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Abstract In this article, we construct certain commutative subalgebras of the big
shuffle algebra of type Afll_) |- This can be considered as a generalization of the similar
construction for the small shuffle algebra, obtained in Feigin et al. (J Math Phys
50(9):42, 2009). We present a Bethe algebra realization of these subalgebras. The
latter identifies them with the Bethe subalgebras of U, (gA[n).
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1 Introduction

Elliptic shuffle algebras were first introduced and studied by the first author and
Odesskii, see [6-8]. In the loc.cit., they were associated with an elliptic curve £
endowed with two automorphisms 71, 7. A similar class of algebras, depending on
two parameters (alternatively ¢, g2, g3 with g1g2g3 = 1), became of interest in the
recent years, due to their geometric interpretations and different algebraic incarna-
tions (see [4,9,13,16] for the related results). We will refer to these algebras as the
small shuffle algebras. In this paper, we study the higher-rank generalizations of those
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algebras, which we refer to as the big shuffle algebras (of Afllll -type). These algebras
were also recently considered in [14], where they were identified with the positive half
of the quantum toroidal algebras Uq’d(sl,,).

The aim of this paper is to study particular large commutative subalgebras of the
big shuffle algebra S, similar to the one from [4]. We also establish a Bethe algebra
realization of these subalgebras (which seems to be new even for the small shuffle
algebras). In other words, we identify those commutative subalgebras with the stan-
dard Bethe subalgebras of the quantum affine algebra U, (a[n), which is horizontally
embedded into the quantum toroidal algebra.

The aforementioned commutative subalgebras of S admit a one-parameter defor-
mation: the commutative subalgebras A(sg, ..., S,_1;t) C (S=)" (the algebra S= is
a slight enhancement of S, see Sect. 4.3, while * indicates the completion with respect
to the natural Z-grading). These algebras are closely related to the study of nonlocal
integrals of motion for the deformed W -algebras W, ,(5[ ) from [5], as well as provide
a framework for the generalization of the recent results from [3] to Uq 4(sly). This
will be elaborated elsewhere.

This paper is organized as follows:

e In Sect. 2, we recall the definition and key results about the quantum toroidal
algebra Uq,d(s[n), n > 3. We also recall the notion of the small shuffle algebra §5™
and its commutative subalgebra A™, and introduce a higher-rank generalization,
the big shuffle algebra S.

e In Sect. 3, we introduce a family of subspaces A(sg, ...,s,—1) C S depend-
ing on n parameters and generalizing the construction of AS™ C S,
If (m, S1,...,8,—1) 1s generic (see Sect. 3.2), then we prove that

A(m, S1,...,Sp—1) 1s a polynomial algebra on explicitly given generators;
in particular, it is a commutative subalgebra of S.

e In Sect. 4, we use the universal R-matrix and vertex-type representations to estab-
lish an alternative viewpoint toward A(so, . .., s,—1). This allows us to 1dent1fy
them with the well-known Bethe subalgebras of the quantum affine U, (g ), hor-
izontally embedded into Uq a(shy).

e In Sect. 5, we discuss generalizations of the results from Sects. 2—4 to the cases
n=1,2.

2 Basic definitions and constructions

2.1 Quantum toroidal algebras of s, for n > 3

Letg, d € C* betwo parameters. Weset [n] := {0, 1, ..., n— 1} [n]* := [n]\{O}, the

former viewed as a set of mod n residues. Let g, (z) := Zm o Define {a; j, m;, ]}lj ee[[:]
by

ajj = 2, aji+] = —1, mii+1] = ZFl, and ajj = m,',j = (0 otherwise.

The quantum toroidal algebra of sl,,, denoted by Uq, 4(sl,), is the unital associative

algebra generated by {e; «, fix, Vi 1//,-)_01, y V2 gt g }kGZ

c[m With the following
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defining relations:!

(V@) v w)] =0, y*'/2 — central, (T0.1)

Vio Wio =y Ry T = gF gFh = g TR = (T0.2)

qMei(2)g M =ei(q), ¢ [N = filqD), ¢MVT@qN = vE(q2),
(T0.3)

2™ =qei(), 2 F @R =q" i@, ¢PvE@E = vE@),
(T0.4)

Za, (v 1M /W)Y @Y (W) = ga,, (vd™ i z/w)YT WY ), (TD)
ci(@ej(w) = gy (d"i z/w)ej(w)ei (2), (T2)
[i@) fi(w) = gy ;@™ z/w) ™" f(w) i (2), (T3)

(@ = D@, fi)] = 85 (8Gw/Dv; & 2w) = 8rz/wivy (')

(T4)
VE@ejw) = gap; (yE2d™ 2 w)e; ()Y (), (T5)
Vit @) fj(w) = ga, (T 2™ 2/ w) ™! () (@), (T6)

Sym [e; (z1), [ei (z2), €ix1(w)]gly-1 = 0, [ei(2), e;(w)] =0 for j #i,i+]1,

21,22

(T7.1)
Sym [fi(z1), [fi(z2), fix1(w)]gl,—1 =0, [fi(2), fj(w)] =0for j #i,i £1,
71,32

(T7.2)

where we set [a, b], := ab — x - ba and define the generating series as follows:

o0 o8]
e = D ez, fik)= > fixz
k=—00 k=—o00

Y@ = + D Vi, 8= Y 7k

r>0 k=—o00

1 Our notation are consistent with that of [17], but following [15] we add the elements qidl R q:‘:d2 sat-
isfying (T0.3, T0.4). This update is essential for our discussion of the Drinfeld double and the universal
R-matrix.
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It will be convenient to use the generators {A; i }xx0 instead of {y; x}x-0, Where
hi+r €C [WZFOI, Vit Yix2, - ] are defined by

exp(i(q—q”)Zh,-,ﬂﬁ’) U@ =9 v @),

r>0

Then the relations (TS5, T6) are equivalent to the following:

k| /2 LKGi, jlqg [kai,jlq

Vioejs = qie; Yo, Thig, ej ]l =d *miiy WP (k #0), (T)

ka; |
%J‘j,wk (k #0),

(T6")

Wiofin =q % fiaWio, [hik, fil = —d iy kl/2

q"—q" : /i hi 1/2 /
where [m], = pr— . We alsointroduce h; o, ¢, ¢’ viayr; o = g0, y'/= =¢¢, ¢’ =
Zie[n] hi o, so that ¢, ¢’ are central.

Let U ~ and Ut be the subalgebras of Uq a(sly) generated by {ei,k}i.‘:[zn] and

:|:1/2 j:d] qidz}l_cee[Z]
’ 1€[n]”

{fi, k}z el respectively, while UYis generated by {; «, 1/fl 4

Proposition 2.1 [10] (Triangular decomposition) The multiplication map
m:U"U’@Ut — U'q,d(sln)

is an isomorphism of vector spaces.

We equip the algebra Uq,d(s [,) with the ZI" x Z-grading by assigning

deg(ein) = (1;: k), deg(fi) = (—1;1 k), deg(Wi) := (05 k),
deg(x) := (0; 0) for x = v, . y =2, ¢* . ¢** Vi e nl.k e Z,

where 1; € 7" is the vector with the jth coordinate 1 and all other coordinates zero.

2.2 Horizontal and vertical U, (g’[:,)

Following [17], we introduce the vertical and horizontal copies of the quantum affine
algebra of sl,,, denoted by U, (sl,,), inside Uy 4 (sl,). Consider the subalgebra U" (sl,,)

of Ug.q(sly) generated by {ei k. fik. Vi Wig . vV q* i € [n]*. k € Z}. This
algebra is isomorphic to U, (?[n), realized via the “new Drinfeld presentation”. Let
U (sl,) be the subalgebra of U 4(sl,) generated by {ei 0. fi0. ¥y . ¢=[i € [n]).
This algebra is also isomorphic to U, (;[n), realized via the classical Drinfeld—Jimbo
presentation.
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Following [2], we recall a slight upgrade of this construction, which provides two
copies of the quantum affine algebra of gl,, rather than sl,,, inside Uq)d (sl,). For every
r # 0,choose {c; »|i € [n]}tobe anontrivial solution of the following system of linear
equations:>

n—1

zci,rd_rmi'-/ [rai jlg =0, j€[n]™.
Let Y be the subspace of Uq,d(sln) spanned by

hy =

r

Zie[n] C,',r/’l,"r if r 75 0
yl/2 ifr=0"

Note that hY is well defined and commutes with UY(sl,), due to (TS, T6').
Moreover, " is isomorphic to the Heisenberg Lie algebra. Let U V(gl,,) be the sub-
algebra of Uq d(sly) generated by UY(sl,) and h. The above discussions imply that
UY(gl,) ~ Uy (g[ ), the quantum affine algebra of gl,. We let U (gl;) C U"(gl,) be
the subalgebra generated by h".

