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0. Introduction

In this paper we consider infinitesimal Hecke algebras of soN .1 Although their theory runs along similar 
lines as for the cases of glN and sp2N , they have not been investigated before.

We obtain the classification result in Theorem 1.4 (compare to [5, Theorem 4.2]), compute the Poisson 
center of the corresponding Poisson algebras in Theorem 4.2 (compare to [4, Theorems 5.1 and 7.1]), 
compute the first non-trivial central element in Theorem 6.1 (compare to [4, Theorem 3.1]) and derive the 
isomorphism with the corresponding W -algebras in Theorems 5.1, 5.2 (compare to [9, Theorems 7 and 10]).

Together with [9], this covers all basic cases of the infinitesimal Hecke algebras on the one side and the 
classical W -algebras with a 1-block nilpotent element, on the other. However, we would like to emphasize 
that the theory of infinitesimal/continuous Hecke algebras is much more complicated in general and has not 
been developed yet.

This paper is organized as follows:
• In Section 1, we recall the definitions of the continuous and infinitesimal Hecke algebras of type (G, V )

(respectively (g, V )). We formulate Theorems 1.3 and 1.4, which classify all such algebras for the cases 
of (SON , VN ) and (soN , VN ), respectively.
We also recall the definitions and basic results about the finite W -algebras.

• In Section 2, we prove Theorem 1.3.
• In Section 3, we prove Theorem 1.4 by computing explicitly the corresponding integral.
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1 We assume that N ≥ 3.
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• In Section 4, we compute the Poisson center of the classical analogue Hcl
ζ (soN , VN ).

• In Section 5, we introduce the universal length m infinitesimal Hecke algebra Hm(soN , VN ). In Theo-
rem 5.1 (and its Poisson counterpart Theorem 5.2) we establish an abstract isomorphism between the 
algebras Hm(soN , VN ) and the W -algebras U(soN+2m+1, em).

• In Section 6, we find a non-trivial central element of Hζ(soN , VN ), called the Casimir element of 
Hζ(soN , VN ). This can be used to establish the isomorphism of Theorem 5.1 explicitly.

1. Basic definitions

1.1. Algebraic distributions

For an affine scheme X of finite type over C, let O(X) be the algebra of regular functions on X and O(X)∗
be the dual space, called the space of algebraic distributions. Note that O(X)∗ is a module over O(X): for 
f ∈ O(X), μ ∈ O(X)∗ we can define f · μ by 〈f · μ, g〉 = 〈μ, fg〉 for all g ∈ O(X). For a closed subscheme 
Z ⊂ X, we say that an algebraic distribution μ on X is supported on the scheme Z if μ annihilates the 
defining ideal I(Z) of Z. If Z is reduced, we say that μ ∈ O(X)∗ is set-theoretically supported on the set Z
if μ annihilates some power of I(Z).

Let G be a reductive algebraic group and ρ : G → GL(V ) be a finite dimensional algebraic representation 
of G. First note that O(G)∗ is an algebra with respect to the convolution. Moreover, δ1G

is the unit of this 
algebra. Next, we consider the semi-direct product O(G)∗�TV , that is, the algebra generated by μ ∈ O(G)∗
and x ∈ V with the relations

x · μ =
∑
i

(
v∗i , gx

)
μ · vi for all x ∈ V, μ ∈ O(G)∗,

where {vi} is a basis of V and {v∗i } the dual basis of V ∗, while (v∗i , gx)μ denotes the product of the regular 
function (v∗i , gx) and the distribution μ.

We will denote the vector space of length N columns by VN , so that there are natural actions of 
GLN , SpN , SON on VN . Let us also denote the action of g ∈ G on x ∈ V by xg.

1.2. Continuous Hecke algebras

We recall the definition of the continuous Hecke algebras of (G, V ) following [5].
Given a reductive algebraic group G, its finite dimensional algebraic representation V and a skew-

symmetric G-equivariant C-linear map κ : V × V → O(G)∗, we set

Hκ(G,V ) := O(G)∗ � TV/
(
[x, y] − κ(x, y) | x, y ∈ V

)
.

Consider an algebra filtration on Hκ(G, V ) by setting deg(V ) = 1 and deg(O(G)∗) = 0.

Definition 1.1. (See [5].) We say that Hκ(G, V ) satisfies the PBW property if the natural surjective map 
O(G)∗ � SV � grHκ(G, V ) is an isomorphism, where SV denotes the symmetric algebra of V . We call 
these Hκ(G, V ) the continuous Hecke algebras of (G, V ).

According to [5, Theorem 2.4], Hκ(G, V ) satisfies the PBW property if and only if κ satisfies the Jacobi 
identity: (

z − zg
)
κ(x, y) +

(
y − yg

)
κ(z, x) +

(
x− xg

)
κ(y, z) = 0 for all x, y, z ∈ V. (†)
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Define the closed subscheme Φ ⊂ G by the equation ∧3(1 − g|V ) = 0. The set of closed points of Φ is the 
set S = {g ∈ G : rk(1 − g|V ) ≤ 2}. We have:

Proposition 1.1. (See [5, Proposition 2.8].) If the PBW property holds for Hκ(G, V ), then κ(x, y) is supported 
on the scheme Φ for all x, y ∈ V .

The classification of all κ satisfying (†) was obtained in [5] for the following two cases:
• for the pairs (G, h ⊕ h∗) with h being an irreducible faithful G-representation of real or complex type 

(see [5, Theorem 3.5]),
• for the pair (Sp2n, V2n) (see [5, Theorem 3.14]).

For general continuous Hecke algebras such a classification is not known at the moment. However, a par-
ticular family of those was established in [5, Theorem 2.13]:

Proposition 1.2. For any τ ∈ (O(Ker ρ)∗ ⊗ ∧2V ∗)G and υ ∈ (O(Φ)∗ ⊗ ∧2V ∗)G, the pairing κτ,υ(x, y) :=
τ(x, y) + υ((1 − g)x, (1 − g)y) satisfies the Jacobi identity.

Our first result is a full classification of all κ satisfying (†) for the case of (SON , VN ), which is similar to 
the aforementioned classification for (Sp2n, V2n). But it turns out that Φ is not reduced in this case and so 
we need a more detailed argument.

Theorem 1.3. The PBW property holds for Hκ(SON , VN ) if and only if there exists an SON -invariant 
distribution c ∈ O(S)∗ such that κ(x, y) = ((g − g−1)x, y)c for all x, y ∈ VN .

The proof of this theorem is presented in Section 2.

