy,), cf. [12, Theo-
rem 3.25]:

Corollary A.5. The ordered monomials in {eg-) | i < jsuch that i+j < N,r € Z} form

a basis of a free Zv,v=1]-module U**> (Log,), where the ordering is given by el(-;) < effe)

ifi<k,ori=kandj<{l ori=k,j={andr <s.
A.3. RTT realization of U,(Lsp,,,)
Set N =2n. For 1 <4 < N, we amend (A.2) via:
(I,...,N):=(n,...,2,1,—-1,-2,...,—n),
while 4’ is defined via (A.1). We define £ = v2~% as before. Finally we also introduce:

51‘:17 Eilz—l Vlgzgn
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The corresponding trigonometric R-matrix Ring(2) (satisfying (A.4)) is still given
by (A.3), but P,Q, R € (End C")®?2 are now modified as follows:

is
P = E €i; Q ej4, Q = E v Jé‘l‘é‘j eijr Q €5,

1<i,j<N 1<¢,j<N
i#5,5’
-1
R =v E € & €y + E € @ €jj +v E € & €yrqr +
1<i<N 1<4,j<N 1<i<N
(v—v" g ei; Qe — (v—v~ g V' é‘i&‘j ejrjr Q €j.
1<J 1>7

Define the RTT integral form of the quantum loop algebra of sp,, denoted by
U (Lsp ), to be the associative Z[v,v~1]-algebra generated by {éi [:Fr]};g?qu with
the same defining relations (A.5)~(A.6), whereas t is now defined via Ef; = eig;Ejry.
Here, the generators are encoded via £*(z) € UM (Lspy)[[z*!]] ® End (CN defined as
n (A.7). We also define the C(v)-counterpart U (Lspy) := U (Lsp ) @zv,0-1] C(v).

Let U, (Lsp ) be the quantum loop algebra of type C,, in the new Drinfeld realization.
It is a C(v)-algebra generated by {xzir,goi —ky Wi, k,kzﬂ qg%ffo with the relations as
in [16, §1]. Identifying x . with our e; ,., the subalgebra generated by {x+ ;§%<n recovers
our U (Lspy).

The relation between the algebras U, (Lsp ) and U (Lsp ) was established in [16].
Evoking the generating series (A.8) and the Gauss decomposition of £L*(z), we have:

Theorem A.6 ([16]). There is a unique C(v)-algebra isomorphism

Uy (Lspy) = U™ (Lspy)

defined by

+ i - i + i - i
+ ei,i+1(zv ) — ei,¢+1(zv ) _ z‘+1,i(2v ) — fi+1,¢(z” )
(2) = v—o1 oz E) e v—ovl ’ (A.20)
$i(2) = by (200h (2007 pi(2) = B (20" R (20%) 7Y

for1 <i<n and

") = e (v

2 — 2

G:L_,n-ﬁ-l (ZU

7L+1) — f:+1,n(zvn+1) - fn_—i—l,n(zvn+1)

x(z) — T (2)

)

v2—v2
n(2) = hop (0" i (20" ) 7 0 (2) o i (0 B (2ot
(A.21)
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A.4. The RTT realization of Uy (Lsp,,,)

Let U™> (Lsp ) be the Z[v,v~!]-subalgebra of U™ (Lsp, ) generated by the coeffi-
cients of {e;tj (2)}1<i<j<n, the matrix coefficients of E*(z). The key goal of this Appendix
is to highlight the natural origin of the integral form U (Lsp,,) introduced in Defini-
tion 2.7 and its specific quantum root vectors (a special case of (2.31))

g“ts = (2)y - ens,

[n],
rtt Dy [+ [[€is> €i41.0]0s €i42.0]0s - -+ +€5.0]
J] < v 3,8y C14+1,0|vy C14+2,0jv> 5 €5,0]v
rtt (A.22)
2 n],s =)y [+ [eiss €ir1,0]0, s €n—1,0]v) €n0]v2s
g[?j:l,j],s = <1>v : [ o [[[ o [61‘,57 ei+1,0]’u, e 7en71,0]’l}7 en,O]v%enfl,O]v» e 7€j,0]va

for any 1 < i < j < n, while the root generators €rtt are defined slightly differently

,i],s
via:

same sign

or -1 o1 r r
5[;,:1,1‘],5 = 1-2 [5[2‘%711,57 [i 'n,] ol Z S[fﬁl]’ fﬁl 1,60 (A.23)
a+b=s

where the condition “same sign” in the sum means that a,b < 0if s <0, and a,b > 0 if
s> 0.
We also express the matrix coefficients of E¥(2) as series in z