Our next goal is to provide a horizontal copy of U, (g ), containing UM (sl,,), inside
Uq,d(sln) The following approach was proposed in [2] and it is based on a beautiful
result of Miki:

Theorem 2.2 [12] There exists an automorphism 1w of Uq,d(sln) such that
T(U"(sly)) = U (sLy), (U (sly)) = UV (sly).

Moreover:

—C

(@) =4, 7q°)=q

Let us define bh = (hY) and let U h(g[ ) be the subalgebra of Uq 4(sly) generated
by U"(sl,) and hh. Then Uh(g[ ) = n(UV(g[ )) and it is 1s0m0rphlc to Uy, (g[ ). We
also define UM (gl;) C U"(gl,) as the subalgebra generated by h".

However, this construction is not very enlightening, as the images 7 (h,’) are hardly
computable. An alternative approach, based on the RTT realization of U, (gl,,), was
proposed in [14]. We will discuss the related results in Sect. 3.3.

2.3 Hopf pairing, Drinfeld double and a universal R-matrix

We recall the general notion of a Hopf pairing, following [11, Chapter 3]. Given two
Hopf algebras A and B with invertible antipodes S4 and Sp, the bilinear map

2 Ttis easy to see that the space of solutions of this system is 1-dimensional if g is not a root of unity.
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p:AxB—C
is called a Hopf pairing if it satisfies the following properties:

@(a,bb) = ¢(ar, b)p(ar,b') Yae A, b,b € B,

p(aa’,b) = p(a,b))p(a’,by) Va,a' €A, be B,

o(a,1p) =€a(a) and ¢(la,b) =€p(b) Yac A, be B,
¢(Sa(a),b) = ¢(a, S5' (b)) Yae A, beB,

where we use the Sweedler notation for the coproduct:
Ax) = x1 ® x3.

For such a data, one can define the generalized Drinfeld double D,(A, B) as fol-
lows:

Theorem 2.3 [11, Theorem 3.2] There is a unique Hopf algebra Dy, (A, B) satisfying
the following properties:

(1) As coalgebras Dy(A, B) ~ A® B.
(i1) Under the natural inclusions

A= Dy(A, B) givenbya > a® lg,
B < Dy,(A, B) givenby b= 1, ® b,

A and B are Hopf subalgebras of Dy(A, B).
(iii) Foranya € A,b € B, we have

a@®1p)-(1o®b)=a®b
and

(14 ®b) - (a® 1p) = (S, (a1), b)p(as, b3)ar @ by.

Remark 2.4 The notion of the Drinfeld double is reserved for the case B = A*°P
with ¢ being the natural pairing.

A Hopf algebra A is quasitriangular (formally quasitriangular) if there is an invert-
ible element

ReAQA (or R € ARA)

satisfying the following properties:

RA(x) = A°(x)R Vx €A,
(A ®1d)(R) = RPR%,
(Id ® A)(R) = RBR'".
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Such an element R is called a universal R-matrix of A.
The fundamental property of Drinfeld doubles is their quasitriangularity:

Theorem 2.5 [11, Theorem 3.2] For a nondegenerate Hopf pairing ¢ : A X B —
C, the generalized Drinfeld double D, (A, B) is formally quasitriangular with the
universal R-matrix

R = Z e Qe
i
where {e;} is a basis of A and {e;“} is the dual basis of B (with respect to ¢).

2.4 Quantum toroidal algebra ﬁq,d(s I,,) as a Drinfeld double

In order to apply the constructions of the previous section to the quantum toroidal
algebra U, 4(sl,) and its subalgebras, we need to endow the former with a Hopf
algebra structure. This was first done (in a more general setup) in [1, Theorem 2.1]:

Theorem 2.6 The formulas (H1-H9) endow Uq,d (sl,) with a topological Hopf alge-
bra structure:

Aei(@) = ¢ ® 1+ ¥, (v )2 ® ei(v)2), (HI)
Afi(2) =18 fi@) + fitro2) ® ¥ (v 2. (H2)
AWER) =¥ P @ viE( ) o). (H3)
A(x)=x®x forx = yT/2 gFh g+, (H4)
€(ei(2) = €(fi(2) =0, e(YF(2) =1, (H5)
e(x) =1 forx =yTl/? gt g%o (H6)
S(ei(2) ==y, (v ) ey '), (H7)
S(fi) =—fity oy P (HB)
S)=x"" forx =y™'2 g™, ¢ y (2, (H9)

where y(ll/)z =y2®1and y(12/)2 =1®y!/2
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Let UZ be the subalgebra of qu(s ») generated by {e; x, Vi, 1//1 0 yil/z,
qidl *dy }leeZN, and let U= be the subalgebra of Uq,d(sln) generated by {fi x, Vi,

1/;ii0 Ly T2 gFd gEd }iiNZ. Now we are ready to state the main result of this section
(the proof is straightforward):

Theorem 2.7 (a) There exists a unique Hopf algebra pairing ¢ : UZ x US — C
satisfying

Z

8i.j - + mi
plei@). f1w) =~ 5 (Z) o @ ¥ @) = ga,, (@2 w),
q9—4q w
®1)

(ei(2),x7) = (T, fi(2) =0 forx* =yTw), v, v'% ¢ % @2

o' 2 g =0 v =77 o7 @4 =q"", e@® ¥} (@)=4,
(P3)
oW (), %) = o(x, ¥ (@) =1 forx =y'/2 g%, (P4)

o7, q™) = 0@® v =0, q") =o'y ) =1 forl <ab <2
(P5)

(b) The natural Hopf algebra homomorphism D(p(U z.US) —» Uq,d(s[n) induces the
isomorphism

Dy (U=, U=)/ 15T, a(sl,)

with I == (x ® 1 — 1 @ x|x = ¢, y /2 gF gFb),

(c) Consider a slight modification UC; 48lu), obtained from Uq,d (sly) by “throwing
away” the generator g=% and taking the quotient by the central element c. Asin (b),
this algebra admits the double Drinfeld realization via Dy (U =, U =), where U =

and U'Z are obtained from U= and U= by “throwing away” ¢=® and taking the
quotient by ¢’, while ¢’ is induced by ¢.

(d) The pairings ¢ and ¢’ are nondegenerate if and only if q, qd, gd~" are not roots
of unity.

2.5 Bethe subalgebras

Let us recall the standard way of constructing large commutative subalgebras of a
(formally) quasitriangular Hopf algebra A. Fix a group-like element x € A (or in an
appropriate completion x € A™). For an A-representation V, we consider the fransfer
matrix

Ty(x) := (1 ®try)((1®x)R)
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if the latter is well defined. The properties of the R-matrix imply

Ty,pv, (x) = Ty, (x) + Ty, (x),
TV1®V2(-X) = TVz(-x) : TV1 (x)

In particular, we see that Ty, (x) - Ty, (x) = Ty, (x) - Ty, (x).

To summarize, e — T,(x) is a ring homomorphism from the Grothendieck group
of any suitable tensor category of A-modules to the suitable completion A", with the
image being a commutative subalgebra of that completion. The commutative subal-
gebras constructed in this way are sometimes called the Bethe (sub)algebras.

In Sect. 4, we will apply this construction to the following two cases:

o The formally quasitriangular algebra is A = U .a(8ln), the corresponding group-

like element is x = g*M1otHhn—thn-rotindr and we consider a tensor category
of U 7 4(8ln)-representations generated by vertex U 4 4(8ln)-representations p, &z from

Sect. 4.1.3

o The formally quasitriangular algebra is A = U,(Lgl,) (see Sect. 4.4), the corre-
sponding group-like element is x = g*11.0t+A-1/m-10 (the most generic element
of the finite Cartan part), and we consider the tensor category of all finite-dimensional
U, (Lgl,)-representations.

