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1. Introduction

1.1. Summary

The quantum loop algebras associated to simple 𝔤 admit two presentations: the orig
inal Drinfeld-Jimbo realization UDJ

v (L𝔤) and the new Drinfeld realization U𝒗(L𝔤). The 
explicit isomorphism can be upgraded to that of quantum a�ine algebras, cf. [3, Theo
rem 3]:

UDJ
v (ˆ︁𝔤) ≃ Uv(ˆ︁𝔤). (1.1)

Many internal algebraic properties are developed in the Drinfeld-Jimbo realization us
ing a triangular decomposition

UDJ
v (ˆ︁𝔤) ≃ UDJ,>

v (ˆ︁𝔤) ⊗ UDJ,0
v (ˆ︁𝔤) ⊗ UDJ,<

v (ˆ︁𝔤). (1.2)

For example, Beck [1] constructed the PBW-type bases of each of these subalgebras.

On the other hand, the new Drinfeld realization Uv(ˆ︁𝔤) is key to the representation theory 
of these algebras. In this realization, the infinite set of generators is nicely packed into 
the currents ei(z), fi(z), φ±

i (z) (which bore fruits in CFT already in the classical case). 
It is thus natural to develop algebraic aspects of Uv(ˆ︁𝔤) intrinsic to the loop realization. 
We note that a triangular decomposition

Uv(ˆ︁𝔤) ≃ U>
v (ˆ︁𝔤) ⊗ U0

v (ˆ︁𝔤) ⊗ U<
v (ˆ︁𝔤)

is not intertwined with that of (1.2) through the aforementioned isomorphism (1.1).

Besides the standard generators-and-relations presentation, quantum groups (or rather 
their positive subalgebras) admit a more elegant combinatorial (dual) realization. For 
finite quantum groups, this manifests in the algebra embedding (cf. [13]):

U>
v (𝔤) ↪→ ℱ =

k∈N ⨁︂
i1,...,ik∈I

Q(v) · [i1 . . . ik], (1.3)

where I is the set of simple roots of 𝔤 and ℱ is endowed with the quantum shuffle 
product. As shown by Lalonde-Ram in [18], there is a bijection between the set Δ+ of 
positive roots of 𝔤 and the so-called standard Lyndon words in I, such that the order 
on Δ+ induced from the lexicographical order of words is convex. As a consequence, 
Lusztig’s PBW basis of U>

v (𝔤) can be constructed purely combinatorially via iterated 
v-commutators, see details in [19,23].

Using similar ideas, Feigin-Odesskii introduced the elliptic shuffle algebras in [8,9], whose 
trigonometric counterpart (in the formal setup with Q[[ħ]] instead of Q(q)) was further 
studied by Enriquez in [4,5]. Explicitly, this manifests in the algebra embedding
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Ψ : U>
v (L𝔤) ↪→ S, (1.4)

where S consists of symmetric rational functions in {xi,r}r∈Zi∈I subject to so-called pole 
and wheel conditions, endowed with the shuffle product. Thus, it is a functional version 
of (1.3).

The key benefit of (1.4) is that it provides tools to treat the elements of Uv(L𝔤) given 
by high degree non-commutative polynomials in the original generators. Within the 
last decade, this approach has found novel applications in the geometric representation 
theory, quantum integrable systems, and knot invariants. To make this approach self
contained, it is important to have a description of the image Im(Ψ). In fact, Enriquez 
conjectured [5, Remark 3.16]:

Ψ : U>
v (L𝔤) ∼ −→ S. (1.5)

To prove (1.5), one has to ``compare the size'' of U>
v (L𝔤) and S. For types A1 and 

Â1, this was accomplished in [21] by utilizing specialization maps analogous to those 
from [7,11]. A similar approach was used later in [22] to prove (1.5) for types An and 
Ân; for two-parameter and super counterparts of type An in [25]; for type 𝔇(2, 1; θ) in [6]; 
for types G2 and Bn in the authors’ earlier work [15]. In the present note we generalize 
this treatment to the remaining classical types Cn and Dn. We should emphasize right 
away that unlike the aforementioned cases, the specialization maps have to be properly 
normalized in the present setup, since they now require a two-step process in which 
certain vanishing factors arising due to wheel conditions must be first canceled before 
further specialization (as not to produce 0). The main technical aspect of this note is to 
show that these normalized specialization maps still exhibit the same key properties as 
those crucially used in [15,25] for types An, Bn, G2.

We conclude the summary by noting that while Enriquez’s conjecture (1.5) was recently 
proved for all finite 𝔤 in [23] using a very different approach, the present exposition has 
its own benefits as it allows to upgrade our results to important integral Z[v, v−1]-forms 
of U>

v (L𝔤) as well as to the Yangian counterpart, none of which was possible through 
the technique of [23].

1.2. Outline of the paper

The structure of the present paper is as follows:

• In Section 2, we recall the notion of quantum loop algebras U>
v (L𝔤) in the new Drinfeld 

realization and shuffle algebras S, introduce certain families of quantum root vectors 
(associated to specific convex orders on the set of positive roots), and state the key 
results (PBWD bases and shuffle algebra isomorphism) for U>

v (L𝔤) of types Cn, Dn. We 
also introduce two integral forms and state the PBWD bases for those. We conclude this 
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section with introducing the main tool, the specialization maps, and summarize their key 
properties in Lemmas 2.9, 2.10.

• In Section 3, we establish the key properties of specialization maps for type Cn, and 
use these to prove Theorems 2.2 and 2.3 for type Cn, see Theorem 3.9. We upgrade both 
results to Lusztig form U>

v (L𝔰𝔭2n) and RTT form 𝒰>
v (L𝔰𝔭2n) in Theorems 3.12 and 3.14, 

respectively.

• In Section 4, we establish the key properties of specialization maps for type Dn, and 
use these to prove Theorems 2.2 and 2.3 for type Dn, see Theorem 4.7. We upgrade both 
results to Lusztig form U>

v (L𝔬2n) and RTT form 𝒰>
v (L𝔬2n) in Theorems 4.10 and 4.12, 

respectively.

• In Section 5, we generalize the results of Sections 3--4 to the rational setup by providing 
the shuffle realization and constructing PBWD bases for the positive subalgebras of the 
Yangians and their Drinfeld-Gavarini duals in types Cn and Dn, see Theorems 5.11 and 
5.13.

• In Appendix A, we use the RTT realization of Uv(L𝔰𝔭2n), Uv(L𝔬2n) from [16,17] to 
explain the natural origin and the name of the RTT integral forms 𝒰>

v (L𝔰𝔭2n), 𝒰>
v (L𝔬2n).
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2. Preliminaries

2.1. Quantum loop algebras and shuffle algebras in types Cn and Dn

Let 𝔤 be a finite dimensional simple Lie algebra with simple positive roots {αi}i∈I . 
We denote the set of positive roots by Δ+. Each β ∈ Δ+ can be uniquely expressed 
as a sum of simple roots: β =

∑︁
i∈I νβ,iαi with νβ,i ∈ N. We shall refer to νβ,i as the 

coefficient of αi in β, and we shall use the following notation:

i ∈ β ⇐⇒ νβ,i ̸= 0.

The height of a root β ∈ Δ+ is:

|β| :=
∑︂
i∈I 

νβ,i. (2.1)
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We fix a nondegenerate invariant bilinear form on the Cartan subalgebra 𝔥 of 𝔤. This 
gives rise to a nondegenerate form on the dual 𝔥∗, and we set di := (αi,αi)

2 . The choice of 
the form is such that di = 1 for short roots αi. Let A = (aij)i,j∈I be the Cartan matrix 
of 𝔤, so that diaij = (αi, αj) = djaji. In this paper, we consider simple Lie algebras of 
types Cn and Dn. The corresponding Dynkin diagrams look as follows:

Cn (n ≥ 3)
α1 α2

. . . 
αn−1 αn

⇐ (2.2)

Dn (n ≥ 4)
α1 α2

. . . 
αn−2 αn

αn−1

(2.3)

For these types, we have

Cn-type (n ≥ 2) : di = 1 (1 ≤ i ≤ n− 1), dn = 2,

Dn-type (n ≥ 4) : di = 1 (1 ≤ i ≤ n).

Let v be a formal variable. We define vα = v(α,α)/2 for any α ∈ Δ+, and denote 
vαi

= vdi simply by vi for any i ∈ I. Let 𝔖m denote the symmetric group of degree m. 
Let U>

v (L𝔤) be the ``positive subalgebra'' of the quantum loop algebra Uv(L𝔤) associated 
to 𝔤 in the new Drinfeld realization. Explicitly, U>

v (L𝔤) is the Q(v)-algebra generated 
by {ei,r}r∈Zi∈I subject to the following defining relations:

(z − v
aij

i w)ei(z)ej(w) = (vaij

i z − w)ej(w)ei(z) ∀ i, j ∈ I,

Sym 
z1,...,z1−aij

1−aij∑︂
k=0 

(−1)k
[︃
1 − aij

k

]︃
vi

ei(z1) · · · ei(zk)ej(w)ei(zk+1) · · · ei(z1−aij
) = 0 ∀ i ̸= j.

Here, we use the following notations:

[ℓ]u := uℓ − u−ℓ

u− u−1 , [ℓ]u! :=
ℓ ∏︂

k=1

[k]u, 
[︃
ℓ
m

]︃
u

:= [ℓ]u! 
[ℓ−m]u![m]u! ,

ei(z) :=
∑︂
r∈Z

ei,rz
−r, Sym 

z1,...,zm

V (z1, . . . , zm) :=
∑︂

σ∈𝔖m

V (zσ(1), . . . , zσ(m)).

We shall also need the following notation later:

⟨m⟩u := um − u−m ∀ m ∈ N. (2.4)

We define 𝔖k :=
∏︁

i∈I 𝔖ki
for any k = (k1, . . . , k|I|) ∈ NI . Associated to the Cartan 

matrix A = (aij)i,j∈I , we also have the (trigonometric version of the) Feigin-Odesskii 
shuffle algebra S. To this end, consider the following NI-graded Q(v)-vector space
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S =
⨁︂
k∈NI

Sk,

where Sk consists of rational functions F in the variables {xi,r}1≤r≤ki

i∈I such that:

• F is 𝔖k-symmetric, that is, symmetric in {xi,r}ki
r=1 for each i ∈ I,

• (pole conditions) F has the form

F =
f({xi,r}1≤r≤ki

i∈I ) ∏︁aij ̸=0
i<j

∏︁1≤s≤kj

1≤r≤ki
(xi,r − xj,s)

, (2.5)

where f ∈ Q(v)[{x±1
i,r }1≤r≤ki

i∈I ]𝔖k and an arbitrary order < is chosen on I to make 
sense of i < j (though the space Sk is clearly independent of this order),

• (wheel conditions) for any F ∈ Sk, its numerator f from (2.5) satisfies:

f({xi,r}1≤r≤ki

i∈I ) = 0 once xi,s1 = v2
i xi,s2 = · · · = v

−2aij

i xi,s1−aij
= v

−aij

i xj,r

(2.6)
for any i ̸= j such that aij ̸= 0, 1 ≤ s1, . . . , s1−aij

≤ ki, and 1 ≤ r ≤ kj .

Let (ζi,j(z))i,j∈I be the matrix of rational functions in z given by

ζi,j(z) = z − v−(αi,αj)

z − 1 
. (2.7)

For k, ℓ ∈ NI , let

k + ℓ = (ki + ℓi)i∈I ∈ NI .

Let us introduce the bilinear shuffle product ⋆ on S as follows: for F ∈ Sk and G ∈ Sℓ, 
we set

F ⋆ G
(︁{xi,r}1≤r≤ki+ℓi

i∈I

)︁
=

1 
k! · ℓ! · Sym𝔖k+ℓ

(︃
F
(︁{xi,r}1≤r≤ki

i∈I

)︁ ·G(︁{xj,s}kj<s≤kj+ℓj
j∈I

)︁ ∏︂
i,j∈I

s>kj∏︂
r≤ki

ζi,j

(︂xi,r

xj,s

)︂)︃
.

(2.8)

Here, for k ∈ NI , we set k! =
∏︁

i∈I ki!, and define the symmetrization

Sym𝔖k

(︁
F ({xi,r}1≤r≤ki

i∈I )
)︁

:=
∑︂

(σ1,...,σ|I|)∈𝔖k

F ({xi,σi(r)}1≤r≤ki

i∈I ). (2.9)

This endows S with a structure of an associative unital algebra.
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Notation 2.1. To simplify our formulas below, we shall often use ζ
(︂

xi,r

xj,s

)︂
instead of 

ζi,j

(︂
xi,r

xj,s

)︂
.

This algebra (S, ⋆) is related to U>
v (L𝔤) via the following result of [23] (conjectured 

in [5]):

Theorem 2.2. The assignment ei,r ↦→ xr
i,1 ∈ S1i

(i ∈ I, r ∈ Z), where 1i =
(0, . . . , 1, . . . , 0) with 1 at the i-th coordinate, gives rise to a Q(v)-algebra isomorphism

Ψ : U>
v (L𝔤) ∼ −→ S. (2.10)

The key objective of the present paper is to extend the method used in [15] to the 
remaining classical types Cn and Dn. This provides a new proof of Theorem 2.2 in these 
types, different from [23], but more importantly also yields tools to treat integral forms 
along the same lines.

2.2. Root vectors and PBWD bases in types Cn, Dn

Our construction of the specialization maps and PBWD bases is based on the specific 
choice of a convex order on Δ+. The one that is best suited for our purposes is arising 
through the lexicographical order on standard Lyndon words, see [18,19], as we recall 
next. The labeling of simple roots in the corresponding Dynkin diagrams (2.2), (2.3) 
provides a total order on the set I of those, and hence the lexicographical order on the 
set of words in the alphabet I. According to [18, Proposition 3.2], there is a natural 
bijection between the sets of positive roots Δ+ and so-called standard Lyndon words. 
Thus, the lexicographical order on the latter gives rise to an order < on Δ+, which is 
convex by [19, Proposition 26] (cf. [23, Proposition 2.34]). Henceforth, we fix this convex 
order on Δ+ and use standard Lyndon words to parametrize positive roots.

Let us work this out explicitly for types Cn and Dn with the specific order on I as in 
(2.2), (2.3). Applying [19, Proposition 25], we find the set of all standard Lyndon words:

Cn-type (n ≥ 3) : Δ+ = 
{︁
[i . . . j] | 1 ≤ i ≤ j ≤ n

}︁
∪ {︁[i . . . (n− 1)n(n− 1) . . . j] | 1 ≤ i < j ≤ n− 1

}︁
∪ {︁[i . . . (n− 1)i . . . (n− 1)n] | 1 ≤ i ≤ n− 1

}︁
.

Dn-type (n ≥ 4) : Δ+ = 
{︁
[i . . . j] | 1 ≤ i ≤ j ≤ n− 1

}︁ ∪ {︁[n]
}︁

∪ {︁[i . . . (n− 2)n] | 1 ≤ i ≤ n− 2
}︁

∪ {︁[i . . . (n− 2)n(n− 1) . . . j] | 1 ≤ i < j ≤ n− 1
}︁
.

For convenience, we shall use the following notations for positive roots in types Cn

and Dn:
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• Type Cn :

[i, j] := [i . . . j] for 1 ≤ i ≤ j ≤ n,

[i, n, j] := [i . . . (n− 1)n(n− 1) . . . j] for 1 ≤ i < j < n,

[i, n, i] := [i . . . (n− 1)i . . . (n− 1)n] for 1 ≤ i < n.

(2.11)

• Type Dn :

[i, j] := [i . . . j] for 1 ≤ i ≤ j < n or i = j = n,

[i, n] := [i . . . (n− 2)n] for 1 ≤ i ≤ n− 2,

[i, n, j] := [i . . . (n− 2)n(n− 1) . . . j] for 1 ≤ i < j < n.

(2.12)

The aforementioned specific convex order on Δ+ in types Cn, Dn looks as follows:

• Type Cn :

[1] < [1, 2] < · · · <[1, n− 1] < [1, n, 1] < [1, n] < [1, n, n− 1] < · · · < [1, n, 2]

< [2] < · · · < [n− 1, n, n− 1] < [n].
(2.13)

• Type Dn :

[1] < [1, 2] < · · · < [1, n− 1] < [1, n] < [1, n, n− 1] < [1, n, n− 2] < · · · < [1, n, 2]

< [2] < · · · < [n− 2, n− 1] < [n− 2, n] < [n− 2, n, n− 1] < [n− 1] < [n].
(2.14)

We define the quantum root vectors {Eβ,s}s∈Zβ∈Δ+ of U>
v (L𝔤) in type Cn, Dn via iterated 

v-commutators. Here, for x, y ∈ U>
v (L𝔤) and u ∈ Q(v), the u-commutator [x, y]u is

[x, y]u := xy − u · yx.

• Type Cn :
If β = [i1, . . . , iℓ] ̸= [i, n, i], we choose a collection λ1, . . . , λℓ−1 ∈ vZ and a decompo
sition s = s1 + · · · + sℓ with s1, . . . , sℓ ∈ Z. Then, we define

Eβ,s := [· · · [[ei1,s1 , ei2,s2 ]λ1 , ei3,s3 ]λ2 , · · · , eiℓ,sℓ ]λℓ−1 . (2.15)

If β = [i, n, i], we choose λ ∈ vZ, a decomposition s = s1 + s2 with s1, s2 ∈ Z, and 
any quantum root vector E[i,n−1],s1 , E[i,n],s2 defined by (2.15), and then define

Eβ,s := [E[i,n−1],s1 , E[i,n],s2 ]λ. (2.16)
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• Type Dn :
For any β = [i1, . . . , iℓ] ∈ Δ+, we choose a collection λ1, . . . , λℓ−1 ∈ vZ and a 
decomposition s = s1 + · · · + sℓ with s1, . . . , sℓ ∈ Z. Then, we define

Eβ,s := [· · · [[ei1,s1 , ei2,s2 ]λ1 , ei3,s3 ]λ2 , · · · , eiℓ,sℓ ]λℓ−1 . (2.17)

In particular, we have the following specific choices {Ẽ±
β,s}s∈Zβ∈Δ+ which will be used to 

construct PBWD bases of the integral forms in Theorems 2.6 and 2.8:

• Type Cn :
For β = [i, j] with 1 ≤ i ≤ j < n and s ∈ Z, we choose any decomposition s =
si + · · · + sj , fix a sign ±, and define

Ẽ±
[i,j],s := [· · · [[ei,si , ei+1,si+1 ]v±1 , ei+2,si+2 ]v±1 , · · · , ej,sj ]v±1 . (2.18)

For β = [i, n] with 1 ≤ i ≤ n and s ∈ Z, we choose any decomposition s = si+· · ·+sn, 
fix a sign ±, and define

Ẽ±
[i,n],s := [[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−1,sn−1 ]v±1 , en,sn ]v±2 . (2.19)

For β = [i, n, j] with 1 ≤ i < j < n and s ∈ Z, we choose any decomposition 
s = si + · · · + sj−1 + 2sj + · · · + 2sn−1 + sn, fix a sign ±, and define

Ẽ±
[i,n,j],s := [· · · [[[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−1,sn−1 ]v±1 ,

en,sn ]v±2 , en−1,sn−1 ]v±1 , · · · , ej,sj ]v±1 .
(2.20)

For β = [i, n, i] with 1 ≤ i ≤ n − 1 and s ∈ Z, we choose any decomposition 
s = 2si + · · · + 2sn−1 + sn, fix a sign ±, and define

Ẽ±
[i,n,i],s := [[· · ·[ei,si , ei+1,si+1 ]v±1 , · · · , en−1,sn−1 ]v±1 ,

[[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−1,sn−1 ]v±1 , en,sn ]v±2 ].
(2.21)

• Type Dn :
For β = [i, j] with 1 ≤ i ≤ j < n (or i = j = n) and s ∈ Z, we choose any 
decomposition s = si + · · · + sj , fix a sign ±, and define

Ẽ±
[i,j],s := [· · · [[ei,si , ei+1,si+1 ]v±1 , ei+2,si+2 ]v±1 , · · · , ej,sj ]v±1 . (2.22)

For β = [i, n] with 1 ≤ i ≤ n − 2 and s ∈ Z, we choose any decomposition s =
si + · · · + sn−2 + sn, fix a sign ±, and define

Ẽ±
[i,n],s := [[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−2,sn−2 ]v±1 , en,sn ]v±1 . (2.23)
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For β = [i, n, n − 1] with 1 ≤ i ≤ n − 2 and s ∈ Z, we choose any decomposition 
s = si + · · · + sn−2 + sn−1 + sn, fix a sign ±, and define

Ẽ±
[i,n,n−1],s := [[[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−2,sn−2 ]v±1 , en,sn ]v±1 , en−1,sn−1 ]v±1 .

(2.24)
For β = [i, n, j] with 1 ≤ i < j ≤ n − 2 and s ∈ Z, we choose any decomposition 
s = si + · · · + sj−1 + 2sj + · · · + 2sn−2 + sn−1 + sn, fix a sign ±, and define

Ẽ±
[i,n,j],s := [· · · [[[· · · [ei,si , ei+1,si+1 ]v±1 , · · · , en−2,sn−2 ]v±1 ,

en,sn ]v±1 , en−1,sn−1 ]v±1 , · · · , ej,sj ]v±1 .
(2.25)

Evoking the specific convex orders < on Δ+ from (2.13)--(2.14), let us consider the 
following order < on the set Δ+ × Z:

(α, s) < (β, t) iff α < β or α = β, s < t. (2.26)

Let H denote the set of all functions h : Δ+×Z → N with finite support. The monomials

Eh :=
→ ∏︂

(β,s)∈Δ+×Z

E
h(β,s)
β,s ∀ h ∈ H (2.27)

will be called the ordered PBWD monomials of U>
v (L𝔤). Here, the arrow → over the 

product sign refers to the total order (2.26). Our second key result generalizes [25, The
orem 2.16] and [15, Theorem 2.5] from types An, Bn, G2 to types Cn and Dn:

Theorem 2.3. The ordered PBWD monomials {Eh}h∈H of (2.27) form Q(v)-bases 
of U>

v (L𝔤) for 𝔤 of type Cn and Dn.

2.3. Two integral forms in types Cn and Dn

Following [15,25], we shall also use shuffle approach to study integral forms of U>
v (L𝔤)

in types Cn and Dn. Consider the divided powers

E(k)
i,r :=

eki,r
[k]vi !

∀ i ∈ I, r ∈ Z, k ∈ N.

Following [14, §7.7], we define:

Definition 2.4. For 𝔤 of type Cn and Dn, the Lusztig integral form U>
v (L𝔤) is the 

Z[v, v−1]-subalgebra of U>
v (L𝔤) generated by {E(k)

i,r }k∈Ni∈I,r∈Z.

To construct PBWD bases of U>
v (L𝔤), we define the following normalized divided pow

ers of the quantum root vectors in types Cn and Dn (cf. (2.18)--(2.21) and (2.22)--(2.25)):
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Cn − type: Ẽ±,(k)
β,s :=

⎧⎪⎨⎪⎩
(Ẽ±

β,s)
k

[2]kv ·[k]vβ ! if β = [i, n, i] with 1 ≤ i < n

(Ẽ±
β,s)

k

[k]vβ ! other cases
, (2.28)

Dn − type: Ẽ±,(k)
β,s :=

(Ẽ±
β,s)k

[k]v! 
∀ β ∈ Δ+. (2.29)

Completely analogously to [15, Propositions 3.8, 4.15], we have1:

Proposition 2.5. In types Cn and Dn, for any β ∈ Δ+, s ∈ Z, k ∈ N, the normalized 
divided powers of quantum root vectors {Ẽ±,(k)

β,s }k∈Nβ∈Δ+,s∈Z defined in (2.28)--(2.29) belong 
to U>

v (L𝔤).

For ϵ ∈ {±}, define the ordered monomials (cf. (2.27))

Ẽϵ
h =

→ ∏︂
(β,s)∈Δ+×Z

Ẽϵ,(h(β,s))
β,s ∀ h ∈ H. (2.30)

Our third key result upgrades Theorem 2.3 to the Lusztig integral form U>
v (L𝔤):

Theorem 2.6. For ϵ ∈ {±}, the ordered monomials {Ẽϵ
h}h∈H of (2.30) form a Z[v, v−1]

basis of U>
v (L𝔤) for 𝔤 of type Cn and Dn.

Let us now introduce another integral form of U>
v (L𝔤). For ϵ ∈ {±}, define the 

following normalized quantum root vectors in types Cn and Dn (cf. (2.18)--(2.21) and 
(2.22)--(2.25)):

Cn − type: ℰ̃ϵ
β,s :=

{︄
⟨2⟩v · Ẽϵ

β,s if β = [n]
⟨1⟩v · Ẽϵ

β,s other cases
, (2.31)

Dn − type: ℰ̃ϵ
β,s := ⟨1⟩v · Ẽϵ

β,s ∀ (β, s) ∈ Δ+ × Z. (2.32)

The origin of these normalization factors (as well as the terminology ``RTT'' below) is 
explained in Appendix A.2 Similarly to (2.27), we consider the ordered monomials

ℰ̃ϵ
h =

→ ∏︂
(β,s)∈Δ+×Z

(ℰ̃ϵ
β,s)h(β,s) ∀ h ∈ H. (2.33)

Definition 2.7. For 𝔤 of type Cn and Dn, and fixed ϵ ∈ {±}, the RTT integral form 
𝒰>
v (L𝔤) is the Z[v, v−1]-subalgebra of U>

v (L𝔤) generated by {ℰ̃ϵ
β,s}s∈Zβ∈Δ+ .

1 This relies on [2, Theorem 4.2] that identifies Ẽ±,(1)
β,0 with Lusztig’s quantum root vectors Ê±

β of Uv(𝔤).
2 We also note that ℰ̃±

β,0 = (vβ − v−1
β )Ê±

β , with Ê±
β being the Lusztig’s quantum root vector of Uv(𝔤).
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We note that the above definition depends on the choices of quantum root vectors 
in (2.18)--(2.21) or (2.22)--(2.25), as well as of ϵ ∈ {±}. Our fourth key result shows 
that Definition 2.7 is well-defined and upgrades Theorem 2.3 to the RTT integral form 
𝒰>
v (L𝔤):

Theorem 2.8. Let 𝔤 be of type Cn or Dn.
(a) 𝒰>

v (L𝔤) is independent of ϵ ∈ {±} and the choice of {ℰ̃ϵ
β,s}s∈Zβ∈Δ+ from (2.31) or 

(2.32).
(b) For ϵ ∈ {±}, the ordered monomials {ℰ̃ϵ

h}h∈H of (2.33) form a Z[v, v−1]-basis of 
𝒰>
v (L𝔤).

2.4. Specialization maps in types Cn and Dn

Following [15], we shall use the technique of specialization maps to prove all theorems 
above. We shall now briefly introduce those and state their key properties in the end of 
this subsection.