Ze( Mo e;j(z):ZeE;)z_r V1<i<j<N,

r>0 r>0

+1.

and define e;;(2) := e;;(z) —¢;;(2). The key technical result of this subsection is:

Proposition A.7. (a) For any 1 < i < j < n, we have:

i—q 0 0 0
eijr1(2) = (1L =07 [ [leqir1 (2), €0 ivalos € 0o ipslos - aeg‘,;ﬂ]w (A.24)
b) For any 1 <1 <n, we have:
( Y ,
_ i — 0 0 0
eim1(2) = (1= o) 11 =0 7 [ feriga(2), e alun e ey s nga o
(A.25)
(¢) For any 1 <i < j <n, we have:
eijr(2) = (1 —v") 711 —0?) T2 (1)
0 0 0 0 0
[ leninn (2), e ipalo ey alus €t luzs €yl €5rgqlo (A.26)

(d) For any 1 <1i < n, we have:
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—1
ei,(z) T2 [eiin(z)v ez(‘,og-&-l] - ei:n-l—l(z)ez:“;,(z)' (A.27)

Proof. Due to the “rank reduction” embeddings of [16, §3.3, Proposition 4.2], it suffices
to prove formulas (A.24)—(A.27) for ¢ = 1. In fact, (A.24)—(A.26) for ¢ = 1 are proved
completely analogously to [15, (A.13, A.14)]. Thus, we shall only provide details for i = 1
case of (A.27).

Comparing matrix coefficients (v ® v, | - - - |v, ® v1/) of both sides of the RTT relation
Rivig(z/w) LT (2) L5 (w) = L5 (w)L] (2) Ririg(2/w), we get:

Z—w (v—v1z

0n(2)6, 1 (w) +

Py Co ()€ 1 (w) =

vz —v lw ™

FoW - - (v—vNw, _
o (W), (2) + lr (W) 1, (2).

vz — v lw vz — v 1w

Expanding all rational factors as series in z/w and evaluating the [w°]-coefficients, we

obtain:
vl (2 0] = v, 1011, (2) + (1= v?) L, 01671 (2). (A.28)
Comparing matrix coefficients (v; ® v,| - - |v, @ v,,) of the same RTT relation, we get:
Gt + S ) = 0 2)
vz —v—lw 1,n Z n,n w vz — v—lw ™" z 1,n w) = n,n w 1I,n z)-

Expanding both rational factors as series in z/w and evaluating the [w°]-coefficients, we
obtain:

_ -1, —1,)— — -1
gn,n[o] el,n(’z) =v 161,n(2)€n,n[0] ’

which after left multiplication by (¢11(2))~! = (hy (2))~! yields:

-1 —1

G [0 er,(2) = v ter,(2)6, ,[0] (A.29)
Comparing matrix coefficients (v; @ v1|- - [v1 @ v11) of the same RTT relation, we get:
_ _ z—w _ (v—v Hw _
Ga (@) (W) = by (W) (2) + 5 (W)l 44 (2)

Expanding both rational factors as series in z/w and evaluating the [w°]-coefficients, we
obtain:

Ml—,n+1[0]£1_,1(2) = Z1_,1('3)51_,n+1[0] - (1~ U2)51—,1[0V1—,n+1(z)7

which after left multiplication by (¢11[0])~" and evoking £1 ,(z) = hy (z) yields:
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0 - - 0 _
vel)ih (2) = hi () (el = (1= 0)er i () (A.30)
Plugging (A.29)—(A.30) into (A.28) and evoking egg) —eﬁ%l, we obtain the desired

formula:

- -1 . 0 - -
er1(2) = T glena(2) €] = e (era(2).

Arguing in the same way, but using Riig(z/w)L] (2)L5 (w) = Ly (W)LY (2) Rivig(2/w)
instead, we also obtain a similar formula for efl,(z). This completes our proof of (A.27)
fori=1. O
Combining Proposition A.7 with (A.20), (A.21) and (A.22), (A.23), we get:
Corollary A.8. For any 1 <i < j <n and s € Z, we have:
o) =i @) = e @) Zely o€ = el

The following result explains why we called U, (Lsp,,) the RTT integral form of
Uv> (L5p2n):

Proposition A.9. o(U; (Lsps,)) = US> (Lep,,).