2.6 Small shuffle algebra

As a motivating point for the current paper, we briefly recall the notion of the small
shuffle algebra and its particular commutative subalgebra. Let Z,. := {n € Z|n > 0} =
N U {0}. Consider a Z -graded C-vector space Ssm = @D,0S)", where S;™ consists

of rational functions ggl """ x") with f € (C[x v xS and Adxy, .. xp) =
Hi# j(xi = xj). Define the star product o (ST x § — S by

sm
(F *» G)(X1, ..., Xk+1)

Jj>k
= Symg,,, | FOr1. - x0)G (kg1 - Xepa) H A(xi/x))
i<k
with
1 —1 —1
Alx) = (i = D(gax — D(gsx ) where ¢; € C\{0, 1} and q192¢93 = 1.

(x—1)3 '

This endows S*™ with a structure of an associative unital C-algebra with the unit
1eSjm.

3 Actually, one can consider the whole category of highest weight Uf; 4 (8ln)-representations, see [12].
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We say that an element H e Si™ satisfies the wheel conditions if and only
if
fCi, ..., x,) =0 oncex; /xi, =q1 and x;,/x;; =q> for some 1 <iy, iz, iz <n.

Let " C S*™ be a Z,-graded subspace, consisting of all such elements. The
subspace S™ is "% -closed (see [4, Proposition 2.10]).

Definition 2.8 The algebra (S, % ) is called the small shuffle algebra.

Following [4], we introduce an important Z -graded subspace A*™ = ), A" of
S§8M, Its degree n component is defined by

A= (F e $M|g OO0 F 5P F exist and 9O F = 9P F v < k < n),

where
OB F = lim F(x1, ..., ks & - Xpekt 1 -+ & - Xp),
E—0
AR E = lim F(x1, ..., ks & * Xnkals oo & - Xn)
£—o00

whenever the limits exist.
This subspace satisfies the following properties:

Theorem 2.9 [4, Section 2] We have:
(a) Suppose F € S;™ and 9 F exist for all0 < k < n, then F € AT

sm
(b) The subspace AS™ C S™ is % -commutative.

(c) A™Mis % -closed and it is a polynomial algebrain {K ;};>1 withK; € S;.m defined
by:

H (xi —q1xj)(xj — q1x;)

Ki(x =xO,K X1y oonyXim) =
1( 1) 1 m( 1 m) (xi —xj)2

I<i<j<m

2.7 Big shuffle algebra

Consider a Zg’_']—graded C-vector space

S= b s

k=(ko. ...kn—1)€ZY!

where Sy, k, , consists of []Sy,-symmetric rational functions in the variables

{x,',j};slﬁk". We also fix an n x n matrix of rational functions Q = (w; ()i, je[n] €

Mat, x, (C(z)) by setting
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2 d7'z—¢q

—1 7

Z—q
-1
—1
z—qd
-1

w; i(z) = w;,i+1(2) =

w;i—1(2) = and w; j(z) =1 otherwise.

Let us now introduce the bilinear » product on S: given f € Sg, g € S; define
f *x g € SE + by

(Fx8) (X0, 1, - vy X0, ko) « -+ 3 Xne1,1» « + o> Xn— 1 ky_1+1p_y) ‘=
i'eln] J'>ky
1<j<k ki <j<ki+l;
SymHGkiHi f({xl]},e [n] I)g({xzj}le[n] ) x H H wi,i’(xi,j/xi/,j’)
i€[n] j<ki

This endows S with a structure of an associative unital algebra with the unit 1 €
,,,,, 0- We will be interested only in a certain subspace of S, defined by the pole and
wheel conditions:

e We say that F' e Sg satisfies the pole conditions if and only if

F 0,15 oy Xn—1kyy)

J'<kit1
Hie[n] ngk,-l (Xi,j — Xit1,j7)

. where f e (C[ il]l<1<k’)n6k

i€[n]

F =

e We say that F' € S satisfies the wheel conditions if and only if

F(x0,1s ... Xn—1k,_,) =0 oncex; j /Xite; = qd® and

Xitel/Xij, =qd ¢ forsomei, e, ji, j2.l,

where € € {1}, i € [n], 1 < j1, jo < ki, 1 <1 < ki and we use the cyclic
notation x, ; := xo,;, Kk, := ko, x_1,; := Xp—1.1, k—1 := k,—1 as before.

Let S C Sg be the subspace of all elements F satisfying the above two conditions
and set

S:= @ St
kez!?

Further S = ®aez.5% 4 with Sta = {F € Sgltot.deg(F) = d}. The following is
straightforward:

Lemma 2.10 The subspace S C S is x-closed.
Now we are ready to introduce the main algebra of this paper:

Definition 2.11 The algebra (S, «) is called the big shuffle algebra (of Agl_)l -type).



990 B. Feigin, A. Tsymbaliuk

2.8 Relation between S and U+

Recall the subalgebra Ut of ﬁq a(sl,) from Sect. 2.1. By standard results, Ut is

generated by {e;, k} n] with the defining relations (T2, T7.1). The following is straight-
forward:

Proposition 2.12 There exists a unique algebra homomorphism WV : Ut — S such
that W(ei ) = xf\ Vi € [n].k € Z.

As a consequence, Im(W) C S. The following beautiful result was recently proved
by Negut:

Theorem 2.13 [14, Theorem 1.1] The homomorphism ¥V : Ut — S is an isomor-
phism of Zg’_’] X Z-graded algebras.

Remark 2.14 In the loc. cit. d = 1, but the proof can be easily modified for any d.
Note that the algebra AT from [14] is isomorphic to our S with d = 1 via the map
S, — AT given by

1<j<k; %D 1<j<ki_
F(xi M55 o g0 255 F (g 1220

HH T =

i=1 ey T T AR Gy %) = 4Tty

3 Subalgebras A(sg, ..., Sp—1)

3.1 Key constructions

In this section, we introduce the key objects of our paper, the commutative subalgebras
of S, analogous to A*™ C $* from Sect. 2.6. The new feature of our setup (in
comparison to the small shuffle algebras) is that we get an (n — 1)-parameter family
of those.

For any 0 < [ < k € Z[J':],S € C* and F € SE,wedeﬁnng €
C(x0,15 -+ Xn—1,ky_y) DY

I . . .
Fg = F(‘i:'xo,l»-~~ss'-x(),l()v-xo,lo-l—l?-~~1x0,k09'-~s

E - Xnel 0y & Xty s XLy 415 - - > Xn—1kyy)-
For any integer numbers a < b, define the degree vector [ := [a; b] € Z[f] by
I=(o,...,l,—1) with ; =#{c € Z|la < c < band ¢ =i (mod n)}.

For such a choice of I, we will denote Fg simply by Fs(a’b).
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Definition 3.1 Foranys = (sg, ..., Sp—1) € ((C*)["],consideraZBf]-graded subspace
A(5) C S whose degree k = (ko, . . ., k,—1) component is defined by

b
A@E) = [F € Spo | 9P F =]]si-0%“PF

i=a

Va,b € Z such that a < b and [a; b] 5%],

where 8¢ F .— limg_, F;“’b), 9Oab)p.— limg ¢ F;a’b) whenever these lim-
its exist, §; := S; mod n-

A certain class of such elements is provided by the following result:

,,,,,

) k k
[icpm Ii<jey<i&ij — a7 %) - Tligpm (o - - si [Ty xij — [Ty Xig1,7)

Hie[n] ngj,j’gk(xiqj = Xit1,j1)

)

Fl'(3) =

where we set xy, j := xq,j as before. If so ...sp—1 = 1, then F,ﬁL(E) e A().

