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Abstract. In this note, we construct dual PBW bases of the positive and negative subalgebras of the two-
parameter quantum groups Ur,s(g) in classical types, as used in [MT]. Following the ideas of Leclerc [L] and

Clark-Hill-Wang [CHW], we introduce the two-parameter shuffle algebra and relate it to the subalgebras
above. We then use the combinatorics of dominant Lyndon words to establish the main results.
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1. Introduction

1.1. Summary.
Let g be a simple finite-dimensional Lie algebra. Corresponding to any polarization Φ = Φ+ ⊔ (−Φ+) of

the root system of g, there is a root space decomposition

(1.1) g = n− ⊕ h⊕ n+ with n± = ⊕α∈Φ+C · e±α.
1
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The elements e±α are called root vectors. This induces a decomposition U(g) = U(n−) ⊗ U(h) ⊗ U(n+),
and the ordered products in {e±α}α∈Φ+ form a basis of U(n±) for any total order on Φ+. In fact, the root
vectors can be normalized so that

[eα, eβ ] = eαeβ − eβeα ∈ (Z \ {0}) · eα+β for all α, β ∈ Φ+ such that α+ β ∈ Φ+.

For each such g, Drinfeld and Jimbo simultaneously defined the quantum group Uq(g), which is a quan-
tization of the universal enveloping algebra of g. As with U(g), the quantum groups possess a triangular
decomposition Uq(g) = Uq(n

−)⊗ Uq(h)⊗ Uq(n
+). Furthermore, Uq(n

±) admit PBW-type bases

Uq(n
±) =

⊕
γ1≥···≥γk∈Φ+

C(q) · e±γ1
. . . e±γk

formed by the ordered products of q-deformed root vectors e±α ∈ Uq(n
±). The latter are defined via Lusztig’s

braid group action, which requires one to choose a reduced decomposition of the longest element w0 in the
Weyl group of g, and the order ≥ on Φ+ used above is induced by this reduced decomposition.

However, there is also a purely combinatorial approach to the construction of PBW-type bases of Uq(n
±)

that goes back to the works of Kharchev, Leclerc, and Rosso. To this end, recall Lalonde-Ram’s bijection [LR]:

(1.2) ℓ : Φ+ ∼−→
{
standard Lyndon words in I

}
.

Here, the notion of standard Lyndon words intrinsically depends on a fixed total order of the indexing set I
of simple roots of g. Furthermore, this bijection ℓ gives rise to a total order on Φ+ via:

α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically.

It was shown in [L, Proposition 26] that this order is convex and thus corresponds to a reduced decomposition
of w0, which allows one to define e±α as iterated q-commutators, eliminating Lusztig’s braid group action.

Although theory of multiparameter quantum groups goes back to the early 1990s (see e.g. [AST, Re, T]),
much of the current interest in the subject stems from the papers [BW1, BW2, BW3], which study the two-
parameter quantum group Ur,s(gln) and subsequently give an application to pointed finite-dimensional Hopf
algebras. In [BW2], they developed the theory of finite-dimensional representations in a complete analogy
with the one-parameter case, computed the two-parameter R-matrix for the first fundamental Ur,s(gln)-
representation, and used it to establish the Schur-Weyl duality between Ur,s(gln) and a two-parameter
Hecke algebra. These works of Benkart and Witherspoon stimulated an increased interest in the theory of
two-parameter quantum groups. In particular, the definitions of Ur,s(g) for other classical simple Lie algebras
g were first given in [BGH1, BGH2], where basic results on the structure and representation theory of Ur,s(g)
were also established. Subsequently, these algebras have been treated case-by-case in multiple papers. For a
more uniform treatment and complete references, we refer the reader to [HP].

In the companion paper [MT], we evaluated the finite and affine R-matrices for two-parameter quantum
groups of classical types, associated with the first fundamental representation and the corresponding evalua-
tion modules. We further presented a factorization of the finite R-matrices into “local factors”, parametrized
by the set Φ+. The latter relied on the construction of dual PBW-type bases of the positive and negative
subalgebras, which was announced in [MT, Theorem 5.12] without a proof. The main objective of the present
note is to provide a proof of this result. Due to the absence of Lusztig’s braid group action on Ur,s(g) (noted
first in [BGH1]), we use the aforementioned combinatorial construction of orthogonal dual bases of the pos-
itive and the negative subalgebras of Ur,s(g) through dominant1 Lyndon words, which goes back to [L, Ro]
in the one-parameter setup, to [CHW] in the super case, and to [BKL] in the two-parameter A-type case.

The main results of our paper are Theorem 7.1 and Theorem 7.2, which provide PBW-type bases of the
positive subalgebra U+

r,s(g) and the negative subalgebra U−r,s(g), show that they are orthogonal with respect
to the Hopf pairing (·, ·)H , and evaluate explicitly all the nonzero pairing constants. The latter is actually
the hardest part, and it does play the key role in our factorization of R in [MT]. In particular, while the
construction of such bases for type A was already presented (through a slightly different, but equivalent,
perspective of Gröbner bases) in [BKL], the results on their pairing already seem to be new in A-type.

Let us briefly outline the strategy of our proof. First, we translate the problem solely into the construction
of dual bases of U+

r,s(g), endowed with a twisted coproduct and a twisted product on its tensor powers, with
respect to a different symmetric form (·, ·). We then introduce a two-parameter shuffle algebra F and embed

1We use the terminology of [CHW]; they are also called good in [L], and coincide with standard from [LR].
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U+
r,s(g) into F . Interpreting the coproduct and the pairing on the shuffle side allows us to construct dual

bases. The explicit computation of the nonzero pairing constants for a special order of simple roots is then
accomplished by brute force. Finally, pulling back these results to the original setup yields Theorems 7.1-7.2.

1.2. Outline.
The structure of the present paper is as follows:

• In Section 2, we recall two-parametric quantum groups Ur,s(g) for simple finite-dimensional Lie algebras g,
see Definition 2.1, as well as the Hopf pairing for those, see Proposition 2.2. We also construct the
analogues of the Cartan involution and the bar involution, see Proposition 2.6. Finally, we compute the
graded dimensions and establish the non-degeneracy of the Hopf pairing, see Propositions 2.8 and 2.11.
• In Section 3, we study several other pairings and ultimately relate them to the Hopf pairing of Proposi-
tion 2.2, see Theorem 3.17. This is needed to replace the Hopf subalgebra U≥r,s(g) with U

+
r,s(g) (eliminating

Cartan elements) at the cost of changing the product structure on the tensor powers, and also modifying
the coproduct and the pairing. The latter is essential for the combinatorial constructions in Sections 4–6.
• In Section 4, we introduce the two-parameter shuffle algebra (F , ∗) and relate it to the positive subalgebra
U+
r,s(g), see (4.1)–(4.3) and Propositions 4.4, 4.6, 4.7. We also provide a shuffle interpretation of the bar

involution and twisted coproduct, see Proposition 4.8, Corollary 4.9, and Proposition 4.10.
• In Section 5, following [CHW, Sections 4-5] (which in turn is largely based on [L]), we recall the notions of
dominant and Lyndon words as well as introduce the bracketing of words. We use the latter to introduce

the Lyndon basis {Rw}w∈W+ and its closely related versions {R̃w}w∈W+ , {R̄w}w∈W+ , all parametrized
by the set W+ of dominant words. Our main result is Theorem 5.19, which establishes the orthogonality
of the last two bases and expresses all nonzero pairings through the pairings {(Rℓ, R̄ℓ)}ℓ∈L+ , parametrized
by the set L+ of dominant Lyndon words (which is in bijection (1.2) with the set Φ+ of positive roots).
• In Section 6, we explicitly compute Rℓ (which are shuffle incarnations of the quantum root vectors in
U+
r,s(g)) and the corresponding pairing (Rℓ, R̄ℓ) for each dominant Lyndon word ℓ ∈ L+, for the special

order 1 < · · · < n on the alphabet I = {1, . . . , n}. We treat each type separately, similarly to [CHW, §6].
• In Section 7, we combine Theorem 3.17, Theorem 5.19, and the explicit calculations of Section 6 to
prove the main results of this paper: Theorems 7.1 and 7.2. This establishes PBW-type bases of U+

r,s(g)

and U−r,s(g) dual with respect to the Hopf pairing of Proposition 2.2, which was announced in our earlier
work [MT, Theorem 5.12] without a proof, and used there to factorize the corresponding finite R-matrices.
• In Appendix A, we evaluate (Rℓ, R̄ℓ) for any order on the alphabet I given that the first letter of ℓ occurs
exactly once, see Theorem A.9, which is crucially based on an interesting combinatorial Lemma A.5.