Identifying each simple root αi (i ∈ I) with a basis element 1i ∈ NI (having the i-th 
coordinate equal to 1 and the rest equal to 0), we can view NI as the positive cone of the 
root lattice of 𝔤. For any k ∈ NI , let KP(k) be the set of Kostant partitions, i.e. unordered 
vector partitions of k into a sum of positive roots. Explicitly, a Kostant partition of k
is the same as a tuple d = {dβ}β∈Δ+ ∈ NΔ+ satisfying 

∑︁
i∈I kiαi =

∑︁
β∈Δ+ dββ. Our 

specific convex order (2.13)--(2.14) on Δ+ induces a total order on KP(k):

{d′β}β∈Δ+ < {dβ}β∈Δ+ ⇐⇒ ∃ γ ∈ Δ+ s.t. d′γ < dγ and d′β = dβ for all β < γ. (2.34)

Let us now define the specialization maps in types Cn and Dn. For any F ∈ Sk and 
d ∈ KP(k), we split the variables {xi,ℓ}1≤ℓ≤ki

i∈I into the disjoint union of 
∑︁

β∈Δ+ dβ groups

1≤s≤dβ⊔
β∈Δ+

{︂
x

(β,s)
i,t

⃓⃓⃓
i ∈ I, 1 ≤ t ≤ νβ,i

}︂
, (2.35)

where the integer νβ,i is the coefficient of αi in β as defined in the beginning of Subsec
tion 2.1. For F ∈ Sk, let f denote its numerator from (2.5). Then, the specialization map 
ϕd(F ) is defined by successive specializations ϕβ,s of the variables (2.35) in f as follows:

• Cn-type.
For β ̸= [i, n, i], we define ϕβ,s(F ) by specializing the variables {x(β,s)

i,t }i∈I
1≤t≤νβ,i

of f
as:

x
(β,s)
ℓ ̸=n,1 ↦→ v1−ℓwβ,s, x

(β,s)
ℓ ̸=n,2 ↦→ v−2n+ℓ−1wβ,s, x

(β,s)
n,1 ↦→ v−nwβ,s. (2.36)

For β = [i, n, i], the specialization ϕβ,s is more complicated and is constructed in two 
steps. First, we define ϕ(1)

β,s(F ) by specializing the variables {x(β,s)
i,t }i∈I

1≤t≤νβ,i
of f as:
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x
(β,s)
ℓ ̸=n,1 ↦→ v1−ℓwβ,s, x

(β,s)
ℓ ̸=n,2 ↦→ v1−ℓw′

β,s, x
(β,s)
n,1 ↦→ v−nw′

β,s. (2.37)

According to wheel conditions (2.6), ϕ(1)
β,s(F ) is divisible by

Bβ =
{︁
(wβ,s − v−2w′

β,s)(wβ,s − v2w′
β,s)
}︁n−i−1

. (2.38)

Then, the second step of the specialization, denoted ϕ(2)
β,s, is defined by first dividing 

ϕ
(1)
β,s(F ) by Bβ and then specializing the variable w′

β,s in 
ϕ

(1)
β,s(F )
Bβ

to v2wβ,s. In this 
way, we get the overall specialization ϕβ,s(F ):

ϕβ,s(F ) := ϕ
(2)
β,s

(︂
ϕ

(1)
β,s(F )

)︂
=

ϕ
(1)
β,s(F )
Bβ

⃓⃓⃓⃓
⃓
w′

β,s ↦→v2wβ,s

. (2.39)

• Dn-type.
For β ̸= [i, n, j] with i < j ≤ n − 2, we define ϕβ,s(F ) by specializing the variables 
{x(β,s)

i,t }i∈I
1≤t≤νβ,i

of f as:

x
(β,s)
ℓ ̸=n,1 ↦→ v1−ℓwβ,s, x

(β,s)
n,1 ↦→ v2−nwβ,s. (2.40)

For β = [i, n, j] with 1 ≤ i < j ≤ n − 2, the specialization ϕβ,s is again defined in 
two steps. First, we define ϕ(1)

β,s(F ) by specializing the variables {x(β,s)
i,t }i∈I

1≤t≤νβ,i
of f

as:

x
(β,s)
ℓ ̸=n,1 ↦→ v1−ℓwβ,s, x

(β,s)
n,1 ↦→ v2−nwβ,s, x

(β,s)
ℓ ̸=n−1&n,2 ↦→ vℓ+3−2nw′

β,s. (2.41)

According to wheel conditions (2.6), ϕ(1)
β,s(F ) is divisible by

Bβ =
n−2∏︂
ℓ=j 

(wβ,s − v2ℓ+4−2nw′
β,s)(wβ,s − v2ℓ−2nw′

β,s). (2.42)

Then, the second step of the specialization, denoted ϕ(2)
β,s, is defined by first dividing 

ϕ
(1)
β,s(F ) by Bβ and then specializing the variable w′

β,s in 
ϕ

(1)
β,s(F )
Bβ

to wβ,s. In this way, 
we get the overall specialization ϕβ,s(F ):

ϕβ,s(F ) := ϕ
(2)
β,s

(︂
ϕ

(1)
β,s(F )

)︂
=

ϕ
(1)
β,s(F )
Bβ

⃓⃓⃓⃓
⃓
w′

β,s ↦→wβ,s

. (2.43)

Finally, the specialization map ϕd(F ) is defined by applying those separate maps ϕβ,s

in each group {x(β,s)
i,t }i∈I

1≤t≤νβ,i
of variables (the result is independent of splitting as F is 

symmetric):
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ϕd(F ) :=
1≤s≤dβ∏︂
β∈Δ+

ϕβ,s(F ).

We note that ϕd(F ) is symmetric in {wβ,s}dβ

s=1 for any β ∈ Δ+. This gives rise to the

specialization map ϕd : Sk −→ Q(v)[{w±1
β,s}1≤s≤dβ

β∈Δ+ ]𝔖d .

We shall further extend it to the specialization map ϕd on the entire shuffle algebra S:

ϕd : S −→ Q(v)[{w±1
β,s}1≤s≤dβ

β∈Δ+ ]𝔖d

by declaring ϕd(F ′) = 0 for any F ′ ∈ Sℓ with ℓ ̸= k.
Let us state the key properties of specialization maps ϕd defined above: their proofs 

constitute the key technical part of this note and will imply our main results similarly 
to [15] (see the paragraph following Lemma 2.8 in [15]). For any h ∈ H, we define its 
degree deg(h) ∈ NΔ+ as the Kostant partition d = {dβ}β∈Δ+ with dβ =

∑︁
s∈Z h(β, s) ∈

N for all β ∈ Δ+, and the grading gr(h) ∈ NI so that deg(h) ∈ KP(gr(h)). For any 
k ∈ NI and d ∈ KP(k), we define the following subsets of H:

Hk :=
{︁
h ∈ H 

⃓⃓
gr(h) = k

}︁
, Hk,d :=

{︁
h ∈ H 

⃓⃓
deg(h) = d

}︁
. (2.44)

Then we have the following ``dominance property'' of ϕd:

Lemma 2.9. For any h ∈ Hk,d and d′ < d, cf. (2.34), we have ϕd′(Ψ(Eh)) = 0.

Let S′
k be the Q(v)-subspace of Sk spanned by {Ψ(Eh)}h∈Hk

. Then, we have:

Lemma 2.10. For any F ∈ Sk and d ∈ KP(k), if ϕd′(F ) = 0 for all d′ ∈ KP(k) such 
that d′ < d, then there exists Fd ∈ S′

k such that ϕd(F ) = ϕd(Fd) and ϕd′(Fd) = 0 for all 
d′ < d.

3. Shuffle algebra and its integral forms in type 𝑪𝒏

In this section, we establish the key properties of the specialization maps for the 
shuffle algebras of type Cn. This implies the shuffle algebra realization and PBWD-type 
theorems for U>

v (L𝔰𝔭2n) and its integral forms.
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3.1. U>
v (L𝔰𝔭2n) and its shuffle algebra realization

In type Cn, for any F ∈ Sk with k ∈ Nn, the wheel conditions are:

F ({xi,r}1≤r≤ki

1≤i≤n ) = 0 once xi,1 = v2xi,2 = vxi+1,1 for some 1 ≤ i ≤ n− 2,

or xi,1 = v2xi,2 = vxi−1,1 for some 2 ≤ i ≤ n− 1,

or xn,1 = v4xn,2 = v2xn−1,1,

or xn−1,1 = v2xn−1,2 = v4xn−1,3 = v2xn,1.

(3.1)

We also recall the notations (2.11) for positive roots in type Cn. Henceforth, we shall 
use the notation 

. = as in [15, (2.44)]:

A
. = B if A = c ·B for some c ∈ Q× · vZ. (3.2)

First, let us compute the images of the quantum root vectors {Ẽ±
β,s}s∈Zβ∈Δ+ of (2.18)--(2.21). 

We shall use denomβ to denote the denominator in (2.5) for any F ∈ Sβ , e.g. for F =
Ψ(Ẽ±

β,s).

Lemma 3.1. Consider the quantum root vectors {Ẽ±
β,s}s∈Zβ∈Δ+ of (2.18)--(2.21). Their im

ages under Ψ of (2.10) in the shuffle algebra S of type Cn are as follows, cf. (2.4):

• If β = [i, j] with 1 ≤ i ≤ j < n or i = j = n, then for any s = si + · · · + sj used 
in (2.18):

Ψ(Ẽ+
[i,j],s)

. = ⟨1⟩j−i
v

denom[i,j]
· xsi+1

i,1 · · ·xsj−1+1
j−1,1 x

sj
j,1,

Ψ(Ẽ−
[i,j],s)

. = ⟨1⟩j−i
v

denom[i,j]
· xsi

i,1x
si+1+1
i+1,1 · · ·xsj+1

j,1 .

• If β = [i, n] with 1 ≤ i < n, then for any decomposition s = si + · · · + sn used 
in (2.19):

Ψ(Ẽ+
[i,n],s)

. = ⟨1⟩n−i−1
v ⟨2⟩v

denom[i,n]
· xsi+1

i,1 · · ·xsn−1+1
n−1,1 xsn

n,1,

Ψ(Ẽ−
[i,n],s)

. = ⟨1⟩n−i−1
v ⟨2⟩v

denom[i,n]
· xsi

i,1x
si+1+1
i+1,1 · · ·xsn+1

n,1 .

• If β = [i, n, j] with 1 ≤ i < j ≤ n− 1, then for any s = si + · · · + sj−1 + 2sj + · · · +
2sn−1 + sn used in (2.20), we have:
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Ψ(Ẽ+
[i,n,j],s)

. = ⟨1⟩2n−i−j−1
v ⟨2⟩v

denom[i,n,j]
· g1 ·

[︁
(1 + v2)xj,1xj,2 − vxj−1,1(xj,1 + xj,2)

]︁
×

n−2∏︂
ℓ=j 

Q(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2),

Ψ(Ẽ−
[i,n,j],s)

. = ⟨1⟩2n−i−j−1
v ⟨2⟩v

denom[i,n,j]
· g2 ·

[︁
(1 + v2)xj−1,1 − v(xj,1 + xj,2)

]︁
×

n−2∏︂
ℓ=j 

Q(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2),

where

Q(x1, x2, y1, y2) = (1 + v2)(x1x2 + y1y2) − v(x1 + x2)(y1 + y2) (3.3)

and

g1 =
j−1∏︂
ℓ=i 

xsℓ+1
ℓ,1 (xj,1xj,2)sj

n−1 ∏︂
ℓ=j+1

(xℓ,1xℓ,2)sℓ+1xsn+1
n,1 ,

g2 = xsi
i,1

j−1 ∏︂
ℓ=i+1

xsℓ+1
ℓ,1

n−1∏︂
ℓ=j 

(xℓ,1xℓ,2)sℓ+1xsn+1
n,1 .

• If β = [i, n, i] with 1 ≤ i ≤ n−1, then for any decomposition s = 2si+· · ·+2sn−1+sn
used in (2.21), we have (cf. (3.3)):

Ψ(Ẽ+
[i,n,i],s)

. = ⟨1⟩2n−2i−2
v ⟨2⟩2v

denom[i,n,i]
·
n−1∏︂
ℓ=i 

(xℓ,1xℓ,2)sℓ+1xsn
n,1

n−2∏︂
ℓ=i 

Q(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2),

(3.4)

Ψ(Ẽ−
[i,n,i],s)

. = ⟨1⟩2n−2i−2
v ⟨2⟩2v

denom[i,n,i]
· (xi,1xi,2)si

n−1 ∏︂
ℓ=i+1

(xℓ,1xℓ,2)sℓ+1xsn+2
n,1

×
n−2∏︂
ℓ=i 

Q(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2).

Proof. We shall present only the derivation of the formula for Ψ(Ẽ+
[i,n,i],s), while the 

other formulas are obtained in a similar (but simpler) way. The proof proceeds by a 
descending induction in i. The base case i = n− 1 is derived as follows:

Ψ(Ẽ+
[n−1,n,n−1],s)

= Ψ(en−1,sn−1) ⋆ Ψ(Ẽ+
[n−1,n],sn−1+sn

) − Ψ(Ẽ+
[n−1,n],sn−1+sn

) ⋆ Ψ(en−1,sn−1)
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=
⟨2⟩v(xn−1,1xn−1,2)sn−1xsn

n,1

denom[n−1,n,n−1]

· Sym 
xn−1,1,xn−1,2

(︃
xn−1,2(xn−1,1 − v−2xn−1,2)(xn−1,1 − v2xn,1)

xn−1,1 − xn−1,2
+

xn−1,1(xn−1,1 − v−2xn−1,2)(xn,1 − v2xn−1,2)
xn−1,1 − xn−1,2

)︃
. = ⟨2⟩2v

denom[n−1,n,n−1]
· (xn−1,1xn−1,2)sn−1+1xsn

n,1.

As per the step of induction, let us assume that (3.4) holds for any j + 1 ≤ i ≤ n − 1. 
Due to

Sym
x1,x2

(︃
(x1 − v−2x2)(x1 − vy2)(vx2 − y1)

x1 − x2

)︃
. = Q(x1, x2, y1, y2)

with Q(x1, x2, y1, y2) defined in (3.3), we obtain:

Ψ(Ẽ+
[j,n,j],s)

. = ⟨1⟩2v(xj,1xj,2)sj+1∏︁t=1,2
s=1,2(xj,s − xj+1,t)

·Q(xj,1, xj,2, xj+1,1, xj+1,2) · Ψ(Ẽ+
[j+1,n,j+1],s−2sj ).

Using the induction hypothesis for Ψ(Ẽ+
[j+1,n,j+1],s−2sj ), we derive (3.4) for i = j. □

For more general quantum root vectors {Eβ,s}s∈Zβ∈Δ+ of U>
v (L𝔰𝔭2n) defined in 

(2.15)--(2.16), their images under Ψ are not so well factorized as for the particular choices 
above, but what is actually important is that they behave well under the specialization 
maps:

Lemma 3.2. For any choices of sk and λk in (2.15)--(2.16), we have:

ϕβ(Ψ(Eβ,s))
. = cβ · ws+κβ

β,1 ∀ (β, s) ∈ Δ+ × Z,

where {κβ}β∈Δ+ are explicitly given by

κβ =

⎧⎪⎪⎨⎪⎪⎩
j − i if β = [i, j] with i ≤ j

4n− i− 3j − 1 if β = [i, n, j] with i < j

2n− 2i if β = [i, n, i]
(3.5)

and the constants {cβ}β∈Δ+ are explicitly given by
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cβ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨1⟩|β|−1

v if β = [i, j] or β = [n]
⟨1⟩|β|−2

v ⟨2⟩v if β = [i, n]
⟨1⟩|β|−3

v ⟨2⟩v ·
∏︁n−1

ℓ=j

{︁
(v2n−2ℓ − 1)(v2n−2ℓ+4 − 1)

}︁
if β = [i, n, j]

⟨1⟩|β|−3
v ⟨2⟩2v if β = [i, n, i]

(3.6)
where |β| denotes the height of β, cf. (2.1).

Proof. It suffices to consider only β = [i, n, i], as for the other roots the proof is analogous 
to that of [15, Lemma 4.2]. For β = [i, n, i], recall that Eβ,s = [E[i,n−1],s1 , E[i,n],s2 ]λ with 
λ ∈ vZ, s = s1 + s2, so that Ψ(Eβ,s) = Ψ(E[i,n−1],s1) ⋆ Ψ(E[i,n],s2) − λΨ(E[i,n],s2) ⋆
Ψ(E[i,n−1],s1).

First, let us prove that ϕβ(Ψ(E[i,n−1],s1) ⋆ Ψ(E[i,n],s2)) = 0. Consider

Fβ = Ψ(E[i,n−1],s1)(xi,1, . . . , xn−1,1)Ψ(E[i,n],s2)(xi,2, . . . , xn−1,2, xn,1)×

ζ

(︃
xn−1,1

xn−1,2

)︃
ζ

(︃
xn−1,1

xn,1

)︃
·
n−2∏︂
ℓ=i 

{︃
ζ

(︃
xℓ,1

xℓ,2

)︃
ζ

(︃
xℓ,1

xℓ+1,2

)︃
ζ

(︃
xℓ+1,1

xℓ,2

)︃}︃
.

According to (2.8)--(2.9), we have

Ψ(E[i,n−1],s1) ⋆ Ψ(E[i,n],s2)
. =∑︂

(σi,...,σn−1)∈𝔖n−i
2

Fβ

(︁
xi,σi(1), xi,σi(2), . . . , xn−1,σn−1(1), xn−1,σn−1(2), xn,1

)︁
.

(3.7)
Using σ to denote (σi, . . . , σn−1) ∈ 𝔖n−i

2 , we can write each summand above as σ(Fβ). 
We note that evaluating the ϕβ-specialization of σ(Fβ) in (3.7) is equivalent to eval
uating the ϕβ-specialization of Fβ with respect to different splittings of the variables 
{x(β,1)

ℓ,t }1≤t≤νβ,ℓ

ℓ∈β . To this end, we shall write o(x(∗,∗)
∗,∗ ) = 1 if a variable x(∗,∗)

∗,∗ is plugged 

into Ψ(E[i,n−1],s1), and o(x(∗,∗)
∗,∗ ) = 2 if it is plugged into Ψ(E[i,n],s2). According to (2.37), 

the ϕ(1)
β -specialization of the corresponding summand vanishes unless

o(x(β,1)
i,1 ) = o(x(β,1)

i+1,1) = · · · = o(x(β,1)
n−1,1) and o(x(β,1)

i,2 ) = o(x(β,1)
i+1,2) = · · · = o(x(β,1)

n−1,2).

We still have two cases to consider:

• if o(x(β,1)
i,1 ) = · · · = o(x(β,1)

n−1,1) = 2 and o(x(β,1)
i,2 ) = · · · = o(x(β,1)

n−1,2) = 1, then 

o(x(β,1)
n,1 ) = 2, and the ϕ(1)

β -specialization of the corresponding summand vanishes 

due to ζ
(︃

x
(β,1)
n−1,2

x
(β,1)
n,1

)︃
;

• if o(x(β,1)
i,1 ) = · · · = o(x(β,1)

n−1,1) = 1 and o(x(β,1)
i,2 ) = · · · = o(x(β,1)

n−1,2) = o(x(β,1)
n,1 ) = 2, 

then the product of ζ-factors
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n−2∏︂
ℓ=i 

{︄
ζ

(︄
x

(β,1)
ℓ,1

x
(β,1)
ℓ,2

)︄
ζ

(︄
x

(β,1)
ℓ,1

x
(β,1)
ℓ+1,2

)︄
ζ

(︄
x

(β,1)
ℓ+1,1

x
(β,1)
ℓ,2

)︄}︄
(3.8)

contributes Bβ of (2.38) towards the ϕ(1)
β -specialization of the corresponding 

summand, and so the overall ϕβ-specialization vanishes due to the ζ-factors 

ζ

(︃
x
(β,1)
n−1,1

x
(β,1)
n−1,2

)︃
ζ

(︃
x
(β,1)
n−1,1

x
(β,1)
n,1

)︃
.

This completes the proof of ϕβ(Ψ(E[i,n−1],s1) ⋆ Ψ(E[i,n],s2)) = 0.
The evaluation of ϕβ(Ψ(E[i,n],s2) ⋆ Ψ(E[i,n−1],s1)) is analogous. We shall write 

o(x(∗,∗)
∗,∗ ) = 1 if x(∗,∗)

∗,∗ is plugged into Ψ(E[i,n],s2), and o(x(∗,∗)
∗,∗ ) = 2 if it is plugged into 

Ψ(E[i,n−1],s1). As before, the ϕ(1)
β -specialization of the corresponding summand vanishes 

unless

o(x(β,1)
i,1 ) = o(x(β,1)

i+1,1) = · · · = o(x(β,1)
n−1,1) and o(x(β,1)

i,2 ) = o(x(β,1)
i+1,2) = · · · = o(x(β,1)

n−1,2).

We have two cases to consider:

• if o(x(β,1)
i,1 ) = · · · = o(x(β,1)

n−1,1) = o(x(β,1)
n,1 ) = 1 and o(x(β,1)

i,2 ) = · · · = o(x(β,1)
n−1,2) = 2, 

then the product (3.8) contributes Bβ to the ϕ(1)
β -specialization of the corresponding 

summand, and so again the overall ϕβ-specialization vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
n−1,1

x
(β,1)
n−1,2

)︃
;

• if o(x(β,1)
i,1 ) = · · · = o(x(β,1)

n−1,1) = 2 and o(x(β,1)
i,2 ) = · · · = o(x(β,1)

n−1,2) = o(x(β,1)
n,1 ) = 1, 

then this is the only summand that does not vanish under the specialization ϕβ, and 
its ϕ(1)

β -specialization is

. = Ψ(E[i,n],s2)
⃓⃓⃓⃓xn,1 ↦→v−nw′

β,1

xℓ ̸=n,1 ↦→v1−ℓw′
β,1

· Ψ(E[i,n−1],s1)
⃓⃓⃓⃓
xℓ,1 ↦→v1−ℓwβ,1

×Bβ · (w′
β,1 − v−2wβ,1)(w′

β,1 − v4wβ,1)
w′

β,1 − wβ,1
.

Dividing by Bβ and specializing further w′
β,1 ↦→ v2wβ,1, we thus get

ϕβ(Ψ(E[i,n],s2) ⋆ Ψ(E[i,n−1],s1))
. = ⟨1⟩2n−2i−2

v ⟨2⟩2v · ws+2n−2i
β,1 .

This implies the desired result ϕβ(Ψ(Eβ,s))
. = ⟨1⟩2n−2i−2

v ⟨2⟩2v · ws+2n−2i
β,1 . □

Let us generalize the above lemma by computing ϕd(Ψ(Eh)) for any h ∈ Hk,d. Note 
that
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Ψ(Eh) =
→ ∏︂

β∈Δ+

(︁
Ψ(Eβ,rβ(h,1)) ⋆ · · · ⋆ Ψ(Eβ,rβ(h,dβ))

)︁ ∀ h ∈ Hk,d. (3.9)

Here, the product refers to the shuffle product and the arrow → over the product sign 
refers to the order (2.13), and rβ(h, 1) ≤ · · · ≤ rβ(h, dβ) is obtained by listing all integers 
r ∈ Z with multiplicity h(β, r) > 0 in the non-decreasing order. Denote the variables 
in Ψ(Eβ,rβ(h,s)) by {z(β,s)

i,t }1≤t≤νβ,i

i∈β (as we reserve {x(β,s)
i,t }1≤t≤νβ,i

i∈β for the variables of 
splittings below), and let

Fh :=
∏︂

β∈Δ+

1≤s≤dβ

Ψ(Eβ,rβ(h,s))
(β,p)<(β′,q) ∏︂
β,β′∈Δ+

1≤p≤dβ ,1≤q≤dβ′

j∈β′∏︂
i∈β 

1≤r≤νβ′,j∏︂
1≤t≤νβ,i

ζ

(︄
z
(β,p)
i,t

z
(β′,q)
j,r

)︄
,

where the order (β, p) < (β′, q) is as in (2.26). Then we have

Ψ(Eh) . =
∑︂
σ∈𝔖k

σ
(︁
Fh({z(∗,∗)

∗,∗ }))︁ =
∑︂
σ∈𝔖k

Fh

(︁{σ(z(∗,∗)
∗,∗ )})︁. (3.10)

To evaluate the ϕd-specialization of each term σ(Fh) in (3.10), it is equivalent to evaluate 
the ϕd-specialization of Fh with respect to different splittings of the variables x(∗,∗)

∗,∗ . We 
shall write o(x(∗,∗)

∗,∗ ) = (β, s) if a variable x(∗,∗)
∗,∗ is plugged into Ψ(Eβ,rβ(h,s)). Then, we 

have:

Proposition 3.3. For a summand σ( Fh) in the symmetrization (3.10), we have ϕd( σ( Fh) ) = 0
unless for any β ∈ Δ+ and 1 ≤ s ≤ dβ, there is s′ with 1 ≤ s′ ≤ dβ so that

o(x(β,s′)
i,t ) = (β, s) for any i ∈ β and 1 ≤ t ≤ νβ,i, (3.11)

that is we plug the variables x(β,s′)
∗,∗ into the same function Ψ(Eβ,rβ(h,s)).

Proof. We prove this result by an induction on n.
Step 1 (base of induction): Verification for type C2.

In this case, Δ+ = {[1] < [1, 2, 1] < [1, 2] < [2]}. For β = [1, 2, 1], Bβ of (2.38) is 
trivial, and the specialization map ϕβ,s is

x
(β,s)
1,1 ↦→ wβ,s, x

(β,s)
1,2 ↦→ v2wβ,s, x

(β,s)
2,1 ↦→ wβ,s. (3.12)

• Case 1: β = [1].
If (3.11) fails for β = [1], then there is a variable x(η,r)

1,t with η > [1] and o(x(η,r)
1,t ) =

([1], s) for some 1 ≤ s ≤ d[1]. We can also assume that s is the smallest number with 

this property, which means for any 1 ≤ s′ < s, we already plug a variable x(β,∗)
1,1 into 

Ψ(Eβ,rβ(h,s′)). If η = [1, 2] or η = [1, 2, 1] and t = 2, then ϕd(σ(Fh)) = 0 due to 
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the ζ-factors ζ
(︃

x
(η,r)
1,1

x
(η,r)
2,1

)︃
or ζ

(︃
x
(η,r)
1,2

x
(η,r)
2,1

)︃
respectively. Otherwise η = [1, 2, 1] and t = 1, 

so that o(x(η,r)
1,2 ) > o(x(η,r)

1,1 ) (by the minimality of s), and ϕd(σ(Fh)) = 0 due to 

ζ

(︃
x
(η,r)
1,1

x
(η,r)
1,2

)︃
.

• Case 2: β = [1, 2, 1].
Assuming (3.11) holds for any ([1], s) with 1 ≤ s ≤ d[1], let us prove that 
ϕd(σ(Fh)) = 0 unless (3.11) holds for any ([1, 2, 1], s) with 1 ≤ s ≤ d[1,2,1]. 
Suppose o(x(η,p)

1,q ) = ([1, 2, 1], 1). From (3.12), we see that ϕd(σ(Fh)) = 0 un
less o(x([1,2,1],s)

1,1 ) ≥ o(x([1,2,1],s)
1,2 ) ≥ o(x([1,2,1],s)

2,1 ) for any 1 ≤ s ≤ d′[1,2,1], due to 

the ζ-factors ζ
(︃

x
([1,2,1],s)
1,1

x
([1,2,1],s)
1,2

)︃
ζ

(︃
x
([1,2,1],s)
1,2

x
([1,2,1],s)
2,1

)︃
. Since 1 ∈ η and η ≥ [1, 2, 1], we have 

2 ∈ η and we can assume that o(x(η,p)
1,q ) ≥ o(x(η,p)

2,1 ), as otherwise ϕd(σ(Fh)) =
0, so that o(x(η,p)

2,1 ) = ([1, 2, 1], 1). Yet there is another variable that satisfies 
o(x(η′,p′)

1,q′ ) = ([1, 2, 1], 1). If (η′, p′) ̸= (η, p), then we have o(x(η′,p′)
1,q′ ) < o(x(η′,p′)

2,1 )
and so ϕd(σ(Fh)) = 0. If (η′, p′) = (η, p), then η = [1, 2, 1], and so all the variables 
x

([1,2,1],p)
∗,∗ are plugged into Ψ(E[1,2,1],r[1,2,1](h,1)). Proceeding the same way, we get 

ϕd(σ(Fh)) = 0 unless (3.11) holds for any ([1, 2, 1], s) with 1 ≤ s ≤ d[1,2,1].
• Case 3: β = [1, 2].

Assuming (3.11) holds for β = [1] and β = [1, 2, 1], choose a variable satisfying 
o(x(η,p)

1,q ) = ([1, 2], 1). As η ≥ [1, 2] and 1 ∈ η, it must be η = [1, 2], q = 1. And 

we know ϕd(σ(Fh)) = 0 unless o(x(η,p)
1,1 ) ≥ o(x(η,p)

2,1 ), so that o(x(η,p)
2,1 ) = ([1, 2], 1). 

Proceeding the same way, we get ϕd(σ(Fh)) = 0 unless (3.11) holds for any ([1, 2], s)
with 1 ≤ s ≤ d[1,2].

• Case 4: β = [2].
If (3.11) holds for any β < [2], then it must also hold for β = [2].

This completes the verification of the result for C2.

Step 2 (step of induction): Assuming the validity for type Cn−1, let us prove it for Cn.
Fix γ ∈ Δ+ and 1 ≤ p ≤ dγ . Then, it suffices to prove that if for any (β, s) < (γ, p), 

we already chose s′ such that all the variables x(β,s′)
∗,∗ are plugged into Ψ(Eβ,rβ(h,s)), then 

ϕd(σ(Fh)) = 0 unless we choose p′ and plug all the variables x(γ,p′)
∗,∗ into Ψ(Eγ,rγ(h,p)). 

