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Abstract In this article, we construct certain commutative subalgebras of the big
shuffle algebra of type A(1)

n−1. This can be considered as a generalization of the similar
construction for the small shuffle algebra, obtained in Feigin et al. (J Math Phys
50(9):42, 2009). We present a Bethe algebra realization of these subalgebras. The
latter identifies them with the Bethe subalgebras of Uq(̂gln).
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1 Introduction

Elliptic shuffle algebras were first introduced and studied by the first author and
Odesskii, see [6–8]. In the loc.cit., they were associated with an elliptic curve E
endowed with two automorphisms τ1, τ2. A similar class of algebras, depending on
two parameters (alternatively q1, q2, q3 with q1q2q3 = 1), became of interest in the
recent years, due to their geometric interpretations and different algebraic incarna-
tions (see [4,9,13,16] for the related results). We will refer to these algebras as the
small shuffle algebras. In this paper, we study the higher-rank generalizations of those
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algebras, which we refer to as the big shuffle algebras (of A(1)
n−1-type). These algebras

were also recently considered in [14], where they were identified with the positive half
of the quantum toroidal algebras Üq,d(sln).

The aim of this paper is to study particular large commutative subalgebras of the
big shuffle algebra S, similar to the one from [4]. We also establish a Bethe algebra
realization of these subalgebras (which seems to be new even for the small shuffle
algebras). In other words, we identify those commutative subalgebras with the stan-
dard Bethe subalgebras of the quantum affine algebra Uq(̂gln), which is horizontally
embedded into the quantum toroidal algebra.

The aforementioned commutative subalgebras of S admit a one-parameter defor-
mation: the commutative subalgebras A(s0, . . . , sn−1; t) ⊂ (S≥)∧ (the algebra S≥ is
a slight enhancement of S, see Sect. 4.3, while ∧ indicates the completion with respect
to the natural Z-grading). These algebras are closely related to the study of nonlocal
integrals of motion for the deformedW -algebrasWq,t (̂sln) from [5], as well as provide
a framework for the generalization of the recent results from [3] to Üq,d(sln). This
will be elaborated elsewhere.

This paper is organized as follows:

• In Sect. 2, we recall the definition and key results about the quantum toroidal
algebra Üq,d(sln), n ≥ 3.We also recall the notion of the small shuffle algebra Ssm

and its commutative subalgebra Asm, and introduce a higher-rank generalization,
the big shuffle algebra S.

• In Sect. 3, we introduce a family of subspaces A(s0, . . . , sn−1) ⊂ S depend-
ing on n parameters and generalizing the construction of Asm ⊂ Ssm.
If ( 1

s1...sn−1
, s1, . . . , sn−1) is generic (see Sect. 3.2), then we prove that

A( 1
s1...sn−1

, s1, . . . , sn−1) is a polynomial algebra on explicitly given generators;
in particular, it is a commutative subalgebra of S.

• In Sect. 4, we use the universal R-matrix and vertex-type representations to estab-
lish an alternative viewpoint toward A(s0, . . . , sn−1). This allows us to identify
them with the well-known Bethe subalgebras of the quantum affine Uq(̂gln), hor-
izontally embedded into Üq,d(sln).

• In Sect. 5, we discuss generalizations of the results from Sects. 2–4 to the cases
n = 1, 2.

2 Basic definitions and constructions

2.1 Quantum toroidal algebras of sln for n ≥ 3

Letq, d ∈ C
∗ be two parameters.We set [n] := {0, 1, . . . , n−1}, [n]× := [n]\{0}, the

former viewed as a set of mod n residues. Let gm(z) := qmz−1
z−qm . Define {ai, j ,mi, j } j∈[n]

i∈[n]
by

ai,i = 2, ai,i±1 = −1, mi,i±1 = ∓1, and ai, j = mi, j = 0 otherwise.

The quantum toroidal algebra of sln , denoted by Üq,d(sln), is the unital associative
algebra generated by {ei,k, fi,k, ψi,k, ψ

−1
i,0 , γ ±1/2, q±d1 , q±d2}k∈Zi∈[n] with the following
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defining relations:1

[ψ±
i (z), ψ±

j (w)] = 0, γ ±1/2 − central, (T0.1)

ψ±1
i,0 · ψ∓1

i,0 = γ ±1/2 · γ ∓1/2 = q±d1 · q∓d1 = q±d2 · q∓d2 = 1, (T0.2)

qd1ei (z)q
−d1 = ei (qz), qd1 fi (z)q

−d1 = fi (qz), qd1ψ±
i (z)q−d1 = ψ±

i (qz),
(T0.3)

qd2ei (z)q
−d2 = qei (z), qd2 fi (z)q

−d2 = q−1 fi (z), qd2ψ±
i (z)q−d2 = ψ±

i (z),
(T0.4)

gai, j (γ
−1dmi, j z/w)ψ+

i (z)ψ−
j (w) = gai, j (γ d

mi, j z/w)ψ−
j (w)ψ+

i (z), (T1)

ei (z)e j (w) = gai, j (d
mi, j z/w)e j (w)ei (z), (T2)

fi (z) f j (w) = gai, j (d
mi, j z/w)−1 f j (w) fi (z), (T3)

(q − q−1)[ei (z), f j (w)] = δi, j

(

δ(γw/z)ψ+
i (γ 1/2w) − δ(γ z/w)ψ−

i (γ 1/2z)
)

,

(T4)

ψ±
i (z)e j (w) = gai, j (γ

±1/2dmi, j z/w)e j (w)ψ±
i (z), (T5)

ψ±
i (z) f j (w) = gai, j (γ

∓1/2dmi, j z/w)−1 f j (w)ψ±
i (z), (T6)

Sym
z1,z2

[ei (z1), [ei (z2), ei±1(w)]q ]q−1 = 0, [ei (z), e j (w)] = 0 for j �= i, i ± 1,

(T7.1)

Sym
z1,z2

[ fi (z1), [ fi (z2), fi±1(w)]q ]q−1 = 0, [ fi (z), f j (w)] = 0 for j �= i, i ± 1,

(T7.2)

where we set [a, b]x := ab − x · ba and define the generating series as follows:

ei (z) :=
∞
∑

k=−∞
ei,k z

−k, fi (z) :=
∞
∑

k=−∞
fi,k z

−k,

ψ±
i (z) := ψ±1

i,0 +
∑

r>0

ψi,±r z
∓r , δ(z) :=

∞
∑

k=−∞
zk .

1 Our notation are consistent with that of [17], but following [15] we add the elements q±d1 , q±d2 sat-
isfying (T0.3, T0.4). This update is essential for our discussion of the Drinfeld double and the universal
R-matrix.
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It will be convenient to use the generators {hi,k}k �=0 instead of {ψi,k}k �=0, where

hi,±r ∈ C

[

ψ∓1
i,0 , ψi,±1, ψi,±2, . . .

]

are defined by

exp

(

±(q − q−1)
∑

r>0

hi,±r z
∓r

)

= ψ̄±
i (z) := ψ∓1

i,0 ψ±
i (z).

Then the relations (T5, T6) are equivalent to the following:

ψi,0e j,l = qai, j e j,lψi,0, [hi,k, e j,l ] = d−kmi, j γ −|k|/2 [kai, j ]q
k

e j,l+k (k �= 0), (T5′)

ψi,0 f j,l = q−ai, j f j,lψi,0, [hi,k, f j,l ] = −d−kmi, j γ |k|/2 [kai, j ]q
k

f j,l+k (k �= 0),

(T6′)

where [m]q := qm−q−m

q−q−1 .We also introduce hi,0, c, c′ viaψi,0 = qhi,0 , γ 1/2 = qc, c′ =
∑

i∈[n] hi,0, so that c, c′ are central.
Let Ü− and Ü+ be the subalgebras of Üq,d(sln) generated by {ei,k}k∈Zi∈[n] and

{ fi,k}k∈Zi∈[n], respectively, while Ü 0 is generated by {ψi,k, ψ
−1
i,0 , γ ±1/2, q±d1 , q±d2}k∈Zi∈[n].

Proposition 2.1 [10] (Triangular decomposition) The multiplication map

m : Ü− ⊗ Ü 0 ⊗ Ü+ → Üq,d(sln)

is an isomorphism of vector spaces.

We equip the algebra Üq,d(sln) with the Z[n] × Z-grading by assigning

deg(ei,k) := (1i ; k), deg( fi,k) := (−1i ; k), deg(ψi,k) := (0; k),
deg(x) := (0; 0) for x = ψ−1

i,0 , γ ±1/2, q±d1 , q±d2 ∀ i ∈ [n], k ∈ Z,

where 1 j ∈ Z
[n] is the vector with the j th coordinate 1 and all other coordinates zero.

2.2 Horizontal and vertical Uq( ̂gln)

Following [17], we introduce the vertical and horizontal copies of the quantum affine
algebra of sln , denoted byUq(̂sln), inside Üq,d(sln). Consider the subalgebra U̇ v(sln)

of Üq,d(sln) generated by {ei,k, fi,k, ψi,k, ψ
−1
i,0 , γ ±1/2, q±d1 |i ∈ [n]×, k ∈ Z}. This

algebra is isomorphic to Uq(̂sln), realized via the “new Drinfeld presentation”. Let
U̇ h(sln) be the subalgebra of Üq,d(sln) generated by {ei,0, fi,0, ψ

±1
i,0 , q±d2 |i ∈ [n]}.

This algebra is also isomorphic to Uq(̂sln), realized via the classical Drinfeld–Jimbo
presentation.
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Following [2], we recall a slight upgrade of this construction, which provides two
copies of the quantum affine algebra of gln , rather than sln , inside Üq,d(sln). For every
r �= 0, choose {ci,r |i ∈ [n]} to be a nontrivial solution of the following system of linear
equations:2

n−1
∑

i=0

ci,r d
−rmi, j [rai, j ]q = 0, j ∈ [n]×.

Let hv be the subspace of Üq,d(sln) spanned by

hvr =
{

∑

i∈[n] ci,r hi,r if r �= 0

γ 1/2 if r = 0
.

Note that hv is well defined and commutes with U̇ v(sln), due to (T5′, T6′).
Moreover, hv is isomorphic to the Heisenberg Lie algebra. Let U̇ v(gln) be the sub-
algebra of Üq,d(sln) generated by U̇ v(sln) and hv. The above discussions imply that
U̇ v(gln) � Uq(̂gln), the quantum affine algebra of gln . We let U̇ v(gl1) ⊂ U̇ v(gln) be
the subalgebra generated by hv.

Our next goal is to provide a horizontal copy ofUq(̂gln), containing U̇
h(sln), inside

Üq,d(sln). The following approach was proposed in [2], and it is based on a beautiful
result of Miki:

Theorem 2.2 [12] There exists an automorphism π of Üq,d(sln) such that

π(U̇ v(sln)) = U̇ h(sln), π(U̇ h(sln)) = U̇ v(sln).

Moreover:

π(qc) = qc
′
, π(qc

′
) = q−c.