1.3. Acknowledgement.
This note represents a part of the year-long REU project at Purdue University; we are grateful to Purdue

University for support. A.T. is deeply indebted to Andrei Neguţ for numerous stimulating discussions over
the years and sharing the beautiful combinatorial features of quantum groups, to Sarah Witherspoon for a
correspondence on two-parameter quantum groups, and to Weiqing Wang for a correspondence on [CHW].

The work of both authors was partially supported by an NSF Grant DMS-2302661.

2. Notations and Definitions

In this Section, we recall the notion of two-parametric quantum groups Ur,s(g) for simple finite-dimensional
Lie algebras g, the Hopf algebra structure and the Hopf pairing on those, and finally construct several
important (anti)automorpshims. We refer the interested reader to [MT, §1.1, §2] for a full list of references.

2.1. Two-parameter quantum groups.
Let E be a Euclidean space with a positive-definite symmetric bilinear form (·, ·). Let Φ ⊂ E be an

irreducible reduced root system with an ordered set of simple roots Π = {α1, . . . , αn}, and let g be the
corresponding complex simple Lie algebra. We set n± =

⊕
α∈Φ+ g±α, where gα denotes the root space of

g corresponding to α ∈ Φ, and Φ+ denotes the set of positive roots of Φ, see (1.1). Let C = (aij)
n
i,j=1 be

the Cartan matrix of g, with entries given explicitly by aij =
2(αi,αj)
(αi,αi)

, and set di =
1
2 (αi, αi), where (·, ·) is

normalized so that the short roots have square length 2. The root and weight lattices of g will be denoted
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by Q and P , respectively:
n⊕

i=1

Zαi = Q ⊂ P =

n⊕
i=1

Zϖi with (αi, ϖj) = diδij .

Having fixed above the order on the set of simple roots Π, we consider the (modified) Ringel bilinear form
⟨·, ·⟩ on Q, such that (unless {i, j} = {n− 1, n} in type Dn) we have:

⟨αi, αj⟩ =


diaij if i < j

di if i = j

0 if i > j

,

while in the remaining case of Dn-type system, we set:

⟨αn−1, αn⟩ = ⟨εn−1 − εn, εn−1 + εn⟩ = −1, ⟨αn, αn−1⟩ = ⟨εn−1 + εn, εn−1 − εn⟩ = 1.

We note that (µ, ν) = ⟨µ, ν⟩+ ⟨ν, µ⟩ for any µ, ν ∈ Q.
We also need the following two-parameter analogues of q-integers, q-factorials, and q-binomial coefficients:

[m]r,s =
rm − sm

r − s
= rm−1 + rm−2s+ . . .+ rsm−2 + sm−1 for all m ∈ Z≥0,

[m]r,s! = [m]r,s[m− 1]r,s · · · [1]r,s for m > 0, [0]r,s! = 1,

and [
m

k

]
r,s

=
[m]r,s!

[m− k]r,s![k]r,s!
for all 0 ≤ k ≤ m.

Finally, we also define

rγ = r(γ,γ)/2, sγ = s(γ,γ)/2 for all γ ∈ Φ,

ri = rαi = rdi , si = sαi = sdi for all 1 ≤ i ≤ n.
(2.1)

We now recall the definition of the two-parameter quantum group of g:

Definition 2.1. The two-parameter quantum group Ur,s(g) of a simple Lie algebra g is the associative C(r, s)-
algebra generated by {ei, fi, ω±1i , (ω′i)

±1}ni=1 with the following defining relations (for all 1 ≤ i, j ≤ n):
(2.2) [ωi, ωj ] = [ωi, ω

′
j ] = [ω′i, ω

′
j ] = 0, ω±1i ω∓1i = 1 = (ω′i)

±1(ω′i)
∓1,

(2.3) ωiej = r⟨αj ,αi⟩s−⟨αi,αj⟩ejωi, ωifj = r−⟨αj ,αi⟩s⟨αi,αj⟩fjωi,

(2.4) ω′iej = r−⟨αi,αj⟩s⟨αj ,αi⟩ejω
′
i, ω′ifj = r⟨αi,αj⟩s−⟨αj ,αi⟩fjω

′
i,

(2.5) eifj − fjei = δij
ωi − ω′i
ri − si

,

and quantum (r, s)-Serre relations

1−aij∑
k=0

(−1)k
[
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩e

1−aij−k
i eje

k
i = 0 for i ̸= j,

1−aij∑
k=0

(−1)k
[
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩fki fjf

1−aij−k
i = 0 for i ̸= j.

(2.6)

We note that the algebra Ur,s(g) admits a Q-grading, defined on the generators via:

deg(ei) = αi, deg(fi) = −αi, deg(ωi) = 0, deg(ω′i) = 0 for all 1 ≤ i ≤ n.
For µ ∈ Q, let Ur,s(g)µ (or simply (Ur,s)µ) denote the degree µ component of Ur,s(g) under this Q-grading.
We shall also need several subalgebras of Ur,s(g):

• the “positive” subalgebra U+
r,s = U+

r,s(g), generated by {ei}ni=1,

• the “negative” subalgebra U−r,s = U−r,s(g), generated by {fi}ni=1,

• the “Cartan” subalgebra U0
r,s = U0

r,s(g), generated by {ω±1i , (ω′i)
±1}ni=1,

• the “non-negative subalgebra” U≥r,s = U≥r,s(g), generated by {ei, ω±1i }ni=1,
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• the “non-positive subalgebra” U≤r,s = U≤r,s(g), generated by {fi, (ω′i)±1}ni=1.

Evoking (2.2), for any µ =
∑n

i=1 ciαi ∈ Q, we define ωµ, ω
′
µ ∈ U0

r,s(g) via:

ωµ = ωc1
1 ω

c2
2 · · ·ωcn

n , ω′µ = (ω′1)
c1(ω′2)

c2 · · · (ω′n)cn .

Finally, the algebra Ur,s(g) has a Hopf algebra structure, where the coproduct ∆, counit ϵ, and antipode
S are defined on the generators by the following formulas:

∆(ω±1i ) = ω±1i ⊗ ω
±1
i ϵ(ω±1i ) = 1 S(ω±1i ) = ω∓1i

∆((ω′i)
±1) = (ω′i)

±1 ⊗ (ω′i)
±1 ϵ((ω′i)

±1) = 1 S((ω′i)
±1) = (ω′i)

∓1

∆(ei) = ei ⊗ 1 + ωi ⊗ ei ϵ(ei) = 0 S(ei) = −ω−1i ei

∆(fi) = 1⊗ fi + fi ⊗ ω′i ϵ(fi) = 0 S(fi) = −fi(ω′i)−1

We note that

(2.7) ∆(x) ∈ x⊗ 1 +
⊕

0<ν<µ

U+
r,s(g)µ−νων ⊗ U+

r,s(g)ν + ωµ ⊗ x,

(2.8) ∆(y) ∈ y ⊗ ω′µ +
⊕

0<ν<µ

U−r,s(g)−ν ⊗ U−r,s(g)−(µ−ν)ω′ν + 1⊗ y,

for any x ∈ U+
r,s(g)µ and y ∈ U−r,s(g)−µ. Here, we use the standard order ≤ on the root lattice Q:

ν ≤ µ ⇐⇒ µ− ν ∈ Q+,

where Q+ =
⊕n

i=1 Z≥0αi is the positive cone of the root lattice Q.

2.2. Hopf pairing.
In this Subsection, we recall the Hopf pairing on Ur,s(g), which allows one to realize Ur,s(g) as a Drinfeld

double of its Hopf subalgebras U≤r,s(g), U
≥
r,s(g). This pairing is also crucial to the main results of this paper.