To this end, we present case-by-case study:

• Case 1: γ = [1, j] with 1 ≤ j ≤ n− 1, and suppose o(x(η,q)
1,t ) = (γ, p) with η ≥ γ.

If η = [1, ℓ] with j < ℓ ≤ n, then t = 1 and ϕd(σ(F )) = 0 from type An results.
If η = [1, n, 1] and t = 2, then ϕd(σ(F )) = 0 unless o(x(η,q)

1,2 ) ≥ · · · ≥ o(x(η,q)
n−1,2) ≥

o(x(η,q)
n,1 ) due to the ζ-factors ζ

(︃
x
(η,q)
1,2

x
(η,q)
2,2

)︃
· · · ζ

(︃
x
(η,q)
n−1,2

x
(η,q)
n,1

)︃
. As o(x(η,q)

1,2 ) = (γ, p) and 

we already plugged variables into all Ψ(Eβ,rβ(h,s)) with (β, s) < (γ, p), we get 
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ϕd(σ(F )) = 0 unless o(x(η,q)
1,2 ) = · · · = o(x(η,q)

n−1,2) = o(x(η,q)
n,1 ), which is impossible 

as n / ∈ γ. Thus ϕd(σ(F )) = 0.
If η = [1, n, 1] and t = 1, then we likewise get ϕd(σ(F )) = 0 unless

o(x(η,q)
1,2 ) ≥ · · · ≥ o(x(η,q)

n−1,2) ≥ o(x(η,q)
n,1 ) > o(x(η,q)

1,1 ) = · · · = o(x(η,q)
n−1,1) = (γ, p).

(3.13)

The product of ζ-factors (cf. (3.8)) 
∏︁n−2

ℓ=1

{︃
ζ

(︃
x
(η,q)
ℓ,1

x
(η,q)
ℓ,2

)︃
ζ

(︃
x
(η,q)
ℓ,1

x
(η,q)
ℓ+1,2

)︃
ζ

(︃
x
(η,q)
ℓ+1,1

x
(η,q)
ℓ,2

)︃}︃
con

tributes the Bη factor of (2.38), while the remaining ζ-factors ζ
(︃

x
(η,q)
n−1,1

x
(η,q)
n−1,2

)︃
ζ

(︃
x
(η,q)
n−1,1

x
(η,q)
n,1

)︃
contribute 0 when specializing w′

η,q to v2wη,q (cf. (2.39)), and so ϕd(σ(F )) = 0.
If η = [1, n, j] with 2 ≤ j ≤ n− 1, then we similarly get ϕd(σ(F )) = 0 unless

o(x(η,q)
1,1 ) = · · · = o(x(η,q)

n,1 ) = o(x(η,q)
n−1,2) = · · · = o(x(η,q)

j,2 ) = (γ, p),

which is impossible, as n / ∈ γ.
Finally, if η = γ = [1, j], then ϕd(σ(F )) = 0 unless o(x(γ,q)

1,1 ) = · · · = o(x(γ,q)
j,1 ) = (γ, p), 

that is we plug all the variables x(γ,q)
∗,∗ into Ψ(Eγ,rγ(h,p)).

• Case 2: γ = [1, n, 1], and suppose o(x(η,q)
1,t ) = (γ, p) with η ≥ γ.

Since νγ,1 = 2, there is another variable x(η′,q′)
1,t′ with o(x(η′,q′)

1,t′ ) = (γ, p). If η, η′ > γ, 
then t = t′ = 1 and ϕd(σ(F )) = 0 unless

(γ, p) = o(x(η,q)
1,1 ) = · · · = o(x(η,q)

n,1 ) and (γ, p) = o(x(η′,q′)
1,1 ) = · · · = o(x(η′,q′)

n,1 ),
(3.14)

which is impossible as νγ,n = 1.
If exactly one of η, η′ is γ, then without loss of generality we can assume η = γ

and η′ > γ, so that t′ = 1. If t = 1, then the same analysis as after (3.13) implies 
ϕd(σ(F )) = 0. If t = 2, then the same analysis as after (3.14) implies ϕd(σ(F )) = 0.
If η = η′ = γ and q ̸= q′, then we consider three cases depending on the values of t, 
t′. If t = t′ = 2, then analysis similar to that after (3.14) implies that ϕd(σ(F )) = 0. 
If exactly one of t, t′ is equal to 1, then the same analysis as after (3.13) implies 
ϕd(σ(F )) = 0 again. Finally, if t = t′ = 1, then we know ϕd(σ(F )) = 0 unless

(γ, p) = o(x(η,q)
1,1 ) = · · · = o(x(η,q)

n−1,1) and (γ, p) = o(x(η′,q′)
1,1 ) = · · · = o(x(η′,q′)

n−1,1 ).

Since νγ,n = 1 and q ̸= q′, we have o(x(η,q)
n,1 ) > (γ, p) or o(x(η′,q′)

n,1 ) > (γ, p), and 
therefore the same analysis as after (3.13) implies ϕd(σ(F )) = 0.
Finally if η = η′ = γ and q = q′, then ϕd(σ(F )) = 0 unless we plug all the variables 
x

(γ,q)
∗,∗ into Ψ(Eγ,rγ(h,p)).

• Case 3: γ = [1, n] or γ = [1, n, j] with 2 < j ≤ n − 1. We also suppose o(x(η,q)
1,t ) =

(γ, p).
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If η = [1, n, k] > γ, then ϕd(σ(F )) = 0 unless

o(x(η,q)
1,1 ) = · · · = o(x(η,q)

n,1 ) = o(x(η,q)
n−1,2) = · · · = o(x(η,q)

k,2 ) = (γ, p).

The latter is impossible for k < j as νγ,k = 1. Thus ϕd(σ(F )) = 0 unless η = γ and 
we plug all the variables x(γ,q)

∗,∗ into Ψ(Eγ,rγ(h,p)).
• Case 4: γ = [1, n, 2], and suppose o(x(η,q)

1,t ) = (γ, p) with η ≥ γ.
If (3.11) holds for any (β, s) < (γ, p), then we must have η = γ and so ϕd(σ(F )) = 0
unless we plug all the variables x(γ,q)

∗,∗ into Ψ(Eγ,rγ(h,p)).
• Case 5: γ > [1, n, 2].

If (3.11) holds for any (β, s) < ([2], 1), then we can use the induction assumption for 
Cn−1 to conclude that ϕd(σ(F )) = 0 unless (3.11) holds for all (γ, p).

This completes the proof. □
Combining Lemma 3.2 and Proposition 3.3, we obtain the formula for ϕd(Ψ(Eh)) with 

h ∈ Hk,d:

Proposition 3.4. For any h ∈ Hk,d, we have

ϕd(Ψ(Eh)) . =
β<β′∏︂

β,β′∈Δ+

Gβ,β′ ·
∏︂

β∈Δ+

(cdβ

β ·Gβ) ·
∏︂

β∈Δ+

Pλh,β
(3.15)

with {Pλh,β
}β∈Δ+ given by

Pλh,β
= Sym𝔖dβ

⎛⎝w
rβ(h,1)
β,1 · · ·wrβ(h,dβ)

β,dβ

∏︂
1≤i<j≤dβ

wβ,i − v−2
β wβ,j

wβ,i − wβ,j

⎞⎠ , (3.16)

where {rβ(h, s)}1≤s≤dβ

β∈Δ+ are defined after (3.9), the constants {cβ}β∈Δ+ are as in 
Lemma 3.2, and the terms Gβ,β′ , Gβ are products of linear factors wβ,s and wβ,s −
vZwβ′,s′ which are independent of h ∈ Hk,d and are 𝔖d-symmetric (the factors Gβ are 
specified in Remark 3.7).

Remark 3.5. Proposition 3.4 (cf. [25, Lemma 3.17]) features a ``rank 1 reduction'': each 
Pλh,β

from (3.16) can be viewed as the shuffle product xrβ(h,1) ⋆ · · · ⋆ xrβ(h,dβ) in the 

shuffle algebra of type A1, evaluated at {wβ,s}dβ

s=1.

Using the same arguments as in the proof of Proposition 3.3, we can now evaluate 
ϕd′(Ψ(Eh)) for any d′ < d ∈ KP(k) and h ∈ Hk,d:

Proposition 3.6. Lemma 2.9 is valid for type Cn, with ϕd of (2.36)--(2.39).
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Proof. Given d′ < d ∈ KP(k), let γ ∈ Δ+ be the smallest root such that d′γ < dγ , and 
let

1≤s≤d′
β⊔

β∈Δ+

{︂
x
′ (β,s)
i,t

⃓⃓⃓
i ∈ I, 1 ≤ t ≤ νβ,i

}︂
be any splitting of the variables for ϕd′ . To evaluate the ϕd′ -specialization of each sum
mand σ(Fh) in the symmetrization (3.10), we write o(x′ (∗,∗)

∗,∗ ) = (β, s) if a variable x′ (∗,∗)
∗,∗

is plugged into Ψ(Eβ,rβ(h,s)). Arguing as in the Step 1 of the proof of Proposition 3.3, 
we know that Lemma 2.9 is valid for type C2. Now assuming that Lemma 2.9 is valid 
for type Cn−1, let us prove its validity for type Cn. First, according to the proof of 
Proposition 3.3, we know ϕd′(σ(Fh)) = 0 unless for any (β, s) ≤ (γ, d′γ), there is some 

1 ≤ s′ ≤ d′β such that all the variables x′ (β,s′)
∗,∗ are plugged into Ψ(Eβ,rβ(h,s)). Then there 

is η > γ and 1 ≤ q ≤ d′η with o(x′ (η,q)
1,t ) = (γ, d′γ + 1). Using the same analysis as in the 

Step 2 of the proof of Proposition 3.3, we then get ϕd′(σ(Fh)) = 0. This completes the 
proof. □
Remark 3.7. The factors {Gβ}β∈Δ+ featuring in (3.15) are explicitly given by:

• If β = [i, j] with 1 ≤ i ≤ j < n or i = j = n, then

Gβ =
∏︂

1≤s≤dβ

w
κβ

β,s

∏︂
1≤s ̸=s′≤dβ

(wβ,s − v2wβ,s′)j−i. (3.17)

• If β = [i, n] with 1 ≤ i < n, then

Gβ =
∏︂

1≤s≤dβ

w
κβ

β,s

∏︂
1≤s ̸=s′≤dβ

{︁
(wβ,s − v2wβ,s′)n−i−1(wβ,s − v4wβ,s′)

}︁
. (3.18)

• If β = [i, n, j] with 1 ≤ i < j ≤ n− 1, then

Gβ =
∏︂

1≤s≤dβ

w
κβ

β,s

∏︂
1≤s ̸=s′≤dβ

{︁
(wβ,s − v2wβ,s′)2n−i−j−1(wβ,s − v4wβ,s′)

}︁×
∏︂

1≤s ̸=s′≤dβ

⎧⎨⎩
n−2∏︂
ℓ=j 

(wβ,s − v2n−2ℓwβ,s′)
n−1∏︂
ℓ=j 

(wβ,s − v2n−2ℓ+4wβ,s′)

⎫⎬⎭ .

(3.19)

• If β = [i, n, i] with 1 ≤ i < n, then

Gβ =
∏︂

1≤s≤dβ

w
κβ

β,s

∏︂
1≤s ̸=s′≤dβ

(wβ,s − v2wβ,s′)2n−2i−1×

∏︂
1≤s ̸=s′≤dβ

{︁
(wβ,s − wβ,s′)n−i−1(wβ,s − v4wβ,s′)n−i

}︁
.

(3.20)
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The factors Gβ,β′ featuring in (3.15) can be computed recursively, which shall be used 
in the proof of our next result:

Proposition 3.8. Lemma 2.10 is valid for type Cn, with ϕd of (2.36)--(2.39).

Proof. The wheel conditions (3.1) for F ∈ Sk, together with the condition ϕd′(F ) = 0 for 
any d′ ∈ KP(k) satisfying d′ < d, guarantee that ϕd(F ) (which is a Laurent polynomial 
in the variables {wβ,s}) vanishes under specific specializations wβ,s = v# · wβ′,s′ . To 
evaluate the aforementioned powers # of v and the orders of vanishing, let us view ϕd as 
a step-by-step specialization in each interval [β]. We note that this computation is local 
with respect to any fixed pair (β, s) ≤ (β′, s′). We set Gβ,β = Gβ . For any pair β ≤ β′, 
consider

d =
{︄{︁

dβ = 2, and dγ = 0 for other γ
}︁

if β = β′{︁
dβ = dβ′ = 1, and dγ = 0 for other γ

}︁
if β < β′

and let d ∈ KP(k). According to Proposition 3.4 and Remark 3.5, it suffices to show 
that for any F ∈ Sk, the specialization ϕd(F ) is divisible by Gβ,β′ if ϕd′(F ) = 0 for any 
d′ < d. Using An-type results and the induction (i.e. assuming the result holds for type 
Cn−1), we still have the following cases to analyze (henceforth, we shall use the notation 
w − v±kw′ to denote the product (w − vkw′)(w′ − vkw)):

• β = β′ = [1, n, j] with 1 < j < n.
If j = n− 1, then

Gβ = w2
β,1w

2
β,2(wβ,1 − v±2wβ,2)(wβ,1 − v±6wβ,2) ·Gα with α = [1, n].

For any F ∈ Sk, as we specialize all the variables but {x(β,1)
n−1,2, x

(β,2)
n−1,2}, we know that 

the wheel conditions involving the specialized variables produce the factor Gα by the 
induction assumption. As we specialize x(β,1)

n−1,2, the corresponding wheel conditions

x
(β,1)
n−1,2 = v2x

(β,2)
n−1,1 = vx

(β,2)
n−2,1, x

(β,1)
n−1,1 = v2x

(β,2)
n−1,1 = v4x

(β,1)
n−1,2 = v2x

(β,1)
n,1

contribute the new factors wβ,1 − v6wβ,2, wβ,1 − v2wβ,2 to ϕd(F ). By symmetry, as 
we specialize the variable x(β,2)

n−1,2, we also get new extra factors wβ,2 − v6wβ,1 and 
wβ,2 − v2wβ,1. Thus ϕd(F ) is divisible by (wβ,1 − v±2wβ,2)(wβ,1 − v±6wβ,2) · Gα, 
hence by Gβ.
If 2 ≤ j ≤ n− 2, then

Gβ = w3
β,1w

3
β,2(wβ,1 − v±2wβ,2)(wβ,1 − v±(2n−2j)wβ,2)(wβ,1 − v±(2n−2j+4)wβ,2) ·Gα

with α = [1, n, j + 1]. For any F ∈ Sk, as we specialize all the variables but 
{x(β,1)

j,2 , x
(β,2)
j,2 } we know that the wheel conditions involving the specialized variables 
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produce the factor Gα by the induction assumption. When we specialize x(β,1)
j,2 , the 

new wheel conditions

x
(β,1)
j,2 = v2x

(β,2)
j,1 = vx

(β,2)
j−1,1, x

(β,2)
j,1 = v2x

(β,1)
j,2 = vx

(β,2)
j+1,1, x

(β,1)
j+1,2 = v2x

(β,2)
j+1,2 = vx

(β,1)
j,2

contribute the factors wβ,1−v2n−2j+4wβ,2, wβ,1−v2n−2jwβ,2, wβ,1−v2wβ,2, respec
tively, into ϕd(F ). Then from symmetry (using x(β,2)

j,2 instead of x(β,1)
j,2 ), we see that 

ϕd(F ) is indeed divisible by Gβ .
• β = β′ = [1, n, 1].

If α = [2, n, 2], then we have

Gβ = w2
β,1w

2
β,2(wβ,1 − wβ,2)2(wβ,1 − v±2wβ,2)2(wβ,1 − v±4wβ,2) ·Gα.

For any F ∈ Sk, as we specialize all the variables but {x(β,1)
1,1 , x

(β,1)
1,2 , x

(β,2)
1,1 , x

(β,2)
1,2 }, 

we know that the wheel conditions involving the specialized variables produce the 
factor Gα by the induction assumption. As we specialize the variables x(β,1)

1,1 , x
(β,1)
1,2 , 

the wheel conditions at

x
(β,1)
2,2 = v2x

(β,1)
2,1 = vx

(β,1)
1,1 , x

(β,1)
2,1 = v2x

(β,1)
2,2 = vx

(β,1)
1,2

contribute the factor Bβ/Bα = (wβ,1−v±2w′
β,1) to the first step of the specialization 

ϕ
(1)
β (F ), cf. (2.37). Then in the second step of the specialization, cf. (2.39), we divide 

by Bβ/Bα and specialize w′
β,1 ↦→ wβ,1, w

′
β,2 ↦→ wβ,2. The wheel conditions at

x
(β,2)
2,1 = v2x

(β,1)
2,1 = vx

(β,1)
1,1 , x

(β,2)
2,2 = v2x

(β,1)
2,1 = vx

(β,1)
1,1 ,

x
(β,2)
2,1 = v2x

(β,1)
2,2 = vx

(β,1)
1,2 , x

(β,2)
2,2 = v2x

(β,1)
2,2 = vx

(β,1)
1,2

contribute the overall factor (wβ,1−wβ,2)(wβ,1−v−2wβ,2)2(wβ,1−v−4wβ,2) to ϕd(F ). 
Then from symmetry (using x(β,2)

1,1 , x
(β,2)
1,2 instead of x(β,1)

1,1 , x
(β,1)
1,2 ), we see that ϕd(F )

is indeed divisible by (wβ,1 − wβ,2)2(wβ,1 − v±2wβ,2)2(wβ,1 − v±4wβ,2) · Gα, hence 
by Gβ .

• β = [1, i], β′ = [1, n, 1].
If i = 1, that is β = [1], then

Gβ,β′ = (wβ,1 − wβ′,1)(wβ,1 − v−2wβ′,1).

The wheel conditions F = 0 at x(β′,1)
1,1 = v2x

(β,1)
1,1 = vx

(β′,1)
2,1 and x(β′,1)

1,2 = v2x
(β,1)
1,1 =

vx
(β′,1)
2,2 imply that ϕd(F ) is divisible by Gβ,β′ .

If 2 ≤ i ≤ n− 2, then

Gβ,β′ = (wβ,1 −wβ′,1)(wβ,1 − v±2wβ′,1)(wβ,1 − v4wβ′,1) ·Gα,β′ with α = [1, i− 1].
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As we specialize all the variables but x(β,1)
i,1 , we know that the wheel conditions involv

ing the specialized variables produce the factor Gα,β′ by the induction assumption. 
As we specialize x(β,1)

i,1 , the wheel conditions F = 0 at

x
(β,1)
i,1 = v2x

(β′,1)
i,1 = vx

(β′,1)
i−1,1 , x

(β,1)
i,1 = v2x

(β′,1)
i,2 = vx

(β′,1)
i−1,2 ,

vx
(β′,1)
i+1,2 = x

(β′,1)
i,2 = v2x

(β,1)
i,1 , vx

(β′,1)
i+1,1 = x

(β′,1)
i,1 = v2x

(β,1)
i,1

(3.21)

contribute the factor (wβ,1 − wβ′,1)(wβ,1 − v±2wβ′,1)(wβ,1 − v4wβ′,1) to ϕd(F ), and 
so ϕd(F ) is divisible by Gβ,β′ .
If i = n− 1, that is β = [1, n− 1], then

Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v4wβ′,1) ·Gα,β′ with α = [1, n− 2].

Then the first three wheel conditions from (3.21) imply that ϕd(F ) is divisible by 
(wβ,1 − v±2wβ′,1)(wβ,1 − v4wβ′,1), hence by Gβ,β′ .

• β = [1, i], β′ = [1, n, j].
If i ≤ j−2, then Gβ,β′ = Gβ,[1,j−1], and so ϕd(F ) is divisible by Gβ,β′ from type An.
If i = j − 1, then

Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v−2n+2j−2wβ′,1) ·Gα,β′ with α = [1, j − 2].

As we specialize all the variables but x(β,1)
j−1,1, we know that the wheel conditions 

involving the specialized variables produce the factor Gα,β′ by the induction assump
tion. As we specialize x(β,1)

j−1,1, the wheel conditions F = 0 at x(β′,1)
j−1,1 = v2x

(β,1)
j−1,1 =

vx
(β′,1)
j,1 , x(β,1)

j−1,1 = v2x
(β′,1)
j−1,1 = vx

(β′,1)
j−2,1 contribute the extra factor (wβ,1 − v±2wβ′,1)

into ϕd(F ). Moreover, if we consider d′ = {d′[1,j] = d′[1,n,j+1] = 1, and d′γ =
0 for other γ}, then d′ < d and ϕd′(F ) = 0 implies that ϕd(F ) is divisible by 
wβ,1 − v−2n+2j−2wβ′,1. Thus, ϕd(F ) is divisible by Gβ,β′ , as claimed.
If i = j < n− 1, then

Gβ,β′ = (wβ,1 − v−2n+2j−4wβ′,1) ·Gβ,α with α = [1, n, j + 1].

As we specialize all the variables but x(β′,1)
j,2 , we get the factor Gβ,α by the induction 

assumption. As we specialize x(β′,1)
j,2 , the wheel condition F = 0 at x(β′,1)

j,2 = v2x
(β,1)
j,1 =

vx
(β,1)
j−1,1 implies ϕd(F ) is divisible by wβ,1 − v−2n+2j−4wβ′,1, hence by Gβ,β′ .

If i = j = n− 1, then Gβ,β′ = (wβ,1 − v−6wβ′,1) ·Gβ,[1,n]. From the wheel condition 

F = 0 at x(β′,1)
n−1,2 = v2x

(β,1)
n−1,1 = vx

(β,1)
n−2,1 and the induction assumption, we get that 

ϕd(F ) is divisible by Gβ,β′ .
If i = j + 1 = n, then Gβ,β′ = (wβ,1 − v±4wβ′,1) · G[1,n−1],β′ . Due to the induction 

assumption and the wheel conditions at x(β,1)
n,1 = v4x

(β′,1)
n,1 = v2x

(β′,1)
n−1,1 and x(β′,1)

n,1 =
v4x

(β,1)
n,1 = v2x

(β′,1)
n−1,2, we see that ϕd(F ) is divisible by Gβ,β′ .



502 Y. Hu, A. Tsymbaliuk / Journal of Algebra 690 (2026) 475--546 

If i ≥ j + 1 and 1 < j < n − 1, then Gβ,β′ = (wβ,1 − v−2n+2j−4wβ′,1)(wβ,1 −
v−2n+2jwβ′,1) ·Gβ,[1,n,j+1]. By the induction assumption and the wheel condition at 
x

(β,1)
j,1 = v2x

(β′,1)
j,2 = vx

(β,1)
j+1,1 or x(β′,1)

j,2 = v2x
(β,1)
j,1 = vx

(β,1)
j−1,1, we see that ϕd(F ) is 

divisible by Gβ,β′ .
• β = [1, n, 1], β′ = [1, n].

If we set α = [2, n, 2], α′ = [2, n], then we have:

Gβ,β′ = (wβ,1 − wβ′,1)(wβ,1 − v±2wβ′,1)(wβ,1 − v−4wβ′,1) ·Gα,α′ .

From the wheel conditions at

x
(β,1)
1,1 = v2x

(β′,1)
1,1 = vx

(β,1)
2,1 , x

(β,1)
1,2 = v2x

(β′,1)
1,1 = vx

(β,1)
2,2 ,

vx
(β,1)
1,1 = x

(β′,1)
2,1 = v2x

(β,1)
2,1 , vx

(β,1)
1,2 = x

(β′,1)
2,1 = v2x

(β,1)
2,2

and the induction assumption, we see that ϕd(F ) is divisible by Gβ,β′ .
• β = [1, n, 1], β′ = [1, n, j].

If j > 2, then the same arguments as for the case (β, β′) = ([1, n, 1], [1, n]) above 
apply.
If j = 2 and n = 3, then we have

Gβ,β′ = (wβ,1 − v−2wβ′,1)(wβ,1 − v−6wβ′,1)(wβ,1 − v−8wβ′,1) ·G[1,3,1],[1,3].

From the wheel conditions at

x
(β′,1)
2,2 = v2x

(β,1)
2,1 = vx

(β,1)
1,1 , x

(β′,1)
2,2 = v2x

(β,1)
2,2 = vx

(β,1)
1,2 ,

x
(β,1)
2,2 = v2x

(β,1)
2,1 = v4x

(β′,1)
2,2 = v2x

(β′,1)
3,1 ,

and the induction assumption, we see that ϕd(F ) is divisible by Gβ,β′ .
If j = 2 and n > 3, then we have

Gβ,β′ = (wβ,1 − v−2nwβ′,1)(v2nwβ,1 − v±2wβ′,1)(wβ,1 − v−2n+4wβ′,1) ·Gβ,[1,n,3].

From the wheel conditions at

x
(β′,1)
2,2 = v2x

(β,1)
2,1 = vx

(β,1)
1,1 , x

(β′,1)
2,2 = v2x

(β,1)
2,2 = vx

(β,1)
1,2 ,

v2x
(β′,1)
2,2 = x

(β,1)
2,1 = vx

(β,1)
3,1 , v2x

(β′,1)
2,2 = x

(β,1)
2,2 = vx

(β,1)
3,2 ,

and the induction assumption, we see that ϕd(F ) is divisible by Gβ,β′ .
• β = [1, n, k], β′ = [1, n, j].

If j > 2, then Gβ,β′ = (wβ,1 − v±2wβ′,1) ·G[2,n,k],[2,n,j], and so ϕd(F ) is divisible by 

Gβ,β′ due to the induction assumption and wheel condition at x(β,1)
2,1 = v2x

(β′,1)
2,1 =

vx
(β′,1)
1,1 or x(β′,1)

2,1 = v2x
(β,1)
2,1 = vx

(β,1)
1,1 .
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If j = 2 and k > 3, then

Gβ,β′ = (wβ,1 − v−2nwβ′,1)(wβ,1 − v−2n+4wβ′,1) ·G[1,n,k],[1,n,3],

and so ϕd(F ) is divisible by Gβ,β′ due to the induction assumption and wheel con
dition at x(β,1)

2,1 = v2x
(β′,1)
2,2 = vx

(β,1)
3,1 or x(β′,1)

2,2 = v2x
(β,1)
2,1 = vx

(β,1)
1,1 .

If j = 2, k = 3 and n > 4, then

Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v2n−2wβ′,1)(wβ,1 − v2n−6wβ′,1) ·G[1,n,4],[1,n,2].

From wheel conditions at

x
(β,1)
3,2 = v2x

(β′,1)
3,1 = vx

(β′,1)
2,1 , x

(β,1)
3,2 = v2x

(β′,1)
3,2 = vx

(β′,1)
4,2 ,

v2x
(β,1)
3,2 = x

(β′,1)
3,1 = vx

(β′,1)
4,1 , v2x

(β,1)
3,2 = x

(β′,1)
3,2 = vx

(β′,1)
2,2 ,

and the induction assumption, we see that ϕd(F ) is divisible by Gβ,β′ .
If j = 2, k = 3 and n = 4, then Gβ,β′ = (wβ,1−v±2wβ′,1)(wβ,1−v6wβ′,1)·G[1,4],[1,4,2], 
and ϕd(F ) is divisible by Gβ,β′ , due to the induction assumption and wheel conditions 
at x(β,1)

3,2 = v2x
(β′,1)
3,1 = vx

(β′,1)
2,1 , x(β′,1)

3,2 = v2x
(β,1)
3,2 = vx

(β′,1)
2,2 , x(β′,1)

3,1 = v2x
(β,1)
3,2 =

v4x
(β′,1)
3,2 = v2x

(β′,1)
4,1 .

• β′ ≥ [2] > β.
If β = [1] and β′ = [2, n, 2], then Gβ,β′ = (wβ,1 − wβ′,1)(wβ,1 − v2wβ′,1). Consider 
d′ = {d′[1,n] = d′[2,n−1] = 1, and d′γ = 0 for other γ}, so that d′ < d. Then ϕd(F ) is 
divisible by Gβ,β′ due to the condition ϕd′(F ) = 0 and wheel condition at x(β′,1)

2,2 =
v2x

(β′,1)
2,1 = vx

(β,1)
1,1 .