1.3. Infinitesimal Hecke algebras

For any triple (g, V, κ) of a Lie algebra g, its representation V and a g-equivariant C-bilinear pairing 
κ : ∧2V → U(g), we define

Hκ(g, V ) := U(g) � TV/
(
[x, y] − κ(x, y) | x, y ∈ V

)
.

Endow this algebra with a filtration by setting deg(V ) = 1, deg(g) = 0.

Definition 1.2. (See [5, Section 4].) We call this algebra the infinitesimal Hecke algebra of (g, V ) if it satisfies 
the PBW property, that is, the natural surjective map U(g) � SV � grHκ(g, V ) is an isomorphism.

Any such algebra gives rise to a continuous Hecke algebra

Hκ(G,V ) := O(G)∗ ⊗U(g) Hκ(g, V ),

where U(g) is identified with the subalgebra O(G)∗1G
⊂ O(G)∗, consisting of all algebraic distributions 

set-theoretically supported at 1G ∈ G.
In particular, having a full classification of the continuous Hecke algebras of type (G, V ) yields a cor-

responding classification for the infinitesimal Hecke algebras of (Lie(G), V ). The latter classification was 
determined explicitly for the cases of (g, V ) = (gln, Vn ⊕ V ∗

n ), (sp2n, V2n) in [5, Theorem 4.2].
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To formulate our classification of infinitesimal Hecke algebras Hκ(soN , VN ) we define:
• γ2j+1(x, y) ∈ S(soN ) � C[soN ] by

(
x,A

(
1 + τ2A2)−1

y
)
det

(
1 + τ2A2)−1/2 =

∑
j≥0

γ2j+1(x, y)(A)τ2j , A ∈ soN ,

where we formally set (1 + T )α := 1 +
∑∞

n=1
α(α−1)···(α−n+1)

n! Tn for α ∈ R, T ∈ τ2C[τ2];
• r2j+1(x, y) ∈ U(soN ) to be the symmetrization of γ2j+1(x, y) ∈ S(soN ).

The following theorem is proved in Section 3:

Theorem 1.4. The PBW property holds for Hκ(soN , VN ) if and only if κ =
∑k

j=0 ζjr2j+1 for some non-
negative integer k and parameters ζ0, . . . , ζk ∈ C.

This theorem is very similar to the analogous results for the pairs (gln, Vn ⊕ V ∗
n ) and (sp2n, V2n). We 

denote the corresponding algebra by Hζ(soN , VN ) for κ of the above form.

Remark 1.1. (a) For ζ0 �= 0, we have Hζ0r1(soN , VN ) � U(soN+1). Thus, for an arbitrary ζ we can regard 
Hζ(soN , VN ) as a deformation of U(soN+1).
(b) Theorem 1.4 does not hold for N = 2, since only half of the infinitesimal Hecke algebras are of the form 
given in the theorem (algebras Hκ(so2, V2) are the same as Hκ′(gl1, V1 ⊕ V ∗

1 )).

1.4. W -algebras

Here we recall the definitions of finite W -algebras following [7] (see also [9, Section 1.5]).
Let g be a finite dimensional simple Lie algebra over C and e ∈ g be a nonzero nilpotent element. We 

identify g with g∗ via the Killing form ( , ). Let χ be the element of g∗ corresponding to e and zχ be the 
stabilizer of χ in g (which is the same as the centralizer of e in g). Fix an sl2-triple (e, h, f) in g. Then 
zχ is ad(h)-stable and the eigenvalues of ad(h) on zχ are nonnegative integers. Consider the ad(h)-weight 
grading on g =

⊕
i∈Z

g(i), that is, g(i) := {ξ ∈ g | [h, ξ] = iξ}. Equip g(−1) with the symplectic form 
ωχ(ξ, η) := 〈χ, [ξ, η]〉. Fix a Lagrangian subspace l ⊂ g(−1) and set m :=

⊕
i≤−2 g(i) ⊕ l ⊂ g, m′ :=

{ξ − 〈χ, ξ〉 | ξ ∈ m} ⊂ U(g).

Definition 1.3. (See [10,7].) The W -algebra associated with e (and l) is the algebra U(g, e) :=
(U(g)/U(g)m′)adm with multiplication induced from U(g).

Let {F st
• } denote the PBW filtration on U(g), while U(g)(i) := {x ∈ U(g) | [h, x] = ix}. Define

FkU(g) =
∑

i+2j≤k(F st
j U(g) ∩ U(g)(i)) and equip U(g, e) with the induced filtration, denoted {F•} and 

referred to as the Kazhdan filtration.
One of the key results of [7,10] is a description of the associated graded algebra grF•U(g, e). Recall that 

the affine subspace Se := χ + (g/[g, f ])∗ ⊂ g∗ is called the Slodowy slice. As an affine subspace of g, the 
Slodowy slice Se coincides with e + c, where c = Kerg ad(f). So we can identify C[Se] ∼= C[c] with the 
symmetric algebra S(zχ). According to [7, Section 3], algebra C[Se] inherits a Poisson structure from C[g∗]
and is also graded with deg(zχ ∩ g(i)) = i + 2.

Theorem 1.5. (See [7, Theorem 4.1].) The filtered algebra U(g, e) does not depend on the choice of l (up to 
a distinguished isomorphism) and grF U(g, e) ∼= C[Se] as graded Poisson algebras.
•
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2. Proof of Theorem 1.3

• Sufficiency

Given any c ∈ (O(S)∗)SON , the formula κ(x, y) := ((g − g−1)x, y)c defines a skew-symmetric SON -
equivariant pairing κ : VN × VN → O(SON )∗. For x, y, z ∈ VN and g ∈ SON we define

h(x, y, z; g) :=
(
z − zg

)(
xg − xg−1

, y
)

+
(
y − yg

)(
zg − zg

−1
, x

)
+

(
x− xg

)(
yg − yg

−1
, z

)
.

Lemma 2.1. We have h(x, y, z; g) = 0 for all x, y, z ∈ VN and g ∈ S.

Proof. For any g ∈ S consider the decomposition V = V g⊕(V g)⊥, where V g := Ker(1 −g) is a codimension 
≤ 2 subspace of V . If either of the vectors x, y, z belongs to V g, then all the three summands are zero and 
the result follows. Thus, we can assume x, y, z ∈ (V g)⊥. Without loss of generality, we can assume that 
z = αx + βy with α, β ∈ C, since dim(V g)⊥ ≤ 2. Then

h(x, y, z; g) = α
((
x− xg

)(
xg − xg−1

, y
)

+
(
x− xg

)(
yg − yg

−1
, x

)
+

(
y − yg

)(
xg − xg−1

, x
))

+ β
((
y − yg

)(
xg − xg−1

, y
)

+
(
y − yg

)(
yg − yg

−1
, x

)
+

(
x− xg

)(
yg − yg

−1
, y

))
.