Let us define hh := π(hv) and let U̇ h(gln) be the subalgebra of Üq,d(sln) generated
by U̇ h(sln) and hh. Then U̇ h(gln) = π(U̇ v(gln)) and it is isomorphic to Uq(̂gln). We
also define U̇ h(gl1) ⊂ U̇ h(gln) as the subalgebra generated by hh.

However, this construction is not very enlightening, as the images π(hvr ) are hardly
computable. An alternative approach, based on the RTT realization of Uq(̂gln), was
proposed in [14]. We will discuss the related results in Sect. 3.3.

2.3 Hopf pairing, Drinfeld double and a universal R-matrix

We recall the general notion of a Hopf pairing, following [11, Chapter 3]. Given two
Hopf algebras A and B with invertible antipodes SA and SB , the bilinear map

2 It is easy to see that the space of solutions of this system is 1-dimensional if q is not a root of unity.
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ϕ : A × B → C

is called a Hopf pairing if it satisfies the following properties:

ϕ(a, bb′) = ϕ(a1, b)ϕ(a2, b
′) ∀ a ∈ A, b, b′ ∈ B,

ϕ(aa′, b) = ϕ(a, b2)ϕ(a′, b1) ∀ a, a′ ∈ A, b ∈ B,

ϕ(a, 1B) = εA(a) and ϕ(1A, b) = εB(b) ∀ a ∈ A, b ∈ B,

ϕ(SA(a), b) = ϕ(a, S−1
B (b)) ∀ a ∈ A, b ∈ B,

where we use the Sweedler notation for the coproduct:

	(x) = x1 ⊗ x2.

For such a data, one can define the generalized Drinfeld double Dϕ(A, B) as fol-
lows:

Theorem 2.3 [11, Theorem 3.2] There is a unique Hopf algebra Dϕ(A, B) satisfying
the following properties:

(i) As coalgebras Dϕ(A, B) � A ⊗ B.
(ii) Under the natural inclusions

A ↪→ Dϕ(A, B) given by a �→ a ⊗ 1B,

B ↪→ Dϕ(A, B) given by b �→ 1A ⊗ b,

A and B are Hopf subalgebras of Dϕ(A, B).
(iii) For any a ∈ A, b ∈ B, we have

(a ⊗ 1B) · (1A ⊗ b) = a ⊗ b

and

(1A ⊗ b) · (a ⊗ 1B) = ϕ(S−1
A (a1), b1)ϕ(a3, b3)a2 ⊗ b2.

Remark 2.4 The notion of the Drinfeld double is reserved for the case B = A�,cop

with ϕ being the natural pairing.

AHopf algebra A is quasitriangular (formally quasitriangular) if there is an invert-
ible element

R ∈ A ⊗ A (or R ∈ Â⊗A)

satisfying the following properties:

R	(x) = 	op(x)R ∀ x ∈ A,

(	 ⊗ Id)(R) = R13R23,

(Id ⊗ 	)(R) = R13R12.
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Such an element R is called a universal R-matrix of A.
The fundamental property of Drinfeld doubles is their quasitriangularity:

Theorem 2.5 [11, Theorem 3.2] For a nondegenerate Hopf pairing ϕ : A × B →
C, the generalized Drinfeld double Dϕ(A, B) is formally quasitriangular with the
universal R-matrix

R =
∑

i

ei ⊗ e∗i ,

where {ei } is a basis of A and {e∗i } is the dual basis of B (with respect to ϕ).

2.4 Quantum toroidal algebra Üq,d(sln) as a Drinfeld double

In order to apply the constructions of the previous section to the quantum toroidal
algebra Üq,d(sln) and its subalgebras, we need to endow the former with a Hopf
algebra structure. This was first done (in a more general setup) in [1, Theorem 2.1]:

Theorem 2.6 The formulas (H1-H9) endow Üq,d(sln) with a topological Hopf alge-
bra structure:

	(ei (z)) = ei (z) ⊗ 1 + ψ−
i (γ

1/2
(1) z) ⊗ ei (γ(1)z), (H1)

	( fi (z)) = 1 ⊗ fi (z) + fi (γ(2)z) ⊗ ψ+
i (γ

1/2
(2) z), (H2)

	(ψ±
i (z)) = ψ±

i (γ
±1/2
(2) z) ⊗ ψ±

i (γ
∓1/2
(1) z), (H3)

	(x) = x ⊗ x for x = γ ±1/2, q±d1 , q±d2 , (H4)

ε(ei (z)) = ε( fi (z)) = 0, ε(ψ±
i (z)) = 1, (H5)

ε(x) = 1 for x = γ ±1/2, q±d1 , q±d2 , (H6)

S(ei (z)) = −ψ−
i (γ −1/2z)−1ei (γ

−1z), (H7)

S( fi (z)) = − fi (γ
−1z)ψ+

i (γ −1/2z)−1, (H8)

S(x) = x−1 for x = γ ±1/2, q±d1 , q±d2 , ψ±
i (z), (H9)

where γ
1/2
(1) := γ 1/2 ⊗ 1 and γ

1/2
(2) := 1 ⊗ γ 1/2.
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Let Ü≥ be the subalgebra of Üq,d(sln) generated by {ei,k, ψi,l , ψ
±1
i,0 , γ ±1/2,

q±d1 , q±d2}l∈−N

k∈Z , and let Ü≤ be the subalgebra of Üq,d(sln) generated by { fi,k, ψi,l ,

ψ±1
i,0 , γ ±1/2, q±d1 , q±d2}l∈Nk∈Z. Now we are ready to state the main result of this section

(the proof is straightforward):

Theorem 2.7 (a) There exists a unique Hopf algebra pairing ϕ : Ü≥ × Ü≤ → C

satisfying

ϕ(ei (z), f j (w)) = δi, j

q − q−1 · δ
( z

w

)

, ϕ(ψ−
i (z), ψ+

j (w)) = gai, j (d
mi, j z/w),

(P1)

ϕ(ei (z), x
−) = ϕ(x+, fi (z)) = 0 for x± = ψ∓

j (w), ψ±1
j,0 , γ

1/2, qd1 , qd2 , (P2)

ϕ(γ 1/2, qd1)=ϕ(qd1 , γ 1/2)= q−1/2, ϕ(ψ−
i (z), qd2)= q−1, ϕ(qd2 , ψ+

i (z))= q,

(P3)

ϕ(ψ−
i (z), x) = ϕ(x, ψ+

i (z)) = 1 for x = γ 1/2, qd1 , (P4)

ϕ(γ 1/2, qd2) = ϕ(qd2 , γ 1/2) = ϕ(qda , qdb ) = ϕ(γ 1/2, γ 1/2) = 1 for 1 ≤ a, b ≤ 2.
(P5)

(b) The natural Hopf algebra homomorphism Dϕ(Ü≥, Ü≤) → Üq,d(sln) induces the
isomorphism

� : Dϕ(Ü≥, Ü≤)/I
∼−→Üq,d(sln)

with I := (x ⊗ 1 − 1 ⊗ x |x = ψ±1
i,0 , γ ±1/2, q±d1 , q±d2).

(c) Consider a slight modification Ü
′
q,d(sln), obtained from Üq,d(sln) by “throwing

away” the generator q±d2 and taking the quotient by the central element c′. As in (b),
this algebra admits the double Drinfeld realization via Dϕ′(Ü

′≥, Ü
′≤), where Ü

′≤
and Ü

′≥ are obtained from Ü≤ and Ü≥ by “throwing away” q±d2 and taking the
quotient by c′, while ϕ′ is induced by ϕ.
(d) The pairings ϕ and ϕ′ are nondegenerate if and only if q, qd, qd−1 are not roots
of unity.

2.5 Bethe subalgebras

Let us recall the standard way of constructing large commutative subalgebras of a
(formally) quasitriangular Hopf algebra A. Fix a group-like element x ∈ A (or in an
appropriate completion x ∈ A∧). For an A-representation V , we consider the transfer
matrix

TV (x) := (1 ⊗ trV )((1 ⊗ x)R)
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if the latter is well defined. The properties of the R-matrix imply

TV1⊕V2(x) = TV1(x) + TV2(x),

TV1⊗V2(x) = TV2(x) · TV1(x).

In particular, we see that TV1(x) · TV2(x) = TV2(x) · TV1(x).
To summarize, • �→ T•(x) is a ring homomorphism from the Grothendieck group

of any suitable tensor category of A-modules to the suitable completion A∧, with the
image being a commutative subalgebra of that completion. The commutative subal-
gebras constructed in this way are sometimes called the Bethe (sub)algebras.

In Sect. 4, we will apply this construction to the following two cases:
◦ The formally quasitriangular algebra is A = Ü

′
q,d(sln), the corresponding group-

like element is x = qλ1h1,0+···+λn−1hn−1,0+λnd1 , and we consider a tensor category
of Ü

′
q,d(sln)-representations generated by vertex Ü

′
q,d(sln)-representations ρp,c̄ from

Sect. 4.1.3

◦ The formally quasitriangular algebra is A = Uq(Lgln) (see Sect. 4.4), the corre-
sponding group-like element is x = qλ1h1,0+···+λn−1hn−1,0 (the most generic element
of the finite Cartan part), and we consider the tensor category of all finite-dimensional
Uq(Lgln)-representations.

2.6 Small shuffle algebra

As a motivating point for the current paper, we briefly recall the notion of the small
shuffle algebra and its particular commutative subalgebra. LetZ+ := {n ∈ Z|n ≥ 0} =
N∪ {0}. Consider a Z+-graded C-vector space Ssm = ⊕

n≥0 S
sm
n , where Ssmn consists

of rational functions f (x1,...,xn)
	(x1,...,xn)

with f ∈ C[x±1
1 , . . . , x±1

n ]Sn and 	(x1, . . . , xn) :=
∏

i �= j (xi − x j ). Define the star product
sm
� : Ssmk × S

sm
l → S

sm
k+l by

(F
sm
� G)(x1, . . . , xk+l)

:= SymSk+l

⎛

⎝F(x1, . . . , xk)G(xk+1, . . . , xk+l)

j>k
∏

i≤k

λ(xi/x j )

⎞

⎠

with

λ(x) := (q1x − 1)(q2x − 1)(q3x − 1)

(x − 1)3
, where qi ∈ C\{0, 1} and q1q2q3 = 1.

This endows Ssm with a structure of an associative unital C-algebra with the unit
1 ∈ S

sm
0 .

3 Actually, one can consider the whole category of highest weight Ü
′
q,d (sln)-representations, see [12].
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We say that an element f (x1,...,xn)
	(x1,...,xn)

∈ S
sm
n satisfies the wheel conditions if and only

if

f (x1, . . . , xn)= 0 once xi1/xi2 = q1 and xi2/xi3 = q2 for some 1≤ i1, i2, i3 ≤ n.

Let Ssm ⊂ S
sm be a Z+-graded subspace, consisting of all such elements. The

subspace Ssm is
sm
� -closed (see [4, Proposition 2.10]).