Proposition 2.2. There exists a unique non-degenerate bilinear pairing

(2.9) (·, ·)H : U≤r,s(g)× U≥r,s(g) −→ C(r, s)

satisfying the following structural properties

(yy′, x)H = (y ⊗ y′,∆(x))H , (y, xx′)H = (∆(y), x′ ⊗ x)H ∀x, x′ ∈ U≥r,s(g), y, y′ ∈ U≤r,s(g),

where (x′ ⊗ x′′, y′ ⊗ y′′)H = (x′, y′)H(x′′, y′′)H , as well as being given on the generators by:

(fi, ωj)H = 0, (ω′i, ei)H = 0, (fi, ej)H = δij
1

si − ri
for all 1 ≤ i, j ≤ n,

(2.10) (ω′λ, ωµ)H = r⟨λ,µ⟩s−⟨µ,λ⟩ for all λ, µ ∈ Q.

The above pairing is clearly homogeneous with respect to the above Q-grading:

(2.11) (y, x)H = 0 for x ∈ U≥r,s(g)µ, y ∈ U≤r,s(g)−ν with µ ̸= ν ∈ Q+.

Remark 2.3. We shall provide a careful proof of the non-degeneracy of (·, ·)H in Proposition 2.11.

Using (2.7), we may define linear maps pi, p
′
i : (U

+
r,s)µ → (U+

r,s)µ−αi
for any µ ∈ Q+ via

∆(x) = x⊗ 1 +

n∑
i=1

pi(x)ωi ⊗ ei + . . .+

n∑
i=1

eiωµ−αi
⊗ p′i(x) + ωµ ⊗ x,(2.12)

which satisfy (and are uniquely determined by) pi(1) = p′i(1) = 0, pi(ej) = p′i(ej) = δij , and the following
analogue of the Leibniz rule:

pi(xx
′) = xpi(x

′) + (ω′deg(x′), ωi)H · pi(x)x′,
p′i(xx

′) = p′i(x)x
′ + (ω′i, ωdeg(x))H · xp′i(x′),

(2.13)

for all homogeneous x, x′ ∈ U+
r,s. Combining (2.11) with Proposition 2.2, we obtain the following result:
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Proposition 2.4. For any x ∈ U+
r,s and y ∈ U−r,s, we have

(fiy, x)H =
1

si − ri
(y, p′i(x))H and (yfi, x)H =

1

si − ri
(y, pi(x))H .

Likewise, using (2.8), we define linear maps pi, p
′
i : (U

−
r,s)−µ → (U−r,s)−(µ−αi) for any µ ∈ Q+ via

∆(y) = y ⊗ ω′µ +

n∑
i=1

pi(y)⊗ fiω′µ−αi
+ . . .+

n∑
i=1

fi ⊗ p′i(y)ω′αi
+ 1⊗ y,

which satisfy (and are uniquely determined by) pi(1) = p′i(1) = 0, pi(fj) = p′i(fj) = δij , and the following
analogue of the Leibniz rule:

pi(yy
′) = pi(y)y

′ + (ω′− deg(y), ωi)H · ypi(y′),
p′i(yy

′) = yp′i(y
′) + (ω′i, ω− deg(y′))H · p′i(y)y′,

(2.14)

for all homogeneous y, y′ ∈ U−r,s. As above, they are related to the Hopf pairing via:

Proposition 2.5. For any y ∈ U−r,s and x ∈ U+
r,s, we have

(y, eix)H =
1

si − ri
(pi(y), x)H and (y, xei)H =

1

si − ri
(p′i(y), x)H .

Since we will frequently use the restriction of (·, ·)H to the Cartan subalgebra U0
r,s(g) throughout the

paper, we shall denote it simply by (·, ·) for brevity:

(2.15) (y, x) = (y, x)H for any y, x ∈ U0
r,s(g).

Let us present explicit formulas for the latter in each of the classical types. To this end, we use the following
standard embeddings of the classical-type root systems in Euclidean space:

• An-type (corresponding to g ≃ sln+1).
Let {εi}n+1

i=1 be an orthonormal basis of Rn+1. Then, we have

ΦAn =
{
εi − εj

∣∣ 1 ≤ i ̸= j ≤ n+ 1
}
⊂ Rn+1,

ΠAn
=
{
αi = εi − εi+1

}n
i=1

.

We shall use the following notation for the set of positive roots Φ+ in ΦAn
:

(2.16) γij = αi + · · ·+ αj for 1 ≤ i ≤ j ≤ n.

• Bn-type (corresponding to g ≃ so2n+1).
Let {εi}ni=1 be an orthogonal basis of Rn with (εi, εi) = 2 for all i. Then, we have

ΦBn =
{
± εi ± εj

∣∣ 1 ≤ i < j ≤ n
}
∪
{
± εi

∣∣ 1 ≤ i ≤ n} ⊂ Rn,

ΠBn
=
{
αi = εi − εi+1

}n−1
i=1
∪
{
αn = εn

}
.

We shall use the following notation for the set of positive roots Φ+ in ΦBn :

γij = αi + · · ·+ αj for 1 ≤ i ≤ j ≤ n,
βij = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn for 1 ≤ i < j ≤ n.(2.17)

• Cn-type (corresponding to g ≃ sp2n).
Let {εi}ni=1 be an orthonormal basis of Rn. Then, we have

ΦCn =
{
± εi ± εj

∣∣ 1 ≤ i < j ≤ n
}
∪
{
± 2εi

∣∣ 1 ≤ i ≤ n} ⊂ Rn,

ΠCn
=
{
αi = εi − εi+1

}n−1
i=1
∪
{
αn = 2εn

}
.

We shall use the following notation for the set of positive roots Φ+ in ΦCn :

γij = αi + · · ·+ αj for 1 ≤ i ≤ j ≤ n,
βij = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−1 + αn for 1 ≤ i ≤ j < n.

(2.18)
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• Dn-type (corresponding to g ≃ so2n).
Let {εi}ni=1 be an orthonormal basis of Rn. Then, we have

ΦDn
=
{
± εi ± εj

∣∣ 1 ≤ i < j ≤ n
}
⊂ Rn,

ΠDn
=
{
αi = εi − εi+1

}n−1
i=1
∪
{
αn = εn−1 + εn

}
.

We shall use the following notation for the set of positive roots Φ+ in ΦDn
:

γij = αi + · · ·+ αj for 1 ≤ i ≤ j < n,

βin = αi + · · ·+ αn−2 + αn for 1 ≤ i < n,

βi,n−1 = αi + · · ·+ αn for 1 ≤ i < n− 1,

βij = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−2 + αn−1 + αn for 1 ≤ i < j < n− 1.

(2.19)

Then, we have the following explicit formulas for the pairing of Cartan elements, where λ =
∑n

i=1 ciαi ∈ Q:

• An-type

(ω′λ, ωi) = r(εi,λ)s(εi+1,λ),

(ω′i, ωλ) = r−(εi+1,λ)s−(εi,λ).

• Bn-type

(ω′λ, ωi) =

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n

r(εn,λ)(rs)−cn if i = n
,

(ω′i, ωλ) =

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n

s−(εn,λ)(rs)cn if i = n
.

• Cn-type

(ω′λ, ωi) =

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n

r2(εn,λ)(rs)−2cn if i = n
,

(ω′i, ωλ) =

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n

s−2(εn,λ)(rs)2cn if i = n
.

• Dn-type

(ω′λ, ωi) =

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n

r(εn−1,λ)s−(εn,λ)(rs)−2cn−1 if i = n
,

(ω′i, ωλ) =

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n

r(εn,λ)s−(εn−1,λ)(rs)2cn−1 if i = n
.

2.3. (Anti)automorphisms.
Finally, we need to introduce several additional structures on Ur,s(g) that will be used later.

Proposition 2.6. (1) There is a unique C(r, s)-algebra anti-automorphism φ : Ur,s(g)→ Ur,s(g) (called the
Cartan involution) satisfying

φ(ei) = fi, φ(fi) = ei, φ(ωi) = ωi, φ(ω′i) = ω′i for all 1 ≤ i ≤ n.

(2) There is a unique C-algebra anti-automorphism τ : Ur,s(g)→ Ur,s(g) satisfying τ(r) = s−1, τ(s) = r−1,
and

τ(ei) = ei, τ(fi) = fi, τ(ωi) = (risi)
−1ω′i, τ(ω′i) = (risi)

−1ωi for all 1 ≤ i ≤ n.