Clearly, (xg − xg−1
, x) = (xg, x) − (x, xg) = 0 and (xg − xg−1

, y) = −(yg − yg
−1
, x), so that the first sum is 

zero. Likewise, the second sum is zero. The result follows. �
Since c is scheme-theoretically supported on S, we get h(x, y, z; g)c = 0 and so (†) holds.

• Necessity

Let I ⊂ C[SON ] be the defining ideal of Φ, that is, I is generated by 3 ×3 determinants of 1 −g. Consider 
a closed subscheme Φ̄ ⊂ soN , defined by the ideal Ī := (∧3A) ⊂ C[soN ].

Define E := Rad(I)/I and Ē := Rad(Ī)/Ī. Notice that Ē � E, since Φ is reduced in the formal 
neighborhood of any point g �= 1, while the exponential map defines an isomorphism of formal completions 
exp : Φ̄∧0 ∼−→Φ∧1 .

On the other hand, we have a short exact sequence of SON -modules

0 → E → O(Φ) → O(S) → 0,

inducing the following short exact sequence of vector spaces

0 →
(
∧2V ∗

N ⊗ O(S)∗
)SON φ−→

(
∧2V ∗

N ⊗ O(Φ)∗
)SON ψ−→

(
∧2V ∗

N ⊗ E∗)SON → 0. (�)

It is easy to deduce the necessity for κ ∈ Im(φ) by utilizing the arguments from the proof of [5, Theo-
rem 3.14(ii)]. Combining this observation with Proposition 1.1 and an isomorphism E � Ē, it suffices to 
prove the following result:

Lemma 2.2. (a) The space (∧2V ∗
N ⊗ Ē∗)SON is either zero or one-dimensional.

(b) If (∧2V ∗
N ⊗ Ē∗)SON �= 0, then there exists κ′ ∈ (∧2V ∗

N ⊗ O(Φ)∗)SON not satisfying (†).2

2 So that any element of (∧2V ∗
N ⊗ O(Φ)∗)SON satisfying (†) should be in the image of φ.
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Notice that the adjoint action of SON on soN extends to the action of GLN by g·A = gAgt for A ∈ soN , 
g ∈ GLN . This endows C[soN ] with a structure of a GLN -module and both Ī, Rad(Ī) are GLN -invariant. 
The following fact was communicated to us by Steven Sam:

Claim 2.3. As glN -representations Ē � ∧4VN .

Let us first deduce Lemma 2.2 from the Claim 2.3.

Proof of Lemma 2.2. (a) The following facts are well-known (see [6, Theorems 19.2, 19.14]):
◦ the so2n+1-representations {∧iV2n+1}ni=0 are irreducible and pairwise non-isomorphic,
◦ the so2n-representation ∧nV2n decomposes as ∧nV2n � ∧n

+V2n ⊕ ∧n
−V2n, and so2n-representations 

{∧0V2n, . . . , ∧n−1V2n, ∧n
+V2n, ∧n

−V2n} are irreducible and pairwise non-isomorphic.

Combining these facts with Claim 2.3 and an isomorphism ∧kVN � ∧N−kV ∗
N , we get

(
∧2V ∗

2n+1 ⊗ Ē∗)SO2n+1 = 0, while dim
((
∧2V ∗

2n ⊗ Ē∗)SO2n) =
{ 1, n = 3,

0, n �= 3.

(b) For N = 6, any nonzero element of (∧2V ∗
6 ⊗ Ē∗)SO6 corresponds to the composition

∧2V6
∼−−→ϕ ∧4V ∗

6 � Ē∗.

Let M4 ⊂ C[soN ]2 be the subspace spanned by the Pfaffians of all 4 × 4 principal minors. This subspace 
is GL6-invariant and M4 � ∧4V6 as gl6-representations. Claim 2.3 and simplicity of the spectrum of the 
gl6-module C[so6] (see Theorem 2.5 below) imply M4 ⊂ Rad(Ī) and M4 ∩ Ī = 0. It follows that M4
corresponds to the copy of ∧4V6 � Rad(Ī)/Ī from Claim 2.3.

Choose an orthonormal basis {yi}6
i=1 of V6, so that any element A ∈ so6 is skew-symmetric with respect 

to this basis. We denote the corresponding Pfaffian by Pf î,j (with a correctly chosen sign).3 We define 
κ′(yi ⊗ yj) ∈ U(so6) to be the symmetrization of Pf î,j . Identifying U(so6) with S(so6) as so6-modules, we 
easily see that κ′ : ∧2V6 → U(so6) is so6-invariant.

However, κ′ does not satisfy the Jacobi identity. Indeed, let us define κ̄′ : V6⊗V6 → S(so6) by κ̄′(yi⊗yj) =
Pf î,j . Then for any three different indices i, j, k, the corresponding expressions {Pî,j, xk}, {Pĵ,k

, xi}, {Pk̂,i
, xj}

coincide up to a sign and are nonzero. So their sum is also non-zero, implying that (†) fails for κ′. �
Proof of Claim 2.3.

◦ Step 1: Description of Rad(Ī).
Let Pfijkl ∈ C[soN ]2 be the Pfaffians of the principal 4 × 4 minors corresponding to the rows/columns 

#i, j, k, l. It is clear that Pfijkl vanish at rank ≤ 2 matrices and so Pfijkl ∈ Rad(Ī). A beautiful classical 
result states that those elements generate Rad(Ī), in fact:

Theorem 2.4. (See [12, Theorem 6.4.1(b)].) The ideal Rad(Ī) is generated by {Pfijkl |i < j < k < l}.

◦ Step 2: Decomposition of C[soN ] as a glN -module.
Let T be the set of all length ≤ N Young diagrams λ = (λ1 ≥ λ2 ≥ · · · ≥ 0). There is a natural bijection 

between T and the set of all irreducible finite dimensional polynomial glN -representations. For λ ∈ T , we 

3 To make a compatible choice of signs, define Pf î,j as the derivative of the total Pfaffian Pf along Eij − Eji.
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denote the corresponding irreducible glN -representation by Lλ. Let T e be the subset of T consisting of all 
Young diagrams with even columns.