If β = [1, i] and β′ = [2, n, j], then Gβ,β′ = (wβ,1 − wβ′,1) · G[2,i],β′ . Consider d′ =
{d′[1,n,j] = d′[2,i] = 1, and d′γ = 0 for other γ}. Then d′ < d and ϕd(F ) is divisible by 
Gβ,β′ due to the induction assumption and ϕd′(F ) = 0.
If β = [1, n, i] and β′ = [2, n, j] with j < i, then Gβ,β′ = (wβ,1 − wβ′,1) · G[2,n,i],β′ . 
Consider d′ = {d′[1,n,j] = d′[2,n,i] = 1, and d′γ = 0 for other γ}. Then d′ < d and 
ϕd(F ) is divisible by Gβ,β′ due to the induction assumption and ϕd′(F ) = 0.
For all other cases, the divisibility of ϕd(F ) by Gβ,β′ follows from the induction 
assumption and proper count of wheel conditions similarly to the cases above.

This completes our proof. □
Combining Propositions 3.6 and 3.8, we immediately obtain the shuffle algebra real

ization and the PBWD theorem for U>
v (L𝔰𝔭2n):

Theorem 3.9. (a) Ψ : U>
v (L𝔰𝔭2n) ∼ −→ S of (2.10) is a Q(v)-algebra isomorphism.
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(b) For any choices of sk and λk in the definition (2.15)--(2.16) of quantum root vec
tors Eβ,s, the ordered PBWD monomials {Eh}h∈H from (2.27) form a Q(v)-basis of 
U>
v (L𝔰𝔭2n).

3.2. Shuffle algebra realization of the Lusztig integral form in type C

For any k ∈ Nn, consider the Z[v, v−1]-submodule Sk of Sk consisting of rational 
functions F satisfying the following two conditions:

(1) If f denotes the numerator of F from (2.5), then

f ∈ Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤n ]𝔖k . (3.22)

(2) For any d ∈ KP(k), the specialization ϕd(F ) is divisible by the product∏︂
β∈Δ+

c̃
dβ

β , (3.23)

where we define {c̃β}β∈Δ+ via {cβ}β∈Δ+ of (3.6):

c̃β =
{︄

cβ
[2]v if β = [i, n, i] with 1 ≤ i ≤ n− 1
cβ otherwise

. (3.24)

Define S :=
⨁︁

k∈Nn Sk and recall the Lusztig integral form U>
v (L𝔰𝔭2n) from Defini

tion 2.4. Then, similarly to [15, Proposition 4.17], we have:

Proposition 3.10. Ψ(U>
v (L𝔰𝔭2n)) ⊂ S.

Proof. For any m ∈ N, 1 ≤ i1, . . . , im ≤ n, r1, . . . , rm ∈ Z, and ℓ1, . . . , ℓm ∈ N, let

F := Ψ
(︁
E(ℓ1)

i1,r1
· · ·E(ℓm)

im,rm

)︁
,

and f be the numerator of F from (2.5). The validity of the condition (3.22) for f follows 
from the equality of [26, Lemma 1.3]:

Ψ(E(ℓq)
iq,rq

) = v
− ℓq(ℓq−1)

2 
iq

(xiq,1 · · ·xiq,ℓq )rq ∀ 1 ≤ q ≤ m. (3.25)

To verify the validity of the divisibility (3.23), it suffices to show that for any β ∈ Δ+

and 1 ≤ s ≤ dβ , the total contribution of ϕd-specializations of the ζ-factors between 
the variables {x(β,s)

i,t }1≤t≤νβ,i

i∈β of f is divisible by c̃β . It suffices to treat only the cases 
β = [i, n, j] with 1 ≤ i ≤ j < n, since the cases when β = [i, j] are treated completely 
analogously to type An. Henceforth, we write o(x(∗,∗)

∗,∗ ) = q if a variable x(∗,∗)
∗,∗ is plugged 

into Ψ(E(ℓq)
iq,rq

). We consider the cases i ̸= j and i = j separately:
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• β = [i, n, j] with 1 ≤ i < j < n.
According to (2.36), the ϕd-specialization of each summand in F vanishes unless

o(x(β,s)
i,1 ) ≥ · · · ≥ o(x(β,s)

n−1,1) ≥ o(x(β,s)
n,1 ) ≥ o(x(β,s)

n−1,2) ≥ · · · ≥ o(x(β,s)
j,2 ).

Since o(x(β,s)
i,t ) ̸= o(x(β,s)

i′,t′ ) for i ̸= i′, we actually have:

o(x(β,s)
i,1 ) > · · · > o(x(β,s)

n−1,1) > o(x(β,s)
n,1 ) > o(x(β,s)

n−1,2) > · · · > o(x(β,s)
j,2 ).

The ϕd-specialization of the product of the following ζ-factors

⎧⎨⎩
n−2∏︂
ℓ=j 

ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ+1,2

)︄⎫⎬⎭ · ζ
(︄

x
(β,s)
n,1

x
(β,s)
n−1,1

)︄
·
{︄

n−1 ∏︂
ℓ=i+1

ζ

(︄
x

(β,s)
ℓ,1

x
(β,s)
ℓ−1,1

)︄}︄
,

contributes ⟨1⟩2n−i−j−2
v ⟨2⟩v. Likewise, the ϕd-specialization of

n−1∏︂
ℓ=j 

{︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ−1,1

)︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ,1

)︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ+1,1

)︄}︄

contributes 
∏︁n−1

ℓ=j

{︁
(v2n−2ℓ − 1)(v2n−2ℓ+4 − 1)

}︁
. This overall yields c̃[i,n,j] of (3.24).

• β = [i, n, i] with 1 ≤ i < n.
According to (2.37), the ϕd-specialization of each summand in F vanishes unless

o(x(β,s)
i,1 ) ≥ o(x(β,s)

i+1,1) ≥ · · · ≥ o(x(β,s)
n−1,1), o(x(β,s)

i,2 ) ≥ · · · ≥ o(x(β,s)
n−1,2) ≥ o(x(β,s)

n,1 ).

Since o(x(β,s)
i,t ) ̸= o(x(β,s)

i′,t′ ) for i ̸= i′, we again have strict inequalities:

o(x(β,s)
i,1 ) > o(x(β,s)

i+1,1) > · · · > o(x(β,s)
n−1,1), o(x(β,s)

i,2 ) > · · · > o(x(β,s)
n−1,2) > o(x(β,s)

n,1 ).

For any i ≤ ℓ ≤ n− 2, let us consider the ζ-factors between the variables

{︁
x

(β,s)
ℓ,1 , x

(β,s)
ℓ,2 , x

(β,s)
ℓ+1,1, x

(β,s)
ℓ+1,2

}︁
.

With symmetry in the above variables, we may assume that o(x(β,s)
ℓ,1 ) ≥ o(x(β,s)

ℓ,2 ) in 
the following analysis. We have two cases to consider:
– if o(x(β,s)

ℓ,2 ) > o(x(β,s)
ℓ+1,1), then we have o(x(β,s)

ℓ,1 ) ≥ o(x(β,s)
ℓ,2 ) > o(x(β,s)

ℓ+1,1) & o(x(β,s)
ℓ+1,2), 

and ζ
(︃

x
(β,s)
ℓ+1,2

x
(β,s)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ+1,1

x
(β,s)
ℓ,2

)︃
contributes (wβ,s − v2w′

β,s)(wβ,s − v−2w′
β,s) into the 

ϕ
(1)
β -specialization;
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– if o(x(β,s)
ℓ+1,1) > o(x(β,s)

ℓ,2 ), then o(x(β,s)
ℓ,1 ) > o(x(β,s)

ℓ+1,1) > o(x(β,s)
ℓ,2 ) > o(x(β,s)

ℓ+1,2), and 

ζ

(︃
x
(β,s)
ℓ+1,2

x
(β,s)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ+1,2

x
(β,s)
ℓ+1,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s)
ℓ+1,1

)︃
contributes (wβ,s − v2w′

β,s)(wβ,s − v−2w′
β,s) into 

the ϕ(1)
β -specialization.

The above analysis shows that the ϕ(1)
β -specialization of that summand is divis

ible by Bβ of (2.38). Now let us consider the ζ-factors between the variables 
{x(β,s)

n−1,1, x
(β,s)
n−1,2, x

(β,s)
n,1 }. If o(x(β,s)

n,1 ) > o(x(β,s)
n−1,1), then the ϕd-specialization of that 

summand vanishes due to the ζ-factor ζ
(︃

x
(β,s)
n−1,1

x
(β,s)
n−1,2

)︃
; if o(x(β,s)

n,1 ) < o(x(β,s)
n−1,1), then the 

ζ-factors ζ
(︃

x
(β,s)
n,1

x
(β,s)
n−1,1

)︃
ζ

(︃
x
(β,s)
n,1

x
(β,s)
n−1,2

)︃
contribute ⟨1⟩v⟨2⟩v into the overall ϕd-specialization. 

Along with the specialization of the ζ-factors (which have not been considered 

above yet) 
∏︁n−2

ℓ=i

{︃
ζ

(︃
x
(β,s)
ℓ+1,1

x
(β,s)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ+1,2

x
(β,s)
ℓ,2

)︃}︃
shows that ϕd(F ) is indeed divisible by 

⟨1⟩|β|−2
v ⟨2⟩v, which is precisely c̃[i,n,i] of (3.24).

This completes our proof. □
Recall the normalized divided powers (2.28) of the quantum root vectors 

{Ẽ±,(k)
β,s }k∈Nβ∈Δ+,s∈Z and the ordered monomials {Ẽϵ

h}h∈H of (2.30). For ϵ ∈ {±}, let 
Sϵ
k be the Z[v, v−1]-submodule of Sk spanned by {Ψ(Ẽϵ

h)}h∈Hk
. Then, the following 

analogue of Lemma 2.10 holds:

Proposition 3.11. For any F ∈ Sk and d ∈ KP(k), if ϕd′(F ) = 0 for all d′ ∈ KP(k) such 
that d′ < d, then there exists Fd ∈ Sϵ

k such that ϕd(F ) = ϕd(Fd) and ϕd′(Fd) = 0 for all 
d′ < d.

Proof. Completely analogous to that of [15, Proposition 3.11]. □
Combining Propositions 3.10 and 3.11, we obtain the following upgrade of Theo

rem 3.9:

Theorem 3.12. (a) The Q(v)-algebra isomorphism Ψ : U>
v (L𝔰𝔭2n) ∼ −→ S of Theo

rem 3.9(a) gives rise to a Z[v, v−1]-algebra isomorphism Ψ : U>
v (L𝔰𝔭2n) ∼ −→ S.

(b) Theorem 2.6 holds for 𝔤 of type Cn.

3.3. Shuffle algebra realization of the RTT integral form 𝒰>
v (L𝔰𝔭2n)

To introduce the RTT integral form of the shuffle algebra S, we first recall the vertical 
specialization map (cf. [26, (1.59)]):

ϖt : Z[v, v−1][{w±1
β,s}1≤s≤dβ

β∈Δ+ ]𝔖d −→ Z[v, v−1][{z±1
β,r}1≤r≤ℓβ

β∈Δ+ ]. (3.26)
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For d ∈ KP(k), pick any collection of positive integers t = {tβ,r}1≤r≤ℓβ
β∈Δ+ (ℓβ ∈ N)

satisfying

dβ =
ℓβ∑︂
r=1 

tβ,r ∀ β ∈ Δ+. (3.27)

For any β ∈ Δ+, we split the variables {wβ,s}dβ

s=1 into ℓβ groups of size tβ,r each (1 ≤
r ≤ ℓβ) and specialize the variables in the r-th group to

v−2
β zβ,r, v

−4
β zβ,r, . . . , v−2tβ,r

β zβ,r.

For any g ∈ Z[v, v−1][{w±1
β,s}1≤s≤dβ

β∈Δ+ ]𝔖d , we define ϖt(g) as the above specialization of g.
Recall the factors {cβ}β∈Δ+ of (3.6). When β = [i, n, j] with 1 ≤ i < j < n, we have

cβ = ⟨1⟩|β|−3
v ⟨2⟩v ·

n−1∏︂
ℓ=j 

{︁
(v2n−2ℓ − 1)(v2n−2ℓ+4 − 1)

}︁
. = ⟨1⟩|β|−2

v ⟨2⟩v · (v2n−2j+4 − 1) ·
n−2∏︂
ℓ=j 

{︁
(v2n−2ℓ − 1)(v2n−2ℓ+2 − 1)

}︁
.

For any k ∈ Nn, consider the Z[v, v−1]-submodule 𝒮k of Sk consisting of rational func
tions F satisfying the following three conditions:

(1) If f denotes the numerator of F from (2.5), then

f ∈ ⟨1⟩k1+···+kn−1
v ⟨2⟩kn

v · Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤n ]𝔖k . (3.28)

(2) For any d ∈ KP(k), the specialization ϕd(f · ⟨1⟩−k1−···−kn−1
v ⟨2⟩−kn

v ) is divisible by

Ad =
1≤i<n ∏︂

β=[i,n,i]∈Δ+

[2]dβ
v

1≤i<j<n ∏︂
β=[i,n,j]∈Δ+

(v2n−2j+4 − 1)dβ

×
n−2∏︂
ℓ=j 

{︁
(v2n−2ℓ − 1)dβ (v2n−2ℓ+2 − 1)dβ

}︁
.

(3.29)

(3) F is integral in the sense of [15, Definition 4.12]: the cross specialization

Υd,t(F ) := ϖt

(︄
ϕd(F ) 

⟨1⟩k1+···+kn−1
v ⟨2⟩kn

v ·Ad ·
∏︁

β∈Δ+ Gβ

)︄
(3.30)

is divisible by 
∏︁1≤r≤ℓβ

β∈Δ+ [tβ,r]vβ ! for any d ∈ KP(k) and t = {tβ,r}1≤r≤ℓβ
β∈Δ+ satisfy

ing (3.27), with Gβ of (3.17)--(3.20); the divisibility of ϕd(F ) by Gβ is proved in 
Proposition 3.13.
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We define 𝒮 :=
⨁︁

k∈Nn 𝒮k. Recall the RTT integral form 𝒰>
v (L𝔰𝔭2n) from Defini

tion 2.7. Then, similarly to [15, Proposition 4.13], we have:

Proposition 3.13. Ψ(𝒰>
v (L𝔰𝔭2n)) ⊂ 𝒮.

Proof. For any ϵ ∈ {±}, m ∈ N, β1, . . . , βm ∈ Δ+, r1, . . . , rm ∈ Z, let

F := Ψ
(︁ℰ̃ϵ

β1,r1 · · · ℰ̃ϵ
βm,rm

)︁
,

and f be the numerator of F . We set k =
∑︁m

q=1 βq. Henceforth, we shall use the notation 

o(x(∗,∗)
∗,∗ ) = q if a variable x(∗,∗)

∗,∗ is plugged into Ψ(ℰ̃ϵ
βq,rq

) for some 1 ≤ q ≤ m.
First, due to Lemma 3.1 and our choices of the normalized quantum root vectors of 

(2.31), f is divisible by ⟨1⟩k1+···+kn−1
v ⟨2⟩kn

v , thus implying (3.28).
Next, for any d ∈ KP(k), we show that ϕd(f/⟨1⟩k1+···+kn−1

v ⟨2⟩kn
v ) is divisible by Ad

of (3.29). We consider the ϕd-specialization of each summand from the symmetrization 
featuring in f .

• β = [i, n, j] with 1 ≤ i < j < n such that dβ ̸= 0.
Fix any 1 ≤ s ≤ dβ . We can assume that

o(x(β,s)
i,1 ) ≥ · · · ≥ o(x(β,s)

n−1,1) ≥ o(x(β,s)
n,1 ) ≥ o(x(β,s)

n−1,2) ≥ · · · ≥ o(x(β,s)
j,2 ),

as otherwise the ϕd-specialization of the corresponding summand vanishes. Let us 
now consider the ζ-factors arising from the variables {x(β,s)

j−1,1, x
(β,s)
j,1 , x

(β,s)
j,2 }:

– If o(x(β,s)
j−1,1) = o(x(β,s)

j,2 ), then o(x(β,s)
j−1,1) = o(x(β,s)

j,1 ) = o(x(β,s)
j,2 ), and from 

Lemma 3.1 we know that the corresponding summand is divisible by

(1+v2)x(β,s)
j,1 x

(β,s)
j,2 −vx

(β,s)
j−1,1(x

(β,s)
j,1 +x

(β,s)
j,2 ) or (1+v2)x(β,s)

j−1,1−v(x(β,s)
j,1 +x

(β,s)
j,2 ),
(3.31)

and so the ϕd-specialization is divisible by v2n−2j+4 − 1.

– If o(x(β,s)
j−1,1) > o(x(β,s)

j,2 ), then from the ζ-factor ζ
(︃

x
(β,s)
j,2

x
(β,s)
j−1,1

)︃
we know that the ϕd

specialization of the corresponding summand is divisible by v2n−2j+4 − 1.
Next, for each j ≤ ℓ ≤ n− 2, let us consider the ζ-factors arising from the variables{︁

x
(β,s)
ℓ,1 , x

(β,s)
ℓ+1,1, x

(β,s)
ℓ+1,2, x

(β,s)
ℓ,2

}︁
. (3.32)

– If o(x(β,s)
ℓ,1 ) = o(x(β,s)

ℓ+1,1) = o(x(β,s)
ℓ+1,2) = o(x(β,s)

ℓ,2 ), then by Lemma 3.1 we know that 
the corresponding summand is divisible by Q(x(β,s)

ℓ,1 , x
(β,s)
ℓ,2 , x

(β,s)
ℓ+1,1, x

(β,s)
ℓ+1,2), cf. (3.3), 

and so the ϕd-specialization is divisible by

Q(v1−ℓ, v−2n+ℓ−1, v−ℓ, v−2n+ℓ) . = (v2n−2ℓ − 1)(v2n−2ℓ+2 − 1).
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– If o(x(β,s)
ℓ,1 ) > o(x(β,s)

ℓ+1,1) = o(x(β,s)
ℓ+1,2) = o(x(β,s)

ℓ,2 ), then Q(x, v−2n+ℓ−1, v−ℓ, v−2n+ℓ) . =

(x − v−2n+ℓ+1)(v2n−2ℓ+2 − 1) together with ζ
(︃

x
(β,s)
ℓ+1,2

x
(β,s)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s)
ℓ,1

)︃
contribute the 

same factors (v2n−2ℓ−1)(v2n−2ℓ+2−1) into the ϕd-specialization of this summand.
– If o(x(β,s)

ℓ,1 ) = o(x(β,s)
ℓ+1,1) = o(x(β,s)

ℓ+1,2) > o(x(β,s)
ℓ,2 ), then Q(v1−ℓ, x, v−ℓ, v−2n+ℓ) . =

(x−v−ℓ−1)(v2n−2ℓ+2−1) together with ζ
(︃

x
(β,s)
ℓ,2

x
(β,s)
ℓ+1,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s)
ℓ,1

)︃
contribute the same 

factors (v2n−2ℓ − 1)(v2n−2ℓ+2 − 1) into the ϕd-specialization of this summand.
– If o(x(β,s)

ℓ+1,1) > o(x(β,s)
ℓ+1,2) or o(x(β,s)

ℓ,1 ) > o(x(β,s)
ℓ+1,1) = o(x(β,s)

ℓ+1,2) > o(x(β,s)
ℓ,2 ), then 

ζ-factors ζ
(︃

x
(β,s)
ℓ,2

x
(β,s)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s)
ℓ+1,1

)︃
ζ

(︃
x
(β,s)
ℓ+1,2

x
(β,s)
ℓ,1

)︃
contribute the same factor (v2n−2ℓ −

1)(v2n−2ℓ+2 − 1) into the ϕd-specialization of this summand.
• β = [i, n, i] with 1 ≤ i < n and dβ ̸= 0.

Fix any 1 ≤ s ≤ dβ . We can assume that

o(x(β,s)
i,1 ) ≥ · · · ≥ o(x(β,s)

n−1,1), o(x(β,s)
i,2 ) ≥ · · · ≥ o(x(β,s)

n−1,2) ≥ o(x(β,s)
n,1 ).

First, let us consider the ζ-factors arising from the variables

{︁
x

(β,s)
i,1 , x

(β,s)
i+1,1, x

(β,s)
i,2 , x

(β,s)
i+1,2

}︁
.

– If o(x(β,s)
i,2 ) ̸= o(x(β,s)

i+1,1), then the ζ-factors ζ
(︃

x
(β,s)
i+1,1

x
(β,s)
i,2

)︃
or ζ

(︃
x
(β,s)
i,2

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s)
i,2

x
(β,s)
i+1,1

)︃
con

tribute (wβ,s − v2w′
β,s) into the ϕ(1)

β -specialization of this summand. Similarly, if 

o(x(β,s)
i,1 ) ̸= o(x(β,s)

i+1,2), then the ζ-factors ζ
(︃

x
(β,s)
i+1,2

x
(β,s)
i,1

)︃
or ζ

(︃
x
(β,s)
i,1

x
(β,s)
i,2

)︃
ζ

(︃
x
(β,s)
i,1

x
(β,s)
i+1,2

)︃
con

tribute (wβ,s − v−2w′
β,s) into the ϕ(1)

β -specialization of this summand.
– If o(x(β,s)

i,2 ) = o(x(β,s)
i+1,1) and o(x(β,s)

i,1 ) = o(x(β,s)
i+1,2), then

o(x(β,s)
i,1 ) = o(x(β,s)

i,2 ) = o(x(β,s)
i+1,1) = o(x(β,s)

i+1,2) = q.

By Lemma 3.1, we know that Ψ(ℰ̃ϵ
βq,rq

) contains the factor Q(x(β,s)
i,1 , x

(β,s)
i,2 , x

(β,s)
i+1,1, 

x
(β,s)
i+1,2), which contributes (wβ,s−v2w′

β,s)(wβ,s−v−2w′
β,s) into the ϕ(1)

β -specialization 
of this summand.

– If o(x(β,s)
i,2 ) = o(x(β,s)

i+1,1) and o(x(β,s)
i,1 ) ̸= o(x(β,s)

i+1,2), then we have

q = o(x(β,s)
i,1 ) = o(x(β,s)

i,2 ) = o(x(β,s)
i+1,1) > o(x(β,s)

i+1,2),

or o(x(β,s)
i,1 ) > o(x(β,s)

i,2 ) = o(x(β,s)
i+1,1) = o(x(β,s)

i+1,2) = q,

or o(x(β,s)
i,1 ) > o(x(β,s)

i,2 ) = o(x(β,s)
i+1,1) > o(x(β,s)

i+1,2).
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For the first case, from Q(w,w′, v−1w, x) . = (w − v2w′)(w − v−1x) and the ζ

factor ζ
(︃

x
(β,s)
i+1,2

x
(β,s)
i,1

)︃
we see that the ϕ(1)

β -specialization of this summand is divisible by 

(wβ,s−v2w′
β,s)(wβ,s−v−2w′

β,s); for the second case, from Q(x,w′, v−1w, v−1w′) . =

(w′−v2x)(w′−v−2w) and the ζ-factor ζ
(︃

x
(β,s)
i+1,2

x
(β,s)
i,1

)︃
we see that the ϕ(1)

β -specialization 

of this summand is divisible by (wβ,s − v2w′
β,s)(wβ,s − v−2w′

β,s); finally, for the 

third case above, the ϕ(1)
β -specialization of the ζ-factors

ζ

(︄
x

(β,s)
i+1,2

x
(β,s)
i,2

)︄
ζ

(︄
x

(β,s)
i+1,2

x
(β,s)
i,1

)︄
ζ

(︄
x

(β,s)
i+1,1

x
(β,s)
i,1

)︄
ζ

(︄
x

(β,s)
i,2

x
(β,s)
i,1

)︄

contributes ⟨1⟩2v
wβ,s−w′

β,s
·(wβ,s−v2w′

β,s)(wβ,s−v−2w′
β,s). Thus, the ϕ(1)

β -specialization 

of this summand is divisible by (wβ,s − v2w′
β,s)(wβ,s − v−2w′

β,s), and the denomi
nator wβ,s −w′

β,s will be canceled (up to a monomial) with ⟨1⟩v in the numerator 
when specializing w′

β,s ↦→ v2wβ,s in the second step of specialization ϕβ, cf. (2.39).
– If o(x(β,s)

i,2 ) ̸= o(x(β,s)
i+1,1) and o(x(β,s)

i,1 ) = o(x(β,s)
i+1,2), then we can use the same analysis 

as for the above case to get that the ϕ(1)
β -specialization of this summand is divisible 

by (wβ,s − v2w′
β,s)(wβ,s − v−2w′

β,s).
Along with similar ζ-factors arising from the variables {x(β,s)

ℓ,1 , x
(β,s)
ℓ+1,1, x

(β,s)
ℓ,2 , x

(β,s)
ℓ+1,2}

for any i < ℓ < n − 1, we see the ϕ(1)
β -specialization of any summand is di

visible by Bβ of (2.38). Now let us consider the ζ-factors between the variables 
{x(β,s)

n−1,1, x
(β,s)
n−1,2, x

(β,s)
n,1 }, we can assume that o(x(β,s)

n−1,1) ≥ o(x(β,s)
n−1,2) ≥ o(x(β,s)

n,1 ), as 
otherwise the corresponding term is specialized to zero under ϕd. Then:

– If o(x(β,s)
n−1,2) > o(x(β,s)

n,1 ), then ζ
(︃

x
(β,s)
n,1

x
(β,s)
n−1,2

)︃
contributes a factor ⟨2⟩v to the ϕd

specialization of that summand.

– If o(x(β,s)
n−1,1) > o(x(β,s)

n−1,2) = o(x(β,s)
n,1 ), then ζ

(︃
x
(β,s)
n,1

x
(β,s)
n−1,1

)︃
ζ

(︃
x
(β,s)
n−1,2

x
(β,s)
n−1,1

)︃
contribute a 

factor ⟨2⟩v to the ϕd-specialization of that summand.
– If o(x(β,s)

n−1,1) = o(x(β,s)
n−1,2) = o(x(β,s)

n,1 ) = q, then we know βq = [i, n, j] with i <

j < n or [i, n, i]. According to Lemma 3.1, if βq = [i, n, j] with j ≤ n − 2, then 
Ψ(ℰ̃ϵ

βq,rq
) contains the factor Q(x, y, x(β,s)

n−1,1, x
(β,s)
n−1,2), which contributes a factor 

[2]v into ϕd(F ); if βq = [i, n, n − 1] with i < n − 1, then Ψ(ℰ̃ϵ
βq,rq

) contains 
the factor (1 + v2)x(β,s)

n−1,1x
(β,s)
n−1,2 − vy(x(β,s)

n−1,1 + x
(β,s)
n−1,2) or (1 + v2)y − v(x(β,s)

n−1,1 +
x

(β,s)
n−1,2), which contributes a factor [2]v into ϕd(F ); finally, if βq = [i, n, i], then 

Ψ(ℰ̃ϵ
βq,rq

) is divisible by ⟨1⟩2n−2i−1
v ⟨2⟩2v, which contributes a factor [2]v into ϕd(f ·

⟨1⟩−k1−···−kn−1
v ⟨2⟩−kn

v ).

The above overall analysis shows that the ϕd-specialization of f is divisible by Ad

of (3.29).
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Next, let us verify that ϕd(F ) is divisible by 
∏︁

β∈Δ+ Gβ , where Gβ are as in 
(3.17)--(3.20). We can expand 

∏︁m
ℓ=1 ℰ̃ϵ

βℓ,rℓ
as a linear combination of monomials ∏︁k

ℓ=1 eiℓ,sℓ over Z[v, v−1], with k =
∑︁k

ℓ=1 αiℓ . Then it suffices to prove that each 
ϕd(Ψ(ei1,s1 · · · eik,sk)) is divisible by Gβ for any β ∈ Δ+. For β = [i, j] with 1 ≤ i ≤ j ≤ n, 
this follows from [25, Lemma 3.51]. It remains to treat the β = [i, n, j] (1 ≤ i < j < n)
and β = [i, n, i] (1 ≤ i < n) cases. Henceforth, we shall use the notation ô(x(∗,∗)

∗,∗ ) = q if 
a variable x(∗,∗)

∗,∗ is plugged into Ψ(eiq,sq ) for some 1 ≤ q ≤ k.