Proof. We note that grt‘; of (A.22) coincide with ggg from (2.31) corresponding to s; = s,
sz = 0 in the formulas (2.18)—(2.20), for all roots except 8 = [i,n, ] (1 <i < n). While

£ ltn il,s and 5[1 il differ, we claim that they generate the same Z[v,v~!]-subalgebra
together with the elements above. To this end, it is convenient to replace 5[”:1 i.s rather

with

o -1 [5rtt 5rtt ]

/ Pp—
g[iﬂhi]’S T = 2 Tlin—1]s “[in],0

as the elements 5’{:2 Sr:jl 1), featured in (A.23) belong to Uy (Lspy,) for any a,b € Z.

First, let us show that E[ML ;s belongs to Uy (Lsps,), or equivalently that \I/(EN['Z il s)
belongs to S of Subsection 3.3, due to Theorem 3.14(a). To this end, we set

- Ty 1 Ty 1 Te41,1 ) Tp—1,1 Tp—1,1

a=TH{e () e () e (o)< () e (),
o= e (22)e (2) e 2 e (e ().

I—i Ty 1 Ty 1 Te+1,1 Tp—1,1 Tp—1,1

so that
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- Sym < wf,lﬁﬂ;ll,l . HZ;ZI T1Tk,2 - (A _ B) >

denomy; ,,_ 1) ({xkl}z;ll) -denomy; ,,) ({xk’g}z;il, Tn.1)

where Sym denotes symmetrization with respect to all pairs {xy 1, :ckg}z;il. Since

c(—m"‘l’l) —c(—x”’l ) , c(ﬂ> —¢ (@) (i<t<n-1),

Tp,1 Tn—-1,1 Ty2 Tyl

C( Tyl >C($e+1,1> _C($e+1,2>g( Zy2 > (igfgn—2)
Te+1,2 Ty 2 Ty 1 Te+1,1

are all divisible by (1),, we see that so is A — B. Hence, ¥(&/
tion (3.28).

Next, we show that for any d € KP(k) with & = 2c; + -+ - 4+ 2at,—1 + @, the spe-
clalization ¢a(U(Ef; , 1)) is divisible by Ag of (3.29). If d = dy = {djing = 1,d, =
0 for other ~}, then

[i,m,i], ) satisfies the condi-

By (U(Efj n,0,5)) = (13" 27H2)T - wih? ™ (A.31)

by Lemma 3.2, so that \I/(E[’Z n.i],s) 18 non-zero and ¢q, (¥ (E’l n,i],s)) satisfies the condi-

tion (3.29). For any d > d,, arguing as in the proof of Proposition 3.13, we see that the

(-factors arising from the variables :z:(’g *) with B =[i,n,j] and dg > 0 contribute Ay in
the ¢g4-specialization (since o(m%s)) # o(x%s)) in the present setup of \I/(E[z netl, 5[1 "] o)
and W(EL, (EX )
factors (3. 31) that were utilized a few times in the proof of Proposition 3.13, and thus

), we actually never have to reserve to the Q-factors of (3.3) or the

the overall contribution of A4 arises precisely from the same (-factors as used in the
proof of Proposition 3.13).

Finally, if we expand 5[ as a linear combination of monomials ]_[é 1 €ig,s, With co-

i,m,i],s

efficients in Z[v,v~1], then as in the proof of Proposmon 3.13 we also see that \II(E[ivn il S)
is integral. Thus ‘I’(S[Z ni,s) € S, so that 52 il U7 (Lsp,,,) by Theorem 3.14(a). On
the other hand, combining (A.31) with Lemma 3 6 and Theorem 3.14(b), we see that
&l —a-&F

[i,n,i],s

is a polynomial in 5+ (18] < 2n — 2i) with coefficients in Z[v,v™!]

[znz]
for some a € Q% -

This proves that the quantum root vectors {€ B EEGZAJr indeed generate U, (Lsp,,). O

Data availability

No data was used for the research described in the article.