(3) There is a unique C-algebra automorphism x 7→ x̄ of Ur,s(g) (called the bar involution) satisfying r̄ = s,
s̄ = r, and

ēi = ei, f̄i = fi, ω̄i = ω′i, ω̄′i = ωi for all 1 ≤ i ≤ n.
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Proof. For each of these, we need to check that defining relations (2.2)–(2.6) are preserved. For parts (1) and
(3), this is straightforward, and we leave details to the reader. For part (2), it is easy to check that (2.2)–(2.4)
and (2.5) with i ̸= j are preserved under τ . For (2.5) with i = j, we have:

τ(ωi)− τ(ω′i)
τ(ri)− τ(si)

=
(risi)

−1(ω′i − ωi)

s−1i − r
−1
i

=
ω′i − ωi

ri − si
= fiei − eifi = τ(fi)τ(ei)− τ(ei)τ(fi).

For the quantum Serre relations (2.6), we shall only carry out the verification for the ei’s, since the calculations
for the fi’s is analogous. First, we note that

τ([m]r,s) =
s−m − r−m

s−1 − r−1
= (rs)1−m[m]r,s,

and therefore

τ

([
m

k

]
r,s

)
=

τ([m]r,s!)

τ([k]r,s!)τ([m− k]r,s!)
=

(rs)−
1
2m(m−1)

(rs)−
1
2k(k−1)(rs)−

1
2 (m−k)(m−k−1)

[m]r,s!

[k]r,s![m− k]r,s!

= (rs)k(k−m)

[
m

k

]
r,s

.

Hence, we have:

1−aij∑
k=0

(−1)kτ

([
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩

)
τ(ei)

kτ(ej)τ(ei)
1−aij−k =

1−aij∑
k=0

(−1)k(risi)k(k−1+aij)

[
1− aij
k

]
ri,si

(risi)
− 1

2k(k−1)(rs)−k⟨αj ,αi⟩eki eje
1−aij−k
i =

1−aij∑
k=0

(−1)1−aij−k(risi)
−(1−aij−k)k

[
1− aij
k

]
ri,si

(risi)
− 1

2 (1−aij−k)(−aij−k)(rs)−(1−aij−k)⟨αj ,αi⟩e
1−aij−k
i eje

k
i .

Since

−(1− aij − k)k − 1
2 (1− aij − k)(−aij − k) =

1
2k(k − 1)− 1

2aij(aij − 1),

we thus find that applying τ to the first relation in (2.6), we get:

0 =

1−aij∑
k=0

(−1)kτ

([
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩

)
τ(ei)

kτ(ej)τ(ei)
1−aij−k =

(−1)1−aij (risi)
− 1

2aij(aij−1)(rs)−(1−aij)⟨αj ,αi⟩
1−aij∑
k=0

(−1)k
[
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩e

1−aij−k
i eje

k
i .

The above shows that the first relation in (2.6) is indeed preserved by τ . This completes the proof. ■

2.4. Non-degeneracy of pairing and weight space dimensions.
Let λ =

∑n
i=1 liϖi ∈ P ∩Q with all li ≥ 0 be a dominant weight (we only consider such weights that lie

in the root lattice just to avoid extending the base field C(r, s)). Recall that a vector v in a Ur,s(g)-module
V is said to have weight λ if

ωi · v = (ω′λ, ωi)v and ω′i · v = (ω′i, ωλ)
−1v for all 1 ≤ i ≤ n.

We denote the subspace of all vectors of weight λ in V by Vλ.
Let M(λ) = Ur,s(g)⊗U

≤
r,s(g)

C(r, s) be the Ur,s(g)-Verma module with highest weight λ, where the action

of U≤r,s(g) on C(r, s) is defined by

ei · 1 = 0, fi · 1 = 0, ωi · 1 = (ω′λ, ωi), ω′i · 1 = (ω′i, ωλ)
−1 for all 1 ≤ i ≤ n.

Let L(λ) be the unique irreducible quotient of M(λ). If vλ ∈M(λ) is a nonzero highest weight vector, set

L̃(λ) =M(λ)
/ n∑

i=1

U−r,sf
li+1
i vλ.
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For classical g, the Ur,s(g)-module L̃(λ) is known to be finite-dimensional of highest weight λ (see [BW2,

proof of Lemma 2.12] for A-type and [BGH2, Proposition 2.16] for BCD-types). Since L̃(λ) surjects onto
L(λ), the module L(λ) is also finite-dimensional. Now, the argument of [MT, Proposition 3.8] can be carried

out for both L̃(λ) and L(λ), as they are both finite-dimensional highest weight Ur,s(g)-modules of weight λ.

This shows that L̃(λ) and L(λ) have the same dimension, and since L(λ) is a quotient of L̃(λ), we conclude

that L(λ) ≃ L̃(λ). This observation allows us to prove the following result:

Proposition 2.7. Let λ =
∑n

i=1 liϖi ∈ P ∩Q be a dominant weight, and let vλ ∈ L(λ) be a nonzero vector
of weight λ. For any µ =

∑n
i=1miαi ∈ Q+ satisfying mi ≤ li for all 1 ≤ i ≤ n, the map (U−r,s)−µ → L(λ)λ−µ

defined by y 7→ yvλ is bijective.

Proof. Let J− ⊂ U−r,s be the left ideal generated by the elements {f li+1
i }ni=1. Then the map U−r,s → M(λ)

defined by y 7→ yvλ induces a U−r,s-module isomorphism U−r,s/J
− ∼−→ L̃(λ) ≃ L(λ). But since mi ≤ li for all

i, we have J− ∩ (U−r,s)−µ = 0, so that the restriction of U−r,s ↠ U−r,s/J
− ∼−→L(λ) to (U−r,s)−µ gives rise to the

claimed isomorphism (U−r,s)−µ
∼−→L(λ)λ−µ. ■

As our first application of the proposition above, let us prove the following result on the dimensions of
the weight spaces (U±r,s)µ, which will be needed later for Theorem 5.5:

Proposition 2.8. For all µ ∈ Q+, we have

dimC(r,s)(U
+
r,s)µ = dimC(r,s)(U

−
r,s)−µ = dimC U(n±)±µ.

Proof. Let µ =
∑n

i=1miαi ∈ Q+, and let λ =
∑n

i=1 liϖi ∈ P be a dominant weight with li ≥ mi. Because P
is contained in the Q-span of α1, . . . , αn, we may replace λ by a suitable positive integer multiple to ensure
that λ ∈ P ∩ Q. Then dimC(r,s)(U

−
r,s)−µ = dimC(r,s) L(λ)λ−µ, due to Proposition 2.7. On the other hand,

by [MT, Proposition 3.8] and the choice of λ, we have dimC(r,s) L(λ)λ−µ = dimC U(n−)−µ, which proves the

claim for U−r,s. The result for U+
r,s follows by applying the anti-automorphism φ of Proposition 2.6(1). ■

We shall now prove the non-degeneracy of the Hopf pairing (·, ·)H introduced in Proposition 2.2. For this,
we require the following result, which is another application of Proposition 2.7:

Proposition 2.9. Let µ ∈ Q+ \ {0}. If y ∈ (U−r,s)−µ satisfies eiy − yei = 0 for all 1 ≤ i ≤ n, then y = 0.

Similarly, if x ∈ (U+
r,s)µ satisfies fix− xfi = 0 for all 1 ≤ i ≤ n, then x = 0.

Proof. Given µ, choose λ as in Proposition 2.7. Then, if y ̸= 0, we have yvλ ̸= 0, where vλ ∈ L(λ) is a nonzero
vector of weight λ. The assumption that eiy− yei = 0 for all i then implies that eiyvλ = yeivλ = 0 for all i,
and hence yvλ ∈ L(λ) is a highest weight vector of weight λ− µ < λ. This contradicts the fact that L(λ) is
irreducible, so we must have y = 0. The result for U+

r,s is obtained by applying φ of Proposition 2.6(1). ■

We also need the following lemma:

Lemma 2.10. (1) For all homogeneous y ∈ U−r,s and all 1 ≤ i ≤ n, we have

(2.20) eiy − yei =
1

ri − si
(
ωipi(y)− p′i(y)ω′i

)
.