• β = [i, n, j]. Fix any 1 ≤ s ̸= s′ ≤ dβ , we can assume that

ô(x(β,s)
i,1 ) > · · · > ô(x(β,s)

n−1,1) > ô(x(β,s)
n,1 ) > ô(x(β,s)

n−1,2) > · · · > ô(x(β,s)
j,2 ),

ô(x(β,s′)
i,1 ) > · · · > ô(x(β,s′)

n−1,1) > ô(x(β,s′)
n,1 ) > ô(x(β,s′)

n−1,2) > · · · > ô(x(β,s′)
j,2 ).

Let us first consider the variables

{︁
x

(β,s)
i,1 , x

(β,s)
i+1,1, x

(β,s′)
i,1 , x

(β,s′)
i+1,1

}︁
. (3.33)

Without loss of generality, we can assume that ô(x(β,s)
i+1,1) > ô(x(β,s′)

i+1,1 ).

– If ô(x(β,s)
i+1,1) < ô(x(β,s′)

i,1 ), then the ϕd-specialization of ζ
(︃

x
(β,s′)
i+1,1

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s)
i+1,1

x
(β,s′)
i,1

)︃
con

tributes the factor (wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s).

– If ô(x(β,s)
i+1,1) > ô(x(β,s′)

i,1 ), then the ϕd-specialization of ζ
(︃

x
(β,s′)
i+1,1

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s′)
i+1,1

x
(β,s)
i+1,1

)︃


ζ

(︃
x
(β,s′)
i,1

x
(β,s)
i+1,1

)︃
contributes the factor (wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s).

Similarly, the ϕd-specialization of the ζ-factors arising from the following quadruples

{︁
x

(β,s)
i+1,1 , x

(β,s)
i+2,1 , x

(β,s′)
i+1,1 , x

(β,s′)
i+2,1

}︁
, . . . , 

{︁
x

(β,s)
n−2,1 , x

(β,s)
n−1,1 , x

(β,s′)
n−2,1, x

(β,s′)
n−1,1

}︁
,{︁

x
(β,s)
n−1,2 , x

(β,s)
n−2,2 , x

(β,s′)
n−1,2 , x

(β,s′)
n−2,2

}︁
, . . . , 

{︁
x

(β,s)
j+1,2 , x

(β,s)
j,2 , x(β,s′)

j+1,2, x
(β,s′)
j,2

}︁
,

along with the contribution of the ζ-factors arising from (3.33) above, yields the 
overall contribution of the factor {(wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s)}2n−i−j−2.
Next, let us consider the ζ-factors arising from the variables

{︁
x

(β,s)
n−1,1 , x

(β,s)
n,1 , x(β,s)

n−1,2 , x
(β,s′)
n−1,1 , x

(β,s′)
n,1 , x(β,s′)

n−1,2
}︁
. (3.34)

Without loss of generality, we can assume that ô(x(β,s)
n,1 ) > ô(x(β,s′)

n,1 ). First, we note 

that ζ
(︃

x
(β,s′)
n,1

x
(β,s)
n−1,1

)︃
ζ

(︃
x
(β,s′)
n−1,2

x
(β,s)
n,1

)︃
ζ

(︃
x
(β,s′)
n−1,2

x
(β,s)
n−1,1

)︃
contributes (wβ,s′ − v2wβ,s)(wβ,s′ − v4wβ,s)

into the ϕd-specialization. Now we consider four cases.
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– If ô(x(β,s′)
n,1 ) > ô(x(β,s)

n−1,2) & ô(x(β,s′)
n−1,1) > ô(x(β,s)

n,1 ), then ζ
(︃

x
(β,s)
n−1,2

x
(β,s′)
n,1

)︃
ζ

(︃
x
(β,s)
n−1,2

x
(β,s′)
n−1,1

)︃


ζ

(︃
x
(β,s)
n,1

x
(β,s′)
n−1,1

)︃
contributes (wβ,s− v2wβ,s′)(wβ,s − v4wβ,s′) into the ϕd-specialization.

– If ô(x(β,s′)
n,1 ) < ô(x(β,s)

n−1,2) & ô(x(β,s′)
n−1,1) > ô(x(β,s)

n,1 ), then ζ
(︃

x
(β,s′)
n−1,2

x
(β,s)
n−1,2

)︃
ζ

(︃
x
(β,s′)
n,1

x
(β,s)
n−1,2

)︃


ζ

(︃
x
(β,s)
n,1

x
(β,s′)
n−1,1

)︃
contributes (wβ,s− v2wβ,s′)(wβ,s − v4wβ,s′) into the ϕd-specialization.

– If ô(x(β,s′)
n,1 ) < ô(x(β,s)

n−1,2) & ô(x(β,s′)
n−1,1) < ô(x(β,s)

n,1 ), then

ζ

(︄
x

(β,s′)
n−1,2

x
(β,s)
n−1,2

)︄
ζ

(︄
x

(β,s′)
n,1

x
(β,s)
n−1,2

)︄
ζ

(︄
x

(β,s′)
n,1

x
(β,s)
n,1

)︄
ζ

(︄
x

(β,s′)
n−1,1

x
(β,s)
n,1

)︄

contributes (wβ,s − v2wβ,s′)(wβ,s − v4wβ,s′) into the ϕd-specialization.
– If ô(x(β,s′)

n,1 ) > ô(x(β,s)
n−1,2) & ô(x(β,s′)

n−1,1) < ô(x(β,s)
n,1 ), then

ζ

(︄
x

(β,s)
n−1,2

x
(β,s′)
n,1

)︄
ζ

(︄
x

(β,s)
n−1,2

x
(β,s′)
n−1,1

)︄
ζ

(︄
x

(β,s′)
n,1

x
(β,s)
n,1

)︄
ζ

(︄
x

(β,s′)
n−1,1

x
(β,s)
n,1

)︄

contributes (wβ,s − v2wβ,s′)(wβ,s − v4wβ,s′) into the ϕd-specialization.
We thus conclude that the ϕd-specialization of the ζ-factors arising from (3.34) con
tributes the overall factor

(wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s)(wβ,s − v4wβ,s′)(wβ,s′ − v4wβ,s).

Similarly to the above analysis, the ϕd-specialization of the ζ-factors arising from 
the tuples{︁

x
(β,s′)
j−1,1, x

(β,s′)
j,1 , x

(β,s)
j,2

}︁
and

{︁
x

(β,s′)
ℓ,1 , x

(β,s′)
ℓ+1,1, x

(β,s)
ℓ+1,2, x

(β,s)
ℓ,2

}︁
(j ≤ ℓ ≤ n− 2)

produces an overall factor

n−2∏︂
ℓ=j 

(wβ,s − v2n−2ℓwβ,s′)
n−1∏︂
ℓ=j 

(wβ,s − v2n−2ℓ+4wβ,s′).

This completes the verification of divisibility of ϕd(F ) by Gβ of (3.19), up to a 
monomial.

• β = [i, n, i]. Fix any 1 ≤ s ̸= s′ ≤ dβ . We can assume that

ô(x(β,t)
i,1 ) > · · · > ô(x(β,t)

n−1,1), ô(x(β,t)
i,2 ) > · · · > ô(x(β,t)

n−1,2) > ô(x(β,t)
n,1 ) for t = s or s′.

First, let us consider the ζ-factors arising from the variables
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{︁
x

(β,s)
i,1 , x

(β,s)
i+1,1, x

(β,s′)
i,1 , x

(β,s′)
i+1,1

}︁
.

Without loss of generality, we can assume that ô(x(β,s)
i,1 ) > ô(x(β,s′)

i,1 ).

– If ô(x(β,s′)
i,1 ) > ô(x(β,s)

i+1,1), then ζ
(︃

x
(β,s′)
i+1,1

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s)
i+1,1

x
(β,s′)
i,1

)︃
contributes the factor (wβ,s−

v2wβ,s′)(wβ,s′ − v2wβ,s) into the ϕd-specialization.

– If ô(x(β,s′)
i,1 ) < ô(x(β,s)

i+1,1), then ζ
(︃

x
(β,s′)
i+1,1

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s′)
i,1

x
(β,s)
i,1

)︃
ζ

(︃
x
(β,s′)
i,1

x
(β,s)
i+1,1

)︃
contributes the 

factor (wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s) into the ϕd-specialization.
Likewise, we conclude that the ϕd-specialization of the ζ-factors arising from{︁

x
(β,s)
ℓ,t , x

(β,s)
ℓ+1,t, x

(β,s′)
ℓ,t , x

(β,s′)
ℓ+1,t

}︁
(i ≤ ℓ ≤ n− 2, 1 ≤ t ≤ 2)

produces the overall factor of{︁
(wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s)

}︁2n−2i−2
.

Analogously, the ϕd-specialization of the ζ-factors arising from the quadruples{︁
x

(β,s)
ℓ,1 , x

(β,s)
ℓ+1,1, x

(β,s′)
ℓ,2 , x

(β,s′)
ℓ+1,2

}︁
, 
{︁
x

(β,s)
ℓ,2 , x

(β,s)
ℓ+1,2, x

(β,s′)
ℓ,1 , x

(β,s′)
ℓ+1,1

}︁
, (i ≤ ℓ ≤ n− 2)

produces a total factor of{︁
(wβ,s − wβ,s′)(wβ,s′ − wβ,s)(wβ,s − v4wβ,s′)(wβ,s′ − v4wβ,s)

}︁n−i−1
.

Next, let us consider the ϕd-specialization of the ζ-factors arising from the variables{︁
x

(β,s)
n−1,1 , x

(β,s)
n−1,2 , x

(β,s)
n,1 , x(β,s′)

n−1,1 , x
(β,s′)
n−1,2 , x

(β,s′)
n,1

}︁
. (3.35)

We can assume that

ô(x(β,s)
n−1,1) > ô(x(β,s)

n−1,2) > ô(x(β,s)
n,1 ) and ô(x(β,s′)

n−1,1) > ô(x(β,s′)
n−1,2) > ô(x(β,s′)

n,1 ),

as otherwise the corresponding term is specialized to zero under ϕd. Without loss 

of generality, we can assume that ô(x(β,s)
n,1 ) > ô(x(β,s′)

n,1 ). Then ζ
(︃

x
(β,s′)
n,1

x
(β,s)
n−1,2

)︃
ζ

(︃
x
(β,s′)
n,1

x
(β,s)
n−1,1

)︃
contributes (wβ,s′ − v2wβ,s)(wβ,s′ − v4wβ,s).

– If ô(x(β,s′)
n−1,2) > ô(x(β,s)

n,1 ), then ζ
(︃

x
(β,s)
n,1

x
(β,s′)
n−1,2

)︃
contributes (wβ,s−v4wβ,s′); if ô(x(β,s′)

n−1,2) <

ô(x(β,s)
n,1 ), then ζ

(︃
x
(β,s′)
n−1,2

x
(β,s)
n,1

)︃
ζ

(︃
x
(β,s′)
n−1,2

x
(β,s)
n−1,2

)︃
ζ

(︃
x
(β,s′)
n−1,2

x
(β,s)
n−1,1

)︃
contributes (wβ,s − v4wβ,s′).

– If ô(x(β,s′)
n−1,1) > ô(x(β,s)

n,1 ), then ζ
(︃

x
(β,s)
n,1

x
(β,s′)
n−1,1

)︃
contributes (wβ,s−v2wβ,s′); if ô(x(β,s′)

n−1,1) <

ô(x(β,s)
n,1 ), then ζ

(︃
x
(β,s′)
n−1,1

x
(β,s)
n,1

)︃
ζ

(︃
x
(β,s′)
n−1,1

x
(β,s)
n−1,2

)︃
ζ

(︃
x
(β,s′)
n−1,1

x
(β,s)
n−1,1

)︃
contributes (wβ,s − v2wβ,s′).
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We thus conclude that the ϕd-specialization of the ζ-factors arising from (3.35) con
tributes the overall factor

(wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s)(wβ,s − v4wβ,s′)(wβ,s′ − v4wβ,s).

This completes the verification of divisibility of ϕd(F ) by Gβ of (3.20), up to a 
monomial.

Finally, to prove that F is integral, we need to show that for any β ∈ Δ+ and 
1 ≤ r ≤ ℓβ , the contribution of the ζ-factors between the variables x(∗,∗)

∗,∗ that got 
specialized to v?zβ,r into Υd,t(F ) is divisible by [tβ,r]vβ !. For β = [i, j], this follows from 
[25, Lemma 3.51]. For β = [i, n, j] with i < j < n, we have vβ = vi = v, and in the 

above analysis we never used the ζ-factors ζ
(︃

x
(β,s)
i,1

x
(β,s′)
i,1

)︃
(with 1 ≤ s ̸= s′ ≤ dβ) for the 

divisibility of ϕd(F ) by Gβ (see the analysis for the variables (3.33)). For β = [i, n, i], 

we have vβ = vn = v2, and in the above analysis we never used the ζ-factors ζ
(︃

x
(β,s)
n,1

x
(β,s′)
n,1

)︃
(with 1 ≤ s ̸= s′ ≤ dβ) for the divisibility of ϕd(F ) by Gβ (see the analysis for the 
variables (3.35)). We can thus appeal to the ``rank 1'' computation of [25, Lemma 3.46] 
to obtain the claimed divisibility by [tβ,r]vβ !. □

Combining Propositions 3.4, 3.6, 3.8, 3.13, we obtain the following upgrade of Theo
rem 3.9:

Theorem 3.14. (a) The Q(v)-algebra isomorphism Ψ :U>
v (L𝔰𝔭2n) ∼ −→ S of Theorem 3.9(a)

gives rise to a Z[v, v−1]-algebra isomorphism Ψ : 𝒰>
v (L𝔰𝔭2n) ∼ −→ 𝒮.

(b) Theorem 2.8 holds for 𝔤 of type Cn.

4. Shuffle algebra and its integral forms in type 𝑫𝒏

In this section, we establish the key properties of the specialization maps for the 
shuffle algebras of type Dn. This implies the shuffle algebra realization and PBWD-type 
theorems for U>

v (L𝔬2n) and its integral forms.

4.1. U>
v (L𝔬2n) and its shuffle algebra realization

In type Dn, for any F ∈ Sk with k ∈ Nn, the wheel conditions are:

F ({xi,r}1≤r≤ki

1≤i≤n ) = 0 once xi,1 = v2xi,2 = vxi+1,1 for some 1 ≤ i ≤ n− 2,

or xi,1 = v2xi,2 = vxi−1,1 for some 2 ≤ i ≤ n− 1,

or xn−2,1 = v2xn−2,2 = vxn,1,

or xn,1 = v2xn,2 = vxn−2,1.
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Recall the notations (2.12) for positive roots in type Dn. Similarly to type C, we shall use 
denomβ to denote the denominator in (2.5) for any F ∈ Sβ , for example for F = Ψ(Ẽ±

β,s).

Lemma 4.1. Consider the particular choices (2.22)--(2.25) of quantum root vectors 
{Ẽ±

β,s}s∈Zβ∈Δ+ . Their images under Ψ of (2.10) in the shuffle algebra S of type Dn are 
as follows:

• If β = [i, j] with 1 ≤ i ≤ j < n or i = j = n, then for any s = si + · · · + sj used 
in (2.22):

Ψ(Ẽ+
[i,j],s)

. = ⟨1⟩j−i
v

denom[i,j]
· xsi+1

i,1 · · ·xsj−1+1
j−1,1 x

sj
j,1,

Ψ(Ẽ−
[i,j],s)

. = ⟨1⟩j−i
v

denom[i,j]
· xsi

i,1x
si+1+1
i+1,1 · · ·xsj+1

j,1 .

• If β = [i, n] with 1 ≤ i ≤ n− 2, then for any s = si + · · ·+ sn−2 + sn used in (2.23):

Ψ(Ẽ+
[i,n],s)

. = ⟨1⟩n−i−1
v

denom[i,n]
· xsi+1

i,1 · · ·xsn−2+1
n−2,1 xsn

n,1,

Ψ(Ẽ−
[i,n],s)

. = ⟨1⟩n−i−1
v

denom[i,n]
· xsi

i,1x
si+1+1
i+1,1 · · ·xsn−2+1

n−2,1 xsn+1
n,1 .

• If β = [i, n, n− 1] with 1 ≤ i ≤ n− 2, then for any s = si + · · · + sn−2 + sn−1 + sn
used in (2.24):

Ψ(Ẽ+
[i,n,n−1],s)

. = ⟨1⟩n−i
v

denom[i,n,n−1]
· xsi+1

i,1 · · ·xsn−3+1
n−3,1 x

sn−2+2
n−2,1 x

sn−1
n−1,1x

sn
n,1,

Ψ(Ẽ−
[i,n,n−1],s)

. = ⟨1⟩n−i
v

denom[i,n,n−1]
· xsi

i,1x
si+1+1
i+1,1 · · ·xsn−2+1

n−2,1 x
sn−1+1
n−1,1 xsn+1

n,1 .

• If β = [i, n, j] with 1 ≤ i < j ≤ n − 2, then for any decomposition s = si + · · · +
sj−1 + 2sj + · · · + 2sn−2 + sn−1 + sn used in (2.25), we have:

Ψ(Ẽ+
[i,n,j],s)

. = ⟨1⟩2n−i−j−1
v

denom[i,n,j]
· g1 ·

n−2∏︂
ℓ=j 

(v2xℓ,1 − xℓ,2)(v2xℓ,2 − xℓ,1),

Ψ(Ẽ−
[i,n,j],s)

. = ⟨1⟩2n−i−j−1
v

denom[i,n,j]
· g2 ·

n−2∏︂
ℓ=j 

(v2xℓ,1 − xℓ,2)(v2xℓ,2 − xℓ,1),

where
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g1 =
j−2∏︂
ℓ=i 

xsℓ+1
ℓ,1 x

sj−1+2
j−1,1 (xj,1xj,2)sj

n−2 ∏︂
ℓ=j+1

(xℓ,1xℓ,2)sℓ+1x
sn−1+1
n−1,1 xsn+1

n,1 ,

g2 = xsi
i,1

j−1 ∏︂
ℓ=i+1

xsℓ+1
ℓ,1

n−2∏︂
ℓ=j 

(xℓ,1xℓ,2)sℓ+1x
sn−1+1
n−1,1 xsn+1

n,1 .

Proof. Straightforward computation. □
For more general quantum root vectors Eβ,s defined in (2.17), we have:

Lemma 4.2. For any s ∈ Z and any choices of sk and λk in (2.17), we have:

ϕβ (Ψ (Eβ,s))
. = ⟨1⟩|β|−1

v · ws+|β|−1
β,1 ∀ (β, s) ∈ Δ+ × Z. (4.1)

Proof. It suffices to treat the cases of β = [i, n, j] with i < j ≤ n − 2, since the other 
cases follow from type An−1 results of [26, Lemma 1.4].

Let us first verify (4.1) for β = [i, n, n − 2]. Recall that Eβ,s = [Eα,r, en−2,sn−i+2 ]λ
with α = [i, n, n− 1], r = s1 + · · · + sn−i+1, and λ ∈ vZ, so that

ϕβ(Ψ(Eβ,s)) = ϕβ

(︁
Ψ(Eα,r) ⋆ Ψ(en−2,sn−i+2)

)︁− λϕβ

(︁
Ψ(en−2,sn−i+2) ⋆ Ψ(Eα,r)

)︁
.

First, we claim that ϕβ

(︁
Ψ(Eα,r) ⋆ Ψ(en−2,sn−i+2)

)︁
= 0. To this end, we note that

Ψ(Eα,r) ⋆ Ψ(en−2,sn−i+2) =
∑︂
σ∈𝔖2

Fβ(. . . , xn−2,σ(1), xn−2,σ(2), . . . ), (4.2)

where

Fβ = Ψ(Eα,r)(xi,1, . . . , xn,1)Ψ(en−2,sn−i+2)(xn−2,2)×

ζ

(︃
xn−3,1

xn−2,2

)︃
ζ

(︃
xn−2,1

xn−2,2

)︃
ζ

(︃
xn−1,1

xn−2,2

)︃
ζ

(︃
xn,1

xn−2,2

)︃
.

Let us show that the ϕβ-specialization of each σ(Fβ) in the symmetrization (4.2) vanishes:

• if x(β,1)
n−2,2 is plugged into Ψ(Eα,r), then x(β,1)

n−2,1 is plugged into Ψ(en−2,sn−i+2) and so 

the ϕ(1)
β -specialization of the corresponding summand vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
n−3,1

x
(β,1)
n−2,1

)︃
;

• if x(β,1)
n−2,2 is plugged into Ψ(en−2,sn−i+2), then ζ

(︃
x
(β,1)
n−3,1

x
(β,1)
n−2,2

)︃
ζ

(︃
x
(β,1)
n−2,1

x
(β,1)
n−2,2

)︃
ζ

(︃
x
(β,1)
n−1,1

x
(β,1)
n−2,2

)︃
con

tributes B[i,n,n−2] = (wβ,1 −w′
β,1)(wβ,1 − v−4w′

β,1) into the ϕ(1)
β -specialization of the 

corresponding summand, and so the ϕβ-specialization vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
n,1

x
(β,1)
n−2,2

)︃
.
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The evaluation of ϕβ

(︁
Ψ(en−2,sn−i+2) ⋆ Ψ(Eα,r)

)︁
proceeds in a similar way, treating two 

cases:

• if x(β,1)
n−2,2 is plugged into Ψ(Eα,r), then x(β,1)

n−2,1 is plugged into Ψ(en−2,sn−i+2) and so 

the ϕ(1)
β -specialization of the corresponding summand vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
n−2,1

x
(β,1)
n−1,1

)︃
;

• if x(β,1)
n−2,2 is plugged into Ψ(en−2,sn−i+2), then ζ

(︃
x
(β,1)
n−2,2

x
(β,1)
n−3,1

)︃
ζ

(︃
x
(β,1)
n−2,2

x
(β,1)
n−2,1

)︃
ζ

(︃
x
(β,1)
n−2,2

x
(β,1)
n−1,1

)︃
con

tributes B[i,n,n−2] into the ϕ(1)
β -specialization of the corresponding summand, so that 

the overall ϕβ-specialization of the corresponding summand has the form

. =
{︂
⟨1⟩|α|−1

v w
r+|α|−1
β,1 (w′

β,1)sn−i+2(w′
β,1 − v2wβ,1)

}︂
w′

β,1 ↦→wβ,1

. = ⟨1⟩|β|−1
v · ws+|β|−1

β,1 ,

where we used ϕα(Eα,r)
. = ⟨1⟩|α|−1

v · wr+|α|−1
α,1 and utilized the remaining ζ-factor 

ζ

(︃
x
(β,1)
n−2,2

x
(β,1)
n,1

)︃
.

This completes our proof of (4.1) for β = [i, n, n− 2].
We now verify (4.1) for β = [i, n, j] assuming it holds for any β′ = [i, n, k] with j < k ≤

n−2. Recall that Eβ,s = [Eα,r, ej,s2n−i−j
]λ with α = [i, n, j+1], r = s1 + · · ·+s2n−i−j−1, 

and λ ∈ vZ. Similarly to the previous case, we claim that ϕβ

(︁
Ψ(Eα,r) ⋆ Ψ(ej,s2n−i−j

)
)︁

=
0. Indeed:

• if x(β,1)
j,2 is plugged into Ψ(Eα,r), then x(β,1)

j,1 is plugged into Ψ(ej,s2n−i−j
) and so 

the ϕ(1)
β -specialization of the corresponding summand vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
j−1,1

x
(β,1)
j,1

)︃
;

• if x(β,1)
j,2 is plugged into Ψ(ej,s2n−i−j

), then the ϕ(1)
β -specialization of the corresponding 

summand vanishes again, due to the presence of the ζ-factor ζ
(︃

x
(β,1)
j+1,2

x
(β,1)
j,2

)︃
.

The evaluation of ϕβ

(︁
Ψ(ej,s2n−i−j

) ⋆ Ψ(Eα,r)
)︁

proceeds by analyzing similar two cases:

• if x(β,1)
j,2 is plugged into Ψ(Eα,r), then x(β,1)

j,1 is plugged into Ψ(ej,s2n−i−j
) and so 

the ϕ(1)
β -specialization of the corresponding summand vanishes due to the ζ-factor 

ζ

(︃
x
(β,1)
j,1

x
(β,1)
j+1,1

)︃
;

• if x(β,1)
j,2 is plugged into Ψ(ej,s2n−i−j

), then by the induction we know that 
ϕ

(1)
α (Ψ(Eα,r)) is divisible by Bα, and thus evoking the product of ζ-factors 
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ζ

(︃
x
(β,1)
j,2

x
(β,1)
j−1,1

)︃
ζ

(︃
x
(β,1)
j,2

x
(β,1)
j,1

)︃
ζ

(︃
x
(β,1)
j,2

x
(β,1)
j+1,1

)︃
, we see that the ϕ(1)

β -specialization of the corre

sponding summand is divisible by Bβ . Moreover, after dividing by Bβ , we know 
by the induction assumption that the overall ϕβ-specialization of the corresponding 
summand is

. =
{︂
⟨1⟩|α|−1

v w
r+|α|−1
β,1 (w′

β,1)s2n−i−j (vj+3−2nw′
β,1 − vj+5−2nw′

β,1)
}︂
w′

β,1 ↦→wβ,1

. =⟨1⟩|β|−1
v · ws+|β|−1

β,1 ,

where we used ϕα(Eα,r)
. = ⟨1⟩|α|−1

v · wr+|α|−1
α,1 and utilized the remaining ζ-factor 

ζ

(︃
x
(β,1)
j,2

x
(β,1)
j+1,2

)︃
.

This completes our proof of (4.1) for any β = [i, n, j] with i < j ≤ n− 2. □
Let us now generalize the above lemma by computing ϕd(Ψ(Eh)) for any h ∈ Hk,d. 

Similarly to Proposition 3.3, we have:

Proposition 4.3. For a summand σ(Fh) in the symmetrization (3.10), we have ϕd(σ(Fh) ) =
0 unless for any β ∈ Δ+ and 1 ≤ s ≤ dβ, there is s′ with 1 ≤ s′ ≤ dβ so that

o(x(β,s′)
i,t ) = (β, s) for any i ∈ β and 1 ≤ t ≤ νβ,i, (4.3)

that is we plug the variables x(β,s′)
∗,∗ into the same function Ψ(Eβ,rβ(h,s)).

Proof. We shall use the same notation and argument as in the proof of Proposition 3.3. 
Fix (γ, p) with γ ∈ Δ+ and 1 ≤ p ≤ dγ . It suffices to prove that if (4.3) holds for any 
(β, s) < (γ, p), then ϕd(σ(Fh)) = 0 unless (4.3) holds for (γ, p). The proof proceeds by 
an induction on n.
Step 1 (base of induction): Verification for type D4.

• Case 1: γ < [1, 4, 2]. Suppose o(x(η,r)
1,1 ) = (γ, p). If η ̸= [1, 4, 2], then due 

to the A3-type results we know that ϕd(σ(Fh)) = 0 unless η = γ and we 
plug all the variables x(γ,r)

∗,∗ into Ψ(Eγ,rγ(h,p)). If η = [1, 4, 2], then due to the 

ζ-factors ζ
(︃

x
(η,r)
1,1

x
(η,r)
2,1

)︃
ζ

(︃
x
(η,r)
2,1

x
(η,r)
3,1

)︃
ζ

(︃
x
(η,r)
2,1

x
(η,r)
4,1

)︃
, we know that ϕd(σ(Fh)) = 0 unless 

o(x(η,r)
1,1 ) ≥ o(x(η,r)

2,1 ) ≥ o(x(η,r)
3,1 ) & o(x(η,r)

4,1 ). Since we already plugged variables into 
all Ψ(Eβ,rβ(h,s)) with (β, s) < (γ, p), we must have

o(x(η,r)
1,1 ) = o(x(η,r)

2,1 ) = o(x(η,r)
3,1 ) = o(x(η,r)

4,1 ) = (γ, p),
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and o(x(η,r)
2,2 ) > (γ, p). Then the ζ-factors ζ

(︃
x
(η,r)
1,1

x
(η,r)
2,2

)︃
ζ

(︃
x
(η,r)
2,1

x
(η,r)
2,2

)︃
ζ

(︃
x
(η,r)
3,1

x
(η,r)
2,2

)︃
contribute 

Bη = (wη,r −w′
η,r)(wη,r − v−4w′

η,r) into the ϕ(1)
η -specialization of the corresponding 

summand, and so the overall ϕη-specialization vanishes due to the ζ-factor ζ
(︃

x
(η,r)
4,1

x
(η,r)
2,2

)︃
.