546 Y. Hu, A. Tsymbaliuk / Journal of Algebra 690 (2026) 475-546

References

[1] J. Beck, Convex bases of PBW type for quantum affine algebras, Commun. Math. Phys. 165 (1)
(1994) 193-199.
[2] J. Brundan, A. Kleshchev, P. McNamara, Homological properties of finite-type Khovanov-Lauda-
Rougquier algebras, Duke Math. J. 163 (7) (2014) 1353-1404.
[3] V. Drinfeld, A new realization of Yangians and quantum affine algebras, Sov. Math. Dokl. 36 (2)
(1988) 212-216.
[4] B. Enriquez, On correlation functions of Drinfeld currents and shuffle algebras, Transform. Groups
5 (2) (2000) 111-120.
[5] B. Enriquez, PBWD and duality theorems for quantum groups and quantum current algebras, J. Lie
Theory 13 (1) (2003) 21-64.
[6] B. Feigin, Y. Hu, Shuflle algebra realization of quantum affine superalgebra U, (@(2, 1;0)), J. Algebra
573 (2021) 539-560.
[7] B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, S. Yanagida, A commutative algebra on degen-
erate CP' and Macdonald polynomials, J. Math. Phys. 50 (9) (2009) 095215.
[8] B. Feigin, A. Odesskii, A family of elliptic algebras, Int. Math. Res. Not. (11) (1997) 531-539.
[9] B. Feigin, A. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in: Topics in
Quantum Groups and Finite-Type Invariants, in: Amer. Math. Soc. Transl. Ser. 2, vol. 185, 1998,
pp. 65-84.
[10] L. Faddeev, N. Reshetikhin, L. Takhtadzhyan, Quantization of Lie groups and Lie algebras, Leningr.
Math. J. 1 (1) (1990) 193-225.
[11] B. Feigin, A. Stoyanovsky, Functional models for representations of current algebras and semi-
infinite Schubert cells, Funct. Anal. Appl. 28 (1) (1994) 55-72.
[12] M. Finkelberg, A. Tsymbaliuk, Shifted quantum affine algebras: integral forms in type A, Arnold
Math. J. 5 (2-3) (2019) 197-283.
[13] J. Green, Quantum Groups, Hall Algebras and Quantized Shuffles, in: Finite Reductive Groups,
Luminy, 1994, in: Birkh&user Prog. Math., vol. 141, 1997, pp. 273-290.
[14] I. Grojnowski, Affinizing quantum algebras: from D-modules to K-theory, preprint, available at
https://www.dpmms.cam.ac.uk/~groj/char.ps, 1994.
[15] Y. Hu, A. Tsymbaliuk, Shuffle algebras and their integral forms: specialization map approach in
types B, and G2, Int. Math. Res. Not. (7) (2024) 6259-6302.
[16] N. Jing, M. Liu, A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of quan-
tum affine algebra: type C, J. Math. Phys. 61 (3) (2020) 031701.
[17] N. Jing, M. Liu, A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of quan-
tum affine algebra: types B and D, SIGMA 16 (2020) 043.
[18] P. Lalonde, A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Am.
Math. Soc. 347 (5) (1995) 1821-1830.
[19] B. Leclerc, Dual canonical bases, quantum shuffles and g-characters, Math. Z. 246 (4) (2004)
691-732.
[20] S. Levendorskii, On PBW bases for Yangians, Lett. Math. Phys. 27 (1) (1993) 37—42.
[21] A. Negut, The shuffle algebra revisited, Int. Math. Res. Not. (22) (2014) 6242-6275.
[22] A. Negut, Quantum toroidal and shuffle algebras, Adv. Math. 372 (2020) 107288.
[23] A. Negut, A. Tsymbaliuk, Quantum loop groups and shuffle algebras via Lyndon words, Adv. Math.
439 (2024) 109482.
[24] A. Tsymbaliuk, Shuffle algebra realization of type A super Yangians and quantum affine superalge-
bras for all Cartan data, Lett. Math. Phys. 110 (8) (2020) 2083—2111.
[25] A. Tsymbaliuk, PBWD basis and shuffle algebra realizations for U, (Lsly,), Uy, v, (Lsly),
U, (Lsl(m|n)) and their integral forms, Sel. Math. New Ser. 27 (3) (2021) 35.
[26] A. Tsymbaliuk, Shuffle Approach Towards Quantum Affine and Toroidal Algebras, SpringerBriefs
in Mathematical Physics, 2023, xi+130pp.