Proof Without loss of generality, we can assume u # 0,a = 0,b = nr +
¢, 0 <r <k-1,0<c¢c<n-—1.Thenly = ... =1, =r+1 and
ley1 = ... = l,—1 = r. As § — o0, the function F,f‘(E)éa’b) grows at the speed
g 2ictn i i1 —li=D+ 2y maxilislivi} \while as & — 0, the function F;‘(E)é”’b) grows at
the speed ézl'e['ﬂ il =D+ 2iep minlli-lie1} For the above values of l;, both powers
of £ are zero and hence both limits 9°%@:?) ,f (5) and 9©:@-D ,f (5) exist. Moreover,
for & being 0 or 0o, we have @40 i (5) = (—1)2icin i Gili=D) g =2 Ziciu lik=li) .
G - [licfn) Ga.i> Where

) -2
Hie[n] ng/;ﬁj/gli (xij —q "xijr) - Hie[n] Hl,—<j7&j’§k(xisj —q77Xij)

G= 1<j/<lit1, lipi<j'sk, ’
Hie[u] ngjsl,- (Xi,j = Xig1,j7) - Hie[nj Hl,<j5k (Xi,j = Xi41,j7)
k k ifl; =1
I S()...S,'szlx,',j—Mszlxi+l,j Wi =lit1
L1+l —21; k :
Goo,i = Hlel— ! e150...8 Hj:l Xi,j ity > 11,
. ’ k .
j=1 —u 1oy xit,j ifl; <liy
CTTR L k L ifl =
« so..Si [[joyxij — ]l xivn; il = lig
—liy 1=l 421 k .
Goi= [ «;" " {=nllic xier ifl; > liyr
P—]. k .
j=li+1 50+ 8i [ L=y Xij ifli <lits

The equality 3D Fl'(5) = [[_ysi - 3 %P F/'(5) follows, while the total

i=

degree of F ,f (3) is zero. O
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3.2 Main result

A collection {sg, ..., s,—1} C C* satisfying s¢...s,—1 = 1 is called generic if and
only if
5ot eql dt s ay=...=ay_.
The main result of this section describes A(so, . .., s,—1) for such generic n-tuples
{50, -+, Sn—1)-
Theorem 3.3 For a generics = (so, ..., Sp—1) satisfying so ...S,—1 = 1, the space

A(5) is shuffle-generated by {F,é‘ )|k € N, u € C}. Moreover, A(5) is a polynomial
algebra in free generators {F,f’ (5)|k € N, 1 <1 < n} for arbitrary pairwise distinct
Ui, ..., un € C. In particular, A(S) is a commutative subalgebra of S.

The proof of this theorem will proceed in several steps. First, we will use an analogue
of the Gordon filtration from [4], further generalized in [14] to prove Theorem 2.13,
in order to obtain the upper bound on dimensions of A(s)z. Next, we will show that
the subalgebra A'(s) C S, shuffle generated by all F, ,f (5), belongs to A(s). We will
use another filtration to argue that the dimension of .A’(s)z is at least as big as the
upper bound for the dimension of LA(5)z, implying A’(s) = A(s). Similar arguments
will also imply the commutativity of A(s).

Lemma 3.4 Consider the polynomial algebra R = C[]},m];’gnl] with deg(T; ) = m.
Then:

(a) Fork =k8:=(k, ..., k), we have dim A@)r < dim Ry.
(b) Fork ¢ {0,8,28, ...}, we have A@E)z =0.

Proof An unordered set L of integer intervals {[a1, b1], ..., [a,, b;]} is called a par-
tition of k € Z!" (denoted by L + k) if k = [a1; b1] + - - - + [ar; b,]. We order the
elements of L sothat by —a; > by —ap > --- > b, —a,. The two sets L and L’ as
above are said to be equivalent if |L| = |L’|, and we can order their elements so that
b} — b; = a;] — a; = nc; for all i and some ¢; € Z. Note that the collection of L - k,
up to the above equivalence, is finite for any k € ZE’_Z]. Finally, we say L’ > L if there
exists s, such that b, — a, > by —agand b, —a, = b, —a, for1 <t <s—1.

Any L + k defines a linear map ¢r : .A(E); — (C[yftl,...,yril] as fol-
lows. Split the variables {x; ;} in r groups, each group corresponding to one of
the intervals in L. Specialize the variables corresponding to the interval [a;, b;] to
(gd)~% - y;, ..., (gd)~? - y, in the natural order. For

S0, 150y Xn—1kyy)

F= 1<j'<ki+1
Hie[n] ng/gki (Xi,j = Xi1,j7)

€ A®)z,

define ¢ (F) as the corresponding specialization of f. The result is independent of
our splitting of variables since f is symmetric. Finally, we define the filtration on

A(5)z by
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A(E)ké = ﬂ Ker (/).

L'>L

Let us now consider the images ¢, (A(§)%) for any L + k. For F € A(E)é, we
have:
o The total degree tot.deg(¢ (F)) = Zie[n] kiki1, since tot.deg(F) = 0.
o For each 1 <t <, the degree of ¢ (F) with respect to y; is bounded by

deg, (¢L(F) < D (U tkio1 +kiy1) —[[1,))

i€n]

due to the existence of the limit §°%4-%) F (here 7= [as; bs] € ZE:’] forl <t <vr).
On the other hand, the wheel conditions for F guarantee that ¢ (F)(y1, ..., yr)
becomes zero under the following specializations:
(i) (qd)_"/yv = (q/d)(gd) " y,forany l <u<v <r, a, <x <by,a, <x' <
by, X =x+1,
(i) (qd) ™'y, = (d/q)(gd) "y, forany | <u <v <7, @, <x <by,a, < x
by, x' =x —1.

' <

Finally, the conditions ¢/ (F) = Oforany L’ > L guarantee that ¢y (F)(y1, ..., yr)
becomes zero under the following specializations:

(i) (gd)™ yy = (qd) 'y, forany 1 <u <v <r ay <x' <by, X' =b,+1,
iv) (gd) ™™ y, = (qd)" %t .y, foranyl <u <v <r, a, <x' <by,, x' =a,—1.

In particular, we see that ¢y (F) is divisible by Q; € Clyy, ..., y,], defined as a
product of the linear terms in y; coming from (i)—(iv) (if some of these coincide, we
still count them with the correct multiplicity). Note that

tot.deg(Qr) = D D WL, + L) =D kikit1 — Z Z L,
1<u<v<rie€[n] i€[n] t=1i€ln

while the degree with respect to each variable y; (1 <t <r) is given by

deg, (Qr) = > (ki1 +kiy1) = 201}, ).

ieln]
. +1 +1 .
Define rp, := ¢ (F)/Qr € Cly;, ...,y | Then:
tot.deg(ry) = Z Z I, and deg,, (r) < Z o, .
t=1i€ln i€[n]

ie[n]l

rr
Hence, rp, = v - [/, yi it for some v € C, so that

.
Zi n ll{llg
¢L(F)=”'HYt clilivl g,

t=1
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On the other hand, applying the above specialization to the entire function F rather
than f, we get ¢ (F)/Q, where Q € C[yy, ..., y,] is given by

x'=x=+1

H el T TT T (@™ v — @~

l=u<v=r a,=x=by ay<x'<by

for some v/ € C*.

The condition F € A(5) implies

F F
lim (M) = Say ... 5p, - lim (¢L( )) Vi<t<r
§—00 Q [yr—>§&-y; §-0 Q [ye—>&-y

Z-dZ

For v # 0, this equality enforces sq, ...sp, € ¢ . Due to our condition on
{si}, we get b, —a; + 1 = nc; forevery 1 <t < r and some ¢; € N. The claim (ii)
of the lemma is now obvious, while part (i) of the lemma follows from the inequality
dim A(5); < > dim¢, (.A(E)%), where the last sum is taken over all equivalence

classes of L + k. O

Lemma 3.5 Let A'(3) be the subalgebra of S generated by {FkM &)k >1,ueC}L
Then A'(s) C A(s).
Proof Tt suffices to show F“f ''''''' “’( ) Flzl(E) Kok F,ﬁ:’(E) e A(s) for any
r, ki > 1, and u; € C*. The case of r = 1 has been already treated in Lemma 3.2.
The arguments for general r are similar. Choose any a < b, such that [a; b] < k4,
where k := kj +- - -+ k,. We can further assume a = 0. Let us consider any summand
from the deﬁnmon of F{""3"" (5) with [ := [a; b] variables being multiplied by &.
We will check that as & tends to oo or 0, both limits exist and differ by the constant
Sq ... Sp.

For a fixed summand as above, define {Zt};:1 € ZK'] satisfying [ = 71 +o T
by considering those variables x; ; which are multiplied by & and get substi-
tuted into F H(5). Following the proof of Lemma 3.2, the function F M (s) g SIOWS

at the speed $Zt€lnll U=l =D+ Ziegmaxtlilin) ag & — 0o and at the speed
Diei (L —l)+Z ymin{if 2

& &ielnl i Vi i€ln] dii) g & — 0. To estimate these powers, we note

that (@ —b)(a —b — 1) > O for any a, b € Z, implying

2 2
b —a—b
min(a,b)+a++ > ab

with equality holding if and only if a — b € {—1, 0, 1}. Therefore,

D i =l =D+ > max{l] ) <0

i€[n] i€[n]

0< D I(=lly +1— D+ > min{lf Il },

ie[n] i€ln]
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with equalities holding if and only if ] — I{, | € {#£1, 0} for any i € [n]. Since the
limits of

wij-x,y), wijx,&-y), w jE-x,&-y) as§& — 0,00exist Vi, j€[n],

the limits of the corresponding summands in the symmetrization are well defined as
either § — 0, co. Moreover, they are both zero if |lf —lfH | > 1forsomei € [n], 1 <
t<r.