The following result describes the decomposition of C[soN ] into irreducibles:

Theorem 2.5. (See [1, Theorem 2.5].) As glN -representations C[soN ] � S(∧2VN ) �
⊕

λ∈T e Lλ.

For any λ ∈ T e, let Iλ ⊂ C[soN ] be the ideal generated by Lλ ⊂ C[soN ], while T e
λ ⊂ T e be the subset of 

the diagrams containing λ. The arguments of [1] (see also [3, Theorem 5.1]) imply that Iλ �
⊕

μ∈T e
λ
Lμ as 

glN -modules.

◦ Step 3: Rad(Ī) and Ī as glN -representations.
Since the subspace M4 ⊂ C[soN ], spanned by Pfijkl, is glN -invariant and is isomorphic to ∧4VN , the 

results of the previous steps imply that Rad(Ī) �
⊕

μ∈T e
(14)

Lμ as glN -modules.
Let N3 ⊂ C[soN ]3 be the subspace spanned by the determinants of all 3 ×3 minors. This is a glN -invariant 

subspace.

Lemma 2.6. We have N3 � L(22,12) ⊕ L(16) as glN -representations.

Proof. According to Step 2, we have C[soN ]3 � L(16) ⊕ L(22,12) ⊕ L(32). Since the space of 3 × 3 minors 
identically vanishes when N = 2, and the Schur functor (3,3) does not, it rules L(32) out. Also, the space of 
3 ×3 minors is nonzero for N = 4, while the Schur functor (16) vanishes, so N3 � L(16). Since partition (16)
corresponds to the subspace M6 ⊂ C[soN ] spanned by 6 × 6 Pfaffians, it suffices to prove that M6 ⊂ N3. 
The latter is sufficient to verify for N = 6, that is, the Pfaffian Pf of a 6 × 6 matrix is a linear combination 
of its 3 × 3 determinants.4

Let detpqsijk be the determinant of the 3 × 3 minor, obtained by intersecting rows #i, j, k and columns 
#p, q, s. The following identity is straightforward:

−4 Pf = − det456123 + det356124 − det346125 + det345126 − det256134 + det246135 − det245136 − det236145 + det235146 − det234156 .

This completes the proof of the lemma. �
The results of Step 2 imply that Ī �

⊕
μ∈T e

(22,12)∪T e
(16)

Lμ as glN -modules.

Claim 2.3 follows from the aforementioned descriptions of glN -modules Ī and Rad(Ī). �
3. Proof of Theorem 1.4

Let us introduce some notation:

• K := SON (R) (the maximal compact subgroup of G = SON (C)),

• sθ =

⎛⎜⎜⎜⎜⎜⎝
cos θ − sin θ 0 · · · 0
sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ∈ K, θ ∈ [−π, π],

4 The conceptual proof of this fact is as follows. Note that determinants of 3 × 3 minors of A ∈ so6 are just the matrix elements 
of ∧3A, and ∧3A acts on ∧3V6 = ∧3

+V6 ⊕∧3
−V6. It is easy to see that the trace of ∧3A on ∧3

+V6 is nonzero. This provides a cubic 
invariant for so6, which is unique up to scaling (multiple of Pf).
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• Sθ := {gsθg−1|g ∈ K} ⊂ K,
• SR := S ∩K =

⋃
θ∈[0,π] Sθ,5 so that SR/K gets identified with S1/Z2.

According to Theorem 1.3, there exists a Z2-invariant c ∈ O0(S1)∗, which is a linear combination of the 
delta-function δ0 (at 0 ∈ S1) and its even derivatives δ(2k)

0 , such that6

κ(x, y) =
π∫

−π

c(θ)
(∫

Sθ

((
g − g−1)x, y) dg)dθ for all x, y ∈ VN .

For g ∈ SR we define a 2-dimensional subspace Vg ⊂ VN by Vg := Im(1 − g). To evaluate the above 
integral, choose length 1 orthogonal vectors p, q ∈ Vg such that the restriction of g to Vg is given by the 
matrix 

( cos θ − sin θ
sin θ cos θ

)
in the basis {p, q}.

Let us define Jp,q := q ⊗ pt − p ⊗ qt ∈ soN (R). We have:
• ((g − g−1)x, y) = 2 sin θ · (x, Jp,qy),
• g = exp(θJp,q), since 

( cos θ − sin θ
sin θ cos θ

)
= exp

( 0 −1
1 0

)
.

As a result, we get7:

κ(x, y) =
∫

p∈SN−1

∫
q∈SN−2(p)

(x, Jp,qy)
( π∫

−π

2c(θ) sin θ · eθJp,q dθ

)
dq dp, (1)

where SN−1 is the unit sphere in RN centered at the origin and SN−2(p) is the unit sphere in RN−1(p) ⊂ RN , 
the hyperplane orthogonal to the line passing through p and the origin.

Since c(θ) is an arbitrary linear combination of the delta-function and its even derivatives, the above 
integral is a linear combination of the following integrals:∫

p∈SN−1

∫
q∈SN−2(p)

(x, Jp,qy) · J2k+1
p,q dq dp, k ≥ 0.

This is a standard integral (see [5, Section 4.2] for the analogous calculations). Identifying U(soN ) with 
S(soN ) via the symmetrization map, it suffices to compute the integral

Im;x,y(A) =
∫

p∈SN−1

∫
q∈SN−2(p)

(x, Jp,qy) · tr(AJp,q)m dq dp, A ∈ soN (R).

To compute this expression we introduce

Fm(A) :=
∫

p∈SN−1

∫
q∈SN−2(p)

tr(AJp,q)m+1 dq dp =
∫

p∈SN−1

∫
q∈SN−2(p)

(
2(Aq, p)

)m+1
dq dp,

so that the former integral can be expressed in the following way:

dFm(A)
(
x⊗ yt − y ⊗ xt

)
= −2(m + 1)Im;x,y(A).

5 Note that Sθ and S−θ coincide for N ≥ 3. That explains why θ ∈ [0, π] instead of θ ∈ [−π, π].
6 Here we integrate over the whole circle S1 instead of S1/Z2, but we require c(θ) = c(−θ).
7 Generally speaking, the integration should be taken over the Grassmannian G2(RN ). However, it is easier to integrate over the 

Stiefel manifold V2(RN ), which is a principal O(2)-bundle over G2(RN ).
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Now we compute Fm(A). Notice that

Gm(A, ζ) :=
∫

p∈RN

∫
q∈RN−1(p)

(
2(Aq, p)

)m+1
e−ζ(p,p)−ζ(q,q) dq dp

=
∞∫
0

∞∫
0

e−ζr2
1−ζr2

2

∫
|p|=r1

∫
|q|=r2

(
2(Aq, p)

)m+1
dq dp dr2 dr1

=
∞∫
0

∞∫
0

e−ζr2
1−ζr2

2rm+N
1 rm+N−1

2 dr2 dr1 · Fm(A) = Km+N (ζ)Km+N−1(ζ)Fm(A),

where

Kl(ζ) :=
∞∫
0

e−ζr2
rl dr =

{ k!
2ζk+1 , l = 2k + 1,
(2k−1)!!