Definition 2.8 The algebra (Ssm,
sm
� ) is called the small shuffle algebra.

Following [4], we introduce an important Z+-graded subspaceAsm = ⊕

n Asm
n of

Ssm. Its degree n component is defined by

Asm
n := {F ∈ Ssmn |∂(0;k)F, ∂(∞;k)F exist and ∂(0;k)F = ∂(∞;k)F ∀ 0 ≤ k ≤ n},

where

∂(0;k)F := lim
ξ→0

F(x1, . . . , xn−k, ξ · xn−k+1, . . . , ξ · xn),
∂(∞;k)F := lim

ξ→∞F(x1, . . . , xn−k, ξ · xn−k+1, . . . , ξ · xn)

whenever the limits exist.
This subspace satisfies the following properties:

Theorem 2.9 [4, Section 2] We have:

(a) Suppose F ∈ Ssmn and ∂(∞;k)F exist for all 0 ≤ k ≤ n, then F ∈ Asm
n .

(b) The subspace Asm ⊂ Ssm is
sm
� -commutative.

(c) Asm is
sm
� -closed and it is a polynomial algebra in {K j } j≥1 with K j ∈ Ssmj defined

by:

K1(x1) = x01 , Km(x1, . . . , xm) =
∏

1≤i< j≤m

(xi − q1x j )(x j − q1xi )

(xi − x j )2
.

2.7 Big shuffle algebra

Consider a Z[n]
+ -graded C-vector space

S =
⊕

k=(k0,...,kn−1)∈Z[n]
+

Sk,

where Sk0,...,kn−1 consists of
∏

Ski -symmetric rational functions in the variables

{xi, j }1≤ j≤ki
i∈[n] . We also fix an n × n matrix of rational functions � = (ωi, j (z))i, j∈[n] ∈

Matn×n(C(z)) by setting
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ωi,i (z) = z − q−2

z − 1
, ωi,i+1(z) = d−1z − q

z − 1
,

ωi,i−1(z) = z − qd−1

z − 1
, and ωi, j (z) = 1 otherwise.

Let us now introduce the bilinear � product on S: given f ∈ Sk, g ∈ Sl define
f � g ∈ Sk+l by

( f � g)(x0,1, . . . , x0,k0+l0; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=

Sym∏

Ski+li

⎛

⎝ f ({xi, j }1≤ j≤ki
i∈[n] )g({xi, j }ki< j≤ki+li

i∈[n] ) ×
i ′∈[n]
∏

i∈[n]

j ′>ki ′
∏

j≤ki

ωi,i ′(xi, j/xi ′, j ′)

⎞

⎠ .

This endows S with a structure of an associative unital algebra with the unit 1 ∈
S0,...,0. We will be interested only in a certain subspace of S, defined by the pole and
wheel conditions:

• We say that F ∈ Sk satisfies the pole conditions if and only if

F = f (x0,1, . . . , xn−1,kn−1)
∏

i∈[n]
∏ j ′≤ki+1

j≤ki
(xi, j − xi+1, j ′)

, where f ∈ (C[x±1
i, j ]1≤ j≤ki

i∈[n] )
∏

Ski .

• We say that F ∈ Sk satisfies the wheel conditions if and only if

F(x0,1, . . . , xn−1,kn−1) = 0 once xi, j1/xi+ε,l = qdε and

xi+ε,l/xi, j2 = qd−ε for some i, ε, j1, j2, l,

where ε ∈ {±1}, i ∈ [n], 1 ≤ j1, j2 ≤ ki , 1 ≤ l ≤ ki+ε and we use the cyclic
notation xn,l := x0,l , kn := k0, x−1,l := xn−1,l , k−1 := kn−1 as before.

Let Sk ⊂ Sk be the subspace of all elements F satisfying the above two conditions
and set

S := ⊕
k∈Z[n]

+
Sk .

Further Sk = ⊕d∈ZSk,d with Sk,d := {F ∈ Sk |tot.deg(F) = d}. The following is
straightforward:

Lemma 2.10 The subspace S ⊂ S is �-closed.

Now we are ready to introduce the main algebra of this paper:

Definition 2.11 The algebra (S, �) is called the big shuffle algebra (of A(1)
n−1-type).
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2.8 Relation between S and Ü+

Recall the subalgebra Ü+ of Üq,d(sln) from Sect. 2.1. By standard results, Ü+ is
generated by {ei,k}k∈Zi∈[n] with the defining relations (T2, T7.1). The following is straight-
forward:

Proposition 2.12 There exists a unique algebra homomorphism � : Ü+ → S such
that �(ei,k) = xki,1 ∀ i ∈ [n], k ∈ Z.

As a consequence, Im(�) ⊂ S. The following beautiful result was recently proved
by Negut:

Theorem 2.13 [14, Theorem 1.1] The homomorphism � : Ü+ → S is an isomor-
phism of Z[n]

+ × Z-graded algebras.

Remark 2.14 In the loc. cit. d = 1, but the proof can be easily modified for any d.
Note that the algebra A+ from [14] is isomorphic to our S with d = 1 via the map
S|d=1 → A+ given by

F({xi, j }1≤ j≤ki
i∈[n] ) �→ q

∑n−1
i=0

ki (ki−1)
2 F({zi, j }1≤ j≤ki−1

1≤i≤n )

·
n

∏

i=1

∏

j �= j ′

zi, j − zi, j ′

q−1zi, j − qzi, j ′
·

n
∏

i=1

∏

j, j ′

zi, j − zi+1, j ′

zi, j − qzi+1, j ′
.

3 SubalgebrasA(s0, . . . , sn−1)

3.1 Key constructions

In this section, we introduce the key objects of our paper, the commutative subalgebras
of S, analogous to Asm ⊂ Ssm from Sect. 2.6. The new feature of our setup (in
comparison to the small shuffle algebras) is that we get an (n − 1)-parameter family
of those.

For any 0 ≤ l ≤ k ∈ Z
[n]
+ , ξ ∈ C

∗ and F ∈ Sk , we define Fl
ξ ∈

C(x0,1, . . . , xn−1,kn−1) by

Fl
ξ := F(ξ · x0,1, . . . , ξ · x0,l0 , x0,l0+1, . . . , x0,k0; . . . ;

ξ · xn−1,1, . . . , ξ · xn−1,ln−1 , xn−1,ln−1+1, . . . , xn−1,kn−1).

For any integer numbers a ≤ b, define the degree vector l := [a; b] ∈ Z
[n]
+ by

l = (l0, . . . , ln−1) with li = #{c ∈ Z|a ≤ c ≤ b and c ≡ i (mod n)}.

For such a choice of l, we will denote Fl
ξ simply by F (a,b)

ξ .
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Definition 3.1 For any s = (s0, . . . , sn−1) ∈ (C∗)[n], consider aZ[n]
+ -graded subspace

A(s) ⊂ S whose degree k = (k0, . . . , kn−1) component is defined by

A(s)k :=
{

F ∈ Sk,0 | ∂(∞;a,b)F =
b

∏

i=a

si · ∂(0;a,b)F

∀ a, b ∈ Z such that a ≤ b and [a; b] ≤ k

}

,

where ∂(∞;a,b)F := limξ→∞ F (a,b)
ξ , ∂(0;a,b)F := limξ→0 F

(a,b)
ξ whenever these lim-

its exist, si := si mod n .

A certain class of such elements is provided by the following result:

Lemma 3.2 For any k ∈ N, μ ∈ C, and s ∈ (C∗)[n], define Fμ
k (s) ∈ Sk,...,k by

Fμ
k (s) :=

∏

i∈[n]
∏

1≤ j �= j ′≤k(xi, j − q−2xi, j ′) · ∏i∈[n](s0 . . . si
∏k

j=1 xi, j − μ
∏k

j=1 xi+1, j )
∏

i∈[n]
∏

1≤ j, j ′≤k(xi, j − xi+1, j ′)
,

where we set xn, j := x0, j as before. If s0 . . . sn−1 = 1, then Fμ
k (s) ∈ A(s).

Proof Without loss of generality, we can assume μ �= 0, a = 0, b = nr +
c, 0 ≤ r ≤ k − 1, 0 ≤ c ≤ n − 1. Then l0 = . . . = lc = r + 1 and
lc+1 = . . . = ln−1 = r . As ξ → ∞, the function Fμ

k (s)(a,b)
ξ grows at the speed

ξ
∑

i∈[n] li (li+1−li−1)+∑

i∈[n] max{li ,li+1}, while as ξ → 0, the function Fμ
k (s)(a,b)

ξ grows at

the speed ξ
∑

i∈[n] li (−li+1+li−1)+∑

i∈[n] min{li ,li+1}. For the above values of li , both powers
of ξ are zero and hence both limits ∂(∞;a,b)Fμ

k (s) and ∂(0;a,b)Fμ
k (s) exist. Moreover,

for α being 0 or ∞, we have ∂(α;a,b)Fμ
k (s) = (−1)

∑

i∈[n] li (li−li−1)q−2
∑

i∈[n] li (k−li ) ·
G · ∏i∈[n] Gα,i , where

G =
∏

i∈[n]
∏

1≤ j �= j ′≤li (xi, j − q−2xi, j ′) · ∏i∈[n]
∏

li< j �= j ′≤k(xi, j − q−2xi, j ′)
∏

i∈[n]
∏1≤ j ′≤li+1

1≤ j≤li
(xi, j − xi+1, j ′) · ∏i∈[n]

∏li+1< j ′≤k
li< j≤k (xi, j − xi+1, j ′)

,

G∞,i =
li

∏

j=1

xli+1+li−1−2li
i, j ·

⎧

⎪

⎨

⎪

⎩

s0 . . . si
∏k

j=1 xi, j − μ
∏k

j=1 xi+1, j if li = li+1

s0 . . . si
∏k

j=1 xi, j if li > li+1

−μ
∏k

j=1 xi+1, j if li < li+1

,

G0,i =
k

∏

j=li+1

x−li+1−li−1+2li
i, j ·

⎧

⎪

⎨

⎪

⎩

s0 . . . si
∏k

j=1 xi, j − μ
∏k

j=1 xi+1, j if li = li+1

−μ
∏k

j=1 xi+1, j if li > li+1

s0 . . . si
∏k

j=1 xi, j if li < li+1

.

The equality ∂(∞;a,b)Fμ
k (s) = ∏c

i=0 si · ∂(0;a,b)Fμ
k (s) follows, while the total

degree of Fμ
k (s) is zero. ��
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3.2 Main result

A collection {s0, . . . , sn−1} ⊂ C
∗ satisfying s0 . . . sn−1 = 1 is called generic if and

only if

sα0
0 . . . sαn−1

n−1 ∈ qZ · dZ ⇒ α0 = . . . = αn−1.