Assuming finally that |/! — [ 41l = 1forany ¢, i, the formulas from the proof of
Lemma 3.2 imply that the ratio of the limits as & goes to co and 0 equals to

M (252) = oo =nn

t=1i€ln ie[n]

— Mt

The result follows. O

Lemma 3.6 Forany k € N, we have dim A’ (5)s > dim Ry.

Proof Choose any pairwise distinct p1, ..., u, € C and consider a subspace A" (5)
of A’'(s) spanned by F,f" M)y with r > 0,k) > ko > --- > k, > 0, and
1<ify,...,i, <nlt sufﬁcesto show

dim A" (5)rs > dim Ry.
For a Young diagram A, we introduce the specialization map

o Sias = (C({yl-)j}?fjfl()»))

i€[n]

by specializing the variables x; ; as follows
Xiytotig 14 P> @2 yip forany 1<t <I(A),1<j<A,ie€lnl

It is clear that for any k = (ki, ..., k,) with Diki=k=Al and k > ) (here >
denotes the lexicographic order on Young diagrams and A’ denotes the transposed to

A Young diagram), we have go)L(ka (5)) = O for all x € C". Therefore, it remains to
prove

> dim @E/(span{FEﬁ |z e C'Y > dim Ry.
ktk

Let us first consider the case k| = --- = k, = k = rk;. Then

o (FLG) =2 - HH s [ i - m]'[ym,

t=1ie[n] j=1

for a certain nonzero common factor Z. Define Y; := y; 1 - - - yi k,. Since the polyno-
mials
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LY = [ G0 s =Yg, 1<t<n,

i€[n]

are algebraically independent, we immediately get the required dimension estimate
for this particular k. The general case follows immediately. O

By Lemmas 3.4-3.6, the subspace .A(s) is generated by F,ﬁ‘ (s) and has the pre-
scribed dimensions of each Z[f]-graded component.

Lemma 3.7 The algebra A(s) is commutative. Moreover, foranyix = (i1, ..., ity) €
C" with p; # wj for i # j, there is an isomorphism R—>A(®5) given by
Tix > FL ().

Proof It suffices to prove F,\ (5) x Fyi(5) = Fpi(5) x Fy\ (5) for any my, my € N
and vy, v € C. Define F := Fr‘r;lf,;% ) — Fn‘%‘,ﬁl (5). Due to previous lemmas, F' can
be written as a certain linear combination of FX(5) withk = (k; > kp > ---).

We claim that @5 ymi+m,—2)(F) = 0. Together with the properties of ¢ discussed
above, this equality implies F = > '_, 7, - Fh I +m, (8) for some 7, € C. Let us mul-
tiply both sides of this equality by [ [; ¢, [11<; jr<m;+m, (Xi,j — Xi+1,j) and consider
a specialization x; ; + y; Vi, j. The left-hand side will clearly specialize to 0, while
the right-hand side will specialize to

n

[T =g 2ynemtmmsm=b. %" do . [T 6o sy ™ =y ™)
i€ln

] r=1 i€[n]

This expression vanishes if and only if 7y = --- = 7, = 0, and so F = 0 as required.

Fina@ly, let us prove.the equality ¢ ymj+my—2)(F) = 0. The statement is obvious
when either m or m, is zero. To prove for general m, m, > 0, we can assume by
induction that

v vy o vy o vl
Fy (') F, &)= F, (') F ")

foranym' < my, m5y < ma,v},v) € C,and[]; s/ = 1 (though {s;} are not necessarily
generic).

By straightforward computations, P@.1m 1erzfz)(F,‘,’,'l’,‘,’,%z (5)) = Sym(A;-B1), where
the symmetrization is taken with respect to all permutations of {y;. ﬁ?;ﬁmﬁmz_]
preserving index i, A1 € C({y; ;}) is symmetric, while Bj is given by the following

explicit formula

2 -2
Hie[n] HZgj#j’gml(yi,j -4 yiqj/)‘HiE[n] Hm1<j7éj’<m1+mz(yi~j —q yi,j’)
Hie[n] Hij;éj’gm] (yi,j - yi+l,j’) ' Hie[n] Hm1<j5£j’<m1+m2 (Yi,j - _Yi+1__j’)

x H H H w; ir (Vi j/yir,j’)

i,i’'€[n]2<j<mimy<j'<mi+may

B =
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i€[n]

mi mj
X H <SO~-~Si)’i,l Hyi,j — V1)i+1,1 Hyz'+1,j>
j=2 2
mi+my—1 mi+my—1
<[] (s()~~siyi,1 [T vi—vavien ] ym,_/)

i€[n] j=mi+1 Jj=mi+1
= Sym(B1)

/ /
v < v < .
=K (le|—1(s ) * szz—l(s )) ()’0,2 ----- YO,mi+mo—15 s Yn—1,25 > ynfl,mhtmzfl)

2 2.2
Y0,1 /. . Yol /. Vi . H YiaYn-1.1
E—— = llien) =2

Vi i=v S i=8; -
Y11’ 2 2 Loyisiyien? V2,

L
with v} 1= v ST S

Permuting m| <> my, v <> vy, we get
V2,V oy vy — vy —
(p(2,1m1+m272)(sz,m1 () =«-Ar- sz—l(s ) * le—l(s )) 50,25 -+ Yn—1,m1+ma—1)-

Applying the induction assumption, we find

(0(2,1m1+m2—2)(F) = KAl[Fr:llfl(E/)’ Fnizz—l(fl)] =0.
This proves the inductive step and, hence, completes the proof of the claim. O

The results of Theorem 3.3 follow immediately by combining the above four lem-
mas.

Remark 3.8 The proof of Lemma 3.4 implies A(s) = C for any s9, ..., s,—1 € C*
such that [; slfx" ¢ g% d%unlessag = ... =ay_1 =0.

3.3 Shuffle realization of U"(gl,,)* and UP(gl))*

In [14], the author introduced the notion of the slope filtration on S. For a zero slope,
the corresponding subspace A? C § is Z[f]-graded with the graded component A%
given by

FeAles FeS . and3lim F. VO<I<k.
¥ k.0 S F

While proving Theorem 2.13, the author obtained the following description of A°:
Proposition 3.9 [14, Lemma 4.4]
(a) The isomorphism Y : Ut — S identifies U"(gl,)™ with A°.
(b) Under the isomorphism W" : Uh(g[n)+—N>A0fr0m (a), the image Xy := \IJh(hE)

of the kth generator h}(‘ € Uh(gll)Jr - l']h(g[n)+ is uniquely (up to a constant)
characterized by

Xi € Spp0 and lim (Xp)k =0 VO <7 < ks.
E—o00
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_ This proposition provides a shuffle characterization of both UP(gl,)* and
U"(gl;)T. In particular, we immediately obtain the following result:

Theorem 3.10 We have W~ !(AG)) < UM (gl,)" for generic {s;} such that
S0...851—-1 = 1.

Proof By Theorem 3.3 and Proposition 3.9(a), it suffices to show that F, ,f (5) € A°. The
latter is equivalent to the existence of limits limg_, oo (F, k” (E))g forall0 <1 < k3. As
& — oo, the function (F,f (E))g grows at the speed Szl'e[ﬂl i iy =it D)= 2 g min{lifig 1}
(see the proof of Lemma 3.2). Since Zie[n] Liipi =L+ 1D => ] min{l;, liy1} =

o R . . .
Zie[n](lili+1 — % —min{/;, /;;+1}) and each summand is nonpositive (see
the proof of Lemma 3.5), the aforementioned power of £ is nonpositive as well. Hence,

i€ln

the limit slim (F ,f (E))lS does exist. This completes the proof. O
— 00

We complete this section by providing explicit formulas for the elements X; =
\Ilh(hf(‘) € S (this answers one of the questions raised in [14, Section 5.6]). Consider
the elements

—1 k
[icpn Mhi<jzj<i@ xij —axi ) - [iep [=1 %1,
[Tiem ngj,j’sk(xiﬂ,j’ = Xij)

Fo:=1, F := €8ks,0 fork>0.

k*l)nk

Note that F = ,1(71‘{1— . F,?(E) € A(5) for any {s;} such that [| si = 1.
ST Sp—1

ie[n]

We also define Ly € Sis,0 via

o0 o0
exp (Z thk) = Z Fkl‘k.
k=1 k=0

The relevant properties of these elements are formulated in our next theorem:

Theorem 3.11 (a) Forl ¢ {0,8,25, ..., k8}, we have lim_. oo (FO)L = 0.
(b) Forany 0 <1 <k, we have limg_mo(Fk)? = F;- Fr_y.
(c) Forany 0 <1 < k8, we have limg_, oo (Li)% = 0.