(2) For all homogeneous x ∈ U+
r,s and all 1 ≤ i ≤ n, we have

xfi − fix =
1

ri − si
(
pi(x)ωi − ω′ip′i(x)

)
.

Proof. For part (1), the equality is clear when y = 1, and for y = fj it follows from (2.5). Since both sides
of (2.20) are linear in y, it is enough to show that if (2.20) holds for y′ and y′′, then it also holds for y = y′y′′.
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Using the identities y′ωi = (ω′− deg(y′), ωi)ωiy
′ and ω′iy

′′ = (ω′i, ω− deg(y′′))y
′′ω′i, we obtain:

ei(y
′y′′)− (y′y′′)ei = (eiy

′ − y′ei)y′′ + y′(eiy
′′ − y′′ei)

=
1

ri − si
((ωipi(y

′)− p′i(y′)ω′i)y′′ + y′(ωipi(y
′′)− p′i(y′′)ω′i))

=
1

ri − si

(
ωi(pi(y

′)y′′ + (ω′− deg(y′), ωi)y
′pi(y

′′))− (y′p′i(y
′′) + (ω′i, ω− deg(y′′))p

′
i(y
′)y′′)ω′i

)
=

1

ri − si
(ωipi(y

′y′′)− p′i(y′y′′)ω′i),

where the last equality follows from (2.14).
As for part (2), one can either use a similar argument, or rather note that it follows by applying φ to (2.20)

since φ ◦ pi = pi ◦φ (the latter can be established by comparing the first formulas of (2.13) and (2.14)). ■

Proposition 2.11. The restriction of the Hopf pairing (·, ·)H of Proposition 2.2 to (U−r,s)−µ × (U+
r,s)µ is

non-degenerate for all µ ∈ Q+.

Proof. The claim is obvious for µ = 0. Now, suppose that the claim holds for all ν ∈ Q+ with 0 ≤ ν < µ
and let y ∈ (U−r,s)−µ be an element such that (y, x)H = 0 for all x ∈ (U+

r,s)µ. Then for all 1 ≤ i ≤ n and

x ∈ (U+
r,s)µ−αi

, we have 0 = (y, eix)H = (y, xei)H , which implies (pi(y), x)H = (p′i(y), x)H = 0, due to

Proposition 2.5. Since pi(y), p
′
i(y) ∈ (U−r,s)−(µ−αi), we must have pi(y) = p′i(y) = 0 for all 1 ≤ i ≤ n by the

induction hypothesis. Then eiy− yei = 0 for all 1 ≤ i ≤ n by Lemma 2.10(1), and therefore Proposition 2.9
implies that y = 0, as claimed. If x ∈ (U+

r,s)µ satisfies (y, x)H = 0 for all y ∈ (U−r,s)−µ, then applying similar
arguments one shows that x = 0. This completes the proof. ■

3. Bilinear Forms

In this Section, we discuss several other pairings and their relation to the Hopf pairing (·, ·)H of (2.9). This
allows us to translate the problem solely into the construction of dual bases of U+

r,s, endowed with a twisted
coproduct and a twisted product on its tensor powers, with respect to a different symmetric form (·, ·). This
technical part is essential to the rest of the paper, as it eliminates Cartan elements from consideration.

3.1. Twisted product and compatible pairing.
Let F be the free associative C(r, s)-algebra generated by the finite alphabet I = {1, 2, . . . , n}. Let W be

the set of words in I, i.e. the monoid generated by I. We shall often use the notation [i1 . . . id] = i1i2 . . . id
for the elements in W, where i1, . . . , id ∈ I. The algebra F has a natural grading by the positive cone Q+ of
the root lattice Q, defined by |i| = αi. For any a, b ∈ C(r, s), we define the twisted product ⊙a,b on F⊗n via

(3.1) (x1 ⊗ · · · ⊗ xn)⊙a,b (x
′
1 ⊗ x′2 ⊗ · · · ⊗ x′n) = a−

∑
1≤i<j≤n⟨|xj |,|x′

i|⟩b
∑

1≤i<j≤n⟨|x
′
i|,|xj |⟩x1x

′
1 ⊗ · · · ⊗ xnx′n

for all homogeneous xi, x
′
i ∈ F . In particular, evoking (2.10), for all homogeneous x, x′, y, y′ ∈ F , we have:

(x⊗ y)⊙r,s (x
′ ⊗ y′) = (ω′|y|, ω|x′|)

−1xx′ ⊗ yy′,

(x⊗ y)⊙s−1,r−1 (x′ ⊗ y′) = (ω′|x′|, ω|y|)
−1xx′ ⊗ yy′,

cf. (2.15). For a fixed choice of a, b as above, we define the algebra homomorphism

(3.2) ∆a,b : F −→ (F ⊗ F ,⊙a,b) via ∆(i) = i⊗ ∅+ ∅ ⊗ i.

For any element x ∈ F , we shall use the notation

∆a,b(x) =
∑
(x)

x1;a,b ⊗ x2;a,b.

If x is homogeneous, then we have |x1;a,b| + |x2;a,b| = |x|, by the definition of ∆a,b. If the values of a and
b are clear from context, we will omit the subscript a, b, and write simply ∆a,b(x) =

∑
(x) x1 ⊗ x2 instead.

The following result shows that (3.2) is in fact coassociative:

Proposition 3.1. For any a, b ∈ C(r, s), we have (∆a,b ⊗ 1) ◦∆a,b = (1⊗∆a,b) ◦∆a,b.
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Proof. This is clearly true on the generators, so it suffices to show that ∆a,b⊗1 and 1⊗∆a,b are both algebra
homomorphisms (F⊗2,⊙a,b)→ (F⊗3,⊙a,b).

To this end, let x, x′, y, y′ ∈ F be any homogeneous elements. Then, we have:

(∆a,b ⊗ 1)((x⊗ y)⊙a,b (x
′ ⊗ y′)) = a−⟨|y|,|x

′|⟩b⟨|x
′|,|y|⟩(∆a,b(x)⊙a,b ∆a,b(x

′))⊗ yy′

= a−⟨|y|,|x
′|⟩b⟨|x

′|,|y|⟩
∑

(x)(x′)

a−⟨|x2|,|x′
1|⟩b⟨|x

′
1|,|x2|⟩x1x

′
1 ⊗ x2x′2 ⊗ yy′

as well as

(∆a,b(x)⊗ y)⊙a,b (∆a,b(x
′)⊗ y′) =

∑
(x)(x′)

(x1 ⊗ x2 ⊗ y)⊙a,b (x
′
1 ⊗ x′2 ⊗ y′)

=
∑

(x)(x′)

a−⟨|x2|,|x′
1|⟩−⟨|y|,|x

′
1|+|x

′
2|⟩b⟨|x

′
1|,|x2|⟩+⟨|x′

1|+|x
′
2|,|y|⟩x1x

′
1 ⊗ x2x′2 ⊗ yy′

= a−⟨|y|,|x
′|⟩b⟨|x

′|,|y|⟩
∑

(x)(x′)

a−⟨|x2|,|x′
1|⟩b⟨|x

′
1|,|x2|⟩x1x

′
1 ⊗ x2x′2 ⊗ yy′,

where we used |x′1| + |x′2| = |x′| in the last equality. Comparison of the above two formulas shows that
∆a,b ⊗ 1 is an algebra homomorphism. The proof that 1⊗∆a,b is an algebra homomorphism is similar. ■

Consequently, we can define a product, also denoted by ⊙a,b, on F∗ via
(f ⊙a,b g)(x) = (f ⊗ g)(∆a,b(x)).