• Case 2: γ = [1, 4, 2]. Suppose o(x(η,r)
1,1 ) = (γ, p). Since 1 ∈ η and we already plugged 

variables into all Ψ(Eβ,rβ(h,s)) with (β, s) < (γ, p) satisfying the rules (4.3), we have 
η = γ. By the above argument in Case 1, we know that ϕd(σ(Fh)) = 0 unless we 
plug all the variables x(γ,r)

∗,∗ into Ψ(Eγ,rγ(h,p)).
• Case 3: γ > [1, 4, 2]. We can use type A2 results.

Thus the proposition is true for type D4.

Step 2 (step of induction): Assuming the validity for type Dn−1, let us prove it for Dn.
To this end we present case-by-case study:

• Case 1: γ ≤ [1, n, 3]. Suppose o(x(η,r)
1,1 ) = (γ, p), so that η ≥ γ.

– If η ≤ [1, n, n− 1], then the result follows from An−1-type case.
– If η = [1, n, n− 2], then we know that ϕd(σ(Fh)) = 0 unless

(γ, p) = o(x(η,r)
1,1 ) = · · · = o(x(η,r)

n−1,1) = o(x(η,r)
n,1 ).

If o(x(η,r)
n−2,2) ̸= (γ, p), then o(x(η,r)

n−2,2) > (γ, p), and so the product of ζ-factors

ζ

(︄
x

(η,r)
n−3,1

x
(η,r)
n−2,2

)︄
ζ

(︄
x

(η,r)
n−2,1

x
(η,r)
n−2,2

)︄
ζ

(︄
x

(η,r)
n−1,1

x
(η,r)
n−2,2

)︄
ζ

(︄
x

(η,r)
n,1

x
(η,r)
n−2,2

)︄

contributes (wη,r − v−4w′
η,r)(wη,r −w′

η,r)2 into the ϕ(1)
η -specialization of the sum

mand. Since the factor (2.42) contains a single copy of (wη,r − w′
η,r), we thus get 

ϕd(σ(Fh)) = 0.
– If η = [1, n, j] with 2 ≤ j < n − 2, then by the induction assumption applied to 

η̃ = [1, n, j + 1] we know that ϕd(σ(Fh)) = 0 unless

(γ, p) = o(x(η,r)
1,1 ) = · · · = o(x(η,r)

n,1 ) = o(x(η,r)
n−1,1) = o(x(η,r)

n−2,2) = · · · = o(x(η,r)
j+1,2).

If o(x(η,r)
j,2 ) ̸= (γ, p), then o(x(η,r)

j,2 ) > (γ, p) and so ϕd(σ(Fh)) = 0 due to ζ
(︃

x
(η,r)
j+1,2

x
(η,r)
j,2

)︃
.

• Case 2: γ = [1, n, 2]. Suppose o(x(η,r)
1,1 ) = (γ, p). If (4.3) holds for any (β, s) < (γ, p), 

then η = γ and ϕd(σ(F )) = 0 unless we plug all the variables x(η,r)
∗,∗ into Ψ(Eγ,rγ(h,p)).

• Case 3: γ > [1, n, 2]. If (4.3) holds for any (β, s) < ([2], 1), then we can use the 
induction assumption for Dn−1 to conclude ϕd(σ(F )) = 0 unless (4.3) holds for all 
(γ, p).
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This completes the proof. □
Completely analogously to Propositions 3.4 and 3.6, one can use Proposition 4.3 to 

evaluate ϕd′(Ψ(Eh)) for any d′ ≤ d ∈ KP(k) and h ∈ Hk,d:

Proposition 4.4. (a) For any h ∈ Hk,d, we have

ϕd(Ψ(Eh)) . =
β<β′∏︂

β,β′∈Δ+

Gβ,β′ ·
∏︂

β∈Δ+

(︂
⟨1⟩dβ(|β|−1)

v ·Gβ

)︂
·
∏︂

β∈Δ+

Pλh,β
, (4.4)

where the factors {Pλh,β
}β∈Δ+ are given by (3.16), the terms Gβ,β′ , Gβ are products 

of linear factors wβ,s and wβ,s − vZwβ′,s′ which are independent of h ∈ Hk,d and are 
𝔖d-symmetric.
(b) Lemma 2.9 is valid for type Dn, with ϕd of (2.40)--(2.43).

Remark 4.5. The factors {Gβ}β∈Δ+ featuring in (4.4) are explicitly given by:

• If β ̸= [i, n, j] with 1 ≤ i < j ≤ n− 2, then

Gβ =
∏︂

1≤s≤dβ

w
|β|−1
β,s

∏︂
1≤s ̸=s′≤dβ

(wβ,s − v2wβ,s′)|β|−1. (4.5)

• If β = [i, n, j] with 1 ≤ i < j ≤ n− 2, then

Gβ =
∏︂

1≤s≤dβ

w
|β|−1
β,s

∏︂
1≤s ̸=s′≤dβ

(wβ,s − v2wβ,s′)|β|−1×

∏︂
1≤s ̸=s′≤dβ

n−2∏︂
ℓ=j 

{︁
(wβ,s − v2n−2ℓwβ,s′)(wβ,s − v2n−2ℓ−4wβ,s′)

}︁
.

(4.6)

The factors Gβ,β′ featuring in (4.4) can be computed recursively, which shall be used 
in the proof of our next result:

Proposition 4.6. Lemma 2.10 is valid for type Dn, with ϕd of (2.40)--(2.43).

Proof. The proof closely follows that of Proposition 3.8. In particular, for any pair β ≤
β′, let us consider

d =
{︄{︁

dβ = 2, and dγ = 0 for other γ
}︁

if β = β′{︁
dβ = dβ′ = 1, and dγ = 0 for other γ

}︁
if β < β′
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as before, and let d ∈ KP(k). Similarly to C-type, it then suffices to show that for any 
F ∈ Sk, ϕd(F ) is divisible by Gβ,β′ if ϕd′(F ) = 0 for any d′ < d, where we use Gβ,β = Gβ . 
Using type An results and the induction, we still have the following cases to analyze:

• β = β′ = [1, n, j] with 2 ≤ j ≤ n− 2.
According to Remark 4.5, we have

Gβ = wβ,1wβ,2(wβ,1 − v±2wβ,2)(wβ,1 − v±(2n−2j)wβ,2)(wβ,1 − v±(2n−2j−4)wβ,2) ·Gα

for α = [1, n, j + 1]. For any F ∈ Sk, as we specialize all the variables but 
{x(β,1)

j,2 , x
(β,2)
j,2 }, the wheel conditions involving the specialized variables produce the 

factor Gα by the induction assumption. As we specialize x(β,1)
j,2 , the wheel conditions

x
(β,1)
j,2 = v2x

(β,1)
j,1 = vx

(β,1)
j−1,1, x

(β,1)
j,1 = v2x

(β,1)
j,2 = vx

(β,1)
j+1,1

contribute the factor Bβ/Bα = (wβ,1 − v−2n+2jw′
β,1)(wβ,1 − v−2n+2j+4w′

β,1) to the 

first step of the specialization ϕ(1)
β (F ), cf. (2.41). Then in the second step of the 

specialization, cf. (2.43), we divide by Bβ/Bα and specialize w′
β,1 ↦→ wβ,1, w

′
β,2 ↦→

wβ,2. Then the wheel conditions

x
(β,1)
j+1,2 = v2x

(β,2)
j+1,2 = vx(β,1)

j,2 , x
(β,1)
j,2 = v2x

(β,2)
j,1 = vx(β,2)

j−1,1, x
(β,2)
j,1 = v2x

(β,1)
j,2 = vx(β,2)

j+1,1,

contribute the factor (wβ,1 − v2wβ,2)(wβ,1 − v2n−2jwβ,2)(wβ,1 − v2n−2j−4wβ,2) to 
ϕd(F ). Thus, from the symmetry, we see that ϕd(F ) is indeed divisible by Gβ .

• β = [1, i], β′ = [1, n, n− 1].
If i ≤ n−3, then Gβ,β′ = G[1,i],[1,n−2], so ϕd(F ) is divisible by Gβ,β′ due to type An.
If i = n− 2, then

Gβ,β′ = (wβ,1 − wβ′,1) ·Gβ,α with α = [1, n− 1].

As we specialize all the variables but x(β′,1)
n,1 , the wheel conditions involving the 

specialized variables produce the factor Gβ,α by the induction assumption. As we 

specialize x(β′,1)
n,1 , consider d′ = {d′[1,n−1] = d′[1,n] = 1, and d′γ = 0 for other γ}. Then 

d′ < d and ϕd′(F ) = 0 implies that ϕd(F ) is divisible by wβ,1 − wβ′,1, and hence by 
Gβ,β′ .
If i = n− 1, then

Gβ,β′ = (wβ,1 − v−2wβ′,1) ·Gβ,α with α = [1, n].

By the induction assumption and the wheel conditions F = 0 at x(β′,1)
n−1,1 = v2x

(β,1)
n−1,1 =

vx
(β,1)
n−2,1, we see that ϕd(F ) is divisible by Gβ,β′ .
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If i = n, then

Gβ,β′ = (wβ,1 − v±2wβ′,1) ·Gα,α′ with α = [1, n− 2], α′ = [1, n].

By the induction assumption and wheel conditions F = 0 at x(β,1)
n−2,1 = v2x

(β′,1)
n−2,1 =

vx
(β′,1)
n−1,1 and x(β′,1)

n,1 = v2x
(β,1)
n,1 = vx

(β,1)
n−2,1 we see that ϕd(F ) is divisible by Gβ,β′ .

• β = [1, i], β′ = [1, n, n− 2].
If i ≤ n−4, then Gβ,β′ = G[1,i],[1,i+1], so ϕd(F ) is divisible by Gβ,β′ , due to type An.
If i = n− 3, then

Gβ,β′ = (wβ,1 − v−2wβ′,1) ·Gβ,α with α = [1, n, n− 1].

Consider d′ = {d′[1,n−2] = d′[1,n,n−1] = 1, and d′γ = 0 for other γ}. Then d′ < d and 
ϕd′(F ) = 0 implies that ϕd(F ) is divisible by wβ,1 − v−2wβ′,1, and hence by Gβ,β′ .
If i = n− 2, then

Gβ,β′ = (wβ,1 − v−4wβ′,1) ·Gβ,α with α = [1, n, n− 1].

From induction assumption and the wheel condition F = 0 at x(β′,1)
n−2,2 = v2x

(β,1)
n−2,1 =

vx
(β,1)
n−3,1 we see that ϕd(F ) is divisible by Gβ,β′ .

If i = n− 1, then

Gβ,β′ = (wβ,1 − wβ′,1)(wβ,1 − v−4wβ′,1) ·Gβ,α with α = [1, n, n− 1].

Due to the induction assumption and the wheel conditions F = 0 at x(β′,1)
n−2,2 =

v2x
(β,1)
n−2,1 = vx

(β,1)
n−3,1 and x(β,1)

n−2,1 = v2x
(β′,1)
n−2,2 = vx

(β,1)
n−1,1, we see that ϕd(F ) is divisible 

by Gβ,β′ .
If i = n, then

Gβ,β′ = (wβ,1 − v±2wβ′,1) ·Gα,β′ with α = [1, n− 2].

By the induction assumption and the wheel conditions F = 0 at x(β′,1)
n,1 = v2x

(β,1)
n,1 =

vx
(β,1)
n−2,1 and x(β,1)

n−2,1 = v2x
(β′,1)
n−2,1 = vx

(β,1)
n,1 we see that ϕd(F ) is divisible by Gβ,β′ .

• β = [1, i], β′ = [1, n, j] with 2 ≤ j ≤ n− 3.
If i ≤ j − 2, then Gβ,β′ = G[1,i],[1,j−1], and so ϕd(F ) is divisible by Gβ,β′ .
If i = j − 1 and j ≥ 3, then

Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v−2n+2j+2wβ′,1) ·G[1,j−2],β′ .

As we specialize the remaining variable x(β,1)
j−1,1, the wheel conditions F = 0 at 

x
(β′,1)
j−1,1 = v2x

(β,1)
j−1,1 = vx

(β′,1)
j,1 and x(β,1)

j−1,1 = v2x
(β′,1)
j−1,1 = vx

(β′,1)
j−2,1 contribute the fac

tor (wβ,1 − v±2wβ′,1) into ϕd(F ). Consider d′ = {d′[1,j] = d′[1,n,j+1] = 1, and d′γ =
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0 for other γ}. Then d′ < d and ϕd′(F ) = 0 implies that ϕd(F ) is divisible by 
wβ,1 − v−2n+2j+2wβ′,1. Combining this with the induction assumption we see that 
ϕd(F ) is divisible by Gβ,β′ .
If i = j − 1 and j = 2, then β = [1], and Gβ,β′ = (wβ,1 − v−2n+6wβ′,1) · G[1],[1,n,3]. 
Consider d′ = {d′[1,2] = d′[1,n,3] = 1, and d′γ = 0 for other γ}. Then d′ < d and 
ϕd′(F ) = 0 implies that ϕd(F ) is divisible by wβ,1 − v−2n+6wβ′,1. Combining this 
with the induction assumption we see that ϕd(F ) is divisible by Gβ,β′ .
If i = j, then Gβ,β′ = (wβ,1 − v−2n+2jwβ′,1) ·Gβ,[1,n,j+1]. From the wheel condition 

F = 0 at x(β′,1)
j,2 = v2x

(β,1)
j,1 = vx

(β,1)
j−1,1, we see that ϕd(F ) is divisible by (wβ,1 −

v−2n+2jwβ′,1), which together with the induction assumption implies the divisibility 
by Gβ,β′ .
If i ≥ j + 1, then

Gβ,β′ = (wβ,1−v−2n+2jwβ′,1)(wβ,1−v−2n+2j+4wβ′,1) ·Gβ,α with α = [1, n, j+1].

As we specialize all the variables but x(β′,1)
j,2 , the wheel conditions involving the 

specialized variables produce the factor Gβ,α by the induction assumption. As we 

specialize x(β′,1)
j,2 , the wheel conditions at x(β′,1)

j,2 = v2x
(β′,1)
j,1 = vx

(β′,1)
j−1,1 and x(β′,1)

j,1 =
v2x

(β′,1)
j,2 = vx

(β′,1)
j+1,1 contribute the factor Bβ′/Bα = (wβ′,1 − v−2n+2jw′

β′,1)(wβ′,1 −
v−2n+2j+4w′

β′,1) to the first step of the specialization ϕ(1)
β (F ), cf. (2.41). Then in 

the second step of the specialization, cf. (2.43), we divide by Bβ′/Bα and specialize 

w′
β′,1 ↦→ wβ′,1. The wheel conditions F = 0 at x(β′,1)

j,2 = v2x
(β,1)
j,1 = vx

(β,1)
j−1,1 and 

x
(β,1)
j,1 = v2x

(β′,1)
j,2 = vx

(β,1)
j+1,1 contribute the extra factor (wβ,1 − v−2n+2jwβ′,1)(wβ,1 −

v−2n+2j+4wβ′,1) into ϕd(F ). Thus ϕd(F ) is divisible by Gβ,β′ .
• β = [1, n, n− 1], β′ = [1, n, j] with 2 ≤ j ≤ n− 2.

If j = n− 2, then

Gβ,β′ = (wβ,1 − wβ′,1)(wβ,1 − v−2wβ′,1)(wβ,1 − v−4wβ′,1) ·Gβ .

By the induction assumption and the wheel conditions F = 0 at

x
(β,1)
n−2,1 = v2x

(β′,1)
n−2,2 = vx

(β,1)
n,1 , x

(β′,1)
n−2,2 = v2x

(β,1)
n−2,1 = vx

(β,1)
n−3,1,

x
(β′,1)
n−1,2 = v2x

(β,1)
n−1,1 = vx

(β′,1)
n−2,2

we see that ϕd(F ) is divisible by Gβ,β′ .
If j < n− 2, then

Gβ,β′ = (wβ,1 − v−2n+2jwβ′,1)(wβ,1 − v−2n+2j+4wβ′,1) ·Gβ,[1,n,j+1],

and we can apply the same arguments as for (β, β′) = ([1, j + 1], [1, n, j]).
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• β = [1, n, k], β′ = [1, n, j].
If j > 2, then Gβ,β′ = (wβ,1 − v±2wβ′,1) ·G[2,n,k],[2,n,j], and so ϕd(F ) is divisible by 

Gβ,β′ due to the induction assumption and wheel conditions at x(β,1)
2,1 = v2x

(β′,1)
2,1 =

vx
(β′,1)
1,1 and x(β′,1)

2,1 = v2x
(β,1)
2,1 = vx

(β,1)
1,1 .

If j = 2 and k > 3, then Gβ,β′ = (wβ,1−v−2n+4wβ′,1)(wβ,1−v−2n+8wβ′,1) ·Gβ,[1,n,3]. 
From the wheel conditions F = 0 at x(β′,1)

2,2 = v2x
(β,1)
2,1 = vx

(β,1)
1,1 , x(β,1)

2,1 = v2x
(β′,1)
2,2 =

vx
(β,1)
3,1 , and the induction assumption we see that ϕd(F ) is divisible by Gβ,β′ .

If j = 2 and k = 3, then

Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v2n−6wβ′,1)(wβ,1 − v2n−10wβ′,1) ·G[1,n,4],[1,n,2].

Due to the induction assumption and the wheel conditions F = 0 at

x
(β,1)
3,2 = v2x

(β′,1)
3,2 = vx

(β′,1)
4,2 , v2x

(β,1)
3,2 = x

(β′,1)
3,2 = vx

(β′,1)
2,2 ,

x
(β,1)
3,2 = v2x

(β′,1)
3,1 = vx

(β′,1)
2,1 , v2x

(β,1)
3,2 = x

(β′,1)
3,1 = vx

(β′,1)
4,1 ,

we see that ϕd(F ) is divisible by Gβ,β′ .
• β′ ≥ [2] > β.

If β = [1, i] and β′ = [2, n, j], then Gβ,β′ = (wβ,1 − wβ′,1) · G[2,i],β′ . Consider d′ =
{d′[1,n,j] = d′[2,i] = 1, and d′γ = 0 for other γ}. Then ϕd(F ) is divisible by Gβ,β′ due 
to the induction assumption and ϕd′(F ) = 0.
If β = [1, n, 3] and β′ = [2, j], then Gβ,β′ = (wβ,1 − v±2wβ′,1)(wβ,1 − v2n−6wβ′,1) ·
Gβ,[3,j]. Consider d′ = {d′[1,n,2] = d′[3,j] = 1, and d′γ = 0 for other γ}, so that d′ < d. 
Then ϕd(F ) is divisible by Gβ,β′ due to the induction assumption, the condition 

ϕd′(F ) = 0, and wheel conditions at x(β,1)
2,1 = v2x

(β′,1)
2,1 = vx

(β,1)
3,1 , v2x

(β,1)
2,1 = x

(β′,1)
2,1 =

vx
(β,1)
1,1 .

If β = [1, n, i] and β′ = [2, n, j] with i > j, then Gβ,β′ = (wβ,1 − wβ′,1) · G[2,n,i],β′ . 
Consider d′ = {d′[1,n,j] = d′[2,n,i] = 1, and d′γ = 0 for other γ}, so that d′ < d. 
Then ϕd(F ) is divisible by Gβ,β′ due to the induction assumption and the condition 
ϕd′(F ) = 0.
For all other cases, the divisibility of ϕd(F ) by Gβ,β′ follows from the induction 
assumption and proper count of wheel conditions similarly to the cases above.

This completes our proof. □
Combining Propositions 4.4 and 4.6, we immediately obtain the shuffle algebra real

ization and the PBWD theorem for U>
v (L𝔬2n):

Theorem 4.7. (a) Ψ : U>
v (L𝔬2n) ∼ −→ S of (2.10) is a Q(v)-algebra isomorphism.

(b) For any choices of sk and λk in the definition (2.17) of quantum root vectors Eβ,s, 
the ordered PBWD monomials {Eh}h∈H from (2.27) form a Q(v)-basis of U>

v (L𝔬2n).
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4.2. Shuffle algebra realization of the Lusztig integral form in type D

For any k ∈ Nn, consider the Z[v, v−1]-submodule Sk of Sk consisting of rational 
functions F satisfying the following two conditions:

(1) If f denotes the numerator of F from (2.5), then

f ∈ Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤n ]𝔖k . (4.7)

(2) For any d ∈ KP(k), the specialization ϕd(F ) is divisible by the product∏︂
β∈Δ+

⟨1⟩dβ(|β|−1)
v . (4.8)

Define S :=
⨁︁

k∈Nn Sk and recall the Lusztig integral form U>
v (L𝔬2n) from Defini

tion 2.4. Then, similarly to Proposition 3.10, we have:

Proposition 4.8. Ψ(U>
v (L𝔬2n)) ⊂ S.

Proof. For any m ∈ N, 1 ≤ i1, . . . , im ≤ n, r1, . . . , rm ∈ Z, ℓ1, . . . , ℓm ∈ N, let

F := Ψ
(︁
E(ℓ1)

i1,r1
· · ·E(ℓm)

im,rm

)︁
,

and f be the numerator of F from (2.5). The validity of the condition (4.7) for f follows 
from (3.25). To verify the validity of the divisibility (4.8), we need to show that for any 
β ∈ Δ+ and 1 ≤ s ≤ dβ , the total contribution of ϕd-specializations of the ζ-factors 
between the variables {x(β,s)

i,t }1≤t≤νβ,i

i∈β of f is divisible by ⟨1⟩|β|−1
v . It suffices to treat 

only the cases β = [i, n, j] with 1 ≤ i < j ≤ n − 2, since the other cases are treated 
completely analogously to type An. Similarly to the proof of Proposition 3.10, we shall 
use the notation o(x(∗,∗)

∗,∗ ) = q if a variable x(∗,∗)
∗,∗ is plugged into Ψ(E(ℓq)

iq,rq
).

According to (2.41), the ϕd-specialization of any summand in F vanishes unless

o(x(β,s)
i,1 ) ≥ o(x(β,s)

i+1,1) ≥ · · · ≥ o(x(β,s)
n−2,1) ≥ o(x(β,s)

n−1,1) & o(x(β,s)
n,1 ),

o(x(β,s)
n−2,2) ≥ o(x(β,s)

n−3,2) ≥ · · · ≥ o(x(β,s)
j,2 ).

Since o(x(β,s)
i,t ) ̸= o(x(β,s)

i′,t′ ) for i ̸= i′, we have strict inequalities:

o(x(β,s)
i,1 ) > o(x(β,s)

i+1,1) > · · · > o(x(β,s)
n−2,1) > o(x(β,s)

n−1,1) & o(x(β,s)
n,1 ),

o(x(β,s)
n−2,2) > o(x(β,s)

n−3,2) > · · · > o(x(β,s)
j,2 ).

With symmetry between the variables x(β,s)
n−1,1, x

(β,s)
n,1 , we may assume that o(x(β,s)

n−1,1) >

o(x(β,s)
n,1 ) in the following analysis. We have the following three cases to consider:
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• if o(x(β,s)
n−2,2) > o(x(β,s)

n−1,1) > o(x(β,s)
n,1 ), then the ζ-factors ζ

(︃
x
(β,s)
n−1,1

x
(β,s)
n−2,2

)︃
ζ

(︃
x
(β,s)
n,1

x
(β,s)
n−2,2

)︃
con

tribute (wβ,s − w′
β,s)2 to the ϕ(1)

β -specialization of the summand, and consecutively 
(wβ,s − w′

β,s) to the ϕβ-specialization (as Bβ of (2.42) contains only one factor 
(wβ,s − w′

β,s)), so that the ϕd-specialization of the corresponding summand in F
vanishes;

• if o(x(β,s)
n−1,1) > o(x(β,s)

n−2,2) > o(x(β,s)
n,1 ), then

o(x(β,s)
i,1 ) > · · · > o(x(β,s)

n−2,1) > o(x(β,s)
n−1,1) > o(x(β,s)

n−2,2) > o(x(β,s)
n−3,2) > · · · > o(x(β,s)

j,2 ),

so that the ζ-factors

n−2∏︂
ℓ=j 

{︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ−1,1

)︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ,1

)︄
ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ+1,1

)︄}︄
(4.9)

contribute Bβ to the ϕ
(1)
β -specialization of the summand, and thus the ϕd

specialization of the corresponding summand in F vanishes due to the remaining 

ζ-factor ζ
(︃

x
(β,s)
n,1

x
(β,s)
n−2,2

)︃
;

• if o(x(β,s)
n−1,1) > o(x(β,s)

n,1 ) > o(x(β,s)
n−2,2), then

o(x(β,s)
i,1 ) > · · · > o(x(β,s)

n−2,1) > o(x(β,s)
n−1,1) > o(x(β,s)

n,1 ) > o(x(β,s)
n−2,2) > · · · > o(x(β,s)

j,2 ).

The ζ-factors of (4.9) contribute Bβ to the ϕ(1)
β -specialization, and the remaining 

ζ-factors⎧⎨⎩
n−3∏︂
ℓ=j 

ζ

(︄
x

(β,s)
ℓ,2

x
(β,s)
ℓ+1,2

)︄⎫⎬⎭ ·
{︄

n−1 ∏︂
ℓ=i+1

ζ

(︄
x

(β,s)
ℓ,1

x
(β,s)
ℓ−1,1

)︄}︄
· ζ
(︄
x

(β,s)
n−2,2

x
(β,s)
n,1

)︄
ζ

(︄
x

(β,s)
n,1

x
(β,s)
n−2,1

)︄

contribute ⟨1⟩|β|−1
v to the ϕd-specialization of the corresponding summand in F .

This completes our proof. □
Recall the normalized divided powers (2.29) of the quantum root vectors 

{Ẽ±,(k)
β,s }k∈Nβ∈Δ+,s∈Z and the ordered monomials {Ẽϵ

h}h∈H of (2.30). For ϵ ∈ {±}, let 
Sϵ
k be the Z[v, v−1]-submodule of Sk spanned by {Ψ(Ẽϵ

h)}h∈Hk
. Then, the following 

analogue of Proposition 3.11 holds:

Proposition 4.9. For any F ∈ Sk and d ∈ KP(k), if ϕd′(F ) = 0 for all d′ ∈ KP(k) such 
that d′ < d, then there exists Fd ∈ Sϵ

k such that ϕd(F ) = ϕd(Fd) and ϕd′(Fd) = 0 for all 
d′ < d.
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Combining Propositions 4.8 and 4.9, we obtain the following upgrade of Theorem 4.7:

Theorem 4.10. (a) The Q(v)-algebra isomorphism Ψ : U>
v (L𝔬2n) ∼ −→S of Theorem 4.7(a) 

gives rise to a Z[v, v−1]-algebra isomorphism Ψ : U>
v (L𝔬2n) ∼ −→ S.

(b) Theorem 2.6 holds for 𝔤 of type Dn.

4.3. Shuffle algebra realization of the RTT integral form in type D

For any k ∈ Nn, consider the Z[v, v−1]-submodule 𝒮k of Sk consisting of rational 
functions F satisfying the following two conditions:

(1) If f denotes the numerator of F from (2.5), then

f ∈ ⟨1⟩|k|v · Z[v, v−1][{x±1
i,r }1≤r≤ki

1≤i≤n ]𝔖k , (4.10)

where |k| = |(k1, . . . , kn)| := k1 + · · · + kn.
(2) F is integral in the sense of [15, Definition 4.12]: the cross specialization

Υd,t(F ) := ϖt

(︄
ϕd(F ) 

⟨1⟩|k|v ·∏︁β∈Δ+ Gβ

)︄

is divisible by 
∏︁1≤r≤ℓβ

β∈Δ+ [tβ,r]v! (note that vβ = v for any β ∈ Δ+ in type Dn) for 
any d ∈ KP(k) and t = {tβ,r}1≤r≤ℓβ

β∈Δ+ satisfying (3.27), with ϖt of (3.26) and Gβ

of (4.5), (4.6); the divisibility of ϕd(F ) by Gβ is proved in Proposition 4.11.

We define 𝒮 :=
⨁︁

k∈Nn 𝒮k. Recall the RTT integral form 𝒰>
v (L𝔬2n) from Definition 2.7. 

Then, similarly to Proposition 3.13, we have:

Proposition 4.11. Ψ(𝒰>
v (L𝔬2n)) ⊂ 𝒮.