Proof (a) Forany 0 <[ < k8, the function (Fk)lg grows at the speed Ezt'd"l L=t
as & — 00. Note that Zie[n] Lilliq1—10) = —% Zie[,,](li —1;+1)? < 0. Moreover,
the equality holds if and only if lo = ... = [,_1 < [ € {0,8,26,...}. Part (a)
follows.

(b) Straightforward.

(c) Standard (it is actually equivalent to the general exponential relation between
group-like elements and primitive elements; see [14, Section 4.3] for the related
coproduct). O

Corollary 3.12 Combining this result with Proposition 3.9(b), we see that L and Xy
coincide up to a nonzero constant, and the isomorphism W" identifies UM (gl,)T with
ClF, F»,...]
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4 Bethe algebra realization of A(5)

We provide an alternative viewpoint on the subspaces A(s) for generic {s;}

with []; s; = 1. Some of the results from this section (the computation of
i€[n] p
qb;‘,’g, F,“,’ZE, X Z’E) are not essential for the rest of this paper, but will be used in the

forthcoming publications in order to formulate Bethe ansatz for l']'q,d (sl,) as well as
establish connections with the results of [5].

4.1 Vertex representations p,,

Recall the algebra U,; 4(8ln) introduced in Theorem 2.7(c). We start by recalling

the construction of vertex U,; 4(8l)-representations from [15], which generalize the
classical Frenkel-Jing construction. Let S,, be the generalized Heisenberg algebra
generated by {H; x|i € [n], k € Z\{0}} and a central element Hy with the defining
relations

lklq - [kai,jlq S

[Hi, Hjgl=d " -

- Hy.

Let S be the Lie subalgebra generated by {H,',k}k>O U {Hp}, and let Cvg be the

i€[n]
S;"-representation with H; j acting trivially and Hy acting via the identity operator.

n

The induced representation F, := Ind;(Cvo is called the Fock representation of S,,.

n

We denote by {a; };’;11 the simple roots of sl,,, by {A; };:1] the fundamental weights
of sl,,, by {i_li};‘;f the simple coroots of sl,,. Let Q = EB,’-’;] Za; be the root lattice
of sl,, P := @;’;11 ZA; = @:’;21 7a; ® 7Z.A,_; be the weight lattice of sl,,. We also
set

Let C{P} be the C-algebra generated by %2, ..., %1, eMn-1 with the defining
relations:

e . % = (_1)(fli,6t_i>e&j ce%i % Cen—1 — (—1)8"<”—1e/_\”—1 i
Fora = 32 m;& + myA,_i, we define ¢ € C{P} via
e = (6&2)’"2 S (e&n—l)mn—l (el_\n_l)m,,.

Let C{Q} be the subalgebra of C{P} generated by {e% };1;11.
For every 0 < p < n — 1, define the space

W(p)n 1= F, ® C{Q}e™r.
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Consider the operators H; ;, e, 0g; » ZHio g actingon W (p),, which assign to every
element

Z n—1 — A
v®@el = (Hi, 4, Hiy.—kyv0) ® eXi=1 MUY € W (p),
the following values:
Hi(v® eP) = (Hy v) ® P,
ea‘(v ® eﬂ) =R e&eﬂ,
05, (v @ ef) == (h;. Blv ® €’
o ey = i B) gd X him @m0 P,
dw@eh) == (D ki + (B~ Ap. Ap)2) veel,

The following result provides a natural structure of an U; 4(8ln)-module on W (p),,.

Proposition 4.1 [15, Proposition 3.2.2] For any ¢ = (co,....,cn-1) € (CH™ and
0 < p < n—1, thefollowing formulas define an action Oqu,d (sly) on W(p), (which
does not depend on c):

qik/z k
pp.e(ei(z)) = ci-exp| > WHi,—kZ
q

k>0

—k/2
ex _ZCI / H: 7k ). % Hio+]
p [k] l,kz < ’
k>0

k/2
- q
ppa(fi@) = ¢ - exp (— > @Hi,_kz")

k>0

k/2 i
'GXP( _qk Hi,kzk)~e°"'z wotl,
k>0 [ ]q

ppe(UE () = exp (:':(q —q7h Z Hi,:thij) - gt

k>0
ppe(yEV) = g2 p, (g = ¢F4.

: 0 i u,t 7 <
4.2 Functionals (bp’é, ¢p,5’ ¢p’5 onU

In this subsection, we introduce and “explicitly compute” three functionals on U =
e Top matrix coefficient.

Consider the functional

¢ 1 U= — C defined by ¢5 ;(A) = (v ® e"7|pp,c(A)|vg ® e™7).
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Since /;,j (v ® eAp) = 0 for j > 0, it remains to compute the values of qbg :
evaluated at

'n— 1/2 di\b
Sivoji finjo o ﬁm]mw(goo T 1ﬁn—ll,o “(y / )
witha,b € Z,7 := (rg, ..., rn—1) € Zn] andzgnzl a;, =0¢€ Q.Thelattercondition
means that the multiset {i1, ..., i,} contains an equal number of each of the indices

{0, ..., n — 1}. Due to the defining quadratic relation (T3) of U;’d(s[n), it suffices to
compute the series

0
®p.e:N7a,p (2015 - -5 Zn—1,N)

N
= ¢>2,5 H(fO(ZO‘j) o fam1@a—1,) H Ui y/2gbh
j=1 ieln]
In this expression, we order the z-variables as follows:

20,15 ++-52n—1,1,20,25 -+ +>Zn—1,25 -+ -5 20,N> -+ +5>Zn—1,N-

Normally ordering the product H?]:l (fo(zo,j) -+ - fu—1(zn=1,;)), we get the fol-
lowing result:

Proposition 4.2 Forn > 3, we have:

Nn-2)

0 —N a/2+r,—ry ;Y02 20,
D) N Fap @01 2t N) = (0. cu) NPT Tg T ]

=

j=1 Zp,j

2 N
[Ticin H15,1<‘/’5N(Zi,j —2i,j) i — 472 ) - [liemm H/:l i, j
Hie[n] Hlfjfj’fN(lej —qdzit,j) - Hie[n] H1§j<j'§N(Zi,j —qd~'zi_1j)

e Top level graded trace.

Recall the operator d acting diagonally in the natural basis of W (p), . Clearly all its
eigenvalues are in —Z,.. Let M (p), := Ker(d) C W(p), be its kernel. The following
is obvious:

Lemma 4.3 (a) The subspace M (p), is Uy (sln)—in_variant and is isomorphic to the
irreducible highest weight U, (sl,)-module Ly (A p). -
(b) Foranyo = {1l <01 <02 <--- <0p < n},let A‘; be the sl,-weight having

entries 1 — % at the places {al-}f’:1 and —% elsewhere. Then {vo ® e[vf}’}& form a
basis of M(p)p.-

Define the degree operators dy, ..., d,— acting on W(p), by

n—1__ - | % n=1_ - A
d, (v ®ezj':1mj"‘/+Ap) =—mr -V Q® eZ]:lmJaj+Al7 YveF,.
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Forany it = (uy, ..., un,—1) € (C*)*~!, consider the functional

Ph U'S — C defined by
¢y 2(A) == Z<vo ® ™7 | pp.c(Auft -

o

d
n— l|v0®e p>

computing the Q-graded trace of the A-action on the subspace M (p), (here u?’ makes

sense as d; acts with integer eigenvalues). Since h; j(vo ® eA(IT') = 0forj > 0, it
suffices to compute the generating series

¢Z,5;N,;,a,b(zo,1 yeees Zn—1,N)

N
=l | [[oGop) farGar) - [] it - v/ *q™

j=1 i€ln]

Normally ordering the product H _1(f0(z0,) - - fu—1(zu—1,;)), we get the fol-
lowing result:

Proposition 4.4 Forn > 3, we have:

P _N 2 N((n-2)
Dy N 7ab@01s - Znm1,N) = (Co...Cno1) q“*d 2

Hie[n] H1§j</"§N(Zi»j —2ij)(zij — ‘12Zi,j’)
X ' -]
Hie[n] Hlsjsj’gN(Zi»j —qdziyj) - Hie[n] H15j<j’5N(Zi,j —qd=zi—1,j)

14 N N
1 N
<[] = T Tz — g™ [ L2 ) £
. 1. Uj— !
Jj=1 Jj=1

ieln] \ j=1

where [uP]{- - - } denotes the coefficient of u? in {-- - }.
e Full graded trace.