The main result of this section describesA(s0, . . . , sn−1) for such generic n-tuples
{s0, . . . , sn−1}.
Theorem 3.3 For a generic s = (s0, . . . , sn−1) satisfying s0 . . . sn−1 = 1, the space
A(s) is shuffle-generated by {Fμ

k (s)|k ∈ N, μ ∈ C}. Moreover, A(s) is a polynomial
algebra in free generators {Fμl

k (s)|k ∈ N, 1 ≤ l ≤ n} for arbitrary pairwise distinct
μ1, . . . , μn ∈ C. In particular, A(s) is a commutative subalgebra of S.

Theproof of this theoremwill proceed in several steps. First,wewill use an analogue
of the Gordon filtration from [4], further generalized in [14] to prove Theorem 2.13,
in order to obtain the upper bound on dimensions of A(s)k . Next, we will show that
the subalgebra A′(s) ⊂ S, shuffle generated by all Fμ

k (s), belongs to A(s). We will
use another filtration to argue that the dimension of A′(s)k is at least as big as the
upper bound for the dimension of A(s)k , implying A′(s) = A(s). Similar arguments
will also imply the commutativity of A(s).

Lemma 3.4 Consider the polynomial algebraR = C[Ti,m]m≥1
i∈[n] with deg(Ti,m) = m.

Then:

(a) For k = kδ := (k, . . . , k), we have dimA(s)k ≤ dimRk .
(b) For k /∈ {0, δ, 2δ, . . .}, we have A(s)k = 0.

Proof An unordered set L of integer intervals {[a1, b1], . . . , [ar , br ]} is called a par-
tition of k ∈ Z

[n]
+ (denoted by L � k) if k = [a1; b1] + · · · + [ar ; br ]. We order the

elements of L so that b1 − a1 ≥ b2 − a2 ≥ · · · ≥ br − ar . The two sets L and L ′ as
above are said to be equivalent if |L| = |L ′|, and we can order their elements so that
b′
i − bi = a′

i − ai = nci for all i and some ci ∈ Z. Note that the collection of L � k,

up to the above equivalence, is finite for any k ∈ Z
[n]
+ . Finally, we say L ′ > L if there

exists s, such that b′
s − a′

s > bs − as and b′
t − a′

t = bt − at for 1 ≤ t ≤ s − 1.
Any L � k defines a linear map φL : A(s)k → C[y±1

1 , . . . , y±1
r ] as fol-

lows. Split the variables {xi, j } in r groups, each group corresponding to one of
the intervals in L . Specialize the variables corresponding to the interval [at , bt ] to
(qd)−at · yt , . . . , (qd)−bt · yt in the natural order. For

F = f (x0,1, . . . , xn−1,kn−1)
∏

i∈[n]
∏1≤ j ′≤ki+1

1≤ j≤ki
(xi, j − xi+1, j ′)

∈ A(s)k,

define φL(F) as the corresponding specialization of f . The result is independent of
our splitting of variables since f is symmetric. Finally, we define the filtration on
A(s)k by
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A(s)L
k

:=
⋂

L ′>L

Ker(φL ′).

Let us now consider the images φL(A(s)L
k
) for any L � k. For F ∈ A(s)L

k
, we

have:
◦ The total degree tot.deg(φL(F)) = ∑

i∈[n] ki ki+1, since tot.deg(F) = 0.
◦ For each 1 ≤ t ≤ r , the degree of φL(F) with respect to yt is bounded by

degyt (φL(F)) ≤
∑

i∈[n]
(lti (ki−1 + ki+1) − lti l

t
i+1)

due to the existence of the limit ∂(∞;at ,bt )F (here l
t := [at ; bt ] ∈ Z

[n]
+ for 1 ≤ t ≤ r ).

On the other hand, the wheel conditions for F guarantee that φL(F)(y1, . . . , yr )
becomes zero under the following specializations:

(i) (qd)−x ′
yv = (q/d)(qd)−x yu for any 1 ≤ u < v ≤ r, au ≤ x < bu, av ≤ x ′ ≤

bv, x ′ ≡ x + 1,
(ii) (qd)−x ′

yv = (d/q)(qd)−x yu for any 1 ≤ u < v ≤ r, au < x ≤ bu, av ≤ x ′ ≤
bv, x ′ ≡ x − 1.

Finally, the conditionsφL ′(F) = 0 for any L ′ >L guarantee thatφL (F)(y1, . . . , yr )
becomes zero under the following specializations:

(iii) (qd)−x ′
yv = (qd)−bu−1yu for any 1 ≤ u < v ≤ r, av ≤ x ′ ≤ bv, x ′ ≡ bu + 1,

(iv) (qd)−x ′
yv = (qd)−au+1 · yu for any 1 ≤ u < v ≤ r, av ≤ x ′ ≤ bv, x ′ ≡ au −1.

In particular, we see that φL(F) is divisible by QL ∈ C[y1, . . . , yr ], defined as a
product of the linear terms in yt coming from (i)–(iv) (if some of these coincide, we
still count them with the correct multiplicity). Note that

tot.deg(QL) =
∑

1≤u<v≤r

∑

i∈[n]
(lui l

v
i+1 + lui l

v
i−1) =

∑

i∈[n]
ki ki+1 −

r
∑

t=1

∑

i∈[n]
lti l

t
i+1,

while the degree with respect to each variable yt (1 ≤ t ≤ r) is given by

degyt (QL) =
∑

i∈[n]
(lti (ki−1 + ki+1) − 2lti l

t
i+1).

Define rL := φL(F)/QL ∈ C[y±1
1 , . . . , y±1

r ]. Then:

tot.deg(rL) =
r

∑

t=1

∑

i∈[n]
lti l

t
i+1 and degyt (rL) ≤

∑

i∈[n]
lti l

t
i+1.

Hence, rL = ν · ∏r
t=1 y

∑

i∈[n] lti l ti+1
t for some ν ∈ C, so that

φL(F) = ν ·
r

∏

t=1

y
∑

i∈[n] lti l ti+1
t · QL .
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On the other hand, applying the above specialization to the entire function F rather
than f , we get φL(F)/Q, where Q ∈ C[y1, . . . , yr ] is given by

Q = ν′ ·
r

∏

t=1

y
∑

i∈[n] lti l ti+1
t ·

∏

1≤u<v≤r

∏

au≤x≤bu

x ′≡x±1
∏

av≤x ′≤bv

((qd)−x yu − (qd)−x ′
yv)

for some ν′ ∈ C
∗.

The condition F ∈ A(s) implies

lim
ξ→∞

(

φL(F)

Q

)

|yt �→ξ ·yt
= sat . . . sbt · lim

ξ→0

(

φL(F)

Q

)

|yt �→ξ ·yt
∀ 1 ≤ t ≤ r.

For ν �= 0, this equality enforces sat . . . sbt ∈ qZ · dZ. Due to our condition on
{si }, we get bt − at + 1 = nct for every 1 ≤ t ≤ r and some ct ∈ N. The claim (ii)
of the lemma is now obvious, while part (i) of the lemma follows from the inequality
dimA(s)k ≤ ∑

dim φL(A(s)L
k
), where the last sum is taken over all equivalence

classes of L � k. ��
Lemma 3.5 Let A′(s) be the subalgebra of S generated by {Fμ

k (s)|k ≥ 1, μ ∈ C}.
Then A′(s) ⊂ A(s).

Proof It suffices to show Fμ1,...,μr
k1,...,kr

(s) := Fμ1
k1

(s) � · · · � Fμr
kr

(s) ∈ A(s) for any
r, ki ≥ 1, and μi ∈ C

∗. The case of r = 1 has been already treated in Lemma 3.2.
The arguments for general r are similar. Choose any a ≤ b, such that [a; b] ≤ kδ,
where k := k1+· · ·+kr . We can further assume a = 0. Let us consider any summand
from the definition of Fμ1,...,μr

k1,...,kr
(s) with l := [a; b] variables being multiplied by ξ .

We will check that as ξ tends to ∞ or 0, both limits exist and differ by the constant
sa . . . sb.

For a fixed summand as above, define {lt }rt=1 ∈ Z
[n]
+ satisfying l = l

1 + · · · + l
r

by considering those variables xi, j which are multiplied by ξ and get substi-

tuted into Fμt
kt

(s). Following the proof of Lemma 3.2, the function Fμt
kt

(s)l
t

ξ grows

at the speed ξ
∑

i∈[n] lti (lti+1−lti −1)+∑

i∈[n] max{lti ,lti+1} as ξ → ∞ and at the speed
ξ

∑

i∈[n] lti (−lti+1+lti −1)+∑

i∈[n] min{lti ,lti+1} as ξ → 0. To estimate these powers, we note
that (a − b)(a − b − 1) ≥ 0 for any a, b ∈ Z, implying

min(a, b) + a2 + b2 − a − b

2
≥ ab

with equality holding if and only if a − b ∈ {−1, 0, 1}. Therefore,
∑

i∈[n]
lti (l

t
i+1 − lti − 1) +

∑

i∈[n]
max{lti , lti+1} ≤ 0,

0 ≤
∑

i∈[n]
lti (−lti+1 + lti − 1) +

∑

i∈[n]
min{lti , lti+1},
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with equalities holding if and only if lti − lti+1 ∈ {±1, 0} for any i ∈ [n]. Since the
limits of

ωi, j (ξ · x, y), ωi, j (x, ξ · y), ωi, j (ξ · x, ξ · y) as ξ → 0,∞ exist ∀ i, j ∈ [n],
the limits of the corresponding summands in the symmetrization are well defined as
either ξ → 0,∞. Moreover, they are both zero if |lti − lti+1| > 1 for some i ∈ [n], 1 ≤
t ≤ r .

Assuming finally that |lti − lti+1| ≤ 1 for any t, i , the formulas from the proof of
Lemma 3.2 imply that the ratio of the limits as ξ goes to ∞ and 0 equals to

r
∏

t=1

∏

i∈[n]

(

s0 . . . si
−μt

)lti −lti+1 =
∏

i∈[n]
(s0 . . . si )

li−li+1 = sa . . . sb.

The result follows. ��
Lemma 3.6 For any k ∈ N, we have dimA′(s)kδ ≥ dimRk .

Proof Choose any pairwise distinct μ1, . . . , μn ∈ C and consider a subspace A′′(s)
of A′(s) spanned by F

μi1 ,...,μir
k1,...,kr

(s) with r ≥ 0, k1 ≥ k2 ≥ · · · ≥ kr > 0, and
1 ≤ i1, . . . , ir ≤ n. It suffices to show

dimA′′(s)kδ ≥ dimRk .

For a Young diagram λ, we introduce the specialization map

ϕλ : S|λ|·δ → C({yi, j }1≤ j≤l(λ)
i∈[n] )

by specializing the variables xi, j as follows

xi,λ1+···+λt−1+ j �→ q2 j yi,t for any 1 ≤ t ≤ l(λ), 1 ≤ j ≤ λt , i ∈ [n].

It is clear that for any k = (k1, . . . , kr ) with
∑

i ki = k = |λ| and k > λ′ (here >

denotes the lexicographic order on Young diagrams and λ′ denotes the transposed to
λ Young diagram), we have ϕλ(F

μ

k
(s)) = 0 for all μ ∈ C

r . Therefore, it remains to
prove

∑

k�k
dim ϕk

′(span{Fμ

k
(s)|μ ∈ C

r }) ≥ dimRk .