Proof. For any ϵ ∈ {±}, m ∈ N, β1, . . . , βm ∈ Δ+, r1, . . . , rm ∈ Z, let

F := Ψ
(︁ℰ̃ϵ

β1,r1 · · · ℰ̃ϵ
βm,rm

)︁
,

and f be the numerator of F . We set k =
∑︁m

q=1 βq. First, we note that the condition 
(4.10) follows from Lemma 4.1.

Next, we show that ϕd(F ) is divisible by 
∏︁

β∈Δ+ Gβ with Gβ of (4.5)--(4.6). Sim
ilarly to the proof of Proposition 3.13, we can expand 

∏︁m
ℓ=1 ℰ̃ϵ

βℓ,rℓ
as a linear com

bination of monomials 
∏︁k

ℓ=1 eiℓ,sℓ over Z[v, v−1], with k =
∑︁k

ℓ=1 αiℓ , and prove that 
each ϕd(Ψ(ei1,s1 · · · eik,sk)) is divisible by Gβ for any β ∈ Δ+. For β = [i, j] (with 
1 ≤ i ≤ j ≤ n) this follows from [25, Lemma 3.51]. It remains to treat the cases 
β = [i, n, n− 1] with 1 ≤ i ≤ n− 2, and β = [i, n, j] with 1 ≤ i < j ≤ n− 2. Henceforth, 
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we shall use the notation ô(x(∗,∗)
∗,∗ ) = q if a variable x(∗,∗)

∗,∗ is plugged into Ψ(eiq,sq ) for 
some 1 ≤ q ≤ k.

• β = [i, n, n− 1]. Fix any 1 ≤ s ̸= s′ ≤ dβ . We can assume that

ô(x(β,s)
i,1 ) > · · · > ô(x(β,s)

n−2,1) > ô(x(β,s)
n,1 ) & ô(x(β,s)

n−1,1),

ô(x(β,s′)
i,1 ) > · · · > ô(x(β,s′)

n−2,1) > ô(x(β,s′)
n,1 ) & ô(x(β,s′)

n−1,1),

as otherwise the corresponding term is specialized to zero under ϕd. Using the same 
analysis as for the variables (3.33) in type Cn, we see that the ϕd-specialization of 
the ζ-factors arising from the quadruples{︂

x
(β,s)
ℓ,1 , x

(β,s)
ℓ+1,1, x

(β,s′)
ℓ,1 , x

(β,s′)
ℓ+1,1

}︂
(i ≤ ℓ ≤ n− 2), 

{︂
x

(β,s)
n−2,1, x

(β,s)
n,1 , x

(β,s′)
n−2,1, x

(β,s′)
n,1

}︂
produces a total factor {(wβ,s − v2wβ,s′)(wβ,s′ − v2wβ,s)}n−i, which is Gβ of (4.5), 
up to a monomial.

• β = [i, n, j]. Fix any 1 ≤ s ̸= s′ ≤ dβ . According to (2.41), (2.43) and the analysis in 
the proof of Proposition 4.8, we can assume that

ô(x(β,t)
i,1 ) > ô(x(β,t)

i+1,1) > · · · >ô(x(β,t)
n−2,1) > ô(x(β,t)

n−1,1) & ô(x(β,t)
n,1 ) >

ô(x(β,t)
n−2,2) > ô(x(β,t)

n−3,2) > · · · > ô(x(β,t)
j,2 ), t = s or s′,

as otherwise the ϕd-specialization of the corresponding summand vanishes. Then, 
similarly to β = [i, n, n − 1] case, the ϕd-specialization of the ζ-factors arising from 
the following quadruples{︂

x
(β,s)
ℓ,1 , x

(β,s)
ℓ+1,1, x

(β,s′)
ℓ,1 , x

(β,s′)
ℓ+1,1

}︂
(i ≤ ℓ ≤ n− 2), 

{︂
x

(β,s)
n−2,1, x

(β,s)
n,1 , x

(β,s′)
n−2,1, x

(β,s′)
n,1

}︂
,{︂

x
(β,s)
ℓ+1,2, x

(β,s)
ℓ,2 , x

(β,s′)
ℓ+1,2, x

(β,s′)
ℓ,2

}︂
(j ≤ ℓ ≤ n− 3), 

{︂
x

(β,s)
n−1,1, x

(β,s)
n−2,2, x

(β,s′)
n−1,1, x

(β,s′)
n−2,2

}︂
,

produces a total contribution of the factor {(wβ,s−v2wβ,s′)(wβ,s′−v2wβ,s)}2n−i−j−1.
Next, for any j ≤ ℓ ≤ n− 2, let us consider the ζ-factors arising from the variables

{︁
x

(β,s)
ℓ,2 , x(β,s′)

ℓ−1,1 , x
(β,s′)
ℓ,1 , x(β,s′)

ℓ+1,1
}︁
, (4.11)

where we recall that ô(x(β,s′)
ℓ−1,1) > ô(x(β,s′)

ℓ,1 ) > ô(x(β,s′)
ℓ+1,1).

– If ô(x(β,s)
ℓ,2 ) > ô(x(β,s′)

ℓ−1,1), then the ζ-factors ζ
(︃

x
(β,s′)
ℓ−1,1

x
(β,s)
ℓ,2

)︃
ζ

(︃
x
(β,s′)
ℓ,1

x
(β,s)
ℓ,2

)︃
ζ

(︃
x
(β,s′)
ℓ+1,1

x
(β,s)
ℓ,2

)︃
con

tribute the overall factor (wβ,s − v2n−2ℓwβ,s′)(wβ,s − v2n−2ℓ−4wβ,s′) into the ϕd
specialization.
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– If ô(x(β,s′)
ℓ−1,1) > ô(x(β,s)

ℓ,2 ) > ô(x(β,s′)
ℓ+1,1), then the ζ-factors ζ

(︃
x
(β,s)
ℓ,2

x
(β,s′)
ℓ−1,1

)︃
ζ

(︃
x
(β,s′)
ℓ+1,1

x
(β,s)
ℓ,2

)︃
contribute the overall factor (wβ,s − v2n−2ℓwβ,s′)(wβ,s − v2n−2ℓ−4wβ,s′) into the 
ϕd-specialization.

– If ô(x(β,s′)
ℓ+1,1) > ô(x(β,s)

ℓ,2 ), then the ζ-factors ζ
(︃

x
(β,s)
ℓ,2

x
(β,s′)
ℓ+1,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s′)
ℓ,1

)︃
ζ

(︃
x
(β,s)
ℓ,2

x
(β,s′)
ℓ−1,1

)︃
con

tribute the overall factor (wβ,s − v2n−2ℓwβ,s′)(wβ,s − v2n−2ℓ−4wβ,s′) into the ϕd
specialization.

Thus the ϕd-specialization of the ζ-factors arising from the quadruples (4.11)
produces a total contribution of the factor 

∏︁n−2
ℓ=j {(wβ,s − v2n−2ℓwβ,s′)(wβ,s −

v2n−2ℓ−4wβ,s′)}. Therefore, the above contributions produce exactly the factor Gβ

of (4.6), up to a monomial.

Finally, to show that F is integral, it suffices to prove that under the Υd,t, the con
tribution of the ζ-factors between the variables x(∗,∗)

∗,∗ that got specialized to v?zβ,r is 
divisible by [tβ,r]v! for any β ∈ Δ+ and 1 ≤ r ≤ ℓβ , cf. (3.26). For β = [i, j], this follows 
from [25, Lemma 3.51]. Similarly, for β = [i, n, j] with i < j < n, we have not used 

ζ

(︃
x
(β,s)
i,1

x
(β,s′)
i,1

)︃
with 1 ≤ s ̸= s′ ≤ dβ for the divisibility of ϕd(F ) by Gβ , thus we can appeal 

to the ``rank 1'' computation of [25, Lemma 3.46] to deduce the required divisibility by 
[tβ,r]v!. □

Combining Propositions 4.4, 4.6, and 4.11, we obtain the following upgrade of Theo
rem 4.7:

Theorem 4.12. (a) The Q(v)-algebra isomorphism Ψ :U>
v (L𝔬2n) ∼ −→ S of Theorem 4.7(a)

gives rise to a Z[v, v−1]-algebra isomorphism Ψ : 𝒰>
v (L𝔬2n) ∼ −→ 𝒮.

(b) Theorem 2.8 holds for 𝔤 of type Dn.

5. Yangian counterpart

In this section, we generalize the results of Sections 3--4 to the Yangian case, thus 
establishing shuffle algebra realizations of Yangians and their Drinfeld-Gavarini duals in 
types Cn, Dn. This should be viewed as the ``rational vs trigonometric'' counterpart, 
where we replace factors z

w − vk by z − w − k
2 ħ. In particular, ζi,j(z) of (2.7) will be 

replaced by ζ̂i,j(z) = 1 + (αi,αj)·ħ
2z .

5.1. Yangians and their shuffle algebra realization

We still use the notations from Section 2. Let 𝔤 be a finite dimensional simple Lie 
algebra of type Cn or Dn. Following [3], the ``positive subalgebra'' of the Yangian of 
𝔤 in the new Drinfeld realization, denoted by Y >

ħ
(𝔤), is the Q[ħ]-algebra generated by 

{xi,r}r∈Ni∈I subject to the following defining relations:
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[xi,r+1, xj,s] − [xi,r, xj,s+1] = diaijħ

2 
(xi,rxj,s + xj,sxi,r) ∀ i, j ∈ I, r, s ∈ N,

Sym 
s1,...,s1−aij

[xi,s1 , [xi,s2 , · · · , [xi,s1−aij
, xj,r] · · · ]] = 0 ∀ i ̸= j, s1, . . . , s1−aij

, r ∈ N.

Analogously to (2.15)--(2.17), let us define the root vectors {Xβ,s}s∈Nβ∈Δ+ of Y >
ħ

(𝔤) in types 
Cn, Dn:

• Cn-type.
For β = [i1, . . . , iℓ] ̸= [i, n, i] and s ∈ N, we choose a decomposition s = s1 + · · ·+ sℓ
with s1, . . . , sℓ ∈ N. Then, we define

Xβ,s := [· · · [[xi1,s1 , xi2,s2 ], xi3,s3 ], · · · , xiℓ,sℓ ]. (5.1)

For β = [i, n, i] and s ∈ N, we choose a decomposition s = s1 + s2 with s1, s2 ∈ N, 
and consider the root vectors X[i,n−1],s1 ,X[i,n],s2 defined in (5.1). Then, we define

Xβ,s := [X[i,n−1],s1 ,X[i,n],s2 ]. (5.2)

• Dn-type.
For any β = [i1, . . . , iℓ] ∈ Δ+ and s ∈ N, we choose a decomposition s = s1 + · · ·+sℓ
with s1, . . . , sℓ ∈ N. Then, we define

Xβ,s := [· · · [[xi1,s1 , xi2,s2 ], xi3,s3 ], · · · , xiℓ,sℓ ]. (5.3)

In particular, we have the following specific choices of root vectors {X̃β,s}s∈Nβ∈Δ+ :

• For β = [i, n, i] and s ∈ N (𝔤 is of type Cn), we define

X̃[i,n,i],s := [[· · ·[xi,0, xi+1,0], · · · , xn−1,0], [[· · · [xi,0, xi+1,0], · · · , xn−1,0], xn,s]].

• Otherwise, for β = [i1, . . . , iℓ] and s ∈ N, we define

X̃β,s := [· · · [[xi1,s, xi2,0], xi3,0], · · · , xiℓ,0].

Let H denote the set of all functions h : Δ+×N → N with finite support. For any h ∈ H, 
we consider the ordered monomials

Xh =
→ ∏︂

(β,s)∈Δ+×N

Xh(β,s)
β,s and X̃h =

→ ∏︂
(β,s)∈Δ+×N

X̃h(β,s)
β,s . (5.4)

Then, similarly to [20] (cf. [12, Theorem B.3]), we have:

Theorem 5.1. The elements {X̃h}h∈H form a basis of the free Q[ħ]-module Y >
ħ

(𝔤).
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Proof. Comparing X̃β,s to the root vectors e(s)
β used in [12, (A.11)], we see that the only 

difference is in the root vectors X̃[i,n,i],s in Cn-type. However, the two key properties 
(B.1) and (B.2) of [12, Appendix B] still hold for our root vectors. Hence, the proof of 
[12, Theorem B.2] and thus of [12, Theorem B.3] still goes through. □

We define the shuffle algebra (W̄ , ⋆) analogously to the shuffle algebra (S, ⋆) of Sec
tion 2 with the following modifications:

• All rational functions F ∈ W̄ are defined over Q[ħ].
• The matrix (ζ̂i,j(z))i,j∈I is defined via

ζ̂i,j(z) = 1 + (αi, αj) · ħ
2z .

• (pole conditions) F ∈ W̄k has the form

F =
f({xi,r}1≤r≤ki

i∈I ) ∏︁aij ̸=0
i<j

∏︁1≤s≤kj

1≤r≤ki
(xi,r − xj,s)

, (5.5)

where f ∈ Q[ħ][{xi,r}1≤r≤ki

i∈I ]𝔖k and < is an arbitrary order on I.
• (wheel conditions) Let f be the numerator of F ∈ W̄k from (5.5), then

f({xi,r}1≤r≤ki

i∈I ) = 0 once xi,s1 = xi,s2 +diħ = · · · = xi,s1−aij
−diaijħ = xj,r− diaij

2 
ħ

(5.6)
for any i ̸= j such that aij ̸= 0, pairwise distinct 1 ≤ s1, . . . , s1−aij

≤ ki, and 
1 ≤ r ≤ kj .

• The shuffle product is defined like (2.8), but ζi,j(xi,r

xj,s
) are replaced by ζ̂i,j(xi,r−xj,s).

This definition is precisely engineered, so that the assignment xi,r ↦→ xr
i,1 ∈ W̄1i

(with 
i ∈ I, r ∈ N) gives rise to a Q[ħ]-algebra homomorphism

Ψ : Y >
ħ

(𝔤) −→ W̄ . (5.7)

Henceforth, we shall use the notation ≗ as in [15, (5.19)] (cf. (3.2)):

A ≗ B if A = c ·B for some c ∈ Q×.

We shall also use denomβ to denote the denominator in (5.5) for any F ∈ W̄β .
Then, we have the following straightforward analogues of Lemmas 3.1 and 4.1:
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Lemma 5.2. For type Cn, we have:

Ψ(X̃[i,j],s) ≗
ħ
j−ixs

i,1

denom[i,j]
for i ≤ j ≤ n,

Ψ(X̃[i,n,j],s) ≗
ħ

2n−i−jxs
i,1

denom[i,n,j]
(2xj−1,1 − xj,1 − xj,2)

×
n−2∏︂
ℓ=j 

Q̂(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2) for i < j < n,

Ψ(X̃[i,n,i],s) ≗
ħ

2n−2ixs
n,1

denom[i,n,i]

n−2∏︂
ℓ=i 

Q̂(xℓ,1, xℓ,2, xℓ+1,1, xℓ+1,2) for i < n,

where Q̂(x1, x2, y1, y2) = 4(x1x2 + y1y2) − 2(x1 + x2)(y1 + y2) + ħ
2.

Lemma 5.3. For type Dn, we have:

Ψ(X̃β,s) ≗
ħ
|β|−1xs

i,1

denomβ
for β = [i, j] or [i, n, n− 1],

Ψ(X̃[i,n,j],s) ≗
ħ

2n−i−j−1

denom[i,n,j]
xs
i,1

n−2∏︂
ℓ=j 

(ħ + xℓ,1 − xℓ,2)(ħ− xℓ,1 + xℓ,2) for i < j < n− 1.

Moreover, due to the equality ζ̂i,j(z) − ζ̂j,i(−z) = (αi,αj)
z ħ, for more general root 

vectors Xβ,s defined in (5.1)--(5.3), we have:

Lemma 5.4. For any β ∈ Δ+ and s ∈ N, Ψ(Xβ,s) is divisible by ħ|β|−1.

Let us now adapt our key tool of specialization maps to the Yangian setup. For any 
F ∈ W̄k and d ∈ KP(k), let f be the numerator of F from (5.5). The specialization map 
ϕd(F ) is defined by successive specializations ϕβ,s of the variables x(β,s)

∗,∗ in f for each 
β ∈ Δ+ and 1 ≤ s ≤ dβ as follows (cf. (2.36)--(2.43)):

• Cn-type.
For β ̸= [i, n, i], we define ϕβ,s(F ) by specializing:

x
(β,s)
ℓ ̸=n,1 ↦→ wβ,s − ℓ− 1

2 
ħ, x

(β,s)
ℓ ̸=n,2 ↦→ wβ,s − 2n + 1 − ℓ

2 
ħ, x

(β,s)
n,1 ↦→ wβ,s − n

2 
ħ.

For β = [i, n, i], we first define ϕ(1)
β,s(F ) by specializing:

x
(β,s)
ℓ ̸=n,1 ↦→ wβ,s − ℓ− 1

2 
ħ, x

(β,s)
ℓ ̸=n,2 ↦→ w′

β,s −
ℓ− 1

2 
ħ, x

(β,s)
n,1 ↦→ w′

β,s −
n

2 
ħ.
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According to wheel conditions (5.6), ϕ(1)
β,s(F ) is divisible by

Bβ =
{︁
(wβ,s − w′

β,s + ħ)(wβ,s − w′
β,s − ħ)

}︁n−i−1
.

Then the overall specialization ϕβ,s(F ) is defined by

ϕβ,s(F ) := ϕ
(2)
β,s

(︂
ϕ

(1)
β,s(F )

)︂
=

ϕ
(1)
β,s(F )
Bβ

⃓⃓⃓⃓
⃓
w′

β,s ↦→wβ,s+ħ

.

• Dn-type.
For β ̸= [i, n, j] with i < j ≤ n− 2, we define ϕβ,s(F ) by specializing:

x
(β,s)
ℓ ̸=n,1 ↦→ wβ,s − ℓ− 1

2 
ħ, x

(β,s)
n,1 ↦→ wβ,s − n− 2

2 
ħ.

For β = [i, n, j] with 1 ≤ i < j ≤ n− 2, we first define ϕ(1)
β,s(F ) by specializing:

x
(β,s)
ℓ ̸=n,1 ↦→ wβ,s − ℓ− 1

2 
ħ, x

(β,s)
n,1 ↦→ wβ,s − n− 2

2 
ħ,

x
(β,s)
ℓ ̸=n−1&n,2 ↦→ w′

β,s −
2n− 3 − ℓ

2 
ħ.

According to wheel conditions (5.6), ϕ(1)
β,s(F ) is divisible by

Bβ =
n−2∏︂
ℓ=j 

(wβ,s − w′
β,s − (n− ℓ− 2)ħ)(wβ,s − w′

β,s − (n− ℓ)ħ).

Then, the overall specialization ϕβ,s(F ) is defined by:

ϕβ,s(F ) := ϕ
(2)
β,s

(︂
ϕ

(1)
β,s(F )

)︂
=

ϕ
(1)
β,s(F )
Bβ

⃓⃓⃓⃓
⃓
w′

β,s ↦→wβ,s

.

For d ∈ KP(k), the specialization map ϕd(F ) is defined by applying those separate maps 
ϕβ,s in each group 

{︁
x

(β,s)
i,t

}︁i∈I

1≤t≤νβ,i
of variables (the result is independent of splitting):

ϕd : W̄k −→ Q[ħ][{wβ,s}1≤s≤dβ

β∈Δ+ ]𝔖d ,

and we extend it by zero to all other components W̄ℓ with ℓ ̸= k. Then, we have the 
following straightforward analogues of Lemmas 3.2 and 4.2:
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Lemma 5.5. If 𝔤 is of type Cn or Dn, then we have:

ϕβ(Ψ(Xβ,s)) ≗ ħ
κβ · pβ,s(wβ,1) ∀ (β, s) ∈ Δ+ ×N,

where κβ is given by (3.5) in type Cn, κβ = |β| − 1 in type Dn, and pβ,s(w) ∈ Q[ħ][w] is 
a monic degree s polynomial in w over Q[ħ].

For any k ∈ NI and d ∈ KP(k), we define the subsets Hk, Hk,d of H similarly to (2.44), 
but with h ∈ H been replaced by h ∈ H. Using Lemma 5.5 and arguing as in Sections 3--4, 
we obtain the following analogues of Propositions 3.4, 3.6, 4.4 for the Yangians of types 
Cn, Dn:

Proposition 5.6. Let 𝔤 be of type Cn or Dn. Then we have:
(a) For any h ∈ Hk,d, we have

ϕd(Ψ(Xh)) ≗ ħ

∑︁
β∈Δ+ dβκβ ·

β<β′∏︂
β,β′∈Δ+

Ĝβ,β′ ·
∏︂

β∈Δ+

Ĝβ ·
∏︂

β∈Δ+

P̂λh,β
,

where Ĝβ,β′ , Ĝβ are independent of h ∈ Hk,d and are rational counterparts of Gβ,β′ , Gβ

from Propositions 3.4, 4.4 (obtained by replacing factors (x − vty) with (x − y − t 
2ħ)), 

while

P̂λh,β
= Sym𝔖dβ

⎛⎝ dβ∏︂
s=1

pβ,rβ(h,s)(wβ,s)
∏︂

1≤s<r≤dβ

(︂
1 + (β, β) · ħ 

2(wβ,s − wβ,r)

)︂⎞⎠ . (5.8)

(b) For any h ∈ Hk,d and d′ < d, we have ϕd′(Ψ(Xh)) = 0.

This features a ``rank 1 reduction'': each P̂λh,β
from (5.8) can be viewed as the shuffle 

product pβ,rβ(h,1)(x) ⋆ · · · ⋆ pβ,rβ(h,dβ)(x) in the A1-type shuffle algebra W̄ , evaluated at 
{wβ,s}dβ

s=1. Therefore, combining Proposition 5.6 with Theorem 5.1, we obtain:

Proposition 5.7. The homomorphism Ψ of (5.7) is injective.

Following [24, Definition 3.27], we introduce:

Definition 5.8. F ∈ W̄k is good if ϕd(F ) is divisible by ħ
∑︁

β∈Δ+ dβκβ for any d ∈ KP(k).

Let Wk be the Q[ħ]-submodule of all good elements in W̄k, and set W :=
⨁︁

k∈NI Wk. 
Then analogously to our proofs of Propositions 3.10 and 4.8, we obtain (cf. [15, Propo
sition 5.12]):

Proposition 5.9. Ψ(Y >
ħ

(𝔤)) ⊂ W .
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Let W ′
k be the Q[ħ]-submodule of Wk spanned by {Ψ(Xh)}h∈Hk

. Then, the following 
Yangian counterpart of Lemma 2.10 holds true in types Cn and Dn:

Proposition 5.10. For any F ∈ Wk, d ∈ KP(k), if ϕd′(F ) = 0 for all d′ ∈ KP(k) such 
that d′ < d, then there exists Fd ∈ W ′

k such that ϕd(F ) = ϕd(Fd) and ϕd′(Fd) = 0 for all 
d′ < d.

Proof. The proof is analogous to that of [15, Proposition 5.13]. □
Combining Propositions 5.9--5.10, we immediately obtain the shuffle algebra realiza

tion and an upgrade of Theorem 5.1 for Y >
ħ

(𝔤) in types Cn and Dn, cf. [15, Theorem 5.14]:

Theorem 5.11. Let 𝔤 be of type Cn or Dn. Then we have:
(a) The Q[ħ]-algebra homomorphism Ψ : Y >

ħ
(𝔤) → W̄ of (5.7) gives rise to a Q[ħ]-algebra 

isomorphism Ψ : Y >
ħ

(𝔤) ∼ −→ W .
(b) The ordered monomials {Xh}h∈H of (5.4) form a basis of the free Q[ħ]-module Y >

ħ
(𝔤).

5.2. The Drinfeld-Gavarini dual Ẏ>
ħ

(𝔤) and its shuffle algebra realization

For any (β, s) ∈ Δ+ ×N, define X̄β,s ∈ Y >
ħ

(𝔤) via

X̄β,s := ħ · Xβ,s.

We define Ẏ>
ħ

(𝔤), the ``positive subalgebra'' of the Drinfeld-Gavarini dual, as the Q[ħ]
subalgebra of Y >

ħ
(𝔤) generated by {X̄β,s}s∈Nβ∈Δ+ . For any h ∈ H, define the ordered 

monomial (cf. (5.4)):

X̄h :=
→ ∏︂

(β,s)∈Δ+×N

X̄h(β,s)
β,s . (5.9)

Following [24, Definition 3.8], we introduce:

Definition 5.12. F ∈ W̄k is integral if F is divisible by ħ|k| and ϕd(F ) is divisible by 
ħ

∑︁
β∈Δ+ dβ(κβ+1) for any d ∈ KP(k).

Let Wk ⊂ W̄k be the Q[ħ]-submodule of all integral elements, and set W :=⨁︁
k∈NI Wk. Then, due to Lemmas 5.4--5.5 and Proposition 5.9, we have the following 

upgrade of Theorem 5.11 (cf. [15, Theorems 5.16, 5.20]):

Theorem 5.13. Let 𝔤 be of type Cn or Dn. Then we have:
(a) Ẏ>

ħ
(𝔤) is independent of the choice of root vectors Xβ,s in (5.1)--(5.3).

(b) The Q[ħ]-algebra isomorphism Ψ : Y >
ħ

(𝔤) ∼ −→ W of Theorem 5.11(a) gives rise to a 
Q[ħ]-algebra isomorphism Ψ : Ẏ>

ħ
(𝔤) ∼ −→ W.
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(c) For any choices of sk in (5.1)--(5.3), the ordered monomials {X̄h}h∈H of (5.9) form a 
basis of the free Q[ħ]-module Ẏ>

ħ
(𝔤).

Appendix A. The RTT realization in types 𝑪𝒏 and 𝑫𝒏

In this section, we recall the RTT realization of Uv(L𝔰𝔭2n) and Uv(L𝔬2n), established 
in [16,17], and use it to explain the natural origin and the name of the integral forms 
𝒰>
v (L𝔰𝔭2n) and 𝒰>

v (L𝔬2n) from Definition 2.7 and Subsections 3.3, 4.3. While the analysis 
is very similar, we shall start with Dn-type, which ends up in slightly simpler formulas.

A.1. RTT realization of Uv(L𝔬2n)

Set N = 2n. For 1 ≤ i ≤ N , we define i′ and ī via:

i′ := N + 1 − i, (A.1)

(1̄, . . . , N̄) := (n− 1, . . . , 1, 0, 0,−1, . . . ,−n + 1). (A.2)

To follow the notations of [17], we also define

ξ = v2−N .

Consider the trigonometric R-matrix with a spectral parameter R̄trig(z) given by

R̄trig(z) := z − 1 
zv − v−1 R + v − v−1

zv − v−1 P − (v − v−1)(z − 1)ξ 
(zv − v−1)(z − ξ) Q, (A.3)

where P,Q,R ∈ (EndCN )⊗2 are defined via:

P =
∑︂

1≤i,j≤N

eij ⊗ eji, Q =
∑︂

1≤i,j≤N

vī−j̄ei′j′ ⊗ eij ,

R = v
∑︂

1≤i≤N

eii ⊗ eii +
i̸=j,j′∑︂

1≤i,j≤N

eii ⊗ ejj + v−1
∑︂

1≤i≤N

eii ⊗ ei′i′ +

(v − v−1)
∑︂
i<j 

eij ⊗ eji − (v − v−1)
∑︂
i>j 

vī−j̄ei′j′ ⊗ eij .

This R̄trig(z) satisfies the famous Yang-Baxter equation (with a spectral parameter):

R̄trig;12(z)R̄trig;13(zw)R̄trig;23(w) = R̄trig;23(w)R̄trig;13(zw)R̄trig;12(z). (A.4)

Following [17] (with the conceptual ideology going back to [10]), we define the RTT 
integral form of the quantum loop algebra of 𝔬N , denoted by 𝒰 rtt

v (L𝔬N ), to be the 
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associative Z[v, v−1]-algebra generated by {ℓ±ij [∓r]}r∈N1≤i,j≤N with the following defining 
relations:

ℓ+ij [0] = ℓ−ji[0] = 0 for 1 ≤ i < j ≤ N,

ℓ±ii [0]ℓ∓ii [0] = 1 for 1 ≤ i ≤ N,

R̄trig(z/w)ℒ±
1 (z)ℒ±

2 (w) = ℒ±
2 (w)ℒ±

1 (z)R̄trig(z/w),

R̄trig(z/w)ℒ+
1 (z)ℒ−

2 (w) = ℒ−
2 (w)ℒ+

1 (z)R̄trig(z/w),

(A.5)

(the last two are commonly called the RTT relations) as well as

ℒ±(z)Dℒ±(zξ)tD−1 = 1, (A.6)

where t denotes the matrix transposition with Et
ij = Ej′i′ and D is the diagonal matrix

D = diag
(︁
v1̄, v2̄, . . . , vN̄

)︁
.