√
π

2k+1ζk+1/2 , l = 2k.

As a result, we get

Gm(A, ζ) =
√
π(m + N − 1)!

2m+N+1ζm+N+1/2Fm(A).

On the other hand, we have:

∞∑
m=−1

1
(m + 1)!Gm(A, ζ) =

∫
p∈RN

∫
q∈RN−1(p)

e2(Aq,p)e−ζ(p,p)−ζ(q,q) dq dp

=
∫

p∈RN

e−ζ(p,p)
∫

q∈RN−1(p)

e−2(q,Ap)−ζ(q,q) dq dp
q′:=q+Ap

ζ=
∫

p∈RN

e−ζ(p,p)
∫

q′∈RN−1(p)

e−ζ(q′,q′)e
1
ζ (Ap,Ap) dq′ dp

=
∫

p∈RN

e−ζ(p,p)+ 1
ζ (Ap,Ap) dp · (π/ζ)N−1

2 = (π/ζ)
N−1

2

∫
p∈RN

e((−ζ− 1
ζA

2)p,p) dp

= πN− 1
2

ζ
N−1

2
det

(
ζ + 1

ζ
A2

)−1/2

= πN− 1
2

ζN− 1
2

det
(
1 + ζ−2A2)−1/2

.

Hence, Fm(A) is equal to a constant times the coefficient of τm+1 in det(1 + τ2A2)−1/2, expanded as a 
power series in τ . Differentiating det(1 + τ2A2)−1/2 along B ∈ soN , we get

∂

∂B

(
det

(
1 + τ2A2)−1/2) = −τ2 tr(BA(1 + τ2A2)−1)

det(1 + τ2A2)1/2
.

Setting B = x ⊗ yt − y ⊗ xt yields 2τ2(x, A(1 + τ2A2)−1y) det(1 + τ2A2)−1/2 as desired. �
4. Poisson center of algebras Hcl

ζ (soN)

Following [4], we introduce the Poisson algebras Hcl
ζ (soN , VN ), where ζ = (ζ0, . . . , ζk) is a deformation 

parameter. As algebras these are S(soN ⊕ VN ) with a Poisson bracket {·,·} modeled after the commutator 
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[·,·] of Hζ(soN , VN ), that is, {x, y} =
∑

j ζjγ2j+1(x, y). We prefer the following short formula for {·, ·} :
VN × VN → C[soN ] � S(soN ):

{x, y} = Resz=0 ζ
(
z−2)(x,A(

1 + z2A2)−1
y
)
det

(
1 + z2A2)−1/2

z−1dz, ∀x, y ∈ VN , A ∈ soN , (*)

where ζ(z) :=
∑

i≥0 ζiz
i is the generating function of the deformation parameters.

In fact, we can view algebras Hζ(soN , VN ) as quantizations of the algebras Hcl
ζ (soN , VN ). The latter 

algebras still carry some important information. The main result of this section is a computation of their 
Poisson center zPois(Hcl

ζ (soN , VN )).
Let us first recall the corresponding result in the non-deformed case (ζ = 0), when the corresponding 

algebra is just S(soN�VN ) with a Lie–Poisson bracket. To state the result we introduce some more notation:
• Define pi(A) ∈ C via det(IN + tA) =

∑N
j=0 pj(A)tj for A ∈ glN .

• Define bi(A) ∈ glN via b0(A) = IN , bk(A) =
∑k

j=0(−1)jpj(A)Ak−j for k > 0.
• Define aN := soN � VN ; we identify a∗N with aN via the natural pairing.
• Define ψk : a∗N → C by ψk(A, v) = (v, b2k(A)v) for A ∈ soN , v ∈ VN , k ≥ 0.
• If N = 2n + 1, ψn is actually the square of a polynomial function ψ̂n, which can be realized explicitly 

as the Pfaffian of the matrix 
( A v
−vt 0

)
∈ so2n+2.

• Identifying C[a∗N ] � S(aN ), let τk ∈ S(aN ) (respectively τ̂n+1 ∈ S(a2n+1)) be the elements corresponding 
to ψk−1 (respectively ψ̂n).

The following result is due to [11, Sections 3.7, 3.8]:

Proposition 4.1. Let zPois(A) denote the Poisson center of the Poisson algebra A. We have:
(a) zPois(S(a2n)) is a polynomial algebra in free generators {τ1, . . . , τn}.
(b) zPois(S(a2n+1)) is a polynomial algebra in free generators {τ1, . . . , τn, ̂τn+1}.

Similarly to the cases of gln, sp2n, this result can be generalized for arbitrary deformations ζ. In fact, 
for any deformation parameter ζ = (ζ0, . . . , ζk) the Poisson center zPois(Hcl

ζ (soN , VN )) is still a polynomial 
algebra in �N+1

2 � generators. This is established in the following theorem:

Theorem 4.2. Define ci ∈ C[soN ]SON � zPois(S(soN )) via 
∑

i(−1)icit2i = c(t), where

c(t) := Resz=0 ζ
(
z−2) det(1 + t2A2)1/2

det(1 + z2A2)1/2
z−1dz

1 − t−2z2 .

(a) zPois(Hcl
ζ (so2n, V2n)) is a polynomial algebra in free generators {τ1 + c1, . . . , τn + cn}.

(b) zPois(Hcl
ζ (so2n+1, V2n+1)) is a polynomial algebra in free generators {τ1 + c1, . . . , τn + cn, ̂τn+1}.

Let us introduce some more notation before proceeding to the proof:
• Let {xi}Ni=1 be a basis of VN such that (xi, xj) = δjN+1−i.
• Let J = (Jij)Ni,j=1 be the corresponding anti-diagonal symmetric matrix, i.e., Jij = δjN+1−i.