Let us first consider the case k1 = · · · = kr ⇒ k = rk1. Then

ϕk
′(Fμ

k
(s)) = Z ·

r
∏

t=1

∏

i∈[n]

⎛

⎝s0 . . . si

k1
∏

j=1

yi, j − μt

k1
∏

j=1

yi+1, j

⎞

⎠

for a certain nonzero common factor Z . Define Yi := yi,1 · · · yi,k1 . Since the polyno-
mials
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ft (Y1, . . . ,Yn) :=
∏

i∈[n]
(s0 . . . siYi − μt Yi+1), 1 ≤ t ≤ n,

are algebraically independent, we immediately get the required dimension estimate
for this particular k. The general case follows immediately. ��

By Lemmas 3.4–3.6, the subspace A(s) is generated by Fμ
k (s) and has the pre-

scribed dimensions of each Z
[n]
+ -graded component.

Lemma 3.7 ThealgebraA(s) is commutative.Moreover, for anyμ = (μ1, . . . , μn) ∈
C
n with μi �= μ j for i �= j , there is an isomorphism R ∼−→A(s) given by

Ti,k �→ Fμi
k (s).

Proof It suffices to prove Fν1
m1(s) � Fν2

m2(s) = Fν2
m2(s) � Fν1

m1(s) for any m1,m2 ∈ N

and ν1, ν2 ∈ C. Define F := Fν1,ν2
m1,m2(s) − Fν2,ν1

m2,m1(s). Due to previous lemmas, F can

be written as a certain linear combination of Fμ

k
(s) with k = (k1 ≥ k2 ≥ · · · ).

We claim that ϕ(2,1m1+m2−2)(F) = 0. Together with the properties of ϕλ discussed
above, this equality implies F = ∑n

r=1 πr · Fμr
m1+m2

(s) for some πr ∈ C. Let us mul-
tiply both sides of this equality by

∏

i∈[n]
∏

1≤ j, j ′≤m1+m2
(xi, j − xi+1, j ′) and consider

a specialization xi, j �→ yi ∀i, j . The left-hand side will clearly specialize to 0, while
the right-hand side will specialize to

∏

i∈[n]
((1−q−2)yi )

(m1+m2)(m1+m2−1) ·
n

∑

r=1

⎧

⎨

⎩

πr ·
∏

i∈[n]
(s0 . . . si y

m1+m2
i −μr y

m1+m2
i+1 )

⎫

⎬

⎭

.

This expression vanishes if and only if π1 = · · · = πn = 0, and so F = 0 as required.
Finally, let us prove the equality ϕ(2,1m1+m2−2)(F) = 0. The statement is obvious

when either m1 or m2 is zero. To prove for general m1,m2 > 0, we can assume by
induction that

F
ν′
1

m′
1
(s′) � F

ν′
2

m′
2
(s′) = F

ν′
2

m′
2
(s′) � F

ν′
1

m′
1
(s′)

for anym′
1 < m1,m′

2 < m2, ν′
1, ν

′
2 ∈ C, and

∏

i s
′
i = 1 (though {s′i } are not necessarily

generic).
By straightforward computations,ϕ(2,1m1+m2−2)(F

ν1,ν2
m1,m2(s)) = Sym(A1·B1), where

the symmetrization is taken with respect to all permutations of {yi, j }2≤ j≤m1+m2−1
i∈[n]

preserving index i , A1 ∈ C({yi, j }) is symmetric, while B1 is given by the following
explicit formula

B1 =
∏

i∈[n]
∏

2≤ j �= j ′≤m1
(yi, j − q−2yi, j ′ ) · ∏i∈[n]

∏

m1< j �= j ′<m1+m2
(yi, j − q−2yi, j ′ )

∏

i∈[n]
∏

2≤ j �= j ′≤m1
(yi, j − yi+1, j ′ ) · ∏i∈[n]

∏

m1< j �= j ′<m1+m2
(yi, j − yi+1, j ′ )

×
∏

i,i ′∈[n]

∏

2≤ j≤m1

∏

m1< j ′<m1+m2

ωi,i ′(yi, j/yi ′, j ′ )



Bethe subalgebras of Uq (̂gln) via shuffle algebras 997

×
∏

i∈[n]

⎛

⎝s0 . . . si yi,1

m1
∏

j=2

yi, j − ν1yi+1,1

m1
∏

j=2

yi+1, j

⎞

⎠

×
∏

i∈[n]

⎛

⎝s0 . . . si yi,1

m1+m2−1
∏

j=m1+1

yi, j − ν2yi+1,1

m1+m2−1
∏

j=m1+1

yi+1, j

⎞

⎠

⇒ Sym(B1)

= κ ·
(

F
ν′
1

m1−1(s
′) � F

ν′
2

m2−1(s
′)
)

(y0,2, . . . , y0,m1+m2−1; . . . ; yn−1,2, . . . , yn−1,m1+m2−1)

with ν′
1 := ν1 · y0,1

yn−1,1
, ν′

2 := ν2 · y0,1
yn−1,1

, s′i := si · y2i,1
yi−1,1yi+1,1

, κ := ∏

i∈[n]
y2i,1y

2
n−1,1

y20,1
.

Permuting m1 ↔ m2, ν1 ↔ ν2, we get

ϕ(2,1m1+m2−2)(F
ν2,ν1
m2,m1(s)) = κ · A1 ·

(

F
ν′
2

m2−1(s
′) � F

ν′
1

m1−1(s
′)
)

(y0,2, . . . , yn−1,m1+m2−1).

Applying the induction assumption, we find

ϕ(2,1m1+m2−2)(F) = κA1[Fν′
1

m1−1(s
′), Fν′

2
m2−1(s

′)] = 0.

This proves the inductive step and, hence, completes the proof of the claim. ��
The results of Theorem 3.3 follow immediately by combining the above four lem-

mas.

Remark 3.8 The proof of Lemma 3.4 implies A(s) = C for any s0, . . . , sn−1 ∈ C
∗

such that
∏

i s
αi
i /∈ qZ · dZ unless α0 = . . . = αn−1 = 0.

3.3 Shuffle realization of U̇h(gln)
+ and U̇h(gl1)

+

In [14], the author introduced the notion of the slope filtration on S. For a zero slope,
the corresponding subspace A0 ⊂ S is Z[n]

+ -graded with the graded component A0
k

given by

F ∈ A0
k
⇐⇒ F ∈ Sk,0 and ∃ lim

ξ→∞Fl
ξ ∀ 0 ≤ l ≤ k.

While proving Theorem 2.13, the author obtained the following description of A0:

Proposition 3.9 [14, Lemma 4.4]

(a) The isomorphism � : Ü+ ∼−→S identifies U̇ h(gln)
+ with A0.

(b) Under the isomorphism �h : U̇ h(gln)
+ ∼−→A0 from (a), the image Xk := �h(hhk)

of the kth generator hhk ∈ U̇ h(gl1)
+ ⊂ U̇ h(gln)

+ is uniquely (up to a constant)
characterized by

Xk ∈ Skδ,0 and lim
ξ→∞(Xk)

l
ξ = 0 ∀ 0 < l < kδ.
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This proposition provides a shuffle characterization of both U̇ h(gln)
+ and

U̇ h(gl1)
+. In particular, we immediately obtain the following result:

Theorem 3.10 We have �−1(A(s)) ⊂ U̇ h(gln)
+ for generic {si } such that

s0 . . . sn−1 = 1.

Proof ByTheorem3.3 andProposition 3.9(a), it suffices to show that Fμ
k (s) ∈ A0. The

latter is equivalent to the existence of limits limξ→∞(Fμ
k (s))lξ for all 0 ≤ l ≤ kδ. As

ξ → ∞, the function (Fμ
k (s))lξ grows at the speed ξ

∑

i∈[n] li (li+1−li+1)−∑

i∈[n] min{li ,li+1}
(see the proof of Lemma 3.2). Since

∑

i∈[n] li (li+1 − li + 1)−∑

i∈[n] min{li , li+1} =
∑

i∈[n](li li+1 − l2i +l2i+1−li−li+1

2 −min{li , li+1}) and each summand is nonpositive (see
the proof of Lemma 3.5), the aforementioned power of ξ is nonpositive as well. Hence,
the limit lim

ξ→∞(Fμ
k (s))lξ does exist. This completes the proof. ��

We complete this section by providing explicit formulas for the elements Xk =
�h(hhk) ∈ S (this answers one of the questions raised in [14, Section 5.6]). Consider
the elements

F0 := 1, Fk :=
∏

i∈[n]
∏

1≤ j �= j ′≤k(q
−1xi, j − qxi, j ′) · ∏i∈[n]

∏k
j=1 xi, j

∏

i∈[n]
∏

1≤ j, j ′≤k(xi+1, j ′ − xi, j )
∈ Skδ,0 for k>0.

Note that Fk = (−qk−1)nk

sn0 s
n−1
1 ...sn−1

· F0
k (s) ∈ A(s) for any {si } such that

∏

i∈[n] si = 1.

We also define Lk ∈ Skδ,0 via

exp

( ∞
∑

k=1

Lkt
k

)

=
∞
∑

k=0

Fkt
k .

The relevant properties of these elements are formulated in our next theorem:

Theorem 3.11 (a) For l /∈ {0, δ, 2δ, . . . , kδ}, we have limξ→∞(Fk)lξ = 0.

(b) For any 0 ≤ l ≤ k, we have limξ→∞(Fk)lδξ = Fl · Fk−l .

(c) For any 0 < l < kδ, we have limξ→∞(Lk)
l
ξ = 0.

Proof (a) For any 0 ≤ l ≤ kδ, the function (Fk)lξ grows at the speed ξ
∑

i∈[n] li (li+1−li )

as ξ → ∞. Note that
∑

i∈[n] li (li+1−li ) = − 1
2

∑

i∈[n](li −li+1)
2 ≤ 0.Moreover,

the equality holds if and only if l0 = . . . = ln−1 ⇔ l ∈ {0, δ, 2δ, . . .}. Part (a)
follows.

(b) Straightforward.
(c) Standard (it is actually equivalent to the general exponential relation between

group-like elements and primitive elements; see [14, Section 4.3] for the related
coproduct). ��

Corollary 3.12 Combining this result with Proposition 3.9(b), we see that Lk and Xk

coincide up to a nonzero constant, and the isomorphism �h identifies U̇ h(gl1)
+ with

C[F1, F2, . . .].
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4 Bethe algebra realization of A(s)

We provide an alternative viewpoint on the subspaces A(s) for generic {si }
with

∏

i∈[n] si = 1. Some of the results from this section (the computation of

φ
ū,t
p,c̄, �

ū,t
p,c̄, X

ū,t
p,c̄) are not essential for the rest of this paper, but will be used in the

forthcoming publications in order to formulate Bethe ansatz for Üq,d(sln) as well as
establish connections with the results of [5].