The coassociativity property of Proposition 3.1 guarantees that this product is associative. The identity
element on F∗ is the map ε : F → C(r, s) given by ε(∅) = 1 and ε(i) = 0 for i ∈ I. We can now use this to
prove the following theorem:

Theorem 3.2. There is a unique bilinear form {·, ·} : F × F → C(r, s) satisfying
(1) {1, 1} = 1,
(2) {i, j} = δij for all i, j ∈ I,
(3) {xy, z} = {x⊗ y,∆s−1,r−1(z)} for all x, y, z ∈ F ,
(4) {x, yz} = {∆r,s(x), y ⊗ z} for all x, y, z ∈ F ,

where {x′ ⊗ x′′, y′ ⊗ y′′} = {x′, y′}{x′′, y′′} for any x′, x′′, y′, y′′ ∈ F .
Proof. For each i ∈ I, define a linear map i∗ : F → C(r, s) given by i∗(i) = 1 and i∗(x) = 0 if x is any word
other than i. We now define an algebra homomorphism ψ : F → (F∗,⊙s−1,r−1) via ψ(i) = i∗ . Then we may
define a bilinear form on F by

{x, y} = ψ(x)(y) for all x, y ∈ F .
First, it is easy to show that if |x| = µ, then ψ(x) ∈ F∗µ, i.e. ψ(x)(y) = 0 unless y ∈ Fµ. This translates
to {x, y} = 0 unless |x| = |y|. Moreover, this bilinear form clearly satisfies (1) and (2), while property (3)
follows from the fact that ψ is an algebra homomorphism. Indeed, for any x, y, z ∈ F , we have

{xy, z} = ψ(xy)(z) = (ψ(x)⊙s−1,r−1 ψ(y))(z) = (ψ(x)⊗ ψ(y))(∆s−1,r−1(z)) = {x⊗ y,∆s−1,r−1(z)}.
It is sufficient to prove (4) for any word x ∈ W, and we shall do so by induction on ht(|x|). First, we note
that it is clearly true whenever |x| has height 0 or 1, for any y, z ∈ F . If ht(|x|) > 1, we can write x = x′x′′

for ht(|x′|),ht(|x′′|) < ht(|x|). Then, by the induction assumption, we obtain:

{x, yz}
= {x′ ⊗ x′′,∆s−1,r−1(yz)}

=
∑
(y)(z)

(ω′|z1;s−1,r−1 |, ω|y2;s−1,r−1 |)
−1{x′, y1;s−1,r−1z1;s−1,r−1}{x′′, y2;s−1,r−1 , z2;s−1,r−1}

=
∑
(y)(z)

(ω′|z1;s−1,r−1 |, ω|y2;s−1,r−1 |)
−1{∆r,s(x

′), y1;s−1,r−1 ⊗ z1;s−1,r−1}{∆r,s(x
′′), y2;s−1,r−1 ⊗ z2;s−1,r−1}

=
∑
(y)(z)

(x′)(x′′)

(ω′|z1;s−1,r−1 |, ω|y2;s−1,r−1 |)
−1{x′1;r,s, y1;s−1,r−1}{x′2;r,s, z1;s−1,r−1}{x′′1;r,s, y2;s−1,r−1}{x′′2;r,s, z2;s−1,r−1}
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while

{∆r,s(x), y ⊗ z} = {∆r,s(x
′x′′), y ⊗ z}

=
∑

(x′)(x′′)

(ω′|x′
2;r,s|

, ω|x′′
1;r,s|)

−1{x′1;r,sx′′1;r,s, y}{x′2,r,sx′′2;r,s, z}

=
∑
(y)(z)

(x′)(x′′)

(ω′|x′
2;r,s|

, ω|x′′
1;r,s|)

−1{x′1;r,s, y1;s−1,r−1}{x′2;r,s, z1;s−1,r−1}{x′′1;r,s, y2;s−1,r−1}{x′′2;r,s, z2;s−1,r−1}.

But since {u, v} = 0 unless |u| = |v|, it follows that (ω′|x′
2;r,s|

, ω|x′′
1;r,s|)

−1 = (ω′|z1;s−1,r−1 |, ω|y2;s−1,r−1 |)
−1 for

all nonzero terms in the last sum above. Thus, we have {x, yz} = {∆r,s(x), y ⊗ z}, as desired. ■

Let us now introduce two linear maps ∂i, ∂
′
i that we will use frequently throughout the remainder of this

Section. For any x ∈ F , we have

(3.3) ∆r,s(x) = x⊗ 1 +

n∑
i=1

∂i(x)⊗ i+ . . .+

n∑
i=1

i⊗ ∂′i(x) + 1⊗ x.

The resulting linear maps ∂i, ∂
′
i : F → F satisfy (and are uniquely determined by) ∂i(1) = ∂′i(1) = 0,

∂i(j) = ∂′i(j) = δij , and the following analogue of the Leibniz rule:

∂i(xx
′) = x∂i(x

′) + (ω′i, ω|x′|)
−1∂i(x)x

′,

∂′i(xx
′) = ∂′i(x)x

′ + (ω′|x|, ωi)
−1x∂′i(x

′),
(3.4)

for all homogeneous elements x, x′ ∈ F .

Lemma 3.3. The bilinear form of Theorem 3.2 has the following properties:

{x, iy} = {∂′i(x), y} and {x, yi} = {∂i(x), y} for any x, y ∈ F , i ∈ I.

Proof. This follows immediately by combining (3.3) with (2.11) and Theorem 3.2(2,4). ■

Likewise, we introduce linear maps ∂̃i, ∂̃
′
i on F via:

(3.5) ∆s−1,r−1(x) = x⊗ 1 +

n∑
i=1

∂̃i(x)⊗ i+ . . .+

n∑
i=1

i⊗ ∂̃′i(x) + 1⊗ x.

Similarly to above, the resulting linear maps satisfy (and are uniquely determined by) ∂̃i(1) = ∂̃′i(1) = 0,

∂̃i(j) = ∂̃′i(j) = δij , and the following analogue of the Leibniz rule:

∂̃i(xx
′) = x∂̃i(x

′) + (ω′|x′|, ωi)
−1∂̃i(x)x

′,

∂̃′i(xx
′) = ∂̃′i(x)x

′ + (ω′i, ω|x|)
−1x∂̃′i(x

′),

for all homogeneous elements x, x′ ∈ F . The following is analogous to Lemma 3.3:

Lemma 3.4. The bilinear form of Theorem 3.2 has the following properties:

{ix, y} = {x, ∂̃′i(y)} and {xi, y} = {x, ∂̃i(y)} for any x, y ∈ F , i ∈ I.

3.2. Reduction modulo radicals.
Let I be the left radical of the form {·, ·} introduced in Theorem 3.2:

(3.6) I =
{
x ∈ F

∣∣ {x, y} = 0 for any y ∈ F}.

We define F̄ = F/I, and denote the images of i in F/I by ei (we shall see later in (3.13) that F/I ≃ U+
r,s,

justifying this notation). It is easy to see that I is a homogeneous ideal, so that F̄ inherits the Q+-grading
from F . Moreover, I is actually a two-sided ideal of F , according to Theorem 3.2(3), so that F̄ is an algebra.
Let us now define the divided powers

e
(k)
i =

eki
[k]ri,si !

for all k ∈ Z≥0, i ∈ I.

Our next goal is to prove the following theorem:
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Theorem 3.5. For any i ̸= j, the following relation holds in the algebra F̄ :
1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩e

(1−aij−k)
i eje

(k)
i = 0.

Before proceeding to the proof of this result, we observe the following easy consequence of Lemma 3.3:

Lemma 3.6. The ideal I of (3.6) is stable under the maps ∂i, ∂
′
i of (3.3) for all i ∈ I.

Therefore, we obtain the same-named linear maps ∂i, ∂
′
i : F̄ → F̄ on the quotient algebra F̄ . Moreover,

we have the following result:

Proposition 3.7. (1) If x ∈ F̄ satisfies ∂i(x) = 0 for all i ∈ I, then x = 0.

(2) If x ∈ F̄ satisfies ∂′i(x) = 0 for all i ∈ I, then x = 0.

Proof. It is enough to prove (1) and (2) for a homogeneous x ∈ F̄ . If x ̸= 0 and x̂ ∈ F is its lift of the same
degree, then by the very definition of F̄ , there must be some ŷ ∈ F such that {x̂, ŷ} ̸= 0, and moreover
we must have |ŷ| = |x̂|. Furthermore, since Fµ is spanned by all [i1 . . . ik] for which αi1 + · · · + αik = µ, it
follows that in fact there is some sequence (i1, . . . , ik) such that {x̂, [i1 . . . ik]} ≠ 0. But then we have

{∂′i1(x̂), [i2 . . . ik]} = {x̂, [i1i2 . . . ik]} ≠ 0

and
{∂ik(x̂), [i1 . . . ik−1]} = {x̂, [i1 . . . ik−1ik]} ≠ 0,

so it follows that ∂′i1(x) ̸= 0 and ∂ik(x) ̸= 0 in F̄ . ■

We shall now use this proposition to prove Theorem 3.5.