Notice that A = (aij) ∈ soN if and only if aij = −aN+1−j,N+1−i for all i, j.
• Let hN be the Cartan subalgebra of soN consisting of the diagonal matrices.
• Define e(i,j) := Ei,j − EN+1−j,N+1−i ∈ soN for i, j ≤ N (in particular, e(i,N+1−i) = 0 ∀i).
• We set ei := e(i,i) for 1 ≤ i ≤ n := �N

2 �, so that {ei}ni=1 form a basis of hN .
• Define symmetric polynomials σi ∈ C[z1, . . . , zn]Sn via 

∏n
i=1(1 + tzi) =

∑n
i=0 t

iσi(z1, . . . , zn).

Proof of Theorem 4.2. We shall show that the elements τi + ci (and τ̂n+1 for N = 2n + 1) are Poisson 
central. Combined with Proposition 4.1 this clearly implies the result by a deformation argument. Since 



2056 A. Tsymbaliuk / Journal of Pure and Applied Algebra 219 (2015) 2046–2061
{τi, soN} = 0 for ζ = 0, we still have {τi, soN} = 0 for arbitrary ζ. This implies {τi + ci, soN} = 0 as 
ci ∈ zPois(S(soN )). Therefore we just need to verify

{ci, xq} = −{τi, xq} for all 1 ≤ q ≤ N. (2)

Using ψs(A, v) = (v, b2s(A)v) =
∑N

k,l=1 xkxlb2s(A)N+1−k,l, we get:

{τs+1, xq} =
∑
k,l

{
b2s(A)N+1−k,l, xq

}
xkxl +

∑
k,l

b2s(A)N+1−k,l{xk, xq}xl +
∑
k,l

b2s(A)N+1−k,lxk{xl, xq}.

The first summand is zero due to Proposition 4.1. On the other hand, AJ + JAt = 0 implies 
(A2j)N+1−k,l = (A2j)N+1−l,k and p2j+1(A) = 0 for all j ≥ 0. Hence,

b2s(A) = A2s + p2(A)A2s−2 + p4(A)A2s−4 + . . . + p2s(A), b2s(A)n+1−k,l = b2s(A)n+1−l,k.

Combining this with {cs+1, xq} =
∑

p�=N+1−q
∂cs+1
∂e(p,q)

xp, we see that (2) is equivalent to:

∂cs+1

∂e(p,q)
= −2

∑
l

b2s(A)N+1−p,l Resz=0 ζ
(
z−2) (xl, A(1 + z2A2)−1xq)

det(1 + z2A2)1/2
dz

z
for all p, q ≤ N. (3)

Because both sides of (3) are SON -invariant, it suffices to verify (3) for A ∈ hN , that is, for
• A = diag(λ1, . . . , λn, −λn, . . . , −λ1) in the case N = 2n,
• A = diag(λ1, . . . , λn, 0, −λn, . . . , −λ1) in the case N = 2n + 1.

For p �= q, both sides of (3) are zero. For p = q ≤ n, the only nonzero summand on the right hand side 
of (3) is the one corresponding to l = N + 1 − q. In this case:

b2s(A)N+1−q,N+1−q = λ2s
q − σ1

(
λ2

1, . . . , λ
2
n

)
λ2s−2
q + . . . + (−1)sσs

(
λ2

1, . . . , λ
2
n

)
= (−1)s ∂σs+1(λ2

1, . . . , λ
2
n)

∂λ2
q

,

while (xN+1−q, A(1 + z2A2)−1xq) = λq

1+z2λ2
q

and det(1 + z2A2)1/2 =
∏n

i=1(1 + z2λ2
i ).

For p = q > �N+1
2 �, we get the same equalities with λi ↔ −λi. As a result, (3) is equivalent to:

∂cs+1(λ1, . . . , λn)
∂λ2

q

= (−1)s+1 ∂σs+1(λ2
1, . . . , λ

2
n)

∂λ2
q

Resz=0 ζ
(
z−2) z−1dz

(1 + z2λ2
q)

∏n
i=1(1 + z2λ2

i )
.

We thus need to verify the following identities for c(t):

∂c(t)
∂λ2

q

=
∂
∏n

i=1(1 + t2λ2
i )

∂λ2
q

Resz=0
ζ(z−2)z−1dz

(1 + z2λ2
q)

∏n
i=1(1 + z2λ2

i )
. (4)

This is a straightforward verification and we leave it to an interested reader. This proves that τi + ci ∈
zPois(Hcl

ζ (soN , VN )) for all 1 ≤ i ≤ n. For N = 2n + 1, we also get a Poisson-central element τn+1 + cn+1. 
Since cn+1 = 0, we have

τ̂2
n+1 = τn+1 ∈ zPois

(
Hcl

ζ (so2n+1, V2n+1)
)
⇒ τ̂n+1 ∈ zPois

(
Hcl

ζ (so2n+1, V2n+1)
)
.

This completes the proof of the theorem. �
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Definition 4.1. The element τ ′1 = τ1 + c1 is called the Poisson Casimir element of Hcl
ζ (soN , VN ).

As a straightforward consequence of Theorem 4.2, we get:

Corollary 4.3. We have τ ′1 = τ1 +
∑k

j=0(−1)j+1ζj trS2j+2A.

5. The key isomorphism

5.1. Algebras Hm(soN , VN )

Let us first introduce the universal infinitesimal Hecke algebras of (soN , VN ):

Definition 5.1. Define the universal length m infinitesimal Hecke algebra Hm(soN , VN ) as

Hm(soN , VN ) := U(soN ) � T (VN )[ζ0, . . . , ζm−1]
/(

[A, x] −A(x), [x, y] −
m−1∑
j=0

ζjr2j+1(x, y) − r2m+1(x, y)
)
,

where A ∈ soN , x, y ∈ VN and {ζi}m−1
i=0 are central. The filtration is induced from the grading on

T (soN ⊕ VN )[ζ0, . . . , ζm−1] with deg(soN ) = 2, deg(VN ) = 2m + 2 and deg(ζi) = 4(m − i).

The algebra Hm(soN , VN ) is free over C[ζ0, . . . , ζm−1] and Hm(soN , VN )/(ζi − ci)m−1
i=0 is the usual in-

finitesimal Hecke algebra Hζc(soN , VN ) for ζc = c0r1 + . . . + cm−1r2m−1 + r2m+1.

Remark 5.1. For an soN -equivariant pairing η : ∧2VN → U(soN )[ζ0, . . . , ζm−1] such that deg(η(x, y)) ≤
4m +2, the algebra U(soN ) �T (VN )[ζ0, . . . , ζm−1]/([A, x] −A(x), [x, y] −η(x, y)) satisfies the PBW property 
if and only if η(x, y) =

∑m
i=0 ηir2i+1(x, y) with ηi ∈ C[ζ0, . . . , ζm−1] degree ≤ 4(m − i) polynomials (this is 

completely analogous to Theorem 1.4).