4.1 Vertex representations ρ p,c̄

Recall the algebra Ü
′
q,d(sln) introduced in Theorem 2.7(c). We start by recalling

the construction of vertex Ü
′
q,d(sln)-representations from [15], which generalize the

classical Frenkel–Jing construction. Let Sn be the generalized Heisenberg algebra
generated by {Hi,k |i ∈ [n], k ∈ Z\{0}} and a central element H0 with the defining
relations

[Hi,k, Hj,l ] = d−kmi, j
[k]q · [kai, j ]q

k
δk,−l · H0.

Let S+
n be the Lie subalgebra generated by {Hi,k}k>0

i∈[n] � {H0}, and let Cv0 be the
S+
n -representation with Hi,k acting trivially and H0 acting via the identity operator.

The induced representation Fn := IndSn
S+
n
Cv0 is called the Fock representation of Sn .

We denote by {ᾱi }n−1
i=1 the simple roots of sln , by {�̄i }n−1

i=1 the fundamental weights

of sln , by {h̄i }n−1
i=1 the simple coroots of sln . Let Q̄ := ⊕n−1

i=1 Zᾱi be the root lattice

of sln , P̄ := ⊕n−1
i=1 Z�̄i = ⊕n−1

i=2 Zᾱi ⊕ Z�̄n−1 be the weight lattice of sln . We also
set

ᾱ0 := −
n−1
∑

i=1

ᾱi ∈ Q̄, �̄0 := 0 ∈ P̄, h̄0 := −
n−1
∑

i=1

h̄i .

Let C{P̄} be the C-algebra generated by eᾱ2 , . . . , eᾱn−1 , e�̄n−1 with the defining
relations:

eᾱi · eᾱ j = (−1)〈h̄i ,ᾱ j 〉eᾱ j · eᾱi , eᾱi · e�̄n−1 = (−1)δi,n−1e�̄n−1 · eᾱi .

For α = ∑n−1
i=2 mi ᾱi + mn�̄n−1, we define eᾱ ∈ C{P̄} via

eᾱ := (eᾱ2)m2 · · · (eᾱn−1)mn−1(e�̄n−1)mn .

Let C{Q̄} be the subalgebra of C{P̄} generated by {eᾱi }n−1
i=1 .

For every 0 ≤ p ≤ n − 1, define the space

W (p)n := Fn ⊗ C{Q̄}e�̄p .
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Consider the operators Hi,l , eᾱ, ∂ᾱi , z
Hi,0 , d acting onW (p)n , which assign to every

element

v ⊗ eβ̄ = (Hi1,−k1 · · · HiN ,−kN v0) ⊗ e
∑n−1

j=1 m j ᾱ j+�̄p ∈ W (p)n

the following values:

Hi,l(v ⊗ eβ̄ ) := (Hi,lv) ⊗ eβ̄ ,

eᾱ(v ⊗ eβ̄ ) := v ⊗ eᾱeβ̄ ,

∂ᾱi (v ⊗ eβ̄ ) := 〈h̄i , β̄〉v ⊗ eβ̄ ,

zHi,0(v ⊗ eβ̄ ) := z〈h̄i ,β̄〉d
1
2

∑n−1
j=1〈h̄i ,m j ᾱ j 〉mi, j v ⊗ eβ̄ ,

d(v ⊗ eβ̄ ) := −
(
∑

ki + ((β̄, β̄) − (�̄p, �̄p))/2
)

v ⊗ eβ̄ .

The following result provides a natural structure of an Ü
′
q,d(sln)-module onW (p)n .

Proposition 4.1 [15, Proposition 3.2.2] For any c̄ = (c0, . . . , cn−1) ∈ (C∗)n and
0 ≤ p ≤ n−1, the following formulas define an action of Ü

′
q,d(sln) on W (p)n (which

does not depend on c̄):

ρp,c̄(ei (z)) = ci · exp
(

∑

k>0

q−k/2

[k]q Hi,−k z
k

)

· exp
(

−
∑

k>0

q−k/2

[k]q Hi,k z
−k

)

· eᾱi zHi,0+1,

ρp,c̄( fi (z)) = c−1
i · exp

(

−
∑

k>0

qk/2

[k]q Hi,−k z
k

)

· exp
(

∑

k>0

qk/2

[k]q Hi,k z
−k

)

· e−ᾱi z−Hi,0+1,

ρp,c̄(ψ
±
i (z)) = exp

(

±(q − q−1)
∑

k>0

Hi,±k z
∓k

)

· q±∂ᾱi ,

ρp,c̄(γ
±1/2) = q±1/2, ρp,c̄(q

±d1) = q±d.

4.2 Functionals φ0
p,c̄, φ ū

p,c̄, φ
ū,t
p,c̄ on Ü

′≤

In this subsection, we introduce and “explicitly compute” three functionals on Ü
′≤.

• Top matrix coefficient.

Consider the functional

φ0
p,c̄ : Ü ′≤ −→ C defined by φ0

p,c̄(A) := 〈v0 ⊗ e�̄p |ρp,c̄(A)|v0 ⊗ e�̄p 〉.



Bethe subalgebras of Uq (̂gln) via shuffle algebras 1001

Since hi, j (v0 ⊗ e�̄p ) = 0 for j > 0, it remains to compute the values of φ0
p,c̄

evaluated at

fi1, j1 fi2, j2 · · · fim , jmψ
r0
0,0 · · ·ψrn−1

n−1,0 · (γ 1/2)a(qd1)b

with a, b ∈ Z, r̄ := (r0, . . . , rn−1) ∈ Z
[n] and

∑m
s=1 ᾱis = 0 ∈ Q̄. The latter condition

means that the multiset {i1, . . . , im} contains an equal number of each of the indices
{0, . . . , n − 1}. Due to the defining quadratic relation (T3) of Ü

′
q,d(sln), it suffices to

compute the series

φ0
p,c̄;N ,r̄ ,a,b(z0,1, . . . , zn−1,N )

:= φ0
p,c̄

⎛

⎝

N
∏

j=1

( f0(z0, j ) · · · fn−1(zn−1, j )) ·
∏

i∈[n]
ψ

ri
i,0 · γ a/2qbd1

⎞

⎠ .

In this expression, we order the z-variables as follows:

z0,1, . . . , zn−1,1, z0,2, . . . , zn−1,2, . . . , z0,N , . . . , zn−1,N .

Normally ordering the product
∏N

j=1( f0(z0, j ) · · · fn−1(zn−1, j )), we get the fol-
lowing result:

Proposition 4.2 For n ≥ 3, we have:

φ0
p,c̄;N ,r̄ ,a,b(z0,1, . . . , zn−1,N ) = (c0 . . . cn−1)

−Nqa/2+rp−r0d
N (n−2)

2 ·
N

∏

j=1

z0, j
z p, j

×
∏

i∈[n]
∏

1≤ j< j ′≤N (zi, j − zi, j ′)(zi, j − q2zi, j ′) · ∏i∈[n]
∏N

j=1 zi, j
∏

i∈[n]
∏

1≤ j≤ j ′≤N (zi, j − qdzi+1, j ′) · ∏i∈[n]
∏

1≤ j< j ′≤N (zi, j − qd−1zi−1, j ′)
.

• Top level graded trace.

Recall the operator d acting diagonally in the natural basis ofW (p)n . Clearly all its
eigenvalues are in−Z+. Let M(p)n := Ker(d) ⊂ W (p)n be its kernel. The following
is obvious:

Lemma 4.3 (a) The subspace M(p)n is Uq(sln)-invariant and is isomorphic to the
irreducible highest weight Uq(sln)-module Lq(�̄p).

(b) For any σ̄ = {1 ≤ σ1 < σ2 < · · · < σp ≤ n}, let �̄σ̄
p be the sln-weight having

entries 1 − p
n at the places {σi }pi=1 and − p

n elsewhere. Then {v0 ⊗ e�̄σ̄
p }σ̄ form a

basis of M(p)n.

Define the degree operators d1, . . . , dn−1 acting on W (p)n by

dr (v ⊗ e
∑n−1

j=1 m j ᾱ j+�̄p ) = −mr · v ⊗ e
∑n−1

j=1 m j ᾱ j+�̄p ∀ v ∈ Fn .
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For any ū = (u1, . . . , un−1) ∈ (C∗)n−1, consider the functional

φū
p,c̄ : Ü ′≤ −→ C defined by

φū
p,c̄(A) :=

∑

σ̄

〈

v0 ⊗ e�̄σ̄
p |ρp,c̄(A)ud11 · · · udn−1

n−1 |v0 ⊗ e�̄σ̄
p

〉

,

computing the Q̄-graded trace of the A-action on the subspaceM(p)n (here u
di
i makes

sense as di acts with integer eigenvalues). Since hi, j (v0 ⊗ e�̄σ̄
p ) = 0 for j > 0, it

suffices to compute the generating series

φū
p,c̄;N ,r̄ ,a,b(z0,1, . . . , zn−1,N )

:= φū
p,c̄

⎛

⎝

N
∏

j=1

( f0(z0, j ) · · · fn−1(zn−1, j )) ·
∏

i∈[n]
ψ

ri
i,0 · γ a/2qbd1

⎞

⎠ .

Normally ordering the product
∏N

j=1( f0(z0, j ) · · · fn−1(zn−1, j )), we get the fol-
lowing result:

Proposition 4.4 For n ≥ 3, we have:

φū
p,c̄;N ,r̄ ,a,b(z0,1, . . . , zn−1,N ) = (c0 . . . cn−1)

−Nqa/2d
N (n−2)

2

×
∏

i∈[n]
∏

1≤ j< j ′≤N (zi, j − zi, j ′)(zi, j − q2zi, j ′)
∏

i∈[n]
∏

1≤ j≤ j ′≤N (zi, j − qdzi+1, j ′) · ∏i∈[n]
∏

1≤ j< j ′≤N (zi, j − qd−1zi−1, j ′)

×(−1)p
p

∏

j=1

1

u1 . . . u j−1
· [μp]

⎧

⎨

⎩

∏

i∈[n]

⎛

⎝

N
∏

j=1

zi+1, j − μu1 . . . uiq
ri+1−ri

N
∏

j=1

zi, j

⎞

⎠

⎫

⎬

⎭

,

where [μp]{· · · } denotes the coefficient of μp in {· · · }.
• Full graded trace.

Finally, we introduce the most general functional

φ
ū,t
p,c̄ : Ü ′≤ −→ C[[t]] defined by φ

ū,t
p,c̄(A) := trW (p)n (ρp,c̄(A)ud11 . . . udn−1

n−1 t
−d),

computing the Q̄ × Z+-graded trace of the A-action on the representation W (p)n .
Due to the quadratic relations and the Q̄-grading, it suffices to compute the following
generating series:

φ
ū,t
p,c̄;N ,k̄,r̄ ,a,b

(z0,1, . . . , zn−1,N ;w0,1, . . . , w0,k0 , . . . , wn−1,1, . . . , wn−1,kn−1)

:= φ
ū,t
p,c̄

⎛

⎝

N
∏

j=1

( f0(z0, j ) · · · fn−1(zn−1, j )) ·
∏

i∈[n]

ki
∏

j=1

ψ̄+
i (wi, j ) ·

∏

i∈[n]
ψ

ri
i,0 · γ a/2qbd1

⎞

⎠ .
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In what follows, (z; t)∞ is defined by (z; t)∞ := ∏∞
a=0(1 − taz).