Proof of Theorem 3.5. For i ̸= j, set

(3.7) Sij =

1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩e

(1−aij−k)
i eje

(k)
i .

According to Proposition 3.7, it suffices to verify ∂′p(Sij) = 0 for all p ∈ I. This vanishing is clear for p ̸= i, j,
so it remains to verify ∂′i(Sij) = ∂′j(Sij) = 0.

First, a simple inductive argument shows that

∂′i(e
(k)
i ) = r1−ki e

(k−1)
i ,

so that
∂′i(e

(k)
i eje

(l)
i ) = r1−ki e

(k−1)
i eje

(l)
i + (ω′j , ωi)

−1(r−1i si)
kr1−li e

(k)
i eje

(l−1)
i

for all k, l ≥ 0, with the convention that e
(m)
i = 0 for m < 0. Thus, we obtain:

∂′i(Sij) =

1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)r

k+aij

i (rs)k⟨αj ,αi⟩e
(−aij−k)
i eje

(k)
i

+

1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩+⟨αi,αj⟩s

1−aij−k
i e

(1−aij−k)
i eje

(k−1)
i .

Combining the k-th term of the first sum with the (k + 1)-st term of the second sum yields

∂′i(Sij) =

−aij∑
k=0

(−1)k
(
(risi)

1
2k(k−1)r

k+aij

i (rs)k⟨αj ,αi⟩ − (risi)
1
2 (k+1)k(rs)(k+1)⟨αj ,αi⟩+⟨αi,αj⟩s

−aij−k
i

)
e
(−aij−k)
i eje

(k)
i ,

and since

(risi)
1
2 (k+1)k(rs)(k+1)⟨αj ,αi⟩+⟨αi,αj⟩s

−aij−k
i = (risi)

1
2k(k+1)(rs)k⟨αj ,αi⟩(risi)

aijs
−aij−k
i

= (risi)
1
2k(k−1)r

k+aij

i (rs)k⟨αj ,αi⟩,

we finally obtain ∂′i(Sij) = 0, as desired.
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For ∂′j , we first note that the one-parameter identity (cf. [J, §0.2(4)])
a∑

t=0

(−1)tqt(1−a)
[
a

t

]
q

= 0

implies, by setting q = (ris
−1
i )1/2, the identity

(3.8)

a∑
t=0

(−1)t(risi)
1
2 t(t−1)r

t(1−a)
i

[
a

t

]
ri,si

= 0.

According to (3.4), we have

∂′j(e
(k)
i eje

(l)
i ) = ∂′j(e

(k)
i ej)e

(l)
i = (ω′i, ωj)

−ke
(k)
i e

(l)
i

for any k, l ≥ 0. We thus obtain:

∂′j(Sij) =

1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩(ω′i, ωj)

−(1−aij−k)e
(1−aij−k)
i e

(k)
i

=

1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)rk⟨αj ,αi⟩−(1−aij−k)⟨αi,αj⟩s(1−aij)⟨αj ,αi⟩

[
1− aij
k

]
ri,si

e
(1−aij)
i

= r(aij−1)⟨αi,αj⟩s(1−aij)⟨αj ,αi⟩

(
1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)r

kaij

i

[
1− aij
k

]
ri,si

)
e
(1−aij)
i = 0,

where we used (3.8) in the last equality. This completes our proof of the theorem. ■

Likewise, let I ′ be the right radical of the bilinear form {·, ·} from Theorem 3.2:

(3.9) I ′ =
{
y ∈ F

∣∣ {x, y} = 0 for any x ∈ F
}
.

We set F̄ ′ = F/I ′, and denote the images of i in F̄ ′ by fi for all i ∈ I (this notation is justified by (3.13),
where we show that F̄ ′ ≃ U−r,s). We note that I ′ is actually a two-sided ideal of F , due to Theorem 3.2(4),

so that F̄ ′ is an algebra.
As above, we have the following easy consequence of Lemma 3.4:

Lemma 3.8. The ideal I ′ of (3.9) is stable under the maps ∂̃i, ∂̃
′
i of (3.5) for all i ∈ I.

We thus obtain the same-named linear maps ∂̃i, ∂̃
′
i : F̄ ′ → F̄ ′, satisfying the analogue of Proposition 3.7:

Proposition 3.9. (1) If x ∈ F̄ ′ satisfies ∂̃i(x) = 0 for all i ∈ I, then x = 0.

(2) If x ∈ F̄ ′ satisfies ∂̃′i(x) = 0 for all i ∈ I, then x = 0.

Using this proposition, we also obtain the following counterpart of Theorem 3.5:

Theorem 3.10. For any i ̸= j, the following relation holds in the algebra F̄ ′:
1−aij∑
k=0

(−1)k(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩f

(k)
i fjf

(1−aij−k)
i = 0.

We now introduce a C(r, s)-algebra anti-isomorphism φ : F̄ → F̄ ′, which will ultimately be matched with
the corresponding map on U±r,s introduced in Proposition 2.6(1). To do so, we first consider the C(r, s)-algebra
anti-involution φ : F → F defined by φ(i) = i for all i ∈ I. We then have:

Lemma 3.11. For all x ∈ F , we have ∂i(φ(x)) = φ(∂̃′i(x)) and φ(∂i(x)) = ∂̃′i(φ(x)).

Proof. For the first equality, it is enough to consider x ∈ W, for which we proceed by induction on ht(|x|).
If ht(|x|) ≤ 1, the claim is obvious. If ht(|x|) = m > 1, then we may write x = x′x′′ for some x′, x′′ ∈ W
with ht(|x′|),ht(|x′′|) < m. Then by the induction assumption, we have:

∂i(φ(x)) = ∂i(φ(x
′′)φ(x′)) = φ(x′′)∂i(φ(x

′)) + (ω′i, ω|x′|)
−1∂i(φ(x

′′))φ(x′)

= φ(x′′)φ(∂̃′i(x
′)) + (ω′i, ω|x′|)

−1φ(∂̃i(x
′′))φ(x′) = φ

(
∂̃′i(x

′)x′′ + (ω′i, ω|x′|)
−1x′∂̃′i(x

′′)
)

= φ(∂̃′i(x
′x′′)) = φ(∂̃′i(x)).
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This proves that ∂i ◦ φ = φ ◦ ∂̃′i for any i ∈ I. Since φ is an anti-involution, we also get φ ◦ ∂i = ∂̃′i ◦ φ. ■

We can now easily derive the desired result:

Proposition 3.12. There is a unique C(r, s)-algebra anti-isomorphism φ : F̄ → F̄ ′ such that

φ(ei) = fi for all i ∈ I.

Proof. To prove this, it suffices to show that φ(I) ⊆ I ′ and φ(I ′) ⊆ I. To this end, suppose that x ∈ F
satisfies φ(x) /∈ I ′. By Proposition 3.9, we then have 0 ̸= ∂̃′i(φ(x)) = φ(∂i(x)) for some i ∈ I. The latter
implies ∂i(x) ̸= 0, and so x /∈ I by Proposition 3.7. This proves the first inclusion φ(I) ⊆ I ′. Similarly, if

y ∈ F satisfies φ(y) /∈ I, then by Proposition 3.7, there is some j ∈ I such that 0 ̸= ∂j(φ(y)) = φ(∂̃′j(y)).

This means that ∂̃′j(y) ̸= 0 and so y /∈ I ′, by Proposition 3.9, establishing the second inclusion φ(I ′) ⊆ I. ■

We note that I is a Hopf ideal with respect to ∆r,s, i.e. ∆r,s(I) ⊆ F ⊗I +I ⊗F , due to Theorem 3.2(4).
This implies that ∆r,s descends from F to the same-named algebra homomorphism ∆r,s : F̄ → F̄ ⊗ F̄ .
Likewise, we have ∆s−1,r−1(I ′) ⊆ F ⊗ I ′ + I ′ ⊗F by Theorem 3.2(3), so that ∆s−1,r−1 descends from F to
the same-named algebra homomorphism ∆s−1,r−1 : F̄ ′ → F̄ ′ ⊗ F̄ ′. Finally, we define the linear map

T : F̄ ′ ⊗ F̄ ′ −→ F̄ ′ ⊗ F̄ ′ via T (x⊗ y) = y ⊗ x.
Then, we have the following result:

Proposition 3.13. For all z ∈ F̄ , we have

(T ◦ (φ⊗ φ) ◦∆r,s)(z) = (∆s−1,r−1 ◦ φ)(z).