5.2. Isomorphisms Θ̄ and Θ̄cl

The main goal of this section it to establish an abstract isomorphism between the algebras Hm(soN , VN )
and the W -algebras U(soN+2m+1, em), where em ∈ soN+2m+1 is a nilpotent element of the Jordan type 
(1N , 2m + 1). We make a particular choice of such an element8:

• em :=
∑m

j=1 EN+j,N+j+1 −
∑m

j=1 EN+m+j,N+m+j+1.

Recall the Lie algebra inclusion ι : q ↪→ U(g, e) from [9, Section 1.6], where q := zg(e, h, f). For (g, e) =
(soN+2m+1, em) we have q � soN . We will also denote the corresponding centralizer of em ∈ soN+2m+1 and 
the Slodowy slice by zN,m and SN,m, respectively.

Theorem 5.1. For m ≥ 1, there is a unique isomorphism Θ̄ : Hm(soN , VN ) ∼−→U(soN+2m+1, em) of filtered 
algebras such that Θ̄ |soN

= ι |soN
.

8 In this section, we view soN as corresponding to the pair (VN , (·,·)), where (·,·) is represented by the symmetric matrix J ′ = (J ′
ij)

with J ′
ij = δji , J ′

i,N+k = J ′
N+k,i = 0, J ′

N+k,N+l = δ2m+2
k+l , ∀i, j ≤ N , k, l ≤ 2m + 1.
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Sketch of the proof. Notice that zN,m � soN ⊕ VN ⊕ Cm as vector spaces, where soN � q = zN,m(0), VN ⊂
zN,m(2m) and Cm has a basis {ξ0, . . . , ξm−1} with ξi ∈ zN,m(4m − 4i − 2). Here ξm−j = e2j−1

m ∈ soN for 
1 ≤ j ≤ m, VN is embedded via xi �→ Ei,N+2m+1 − EN+1,i, while soN is embedded as a top-left N × N

block of soN+2m+1.
Let us recall that one of the key ingredients in the proof of [9, Theorem 7] was an additional Z-grading Gr

on the corresponding W -algebras.9 In both cases of (sln+m, em), (sp2n+2m, em) such a grading was induced 
from the weight-decomposition with respect to ad(ι(h)), h ∈ q.

If N = 2n, same argument works for g = soN+2m+1 as well. Namely, consider h ∈ q � so2n to be the 
diagonal matrix I ′n := diag(1, . . . , 1, −1, . . . , −1). The operator ad(ι(I ′n)) acts on zN,m with zero eigenvalues 
on Cm, with even eigenvalues on soN , and with eigenvalues {±1} on VN .

However, there is no appropriate h ∈ q in the case of N = 2n +1. Instead, such a grading originates from 
the adjoint action of the element

g0 := (−1, . . . ,−1︸ ︷︷ ︸
N

, 1, . . . , 1︸ ︷︷ ︸
2m+1

) ∈ O(N + 2m + 1).

This element defines a Z2-grading on U(soN+2m+1) and further a Z2-grading Gr on the W -algebra 
U(soN+2m+1, em). The induced Z2-grading Gr′ on grU(soN+2m+1, em) � S(zN,m) satisfies the desired prop-
erties, that is, deg(Cm) = 0, deg(soN ) = 0, deg(VN ) = 1.

Therefore the algebra U(soN+2m+1, em) is equipped both with a Kazhdan filtration and a Z2-grading 
Gr. Moreover, the corresponding isomorphism at the Poisson level is established in Theorem 5.2. Now the 
proof proceeds along the same lines as in [9, Theorem 7]. �

Let us introduce some more notation:
• Let ῑ : soN ⊕ VN ⊕ Cm ∼−→zN,m denote the isomorphism from the proof of Theorem 5.1.
• Let Hcl

m(soN , VN ) be the Poisson counterpart of Hm(soN , VN ) (compare to algebras Hcl
ζ (soN , VN )).

• Define Pj ∈ C[soN+2m+1] by det(IN+2m+1 + tA) =
∑N+2m+1

j=0 Pj(A)tj .
• Define {Θ̄i}m−1

i=0 ∈ S(zN,m) � C[SN,m] by Θ̄i := P2(m−i)|SN,m
.

The following result can be considered as a Poisson version of Theorem 5.1:

Theorem 5.2. The formulas

Θ̄cl(A) = ῑ(A), Θ̄cl(y) = (−1)m
2

2 · ῑ(y), Θ̄cl(ζk) = (−1)m−jΘ̄k

define an isomorphism Θ̄cl : Hcl
m(soN , VN ) ∼−→S(zN,m) � C[SN,m] of Poisson algebras.

The proof of this theorem proceeds along the same lines as for sp2N (see [9, Theorem 10]).

5.3. Consequences

Let us now deduce a few results on the infinitesimal Hecke algebras of (soN , VN ).

Corollary 5.3. Poisson varieties corresponding to arbitrary full central reductions of Poisson infinitesimal 
Hecke algebras Hcl

ζ (soN , VN ) have finitely many symplectic leaves.

9 Actually, as exhibited by the case of sp2n+2m, it suffices to have a Z2-grading.
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Corollary 5.4. (a) The center Z(Hζ(soN , VN )) is a polynomial algebra in �N+1
2 � generators.10

(b) The infinitesimal Hecke algebra Hζ(soN , VN ) is free over its center Z(Hζ(soN , VN )).
(c) Full central reductions of grHζ(soN , VN ) are normal, complete intersection integral domains.