Theorem 4.5 For n ≥ 3, we have:

φ
ū,t
p,c̄;N ,k̄,r̄ ,a,b

(z0,1, . . . , zn−1,N ;w0,1, . . . , wn−1,kn−1) = (c0 . . . cn−1)
−Nqa/2d

N (n−2)
2

(!)

×
∏

i∈[n]
∏

1≤ j< j ′≤N (zi, j − zi, j ′)(zi, j − q2zi, j ′) · ∏i∈[n]
∏N

j=1 zi, j
∏

i∈[n]
∏

1≤ j≤ j ′≤N (zi, j − qdzi+1, j ′) · ∏i∈[n]
∏

1≤ j< j ′≤N (zi, j − qd−1zi−1, j ′)

× qrp−r0 ·
N

∏

j=1

z0, j
z p, j

· θ("y; �̄)

× 1

(T ; T )n∞
·

∏

i∈[n]

N
∏

a,b=1

(T · zi,a
zi,b

; T )∞ · (Tq2 zi,a
zi,b

; T )∞
(Tqd zi+1,a

zi,b
; T )∞ · (Tqd−1 zi−1,a

zi,b
; T )∞

×
∏

i∈[n]

N
∏

a=1

ki
∏

b=1

(Tq2 q
1/2zi,a
wi,b

; T )∞ · (Tq−1d q1/2zi+1,a
wi,b

; T )∞ · (Tq−1d−1 q
1/2zi−1,a

wi,b
; T )∞

(Tq−2 q
1/2zi,a
wi,b

; T )∞ · (Tqd q1/2zi+1,a
wi,b

; T )∞ · (Tqd−1 q
1/2zi−1,a

wi,b
; T )∞

,

where T := t
qb

and θ("y, �̄) := ∑

"n∈Zn−1 exp(2π
√−1( 12 "n�̄"n′ + "n "y′)) is the classical

Riemann theta function with �̄ = 1
2π

√−1
· (ai, j ln(T ))n−1

i, j=1 and

"y = (y1, . . . , yn−1) with yi = 1

2π
√−1

ln

⎛

⎝u−1
i T δp,i q2ri−ri−1−ri+1

N
∏

j=1

zi−1, j zi+1, j

z2i, j

⎞

⎠ .

We start with the following two auxiliary results:

Lemma 4.6 The matrix

(

d−kmi, j [k]q [kai, j ]q
k

) j∈[n]

i∈[n]
is nondegenerate if and only if

q2k, qkd±k �= 1.

Therefore if q2, dq, d−1q are not roots of unity, we can choose a new basis
{ ˜Hi,−k}i∈[n] of the space spanC{H0,−k, . . . , Hn−1,−k}, such that [Hi,k, ˜Hj,−l ] =
δi, jδk,l H0 for any i, j ∈ [n], k, l ∈ N. In particular, the elements {Hi,k, ˜Hi,−k, H0}k>0
form a Heisenberg Lie algebra hi for any i ∈ [n], and hi commutes with h j for any
i �= j ∈ [n].
Lemma 4.7 Let a be a Heisenberg Lie algebra with the basis {ak}k∈Z and the com-
mutator relation [ak, al ] = δk,−lλka0. Consider the Fock a-representation F :=
Indaa+Cv0 with the central charge a0 = 1 and the degree operator d ∈ End(F)

satisfying [d, ak] = kak and d(v0) = 0. Then:

trF

⎧

⎨

⎩

exp

⎛

⎝

∞
∑

j=1

x j a− j

⎞

⎠ · exp
⎛

⎝

∞
∑

j=1

y j a j

⎞

⎠ · t−d

⎫

⎬

⎭

= 1

(t; t)∞ · exp
⎛

⎝

∞
∑

j=1

x j y jλ j t j

1 − t j

⎞

⎠ ∀ x j , y j ∈ C.
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Proof Applying the formula 〈al− jv0|ak− j a
k
j |al− jv0〉 = l(l − 1) · · · (l − k + 1)λkj , we

get

trF

⎧

⎨

⎩

exp

⎛

⎝

∞
∑

j=1

x ja− j

⎞

⎠ exp

⎛

⎝

∞
∑

j=1

y ja j

⎞

⎠ · t−d

⎫

⎬

⎭

=
∑

k1,k2,...≥0

trF

⎛

⎝

∞
∏

j=1

(x j y j )k j

(k j !)2 a
k j
− j a

k j
j · t−d

⎞

⎠

=
∞
∏

j=1

⎧

⎨

⎩

∞
∑

k j=0

∞
∑

l j=k j

(x j y j )k j

(k j !)2 · l j ! · λk jj
(l j − k j )! · t jl j

⎫

⎬

⎭

=
∞
∏

j=1

⎧

⎨

⎩

∞
∑

k j=0

(x j y jλ j t j )k j

k j ! · 1

(1 − t j )k j+1

⎫

⎬

⎭

.

The result follows. ��
Proof of Theorem 4.5 Reordering the factors of

N
∏

j=1

( f0(z0, j ) · · · fn−1(zn−1, j )) ·
∏

i∈[n]

ki
∏

j=1

ψ̄+
i (wi, j ) ·

∏

i∈[n]
ψ

ri
i,0

in the normal order, we gain the product of factors from the first two lines of (!). The
Q̄ × Z+-graded trace of the normally ordered product splits as tr1 · tr2, where

tr1 = tr
C{Q̄}e�̄p

⎛

⎝q
∑

i∈[n] ri ∂ᾱi ·
∏

i∈[n]

N
∏

j=1

z
−Hi,0
i, j ·

n−1
∏

i=1

udii · (t/qb)d(2)

⎞

⎠ ,

tr2 = trFn

⎛

⎝exp

⎛

⎝

∑

i∈[n]

∑

k>0

ui,k Hi,−k

⎞

⎠ · exp
⎛

⎝

∑

i∈[n]

∑

k>0

(v
(1)
i,k + v

(2)
i,k )Hi,k

⎞

⎠ · (t/qb)d(1)

⎞

⎠

with

ui,k := −qk/2

[k]q
N

∑

j=1

zki, j , v
(1)
i,k := qk/2

[k]q
N

∑

j=1

z−k
i, j , v

(2)
i,k := (q − q−1)

ki
∑

j=1

w−k
i, j

and the operators d(1) ∈ End(Fn), d(2) ∈ End(C{Q̄}e�̄p ) defined by

d(1)(Hi1,−k1 · · · Hil ,−klv0) =
l

∑

i=1

ki · Hi1,−k1 · · · Hil ,−klv0,

d(2)(eβ̄ ) = (β̄, β̄) − (�̄p, �̄p)

2
· eβ̄ .
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The computation of tr1 is straightforward, and we get exactly the expression
from the third line of (!). To evaluate tr2, we rewrite

∑

i∈[n]
∑

k>0 ui,k Hi,−k =
∑

i∈[n]
∑

k>0 ũi,k ˜Hi,−k with ˜Hi,−k defined right after Lemma 4.6 and ũi,k =
∑

i ′∈[n] d−kmi,i ′ [k]q [kai,i ′ ]q
k ui ′,k . The commutativity of hi and h j for i �= j allows

us to rewrite tr2 as a product of the corresponding traces over the hi -Fock modules.
Applying Lemma 4.7, we see (after routine computations) that tr2 is equal to the
product of the factors from the last two lines in (!). ��

4.3 Functionals via pairing

Recall the Hopf algebra pairing ϕ′ : Ü ′≥ × Ü
′≤ → C from Theorem 2.7. As ϕ′ is

nondegenerate, there exist unique elements X0
p,c̄, X

ū
p,c̄ ∈ Ü

′≥,∧ and Xū,t
p,c̄ ∈ Ü

′≥,∧[[t]]
such that

φ0
p,c̄(X) = ϕ′(X0

p,c̄, X), φū
p,c̄(X)=ϕ′(Xū

p,c̄, X), φ
ū,t
p,c̄(X) = ϕ′(Xū,t

p,c̄, X)∀ X ∈ Ü
′≤.

The goal of this section is to find these elements explicitly.
We will actually compute these elements in the shuffle presentation. In order to do

this, we first extend the isomorphism � from Theorem 2.13 to the isomorphism

�≥ : Ü ′≥ ∼−→S≥.

Here S≥ is generated by S and the formal generatorsψi,k(k < 0), ψ±1
i,0 , γ ±1/2, q±d1

with the defining relations compatible with those for Ü
′≥. In particular, for F ∈ Sk,d

we have

qd1Fq−d1 = q−d · F.

Wedefine�0
p,c̄, �

ū
p,c̄, �

ū,t
p,c̄ as the images of X0

p,c̄, X
ū
p,c̄, X

ū,t
p,c̄ under the isomorphism

�≥, respectively. Now we are ready to state the main result of this section:

Theorem 4.8 We have the following formulas:

(a) �0
p,c̄ = ∑∞

N=0(c0 . . . cn−1)
−N · �0

p;N · q�̄pq−d1 with �0
p;N ∈ SNδ given by

�0
p;N = (1 − q−2)nN (−qnd−n/2)N

2 ·
N

∏

j=1

x0, j
x p, j

×
∏

i∈[n]
∏

j �= j ′(xi, j − q−2xi, j ′) · ∏i∈[n]
∏N

j=1 xi, j
∏

i∈[n]
∏

j, j ′(xi, j − xi+1, j ′)
.
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(b) �ū
p,c̄ = ∑

N≥0(c0 . . . cn−1)
−N · �ū

p;N · q−d1 with �ū
p;N ∈ S≥

Nδ given by

�ū
p;N = (1−q−2)nN (−qnd−n/2)N

2
p

∏

j=1

1

u1 . . . u j−1
·
∏

i∈[n]
∏

j �= j ′(xi, j − q−2xi, j ′)
∏

i∈[n]
∏

j, j ′(xi, j−xi+1, j ′ )

×(−1)p[μp]
⎧

⎨

⎩

∏

i∈[n]

⎛

⎝

N
∏

j=1

xi+1, j − μu1 . . . ui

N
∏

j=1

xi, j · q�̄i+1−�̄i

⎞

⎠

⎫

⎬

⎭

,

where in the last product we take all xi, j to the left and all q�̄i+1−�̄i to the right.