Finally, we introduce the most general functional
it U'= — CII1 defined by ¢y (A) = trwqp, (0p.c(Auf .y 179,

computing the Q x Z -graded trace of the A-action on the representation W(p),.
Due to the quadratic relations and the Q-grading, it suffices to compute the following
generating series:

it )
¢p e N ErapZ0Ls s T NS WO, L5+ o WOkgs -+ - » Wn— 1,15+ -+ » Wi k)

N
= ¢f’it5 H(.fO(ZO,J‘)  Jn—1(zn— l])) H H]/f+(wlj) H er . a/2 bd,

j=1 i€[n] j=1 ie[n]
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In what follows, (z; 1) is defined by (z; t)eo = Hzozo(l —t92).

Theorem 4.5 Forn > 3, we have:

it ] _ N a/2 No-2)
D e N ErapG0Ls s D= LNTWO Lo Wit k) = (€O Cnm1) ™ d- 7

®

()

2 N
Hie[n] H1§j<j'51v(zi,j —2i,j)(Zij — 47z j) - Hie[n] Hj:l i, j
x q
Hie[n] ngjgj’gN(Zi,j - qdzi+1~,j’) : Hie[n] H1§Ai<j’§N (Zi,j —qd Zi—l,j’)
N
xqr - [ 2L 662 Q)
Zp.j

j=1

H IE[ (T 241 Moo - (T4* 224 T)oo
(T T)n (quZr+la.T)oo (qu lzz lu.T)oo

2.,
N ki (q Zza.T)OO (Tq—ld’] Zr+1u.T) (Tq—ld—lq wZ’»ltb—l,u;T)oo

< [TT111 ’

172 1/2 22 14
iemtamt b=t (Tq 2024 T)og - (Tqd =154 T o - (Tqd =1 =700 T

’

where T = Lb and 0(y, Q) = ZﬁeZ” 1 exp2r/—1 (%ﬁQn +ny")) is the classical
Riemann thetafunctlon with Q = o F (i, ln(T))” ! _,and

N
u! Tap,iqb’i—ri—l T4l H Zi—1,jLi+l,j
14 Z2

Y=, ..., yp—1) Withy, = ———1n
y=1(© Yn—1) Vi P 1 3

We start with the following two auxiliary results:

a7 kmi [k, kai ;14 )]E[n]

Lemma 4.6 The matrix ( Z is nondegenerate if and only if

i€[n]

q2k’ qkd:tk ;é 1.

_Therefore if g%,dq,d'q are not roots of unity, we can choose a new basis
{Hi,—k}ien) of the space spanc{Ho,—k, ..., Hy—1,—k}, such that [Hj, Hj 1] =
8i, ik, Ho foranyi, j € [n], k,1 € N.In particular, the elements {H; , H, ks Ho}k>0
form a Heisenberg Lie algebra b; for any i € [n], and h; commutes with b; for any

i #jeln]
Lemma 4.7 Let a be a Heisenberg Lie algebra with the basis {ay}rc7, and the com-

mutator relation [ak, a;] = &k —jikag. Consider the Fock a-representation F :=
Ind&@vo with the central charge ay = 1 and the degree operator d € End(F)

satisfying [d, ar] = kay and d(vo) = 0. Then:

ad ad 1 ad xXjyirits
trp 7 exp Zx]-a,j - exp Zyjaj = T Dm - exp Z% Vxj,y;eC.
j=1 j=1 ' j=1
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Proof Applying the formula (a- v0|a ak|a vo) =1 = 1)--- (I —k + DAk, we

get
o0 o
trp 1 exp ija,j exp nyaf e
j=1 j=1
) ki
(GY)D)Y ki ki g
= 2 w1 =adia)
ki.k2,..>0 j=1 ]
k.
00 00 K
= Z Z (XJV/)’, Ljt-4; il
12 P
j=1 | k;j=01;=k; (k;h) Uj = k!
—ﬁ i(xfyjkjﬂ)kf 1
- ] T _ kit
picll P k! (1 —1¢7)t
The result follows. O

Proof of Theorem 4.5 Reordering the factors of

N
[[foGop faiGar - [ ] Hw wi ) |1 it

j=1 ie[n] j=1 i€[n]

in the normal order, we gain the product of factors from the first two lines of (¢). The
O x Z4-graded trace of the normally ordered product splits as try - trp, where

n—1
d: b d(2)
ry = e 5,80 Ziem 1% H H % 'H”il (t/q7) )
i=1

ie[n] j=1
1 2 (€))
y = e, (exp | D0 wiscHik | exp | DD 0 + v Hix | - 1/q")
i€[n] k>0 i€[n] k>0
with
n._ g @ c
N ( —k N -1 —k
Uik -= k Zz”, Vik "= Tk Zzi,j’ v = —ah 2w
[k]q kg = P=

and the operators d® € End(F,),d?® ¢ End((C{Q}e[\P) defined by

d(l)(Hil,—kl . klUO) Zk Hl] —ky * ,—k; V0,

d@(efy = (,3,,3) _2(A"’A”) ceP,
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The computation of try is straightforward, and we get exactly the expression
from the third line of (¢). To evaluate trp, we rewrite Zie[n] DisoUikHi—x =
D icin] 2k>0 Uik Hi—x with H; i defined right after Lemma 4.6 and u;x =

_ klqlka; ;1 .. . .
Diem @ kmii’%uigk. The commutativity of h; and h; for i # j allows

us to rewrite trp as a product of the corresponding traces over the h;-Fock modules.
Applying Lemma 4.7, we see (after routine computations) that tro is equal to the
product of the factors from the last two lines in (¢). O

4.3 Functionals via pairing

Recall the Hopf algebra pairing ¢ : U'Z "z x U's - C from Theorem 2.7. As @' is
nondegenerate, there exist unique elements X0 P ;’ €U 2 and X;tg e U=t
such that

Bp.e(X) = ¢/(X) 2. X). 8 (0 =¢/ (X} 2. X, 6600 = ¢/ (XL XV X € U=

The goal of this section is to find these elements explicitly.
We will actually compute these elements in the shuffle presentation. In order to do
this, we first extend the isomorphism W from Theorem 2.13 to the isomorphism

./

W= U= 57,

+1/2  +d
y / 1

Here S is generated by S and the formal generators ; ¢ (k < 0), xpl.iol . q

with the defining relations compatible with those for {/ 'z In particular, for F' € S ,
we have

g Fqgh =4~ . F.

We define Fg & FZ & 1" as the images opr & X;‘, & Xp - under the isomorphism

W=, respectively. Now We are ready to state the main result of this section:

Theorem 4.8 We have the following formulas:

(a) FO = > Nolco.. cene) NV Fg;N -q™r g~ with FS;N € Sys given by

N
_ _ X0,
= (] — 2nN_ndn/2N2. »J
.y =( "N (—q ) _prj
j=r-"

) N
o Hie[n] Hj;éj/(xiyj —q X j) Hie[n] Hj:] Xij
Hie[n] Hj,j’(xi,j = Xit1,j1)
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(b) 1"1”;’5 =2 n=o(co- o) N FZ;N g~ with FI’;];N € Sf,a given by

T
N = =(1—gq —2)nN( q"d~ n/2)N H 1 ) Hie[n] Hj;ﬁj’(xl,j q xz,J/)
T je MLt [icpn I, jr iy —xig1,5)
N N - B
x(=1)P[uP] H Hxl"’_l’j —puy ... u; H Xij -in“_Ai R
i€ln] \j=1 j=1

where in the last product we take all x; j to the left and all q[\”rl ~Ai 1o the right.
(©) F;i- = > n=0(c0- )N F;IN g™ g~ with F;IN € Sf,a given by

Ity = (1= g7 (—g"a ")
2 N N
y Hie[n] Hj;ﬁj’(xiaj —q X ) Hie[n] Hj:l Yo H X0,/ 0. D)
Hie[n] Hj,j’(xi»j = Xit1,j) ’

j=1 Xp.j
xl Xia

T H i Doo - (197745 Doo
TS r)n (tqd*'““;‘)oo-(rqd lﬁ;r‘)m

ze[n]ab 1

<[111 Hw (#*q'xi.0).

k>0ieg[n] a=1

where T = ty, Q= o r -(aj, ln(t))l j=1» and

N

- ) 1 =5, Xi—1,jXi+1,j

X =(x1,...,Xp—1) Withx; = ———1n u,lt‘sl”’wiol |#
2 1 ! ’ 2
TN~ =1 Yij

In the above products, we take all x; ; to the left and all ; ; to the right.