Here, ℒ±(z) ∈ 𝒰 rtt
v (L𝔬N )[[z±1]] ⊗ EndCN is defined by

ℒ±(z) =
∑︂

1≤i,j≤N

ℓ±ij(z) ⊗ Eij with ℓ±ij(z) :=
∑︂
r≥0 

ℓ±ij [∓r]z±r. (A.7)

We also define the C(v)-counterpart U rtt
v (L𝔬N ) := 𝒰 rtt

v (L𝔬N ) ⊗Z[v,v−1] C(v).
Let Uv(L𝔬N ) be the quantum loop algebra of type Dn in the new Drinfeld realiza

tion. It is a C(v)-algebra generated by {x±
i,r, φi,−k, ψi,k, k

±1
i }r∈Z,k>0

1≤i≤n with the relations 
as in [17, §1]. Identifying x+

i,r with our ei,r, the subalgebra generated by {x+
i,r}r∈Z1≤i≤n re

covers our U>
v (L𝔬N ) from Subsection 2.1. In what follows, we will consider the following 

generating series:

x±
i (z) =

∑︂
r∈Z

x±
i,rz

−r, φi(z) =
∑︂
k≥0

φi,−kz
k, ψi(z) =

∑︂
k≥0

ψi,kz
−k. (A.8)

The relation between the algebras Uv(L𝔬N ) and 𝒰 rtt
v (L𝔬N ) was established in [17]. 

To state the main result, we consider the Gauss decomposition of the matrices ℒ±(z)
from (A.7):

ℒ±(z) = F±(z) ·H±(z) ·E±(z).

Here, F±(z), H±(z), E±(z) ∈ 𝒰 rtt
v (L𝔬N )[[z±1]] ⊗ EndCN are of the form

F±(z) =
∑︂
i 

Eii +
∑︂
i>j 

f±
ij (z) · Eij , H±(z) =

∑︂
i 

h±
i (z) · Eii,

E±(z) =
∑︂
i 

Eii +
∑︂
i<j 

e±ij(z) · Eij .
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Theorem A.1 ([17]). There is a unique C(v)-algebra isomorphism

ϱ : Uv(L𝔬N ) ∼ −→ U rtt
v (L𝔬N )

defined by

x+
i (z) ↦→ e+

i,i+1(zvi) − e−i,i+1(zvi)
v − v−1 , x−

i (z) ↦→ f+
i+1,i(zvi) − f−

i+1,i(zvi)
v − v−1 ,

ψi(z) ↦→ h−
i+1(zv

i)h−
i (zvi)−1, φi(z) ↦→ h+

i+1(zv
i)h+

i (zvi)−1
(A.9)

for 1 ≤ i < n and

x+
n (z) ↦→ e+

n−1,n+1(zvn−1) − e−n−1,n+1(zvn−1)
v − v−1 , ψn(z) ↦→ h−

n+1(zvn−1)h−
n−1(zvn−1)−1,

x−
n (z) ↦→ f+

n+1,n−1(zvn−1) − f−
n+1,n−1(zvn−1)

v − v−1 , φn(z) ↦→ h+
n+1(zvn−1)h+

n−1(zvn−1)−1.

(A.10)

A.2. The RTT realization of 𝒰>
v (L𝔬2n)

Let 𝒰 rtt,>
v (L𝔬N ) be the Z[v, v−1]-subalgebra of 𝒰 rtt

v (L𝔬N ) generated by the coefficients 
of {e±ij(z)}1≤i<j≤N , the matrix coefficients of E±(z). The key goal of this Appendix is to 
highlight the natural origin of the integral form 𝒰>

v (L𝔬2n) introduced in Definition 2.7
and its specific quantum root vectors (a special case of (2.32))

ℰ̃rtt
[i,j],s := ⟨1⟩v · [· · · [[ei,s, ei+1,0]v, ei+2,0]v, · · · , ej,0]v,

ℰ̃rtt
[i,n],s := ⟨1⟩v · [[· · · [ei,s, ei+1,0]v, · · · , en−2,0]v, en,0]v,

ℰ̃rtt
[i,n,j],s := ⟨1⟩v · [· · · [[[· · · [ei,s, ei+1,0]v, · · · , en−2,0]v, en,0]v, en−1,0]v, · · · , ej,0]v

(A.11)

for any 1 ≤ i < j < n. We also express the matrix coefficients of E±(z) as series in z±1:

e+
ij(z) =

∑︂
r>0 

e
(−r)
ij zr, e−ij(z) =

∑︂
r≥0 

e
(r)
ij z−r ∀ 1 ≤ i < j ≤ N. (A.12)

Finally we define eij(z) := e+
ij(z) − e−ij(z). The key technical result of this subsection is:

Proposition A.2. (a) For any 1 ≤ i < j < n, we have:

ei,j+1(z) = (1 − v2)i−j · [· · · [[ei,i+1(z), e(0)
i+1,i+2]v, e

(0)
i+2,i+3]v, · · · , e(0)

j,j+1]v. (A.13)

(b) For any 1 ≤ i < n− 1, we have:

ei,n+1(z) = (1 − v2)i−n+1 · [[· · · [ei,i+1(z), e(0)
i+1,i+2]v, · · · , e(0)

n−2,n−1]v, e
(0)
n−1,n+1]v. (A.14)
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(c) For any 1 ≤ i < j < n, we have:

ei,j′(z) = (1 − v2)i+j−2n+1(−1)j−n×
[· · · [[[· · · [ei,i+1(z), e(0)

i+1,i+2]v, · · · , e(0)
n−2,n−1]v, e

(0)
n−1,n+1]v, e

(0)
n−1,n]v, · · · , e(0)

j,j+1]v. (A.15)

Proof. Due to the ``rank reduction'' embeddings of [17, §3.2, Proposition 4.2], it suffices 
to prove formulas (A.13)--(A.15) for i = 1. In fact, both (A.13) and (A.15) for i = 1 are 
proved exactly as [15, (A.13, A.14)]. Thus, we shall only provide details for i = 1 case 
of (A.14).

Comparing matrix coefficients ⟨v1 ⊗ vn−1| · · · |vn−1 ⊗ vn+1⟩ of both sides of the RTT 
relation R̄trig(z/w)ℒ−

1 (z)ℒ−
2 (w) = ℒ−

2 (w)ℒ−
1 (z)R̄trig(z/w), we get:

z − w 
vz − v−1w

ℓ−1,n−1(z)ℓ
−
n−1,n+1(w) + (v − v−1)z

vz − v−1w 
ℓ−n−1,n−1(z)ℓ

−
1,n+1(w) =

z − w 
vz − v−1w

ℓ−n−1,n+1(w)ℓ−1,n−1(z) + (v − v−1)w
vz − v−1w 

ℓ−n−1,n−1(w)ℓ−1,n+1(z). 

Expanding all rational factors as series in z/w and evaluating the [w0]-coe�icients, we 
obtain:

vℓ−1,n−1(z)ℓ
−
n−1,n+1[0] = vℓ−n−1,n+1[0]ℓ−1,n−1(z) + (1 − v2)ℓ−n−1,n−1[0]ℓ−1,n+1(z). (A.16)

Comparing matrix coefficients ⟨v1 ⊗ vn−1| · · · |vn−1 ⊗ vn−1⟩ of the same RTT relation, 
we get:

z − w 
vz − v−1w

ℓ−1,n−1(z)ℓ
−
n−1,n−1(w) + (v − v−1)z

vz − v−1w 
ℓ−n−1,n−1(z)ℓ

−
1,n−1(w)

= ℓ−n−1,n−1(w)ℓ−1,n−1(z).

Expanding both rational factors as series in z/w and evaluating the [w0]-coe�icients, we 
obtain:

ℓ−n−1,n−1[0]−1
ℓ−1,n−1(z) = v−1ℓ−1,n−1(z)ℓ

−
n−1,n−1[0]−1

. (A.17)

Multiplying both sides of (A.16) by ℓ−n−1,n−1[0]−1 on the left and applying (A.17), we 
obtain:

(1 − v2)ℓ−1,n+1(z) = [ℓ−1,n−1(z), e
(0)
n−1,n+1]v.

As ℓ−1,n+1(z) = h−
1 (z)e−1,n+1(z), ℓ

−
1,n−1(z) = h−

1 (z)e−1,n−1(z), and [h−
1 (z), e(0)

n−1,n+1] = 0, 
we get:
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e−1,n+1(z) = (1 − v2)−1 · [e−1,n−1(z), e
(0)
n−1,n+1]v. (A.18)

Arguing in the same way, but using R̄trig(z/w)ℒ+
1 (z)ℒ−

2 (w) = ℒ−
2 (w)ℒ+

1 (z)R̄trig(z/w)
instead, we also obtain:

e+
1,n+1(z) = (1 − v2)−1 · [e+

1,n−1(z), e
(0)
n−1,n+1]v. (A.19)

Subtracting (A.18) from (A.19), we finally get:

e1,n+1(z) = (1 − v2)−1 · [e1,n−1(z), e(0)
n−1,n+1]v.

Applying formula (A.13) for e1,n−1(z) completes our proof of (A.14) for i = 1. □
Combining Proposition A.2 with identification (A.9), (A.10) and formulas (A.11), we 

get:

Corollary A.3. For any 1 ≤ i < j < n and s ∈ Z, we have:

ϱ(ℰ̃rtt
[i,j],s)

. = e
(s)
i,j+1, ϱ(ℰ̃rtt

[i,n],s)
. = e

(s)
i,n+1, ϱ(ℰ̃rtt

[i,n,j],s)
. = e

(s)
i,j′ .

Since the elements (A.11) are specific case of quantum root vectors (2.32), we finally 
obtain:

Proposition A.4. ϱ(𝒰>
v (L𝔬2n)) = 𝒰 rtt,>

v (L𝔬2n).

This result explains why we called 𝒰>
v (L𝔬2n) the RTT integral form of U>

v (L𝔬2n). 
Moreover, Theorem 2.8(b) implies the PBWD theorem for 𝒰 rtt,>

v (L𝔬2n), cf. [12, Theo
rem 3.25]:

Corollary A.5. The ordered monomials in 
{︁
e
(r)
ij | i < j such that i+ j ≤ N, r ∈ Z

}︁
form 

a basis of a free Z[v, v−1]-module 𝒰 rtt,>
v (L𝔬2n), where the ordering is given by e(r)

ij ≤ e
(s)
kℓ

if i < k, or i = k and j < ℓ, or i = k, j = ℓ and r ≤ s.

A.3. RTT realization of Uv(L𝔰𝔭2n)

Set N = 2n. For 1 ≤ i ≤ N , we amend (A.2) via:

(1̄, . . . , N̄) := (n, . . . , 2, 1,−1,−2, . . . ,−n),

while i′ is defined via (A.1). We define ξ = v2−N as before. Finally we also introduce:

εi = 1, εi′ = −1 ∀ 1 ≤ i ≤ n.



Y. Hu, A. Tsymbaliuk / Journal of Algebra 690 (2026) 475--546 541

The corresponding trigonometric R-matrix R̄trig(z) (satisfying (A.4)) is still given 
by (A.3), but P,Q,R ∈ (EndCN )⊗2 are now modified as follows:

P =
∑︂

1≤i,j≤N

eij ⊗ eji, Q =
∑︂

1≤i,j≤N

vī−j̄εiεj ei′j′ ⊗ eij ,

R = v
∑︂

1≤i≤N

eii ⊗ eii +
i̸=j,j′∑︂

1≤i,j≤N

eii ⊗ ejj + v−1
∑︂

1≤i≤N

eii ⊗ ei′i′ +

(v − v−1)
∑︂
i<j 

eij ⊗ eji − (v − v−1)
∑︂
i>j 

vī−j̄εiεj ei′j′ ⊗ eij .

Define the RTT integral form of the quantum loop algebra of 𝔰𝔭N , denoted by 
𝒰 rtt
v (L𝔰𝔭N ), to be the associative Z[v, v−1]-algebra generated by {ℓ±ij [∓r]}r∈N1≤i,j≤N with 

the same defining relations (A.5)--(A.6), whereas t is now defined via Et
ij = εiεjEj′i′ . 

Here, the generators are encoded via ℒ±(z) ∈ 𝒰 rtt
v (L𝔰𝔭N )[[z±1]] ⊗ EndCN defined as 

in (A.7). We also define the C(v)-counterpart U rtt
v (L𝔰𝔭N ) := 𝒰 rtt

v (L𝔰𝔭N )⊗Z[v,v−1] C(v).
Let Uv(L𝔰𝔭N ) be the quantum loop algebra of type Cn in the new Drinfeld realization. 

It is a C(v)-algebra generated by {x±
i,r, φi,−k, ψi,k, k

±1
i }r∈Z,k>0

1≤i≤n with the relations as 
in [16, §1]. Identifying x+

i,r with our ei,r, the subalgebra generated by {x+
i,r}r∈Z1≤i≤n recovers 

our U>
v (L𝔰𝔭N ).

The relation between the algebras Uv(L𝔰𝔭N ) and 𝒰 rtt
v (L𝔰𝔭N ) was established in [16]. 

Evoking the generating series (A.8) and the Gauss decomposition of ℒ±(z), we have:

Theorem A.6 ([16]). There is a unique C(v)-algebra isomorphism

ϱ : Uv(L𝔰𝔭N ) ∼ −→ U rtt
v (L𝔰𝔭N )

defined by

x+
i (z) ↦→ e+

i,i+1(zvi) − e−i,i+1(zvi)
v − v−1 , x−

i (z) ↦→ f+
i+1,i(zvi) − f−

i+1,i(zvi)
v − v−1 ,

ψi(z) ↦→ h−
i+1(zv

i)h−
i (zvi)−1, φi(z) ↦→ h+

i+1(zv
i)h+

i (zvi)−1
(A.20)

for 1 ≤ i < n and

x+
n (z) ↦→ e+

n,n+1(zvn+1) − e−n,n+1(zvn+1)
v2 − v−2 , x−

n (z) ↦→ f+
n+1,n(zvn+1) − f−

n+1,n(zvn+1)
v2 − v−2 ,

ψn(z) ↦→ h−
n+1(zvn+1)h−

n (zvn+1)−1, φn(z) ↦→ h+
n+1(zvn+1)h+

n (zvn+1)−1.

(A.21)
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A.4. The RTT realization of 𝒰>
v (L𝔰𝔭2n)

Let 𝒰 rtt,>
v (L𝔰𝔭N ) be the Z[v, v−1]-subalgebra of 𝒰 rtt

v (L𝔰𝔭N ) generated by the coeffi
cients of {e±ij(z)}1≤i<j≤N , the matrix coefficients of E±(z). The key goal of this Appendix 
is to highlight the natural origin of the integral form 𝒰>

v (L𝔰𝔭2n) introduced in Defini
tion 2.7 and its specific quantum root vectors (a special case of (2.31))

ℰ̃rtt
[n],s := ⟨2⟩v · en,s,

ℰ̃rtt
[i,j],s := ⟨1⟩v · [· · · [[ei,s, ei+1,0]v, ei+2,0]v, · · · , ej,0]v,

ℰ̃rtt
[i,n],s := ⟨1⟩v · [[· · · [ei,s, ei+1,0]v, · · · , en−1,0]v, en,0]v2 ,

ℰ̃rtt
[i,n,j],s := ⟨1⟩v · [· · · [[[· · · [ei,s, ei+1,0]v, · · · , en−1,0]v, en,0]v2 , en−1,0]v, · · · , ej,0]v,

(A.22)

for any 1 ≤ i < j < n, while the root generators ℰ̃rtt
[i,n,i],s are defined slightly differently 

via:

ℰ̃rtt
[i,n,i],s := −1 

1 − v2 [ℰ̃rtt
[i,n−1],s, ℰ̃rtt

[i,n],0] −
same sign∑︂
a+b=s 

ℰ̃rtt
[i,n],aℰ̃rtt

[i,n−1],b, (A.23)

where the condition ``same sign'' in the sum means that a, b ≤ 0 if s ≤ 0, and a, b > 0 if 
s > 0.

We also express the matrix coefficients of E±(z) as series in z±1:

e+
ij(z) =

∑︂
r>0 

e
(−r)
ij zr, e−ij(z) =

∑︂
r≥0 

e
(r)
ij z−r ∀ 1 ≤ i < j ≤ N,

and define eij(z) := e+
ij(z) − e−ij(z). The key technical result of this subsection is:

Proposition A.7. (a) For any 1 ≤ i < j < n, we have:

ei,j+1(z) = (1 − v2)i−j · [· · · [[ei,i+1(z), e(0)
i+1,i+2]v, e

(0)
i+2,i+3]v, · · · , e(0)

j,j+1]v. (A.24)

(b) For any 1 ≤ i < n, we have:

ei,n+1(z) = (1 − v4)−1(1 − v2)i−n+1 · [[· · · [ei,i+1(z), e(0)
i+1,i+2]v, · · · , e(0)

n−1,n]v, e(0)
n,n+1]v2 .

(A.25)
(c) For any 1 ≤ i < j < n, we have:

ei,j′(z) = (1 − v4)−1(1 − v2)i+j−2n+1(−1)j−n×
[· · · [[[· · · [ei,i+1(z), e(0)

i+1,i+2]v, · · · , e(0)
n−1,n]v, e(0)

n,n+1]v2 , e
(0)
n−1,n]v, · · · , e(0)

j,j+1]v. (A.26)

(d) For any 1 ≤ i < n, we have:
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e±i,i′(z) = −1 
1 − v2 [e±in(z), e(0)

i,n+1] − e±i,n+1(z)e
±
in(z). (A.27)

Proof. Due to the ``rank reduction'' embeddings of [16, §3.3, Proposition 4.2], it suffices 
to prove formulas (A.24)--(A.27) for i = 1. In fact, (A.24)--(A.26) for i = 1 are proved 
completely analogously to [15, (A.13, A.14)]. Thus, we shall only provide details for i = 1
case of (A.27).

Comparing matrix coefficients ⟨v1⊗vn| · · · |vn⊗v1′⟩ of both sides of the RTT relation 
R̄trig(z/w)ℒ−

1 (z)ℒ−
2 (w) = ℒ−

2 (w)ℒ−
1 (z)R̄trig(z/w), we get:

z − w 
vz − v−1w

ℓ−1,n(z)ℓ−n,1′(w) + (v − v−1)z
vz − v−1w 

ℓ−n,n(z)ℓ−1,1′(w) =

z − w 
vz − v−1w

ℓ−n,1′(w)ℓ−1,n(z) + (v − v−1)w
vz − v−1w 

ℓ−n,n(w)ℓ−1,1′(z). 

Expanding all rational factors as series in z/w and evaluating the [w0]-coe�icients, we 
obtain:

vℓ−1,n(z)ℓ−n,1′ [0] = vℓ−n,1′ [0]ℓ−1,n(z) + (1 − v2)ℓ−n,n[0]ℓ−1,1′(z). (A.28)

Comparing matrix coefficients ⟨v1 ⊗ vn| · · · |vn ⊗ vn⟩ of the same RTT relation, we get:

z − w 
vz − v−1w

ℓ−1,n(z)ℓ−n,n(w) + (v − v−1)z
vz − v−1w 

ℓ−n,n(z)ℓ−1,n(w) = ℓ−n,n(w)ℓ−1,n(z).

Expanding both rational factors as series in z/w and evaluating the [w0]-coe�icients, we 
obtain:

ℓ−n,n[0]−1
ℓ−1,n(z) = v−1ℓ−1,n(z)ℓ−n,n[0]−1

,

which after left multiplication by (ℓ1,1(z))−1 = (h−
1 (z))−1 yields:

ℓ−n,n[0]−1
e−1,n(z) = v−1e−1,n(z)ℓ−n,n[0]−1

. (A.29)

Comparing matrix coefficients ⟨v1 ⊗ v1| · · · |v1 ⊗ vn+1⟩ of the same RTT relation, we get:

ℓ−1,1(z)ℓ
−
1,n+1(w) = z − w 

vz − v−1w
ℓ−1,n+1(w)ℓ−1,1(z) + (v − v−1)w

vz − v−1w 
ℓ−1,1(w)ℓ−1,n+1(z).

Expanding both rational factors as series in z/w and evaluating the [w0]-coe�icients, we 
obtain:

vℓ−1,n+1[0]ℓ−1,1(z) = ℓ−1,1(z)ℓ
−
1,n+1[0] − (1 − v2)ℓ−1,1[0]ℓ−1,n+1(z),

which after left multiplication by (ℓ1,1[0])−1 and evoking ℓ−1,1(z) = h−
1 (z) yields:
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ve
(0)
1,n+1h

−
1 (z) = h−

1 (z)
(︂
e
(0)
1,n+1 − (1 − v2)e−1,n+1(z)

)︂
. (A.30)

Plugging (A.29)--(A.30) into (A.28) and evoking e(0)
n,1′ = −e

(0)
1,n+1, we obtain the desired 

formula:

e−1,1′(z) = −1 
1 − v2 [e−1,n(z), e(0)

1,n+1] − e−1,n+1(z)e
−
1,n(z).

Arguing in the same way, but using R̄trig(z/w)ℒ+
1 (z)ℒ−

2 (w) = ℒ−
2 (w)ℒ+

1 (z)R̄trig(z/w)
instead, we also obtain a similar formula for e+

1,1′(z). This completes our proof of (A.27)
for i = 1. □

Combining Proposition A.7 with (A.20), (A.21) and (A.22), (A.23), we get:

Corollary A.8. For any 1 ≤ i < j < n and s ∈ Z, we have:

ϱ(ℰ̃rtt
[i,j],s)

. = e
(s)
i,j+1, ϱ(ℰ̃rtt

[i,n],s)
. = e

(s)
i,n+1, ϱ(ℰ̃rtt

[i,n,j],s)
. = e

(s)
i,j′ , ϱ(ℰ̃rtt

[i,n,i],s)
. = e

(s)
i,i′ .

The following result explains why we called 𝒰>
v (L𝔰𝔭2n) the RTT integral form of 

U>
v (L𝔰𝔭2n):

Proposition A.9. ϱ(𝒰>
v (L𝔰𝔭2n)) = 𝒰 rtt,>

v (L𝔰𝔭2n).

Proof. We note that ℰ̃rtt
β,s of (A.22) coincide with ℰ̃+

β,s from (2.31) corresponding to si = s, 
s̸=i = 0 in the formulas (2.18)--(2.20), for all roots except β = [i, n, i] (1 ≤ i < n). While 
ℰ̃rtt
[i,n,i],s and ℰ̃+

[i,n,i],s differ, we claim that they generate the same Z[v, v−1]-subalgebra 

together with the elements above. To this end, it is convenient to replace ℰ̃rtt
[i,n,i],s rather 

with

ℰ̃ ′
[i,n,i],s := −1 

1 − v2 [ℰ̃rtt
[i,n−1],s, ℰ̃rtt

[i,n],0],

as the elements ℰ̃rtt
[i,n],a, ℰ̃rtt

[i,n−1],b featured in (A.23) belong to 𝒰>
v (L𝔰𝔭2n) for any a, b ∈ Z.

First, let us show that ℰ̃ ′
[i,n,i],s belongs to 𝒰>

v (L𝔰𝔭2n), or equivalently that Ψ(ℰ̃ ′
[i,n,i],s)

belongs to 𝒮 of Subsection 3.3, due to Theorem 3.14(a). To this end, we set

A =
n−2∏︂
ℓ=i 

{︃
ζ

(︃
xℓ,1

xℓ,2

)︃
ζ

(︃
xℓ,1

xℓ+1,2

)︃
ζ

(︃
xℓ+1,1

xℓ,2

)︃}︃
· ζ
(︃
xn−1,1

xn−1,2

)︃
ζ

(︃
xn−1,1

xn,1

)︃
,

B =
n−2∏︂
ℓ=i 

{︃
ζ

(︃
xℓ,2

xℓ,1

)︃
ζ

(︃
xℓ+1,2

xℓ,1

)︃
ζ

(︃
xℓ,2

xℓ+1,1

)︃}︃
· ζ
(︃
xn−1,2

xn−1,1

)︃
ζ

(︃
xn,1

xn−1,1

)︃
,

so that
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Ψ(ℰ̃ ′
[i,n,i],s)

. = ⟨1⟩2n−2i−1
v ⟨2⟩v

· Sym
(︄

xs
i,1x

−1
n−1,1 ·

∏︁n−1
k=i xk,1xk,2 · (A − B) 

denom[i,n−1]({xk,1}n−1
k=i ) · denom[i,n]({xk,2}n−1

k=i , xn,1)

)︄
,

where Sym denotes symmetrization with respect to all pairs {xk,1, xk,2}n−1
k=i . Since

ζ

(︃
xn−1,1

xn,1

)︃
− ζ

(︃
xn,1

xn−1,1

)︃
, ζ

(︃
xℓ,1

xℓ,2

)︃
− ζ

(︃
xℓ,2

xℓ,1

)︃
(i ≤ ℓ ≤ n− 1),

ζ

(︃
xℓ,1

xℓ+1,2

)︃
ζ

(︃
xℓ+1,1

xℓ,2

)︃
− ζ

(︃
xℓ+1,2

xℓ,1

)︃
ζ

(︃
xℓ,2

xℓ+1,1

)︃
(i ≤ ℓ ≤ n− 2)

are all divisible by ⟨1⟩v, we see that so is A − B. Hence, Ψ(ℰ̃ ′
[i,n,i],s) satisfies the condi

tion (3.28).
Next, we show that for any d ∈ KP(k) with k = 2αi + · · · + 2αn−1 + αn, the spe

cialization ϕd(Ψ(ℰ̃ ′
[i,n,i],s)) is divisible by Ad of (3.29). If d = d0 = {d[i,n,i] = 1, dγ =

0 for other γ}, then

ϕd0(Ψ(ℰ̃ ′
[i,n,i],s))

. = ⟨1⟩2n−2i−1
v ⟨2⟩2v · ws+2n−2i

β,1 (A.31)

by Lemma 3.2, so that Ψ(ℰ̃ ′
[i,n,i],s) is non-zero and ϕd0(Ψ(ℰ̃ ′

[i,n,i],s)) satisfies the condi
tion (3.29). For any d > d0, arguing as in the proof of Proposition 3.13, we see that the 
ζ-factors arising from the variables x(β,s)

∗,∗ with β = [i, n, j] and dβ > 0 contribute Ad in 
the ϕd-specialization (since o(x(β,s)

ℓ,1 ) ̸= o(x(β,s)
ℓ,2 ) in the present setup of Ψ(ℰ̃rtt

[i,n−1],sℰ̃rtt
[i,n],0)

and Ψ(ℰ̃rtt
[i,n],0ℰ̃rtt

[i,n−1],s), we actually never have to reserve to the Q-factors of (3.3) or the 
factors (3.31) that were utilized a few times in the proof of Proposition 3.13, and thus 
the overall contribution of Ad arises precisely from the same ζ-factors as used in the 
proof of Proposition 3.13).

Finally, if we expand ℰ̃ ′
[i,n,i],s as a linear combination of monomials 

∏︁k
ℓ=1 eiℓ,sℓ with co

efficients in Z[v, v−1], then as in the proof of Proposition 3.13 we also see that Ψ(ℰ̃ ′
[i,n,i],s)

is integral. Thus Ψ(ℰ̃ ′
[i,n,i],s) ∈ 𝒮, so that ℰ̃ ′

[i,n,i],s ∈ 𝒰>
v (L𝔰𝔭2n) by Theorem 3.14(a). On 

the other hand, combining (A.31) with Lemma 3.6 and Theorem 3.14(b), we see that 
ℰ̃ ′
[i,n,i],s − a · ℰ̃+

[i,n,i],s is a polynomial in ℰ̃+
β,s (|β| ≤ 2n− 2i) with coefficients in Z[v, v−1]

for some a ∈ Q× · vZ.
This proves that the quantum root vectors {ℰ̃rtt

β,s}s∈Zβ∈Δ+ indeed generate 𝒰>
v (L𝔰𝔭2n). □

Data availability

No data was used for the research described in the article.
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