Finally, the isomorphism of Theorem 5.1 provides the appropriate categories O for the algebras 
Hm(soN , VN ) (and hence for Hζ(soN , VN )) once we have them for the finite W -algebras. The categories 
O for the finite W -algebras were first introduced in [2] and were further studied in [8]. Namely, recall that 
we have an embedding q ⊂ U(g, e). Let t be a Cartan subalgebra of q and set g0 := zg(t). Pick an integral 
element θ ∈ t such that zg(θ) = g0. By definition, the category O (for θ) consists of all finitely generated 
U(g, e)-modules M , where the action of t is diagonalizable with finite dimensional eigenspaces and, more-
over, the set of weights is bounded from above in the sense that there are complex numbers α1, . . . , αk

such that for any weight λ of M there is i with αi − 〈θ, λ〉 ∈ Z�0. The category O has analogues of Verma 
modules, Δ(N0). Here N0 is an irreducible module over the W -algebra U(g0, e), where g0 is the centralizer 
of t. In the case of interest (g, e) = (soN+2m+1, em), we have g0 = so2m+1 × CN and e is principal in g0. 
In this case, the W -algebra U(g0, e) coincides with the center of U(g0). Therefore N0 is a one-dimensional 
space, and the set of all possible N0 is identified, via the Harish-Chandra isomorphism, with the quotient 
h∗/W0, where h, W0 are a Cartan subalgebra and the Weyl group of g0 (we take the quotient with respect to 
the dot-action of W0 on h∗). As in the usual BGG category O, each Verma module has a unique irreducible 
quotient, L(N0). Moreover, the map N0 �→ L(N0) is a bijection between the set of finite dimensional irre-
ducible U(g0, e)-modules, h∗/W0, in our case, and the set of irreducible objects in O. We remark that all 
finite dimensional irreducible modules lie in O.

6. Casimir element

In this section we determine the first nontrivial central element of the algebras Hζ(soN , VN ). In the 
non-deformed case ζ = 0, we have t1 := (v, v) ∈ Z(H0(soN , VN )). Similarly to Corollary 4.3, this element 
can be deformed to a central element of Hζ(soN , VN ) by adding an element of Z(U(soN )).

In order to formulate the result, we introduce some more notation:
• Define ωs := π1/2(s+N−1)!

2s+N+1 and μs := πN− 1
2 (s + 1)!ω−1

s , νs := − μs

s+1 .
• For a sequence {ζj}mj=0 define {aj}mj=0 recursively via ζj = 2ν2j+1

∑m+1−j
l=1 (−1)l+1(2j+2l

2l−1
)
aj+l−1.

• Define a sequence of parameters {gj}m+1
j=1 via gj = 2μ2j−1(−2aj−1 +

∑m+1−j
l=1 (−1)l+1(2j+2l

2l
)
aj+l−1).

• Define a polynomial g(z) :=
∑m+1

j=1 gjz
j .

• Define A(z)(x, y) := (x, A(1 + z2A2)−1y) det(1 + z2A2)−1/2 and B(z) := det(1 + z2A2)−1/2.
• Let [zm]f(z) denote the coefficient of zm in the series f(z).
• Define C ∈ Z(U(soN )) to be the symmetrization of Resz=0 g(z−2) det(1 + z2A2)−1/2z−1dz.

Then we have:

Theorem 6.1. The element t′1 := t1 + C is a central element of Hζ(soN , VN ).

Definition 6.1. We call t′1 = t1 + C the Casimir element of Hζ(soN , VN ).

Remark 6.1. The same formula provides a central element of the algebra Hm(soN , VN ), where C ∈
Z(U(soN ))[ζ0, . . . , ζm−1].

10 Here we use the description of the center of the W-algebras, see [9, Theorem 5] for a reference.
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Theorem 6.1 can be used to establish explicitly the isomorphism Θ̄ of Theorem 5.1 in the same way as 
this has been achieved in [9, Section 4.6] for the gln case.

Proof of Theorem 6.1. Commutativity of t′1 with soN follows from the following argument:

[t1, soN ] = 0 ∈ H0(soN , VN ) ⇒ [t1, soN ] = 0 ∈ Hζ(soN , VN ) ⇒
[
t′1, soN

]
= 0 ∈ Hζ(soN , VN ).

Let us now verify [t1 + C, x] = 0 for any x ∈ VN .
Identifying U(soN ) with S(soN ) via the symmetrization map and recalling (1), we get:

[∑
x2
i , x

]
=

∑
i

xi

∫
p∈SN−1

∫
q∈SN−2(p)

(xi, Jp,qx)
( π∫

−π

2c(θ) sin θeθJp,qdθ

)
dqdp

+
∑
i

∫
p∈SN−1

∫
q∈SN−2(p)

( π∫
−π

2c(θ) sin θeθJp,qdθ

)
(xi, Jp,qx)xidqdp.

Since 
∑

i xi(xi, Jp,qx) = Jp,qx and veθJp,q = eθJp,q (cos θ · v − sin θ · Jp,qv) for v ∈ VN , we have

[t1, x] =
∫

p∈SN−1

∫
q∈SN−2(p)

π∫
−π

2c(θ) sin θeθJp,q
(
sin θ · x + (1 + cos θ) · Jp,qx

)
dθdqdp. (5)

The right hand side of (5) can be written as [x, C ′], where

C ′ :=
∫

p∈SN−1

∫
q∈SN−2(p)

( π∫
−π

c(θ)(−2 − 2 cos θ)eθJp,qdθ

)
dqdp.

Thus, it suffices to prove that C ′ = C.
The following has been established during the proof of Theorem 1.4:∫

p∈SN−1

∫
q∈SN−2(p)

Js
p,qdqdp = Fs−1 = μs−1

[
zs

]
B(z), (6)

∫
p∈SN−1

∫
q∈SN−2(p)

(x, Jp,qy)Js
p,qdqdp = Is;x,y = νs

[
zs−1]A(z)(x, y). (7)

Let c(θ) = c0δ0 + c2δ
′′
0 + c4δ

(4)
0 + . . . be the distribution from (1), where δ(k)

0 is the k-th derivative of the 
delta-function. Since

π∫
−π

2c(θ) sin θeθJp,qdθ = 2
∑
j≥1

cj

� j+1
2 �∑

l=1

(−1)l+1
(

j

2l − 1

)
Jj−2l+1
p,q ,

formulas (1) and (7) imply

[x, y] = Resz=0 ζ̄
(
z−2)A(z)(x, y)z−1dz,

where ζ̄(z−2) =
∑

ζ̄jz
−2j and ζ̄j = 2ν2j+1

∑
(−1)l+1(2j+2l)c2j+2l.
j≥0 l≥1 2l−1
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Comparing with [x, y] = Resz=0 ζ(z−2)A(z)(x, y)z−1dz, we get ζ̄(z−2) = ζ(z−2) and so c2s+2 = as, where 
a>m := 0. On the other hand,

π∫
−π

c(θ)(−2 cos θ − 2)eθJp,qdθ = 2
∑
j≥0

cj

(
−2Jj

p,q +
�j/2�∑
l=1

(−1)l+1
(
j

2l

)
Jj−2l
p,q

)
.

Combining this equality with (6), we find:

C ′ = Resz=0 g
(
z−2)B(z)z−1dz = C.

This completes the proof of the theorem. �
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