http://refhub.elsevier.com/S0021-8693(25)00623-4/bib92EB5FFEE6AE2FEC3AD71C777531578Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib92EB5FFEE6AE2FEC3AD71C777531578Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib83C91D8586F46824A7899AE92C6EE91Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib83C91D8586F46824A7899AE92C6EE91Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib5AA7C336F3221AD33408E51F9DB46A23s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib5AA7C336F3221AD33408E51F9DB46A23s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib874516135467A9435C09D2E2FAB53E81s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib874516135467A9435C09D2E2FAB53E81s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib799D1E93A72F07762DA438DDFB242A6As1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib799D1E93A72F07762DA438DDFB242A6As1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib08E1D9B004BB57CD55ACED4984F93C8Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib08E1D9B004BB57CD55ACED4984F93C8Fs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibD9E792615ED2A77B8FF8BCC808501C33s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibD9E792615ED2A77B8FF8BCC808501C33s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib1E37931C0CA6B19DD34DC2A961FFC057s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibC60563F2C31365CF120777846524DCC0s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibC60563F2C31365CF120777846524DCC0s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibC60563F2C31365CF120777846524DCC0s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib16146527AE8976A41BE672B2D8F1F6EAs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib16146527AE8976A41BE672B2D8F1F6EAs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib03C8F29F594E46FE2A9BB169A573E09Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib03C8F29F594E46FE2A9BB169A573E09Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibE7BDDA2ABEA74DEBE6DFC166CEE5A1ACs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibE7BDDA2ABEA74DEBE6DFC166CEE5A1ACs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibD6F0FF174846C743D3F19F8C04422123s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibD6F0FF174846C743D3F19F8C04422123s1
https://www.dpmms.cam.ac.uk/~groj/char.ps
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibA887DE0E43CDF5758C77C2003B6DBA22s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibA887DE0E43CDF5758C77C2003B6DBA22s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibE475B3072D1D7AC4A0F0C70AE128477Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibE475B3072D1D7AC4A0F0C70AE128477Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib81BDEF157B5BC6D2AEDADEB6B15C723Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib81BDEF157B5BC6D2AEDADEB6B15C723Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib345BB0AE8CF18E1BA6E056AF96CA3EA7s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib345BB0AE8CF18E1BA6E056AF96CA3EA7s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib3CA886D617C35C6A40CAFCF0EB443DC1s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib3CA886D617C35C6A40CAFCF0EB443DC1s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib180A32AF78485BC8C1833B055889F801s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib87ED45CE97ADEF905B3567933D8B6957s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib85DCAB87CDAABA6A1F89A2050C7EC4B2s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib075CDE425B38A94D6FB75DC69B41192As1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bib075CDE425B38A94D6FB75DC69B41192As1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibC780DA24FB302E2D30D02E1FD5BF87E4s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibC780DA24FB302E2D30D02E1FD5BF87E4s1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibB012B9336FA902C4CF486F21E9AE12BDs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibB012B9336FA902C4CF486F21E9AE12BDs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibAE5716A48C862894472773D0C799DF3Bs1
http://refhub.elsevier.com/S0021-8693(25)00623-4/bibAE5716A48C862894472773D0C799DF3Bs1

	Shuffle algebras and their integral forms: specialization map approach in types Cn and Dn
	1 Introduction
	1.1 Summary
	1.2 Outline of the paper
	1.3 Acknowledgments

	2 Preliminaries
	2.1 Quantum loop algebras and shuffle algebras in types Cn and Dn
	2.2 Root vectors and PBWD bases in types Cn,Dn
	2.3 Two integral forms in types Cn and Dn
	2.4 Specialization maps in types Cn and Dn

	3 Shuffle algebra and its integral forms in type Cn
	3.1 U>v(Lsp2n) and its shuffle algebra realization
	3.2 Shuffle algebra realization of the Lusztig integral form in type C
	3.3 Shuffle algebra realization of the RTT integral form U>v(Lsp2n)

	4 Shuffle algebra and its integral forms in type Dn
	4.1 U>v(Lo2n) and its shuffle algebra realization
	4.2 Shuffle algebra realization of the Lusztig integral form in type D
	4.3 Shuffle algebra realization of the RTT integral form in type D

	5 Yangian counterpart
	5.1 Yangians and their shuffle algebra realization
	5.2 The Drinfeld-Gavarini dual Ẏ>ħ(g) and its shuffle algebra realization

	Appendix A The RTT realization in types Cn and Dn
	A.1 RTT realization of Uv(Lo2n)
	A.2 The RTT realization of U>v(Lo2n)
	A.3 RTT realization of Uv(Lsp2n)
	A.4 The RTT realization of U>v(Lsp2n)

	Data availability
	References