The proof of this theorem follows by combining Proposition 4.2, Proposition 4.4
and Theorem 4.5 with the following technical lemma:

Lemma 4.9 (a) For any elementsa € Ut,a' e UZNU° b e U, b € USNU",
we have

p(ad’, bb") = ¢(a,b) - p(d’, b').
(b) Foranyk;, k; € Zy and A, B,C, A’, B',C', a;, b; € Z, we have
K
J

ki ’
- . - a. / ’ /
[T I1v7 o [T vior*2a®ha 2 TT T1 o7 @win) [T vor™/2a® 1qc

ie[n]a=1 i€(n] jeln]b=1 jelnl]
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’
1 47 1 ’ ’ ’ / Jjeln] ki kj Wi — ”i,jdmi,j .
_ q—jA B—5AB'+C Zai+CZui+zi‘_/ ajda;j 1—[ j.b —4 Zia

—4ij gMi,j Zia .

ieln] a=1b=1 Wij.b =4

(c) Forr = (ro,...,mn—1),5 = (S0, .., Sn—1) € Z[f] and elements X € U, Y €
U~ of the form

n—1-+--€

n—1,a] L

-1
Y = fOb?"‘fo,b? "'fn—l i1 "'fn—lb”—l ,
’ 0 (| Usp—1

X:eo,a?'”eo,a?o”'e n— la"

the pairing (X, Y) is expressed by an integral formula similar to [14, Proposi-
tion 3.10]:

o(X,Y) =675

n—1
s

b
(@—qH Z’m1 wls WO U1, )

d
% 111 LY
H,’ Hj<j’ wi,i(ui,j/ul._/ ) 'Hi<i/ Hj,j’ wi,i’(ui,j/”i’,j’) ; o 271/\/—114,‘,]'

ien] j=1

4.4 Bethe incarnation of A(s)

Recalling the notion of a transfer matrix from Sect. 2.5, it is easy to see that

i,
Xp,

o™
1
>3
<
~—
<
|
g
:\
>1
3
\
S
—
<
<~
>1
<
>
=

which provides a more elegant definition of X - Moreover, the elements X i 5 can

be thought of as certain truncations of X" » E obtalned by setting t — 0, Wh11e X by
are obtained by setting further uyq, ..., u,—1 — 0.
The commutativity of the Bethe subalgebras implies the commutativity of

{F” “|p, €} and hence of {1" }(l)vjpl <n_1- As a result, we get the commutativity of

the families {FO N}0<p<n | and {F’;;;N}SVSZPISW]. Due to Theorem 4.8(b), the ele-

ments Fl“;, N have the same form as the generators of the subalgebra A(so, . .., S,—1)

from Sect. 3 with s5; € C* - e? given by

si = u; - NPT foralli e [n], where ug = 1/(uy ... up—1).
Since " (h € P) commute with @ Sks, we see that those {s; } can be treated as formal
parameters with so ...s,—1 = 1 and {s;} being generic for any choice of {u;}.

Finally, let us notice that while Uq d4(sl,) contained the horizontal copy of U, (g[ ),
the algebra U 7. 4(8ly) contains a horizontal copy of U, (Lgl,) (that is no qid2 and with
trivial central charge ¢ = 0). The subspace M (p), is U, (Lgl,)-invariant and is just
the pth fundamental representation. By standard results, U, (Lg[,,) admits a double
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construction similar to the one for U; 4(8l). Combining all the previous discussions

with the construction of the universal R-matrices for U; 4(sly) and Uy (Lgl,), we get
the following result:

Theorem 4.10 The Bethe subalgebra of U, (Lgl,), corresponding to the group-like

_ A, . . .
element x = u, A N 7 " and the category ofﬁi_ute:dlmenszonal U,(Lgl,)-
Aip1=20i+Ai— }i

representations, can be identified with A({u; - q cn]), Where ug :=

1/(Lt1 .. .M,,_l).

Remark 4.11 (a) The commutativity of {Fg, N}(I)V Szpl <n—1 implies that the family

N>1

N

_ N
H X0,/ Hie[n] Hj;ej/(xi,j -9 2xi,j’) ‘ Hie[n] Hj:l i, j

1Y [icpn I, Gy = xign, )
j=1 p,J ien] 11j,j J ! J 0<p<n—1

of elements from § is commutative. It is easy to see that the subalgebra they
generate is the limit algebra of A(sg, $1,...,8:-1) as 81, ...,5,—1 — 0, 5o =
1/(s1...sn—1), and {s;} stay generic. }

(b) The commutative algebras generated by {F]“)’;IN}S/ Epl <n_1 can be viewed as one-
parameter deformations of the algebras A(s). They play a crucial role in the Bethe
ansatz for Uq,d(s[n).

5 Generalizationston =1and n = 2

It turns out that all the previous results of this paper can be actually generalized to
the n = 1,2 cases. The goal of this last section is to explain the required slight
modifications.

5.1 n =1 case

The quantum toroidal algebra Uq,d(g[l) has been extensively studied in the last few
years. Roughly speaking, one just needs to modify the quadratic relations from Sect. 2.1
by replacing

(g1t — 1) (g2t — D(g3t — 1)
t—q)t —q)(t —q3)

8ay, (1) ~ . where g1 :==¢*, q2:=q 'd, g3:=q"'d"",

and by replacing the Serre relations (T7.1, T7.2) by

Sym 22 [e(z1). [e(z2). e(z3)]] = 0,

21,22,23 <3
22

Sym — -[f(z1), [f(z2), f(z3)]] = 0.

21,22,23 <3
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Analogously to the n > 3 case, the map ¢; x' extends to the isomorphism
Uy.a(gly)t—>5m.

The results of Sect. 3 recover the same commutative algebra 4™ we started from.
On the other hand, we can apply the constructions of Sect. 4 to the Fock U; 2@l
representations { F,}.cc+ (see [4, Proposition A.6]). As a result, we will get:

o The elements I‘g (corresponding to the top matrix coefficient functional ¢2) are
given by

o0

re=> e Mg "V Ky g
N=0

o The elements I'?. (corresponding to the full graded trace functional ¢') are given by

~N_~N(N-1) % D)oo

T S e | B
c= - = N - 1x(,
N—=0 (; Doo ab= l(tqd X I (tqub oo

N
<[TI]¥ @q"*xa) - a7
k>0a=1

5.2 n = 2 case

For n = 2, we need first to redefine both the quantum toroidal and the shuffle algebras.
o Quantum toroidal algebra of sl;.

One needs to slightly modify the defining relations (T0.1-T7.2) of Uq,d(slz)
(see [2]). The function 8a; (z) from the relations (T1, T2, T3, T5, T6) should be
changed as follows:

o (e LT Wi i)
ai,i z _qz ’ aji+1 (QZ _d)(qz —dﬁl)’

while the cubic Serre relations (T7.1, T7.2) should be replaced with quartic Serre
relations

Sym [e;(z1), [ei(22), [€i(23), eit1(w)] 21,2 = 0,

21,2223

Sym [fi(z1), [fi(z2), [fi(z3), fir1(w)]p21l;—2 = 0.

21,22,23

o Big shuffle algebra of type A(ll).
One needs to modify the matrix €2 used to define the x product as follows:

=g ()_(z—qd)(z—qd‘l)
0 e E T e

w;,i(2) =
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o Vertex representations pp ¢.
Finally, we need to slightly modify the formulas of p, ¢ from Proposition 4.1:

(i) We redefine the commutator relations of the Heisenberg algebra S,, as follows:

(kg - [2k]
%5](’_1 - Ho,

k], - [k
[Hik, Hiy1] = —(d* + d*)%sh_z ~

[Hik, Higl =
Hy.
(ii) We also redefine the operator z/%-0 via

ZHi.O(v ® eﬁ) — Z(ﬁi,f})v ® eE.

Once the above modifications are made, all the results from Sects. 3 and 4 still hold.
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