(c) �
ū,t
p,c̄ = ∑

N≥0(c0 . . . cn−1)
−N · �ū,t

p;N · q�̄pq−d1 with �
ū,t
p;N ∈ S≥

Nδ given by

�
ū,t
p;N = (1 − q−2)nN (−qnd−n/2)N

2

×
∏

i∈[n]
∏

j �= j ′(xi, j − q−2xi, j ′) · ∏i∈[n]
∏N

j=1 xi, j
∏

i∈[n]
∏

j, j ′(xi, j − xi+1, j ′)
·

N
∏

j=1

x0, j
x p, j

· θ("x, ˜�)

× 1

(t̄; t̄)n∞
·

∏

i∈[n]

N
∏

a,b=1

(t̄ xi,axi,b
; t̄)∞ · (t̄q2 xi,a

xi,b
; t̄)∞

(t̄qd xi+1,a
xi,b

; t̄)∞ · (t̄qd−1 xi−1,a
xi,b

; t̄)∞

×
∏

k>0

∏

i∈[n]

N
∏

a=1

ψ̄−
i (t̄ kq1/2xi,a),

where t̄ = tγ, ˜� = 1
2π

√−1
· (ai, j ln(t̄))n−1

i, j=1, and

"x = (x1, . . . , xn−1) with xi = 1

2π
√−1

ln

⎛

⎝u−1
i t̄δp,i ψi,0

N
∏

j=1

xi−1, j xi+1, j

x2i, j

⎞

⎠ .

In the above products, we take all xi, j to the left and all ψi, j to the right.

The proof of this theorem follows by combining Proposition 4.2, Proposition 4.4
and Theorem 4.5 with the following technical lemma:

Lemma 4.9 (a) For any elements a ∈ Ü+, a′ ∈ Ü≥ ∩ Ü 0, b ∈ Ü−, b′ ∈ Ü≤ ∩ Ü 0,
we have

ϕ(aa′, bb′) = ϕ(a, b) · ϕ(a′, b′).

(b) For any ki , k′
i ∈ Z+ and A, B,C, A′, B ′,C ′, ai , bi ∈ Z, we have

ϕ

⎛

⎜

⎝

∏

i∈[n]

ki
∏

a=1

ψ̄−
i (zi,a)

∏

i∈[n]
ψ
ai
i,0γ

A/2qBd1qCd2 ,
∏

j∈[n]

k′j
∏

b=1

ψ̄+
j (w j,b)

∏

j∈[n]
ψ
a′
j

j,0γ
A′/2qB

′d1qC
′d2

⎞

⎟

⎠
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= q
− 1

2 A
′B− 1

2 AB
′+C ′ ∑ ai+C

∑

a′
i+

∑

i, j ai a
′
j ai, j ·

j∈[n]
∏

i∈[n]

ki
∏

a=1

k′j
∏

b=1

w j,b − qai, j dmi, j zi,a

w j,b − q−ai, j dmi, j zi,a
.

(c) For r̄ = (r0, . . . , rn−1), s̄ = (s0, . . . , sn−1) ∈ Z
[n]
+ and elements X ∈ Ü+,Y ∈

Ü− of the form

X = e0,a01
· · · e0,a0r0 · · · en−1,an−1

1
· · · en−1,an−1

rn−1
,

Y = f0,b01
· · · f0,b0s0 · · · fn−1,bn−1

1
· · · fn−1,bn−1

sn−1
,

the pairing ϕ(X,Y ) is expressed by an integral formula similar to [14, Proposi-
tion 3.10]:

ϕ(X, Y ) = δr̄ ,s̄

×
∫

(q − q−1)−
∑

ri u
b01
0,1 . . . u

bn−1
sn−1
n−1,sn−1

�(X)(u0,1, . . . , un−1,rn−1 )
∏

i
∏

j< j ′ ωi,i (ui, j/ui, j ′ ) · ∏i<i ′
∏

j, j ′ ωi,i ′(ui, j/ui ′, j ′ )

∏

i∈[n]

si
∏

j=1

dui, j
2π

√−1ui, j
.

4.4 Bethe incarnation of A(s)

Recalling the notion of a transfer matrix from Sect. 2.5, it is easy to see that

Xū,t
p,c̄ = Tρp,c̄

(

u−�̄1
1 . . . u−�̄n−1

n−1 t−d1
)

·
n−1
∏

j=1

u
〈�̄ j ,�̄p〉
j ,

which provides a more elegant definition of Xū,t
p,c̄. Moreover, the elements Xū

p,c̄ can

be thought of as certain truncations of Xū,t
p,c̄ obtained by setting t → 0, while X0

p,c̄
are obtained by setting further u1, . . . , un−1 → 0.

The commutativity of the Bethe subalgebras implies the commutativity of
{�ū,t

p,c̄|p, c̄} and hence of {�ū,t
p;N }N≥1

0≤p≤n−1. As a result, we get the commutativity of

the families {�0
p;N }N≥1

0≤p≤n−1 and {�ū
p;N }N≥1

0≤p≤n−1. Due to Theorem 4.8(b), the ele-

ments �ū
p;N have the same form as the generators of the subalgebra A(s0, . . . , sn−1)

from Sect. 3 with si ∈ C
∗ · eP̄ given by

si := ui · q�̄i+1−2�̄i+�̄i−1 for all i ∈ [n], where u0 := 1/(u1 . . . un−1).

Since eh (h ∈ P̄) commute with⊕k Skδ , we see that those {si } can be treated as formal
parameters with s0 . . . sn−1 = 1 and {si } being generic for any choice of {ui }.

Finally, let us notice that while Üq,d(sln) contained the horizontal copy ofUq(̂gln),
the algebra Ü

′
q,d(sln) contains a horizontal copy ofUq(Lgln) (that is no q

±d2 and with
trivial central charge c′ = 0). The subspace M(p)n is Uq(Lgln)-invariant and is just
the pth fundamental representation. By standard results, Uq(Lgln) admits a double
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construction similar to the one for Ü
′
q,d(sln). Combining all the previous discussions

with the construction of the universal R-matrices for Ü
′
q,d(sln) and Uq(Lgln), we get

the following result:

Theorem 4.10 The Bethe subalgebra of Uq(Lgln), corresponding to the group-like

element x = u−�̄1
1 . . . u−�̄n−1

n−1 and the category of finite-dimensional Uq(Lgln)-

representations, can be identified with A({ui · q�̄i+1−2�̄i+�̄i−1}i∈[n]), where u0 :=
1/(u1 . . . un−1).

Remark 4.11 (a) The commutativity of {�0
p;N }N≥1

0≤p≤n−1 implies that the family

⎧

⎨

⎩

N
∏

j=1

x0, j
x p, j

·
∏

i∈[n]
∏

j �= j ′(xi, j − q−2xi, j ′) · ∏i∈[n]
∏N

j=1 xi, j
∏

i∈[n]
∏

j, j ′(xi, j − xi+1, j ′)

⎫

⎬

⎭

N≥1

0≤p≤n−1

of elements from S is commutative. It is easy to see that the subalgebra they
generate is the limit algebra of A(s0, s1, . . . , sn−1) as s1, . . . , sn−1 → 0, s0 =
1/(s1 . . . sn−1), and {si } stay generic.

(b) The commutative algebras generated by {�ū,t
p;N }N≥1

0≤p≤n−1 can be viewed as one-
parameter deformations of the algebrasA(s̄). They play a crucial role in the Bethe
ansatz for Üq,d(sln).

5 Generalizations to n = 1 and n = 2

It turns out that all the previous results of this paper can be actually generalized to
the n = 1, 2 cases. The goal of this last section is to explain the required slight
modifications.

5.1 n = 1 case

The quantum toroidal algebra Üq,d(gl1) has been extensively studied in the last few
years.Roughly speaking, one just needs tomodify the quadratic relations fromSect. 2.1
by replacing

gai, j (t) �
(q1t − 1)(q2t − 1)(q3t − 1)

(t − q1)(t − q2)(t − q3)
, where q1 := q2, q2 := q−1d, q3 := q−1d−1,

and by replacing the Serre relations (T7.1, T7.2) by

Sym
z1,z2,z3

z2
z3

· [e(z1), [e(z2), e(z3)]] = 0,

Sym
z1,z2,z3

z2
z3

· [ f (z1), [ f (z2), f (z3)]] = 0.
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Analogously to the n ≥ 3 case, the map ei �→ xi extends to the isomorphism

Üq,d(gl1)
+ ∼−→Ssm.

The results of Sect. 3 recover the same commutative algebraAsm we started from.
On the other hand, we can apply the constructions of Sect. 4 to the Fock Ü

′
q,d(gl1)-

representations {Fc}c∈C∗ (see [4, Proposition A.6]). As a result, we will get:
◦ The elements �0

c (corresponding to the top matrix coefficient functional φ0
c ) are

given by

�0
c =

∞
∑

N=0

c−Nq−N (N−1) · KN (x1, . . . , xN ) · q−d1 .

◦ The elements �t
c (corresponding to the full graded trace functional φ

t
c) are given by

�t
c =

∞
∑

N=0

c−Nq−N (N−1)

(t̄; t̄)∞ · KN ·
N

∏

a,b=1

(t̄ xaxb ; t̄)∞ · (t̄q2 xa
xb

; t̄)∞
(t̄qd−1 xa

xb
; t̄)∞ · (t̄qd xa

xb
; t̄)∞

×
∏

k>0

N
∏

a=1

ψ̄−(t̄ kq1/2xa) · q−d1 .

5.2 n = 2 case

For n = 2, we need first to redefine both the quantum toroidal and the shuffle algebras.
◦ Quantum toroidal algebra of sl2.

One needs to slightly modify the defining relations (T0.1–T7.2) of Üq,d(sl2)
(see [2]). The function gai, j (z) from the relations (T1, T2, T3, T5, T6) should be
changed as follows:

gai,i (z) � q2z − 1

z − q2
, gai,i+1(z) � (dz − q)(d−1z − q)

(qz − d)(qz − d−1)
,

while the cubic Serre relations (T7.1, T7.2) should be replaced with quartic Serre
relations

Sym
z1,z2,z3

[ei (z1), [ei (z2), [ei (z3), ei+1(w)]q2 ]]q−2 = 0,

Sym
z1,z2,z3

[ fi (z1), [ fi (z2), [ fi (z3), fi+1(w)]q2 ]]q−2 = 0.

◦ Big shuffle algebra of type A(1)
1 .

One needs to modify the matrix � used to define the � product as follows:

ωi,i (z) = z − q−2

z − 1
, ωi,i+1(z) = (z − qd)(z − qd−1)

(z − 1)2
.
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◦ Vertex representations ρp,c̄.
Finally, we need to slightly modify the formulas of ρp,c̄ from Proposition 4.1:

(i) We redefine the commutator relations of the Heisenberg algebra Sn as follows:

[Hi,k, Hi,l ] = [k]q · [2k]q
k

δk,−l · H0,

[Hi,k, Hi+1,l ] = −(dk + d−k)
[k]q · [k]q

k
δk,−l · H0.

(ii) We also redefine the operator zHi,0 via

zHi,0(v ⊗ eβ̄ ) := z〈h̄i ,β̄〉v ⊗ eβ̄ .

Once the above modifications are made, all the results from Sects. 3 and 4 still hold.
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