Proof. As usual, it is enough to prove the claim for elements of the form z = ei1ei2 . . . eim . We proceed
by induction on ht(|z|). The claim is obvious for ht(|z|) ≤ 1, so let us suppose that ht(|z|) = m > 1 and
the claim holds for all z′ with ht(|z′|) < m. By assumption, there is some i such that z = z′ei, where
ht(|z′|) < ht(|z|). Thus, by the induction assumption, we have:

∆s−1,r−1(φ(z)) = ∆s−1,r−1(fiφ(z
′)) = (fi ⊗ 1 + 1⊗ fi)⊙s−1,r−1

∑
(z′)

φ(z′2;r,s)⊗ φ(z′1;r,s)

=
∑
(z′)

fiφ(z
′
2;r,s)⊗ φ(z′1;r,s) +

∑
(z′)

(ω′|z′
2;r,s|

, ωi)
−1φ(z′2;r,s)⊗ fiφ(z′1;r,s).

On the other hand, we also have:

T (φ⊗ φ)∆r,s(z
′ei) = T (φ⊗ φ)

∑
(z′)

z′1;r,s ⊗ z′2;r,s

⊙r,s (ei ⊗ 1 + 1⊗ ei)


= T (φ⊗ φ)

∑
(z′)

(ω′|z′
2;r,s|

, ωi)
−1z′1;r,sei ⊗ z′2;r,s +

∑
(z′)

z′1;r,s ⊗ z′2;r,sei


=
∑
(z′)

(ω′|z′
2;r,s|

, ωi)
−1φ(z′2;r,s)⊗ fiφ(z′1;r,s) +

∑
(z′)

fiφ(z
′
2;r,s)⊗ φ(z′1;r,s).

This completes the proof, since the right-hand sides of the above two equations coincide. ■

3.3. Symmetric version of pairing.
The pairing {·, ·} : F ×F → C(r, s) of Theorem 3.2 induces the same-named non-degenerate pairing {·, ·}

on F̄ × F̄ ′, by the definition of (3.6, 3.9). The latter can be turned into the pairing (·, ·) : F̄ × F̄ → C(r, s)
through the use of the anti-isomorphism φ from Proposition 3.12. More specifically, we set

(3.10) (x, x′) = {x, φ(x′)} for any x, x′ ∈ F̄ .

Lemma 3.14. The resulting bilinear form (·, ·) satisfies the following five properties:

(1) (1, 1) = 1,
(2) (ei, ej) = δij,
(3) (x, y) = 0 if |x| ≠ |y|,
(4) (x, yz) = (∆r,s(x), z ⊗ y),
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(5) (xy, z) = (y ⊗ x,∆r,s(z)),

where (x′ ⊗ x′′, y′ ⊗ y′′) = (x′, y′)(x′′, y′′) for any x′, x′′, y′, y′′ ∈ F̄ .

Proof. Properties (1)–(3) are immediate from the definition and the corresponding properties of {·, ·}. Prop-
erty (4) follows from (x, yz) = {x, φ(yz)} = {x, φ(z)φ(y)} = {∆r,s(x), φ(z) ⊗ φ(y)} = (∆r,s(x), z ⊗ y).
Property (5) follows along the same line by evoking Proposition 3.13:

(xy, z) = {x⊗ y,∆s−1,r−1(φ(z))} = {x⊗ y, T (φ⊗ φ)(∆r,s(z))} = {y ⊗ x, φ⊗ φ(∆r,s(z))} = (y ⊗ x,∆r,s(z)).

This completes the proof of this lemma. ■

We also note the following important property of (·, ·):

Lemma 3.15. The pairing (·, ·) of (3.10) is symmetric.

Proof. The pairing (·, ·) not only satisfies the above properties (1)–(5), but is also uniquely determined by
them. However, the pairing (·, ·)◦ defined via (x, y)◦ = (y, x) clearly satisfies the same properties. Therefore,
(·, ·)◦ = (·, ·), which shows that (·, ·) is indeed symmetric. ■

Finally, as an immediate consequence of Lemma 3.3, we obtain:

Lemma 3.16. For any x, x′ ∈ F̄ and i ∈ I, we have the following two equalities:

(x, eix
′) = (∂i(x), x

′) and (x, x′ei) = (∂′i(x), x
′).

3.4. Relation to the Hopf pairing.
Recall the Hopf pairing (·, ·)H : U≤r,s×U≥r,s → C(r, s) from (2.9). We conclude this Section with an explicit

relation between (·, ·)H and (·, ·) of (3.10), which will allow us to show that U+
r,s ≃ F̄ , U−r,s ≃ F̄ ′, see (3.13).

This relationship is also instrumental to the proof of our main Theorems 7.1 and 7.2.
Before proceeding, we note first that by Theorems 3.5 and 3.10, there are natural C(r, s)-algebra homo-

morphisms ψ+ : U+
r,s → F̄ and ψ− : U−r,s → F̄ ′, determined by ψ+(ei) = ei and ψ

−(fi) = fi for all i ∈ I. We

also recall the bar involution x 7→ x̄ on U±r,s from Proposition 2.6(3). We can now relate (·, ·)H to (·, ·):

Theorem 3.17. For all y ∈ (U−r,s)−µ and x ∈ (U+
r,s)µ, where µ =

∑n
i=1 ciαi ∈ Q+, we have2

(ȳ, x̄)H =

(
n∏

i=1

1

(ri − si)ci

)(
ψ+(φ(y)), ψ+(x)

)
.

Proof. Evoking the linear maps pi : U
+
r,s → U+

r,s of (2.12), let us define a C(r, s)-linear map

p̄i : U
+
r,s → U+

r,s via p̄i(x) = pi(x̄).

Then, p̄i(1) = 0, p̄i(ej) = δij , and we claim that they satisfy the following analogue of the Leibniz rule:

(3.11) p̄i(xx
′) = xp̄i(x

′) + (ω′i, ωdeg(x′))
−1p̄i(x)x

′

for all homogeneous x, x′ ∈ U+
r,s. Indeed, this follows from (2.13) and (ω′µ, ων) = (ω′ν , ωµ)

−1:

p̄i(xx
′) = pi(x̄x̄′) = x̄pi(x̄′) + (ω′deg(x′), ωi)pi(x̄)x̄′ = xp̄i(x

′) + (ω′i, ωdeg(x′))
−1p̄i(x)x

′.

Let us now record the relation between these p̄i and the linear maps ∂i of (3.3):

(3.12) ∂i(ψ
+(x)) = ψ+(p̄i(x)) for all x ∈ U+

r,s.

This equality is clear when x ∈ C(r, s) or x = ej with j ∈ I. Thus, it remains to show that if (3.12) holds
for x′ and x′′, then it also holds for x′x′′. To this end, we have:

∂i(ψ
+(x′x′′)) = ∂i(ψ

+(x′)ψ+(x′′))
(3.4)
= ψ+(x′)∂i(ψ

+(x′′)) + (ω′i, ωdeg(x′′))
−1∂i(ψ

+(x′))ψ+(x′′)

= ψ+(x′)ψ+(p̄i(x
′′)) + (ω′i, ωdeg(x′′))

−1ψ+(p̄i(x
′))ψ+(x′′)

= ψ+(x′p̄i(x
′′) + (ω′i, ωdeg(x′′))

−1p̄i(x
′)x′′)

(3.11)
= ψ+(p̄i(x

′x′′)).

2Our convention (2.15) is not in contradiction with (3.10), as the latter is not defined on the Cartan subalgebra.
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To prove the theorem, we proceed by induction on ht(µ), the base case ht(µ) = 0 being obvious. Assuming
ht(µ) > 0, it is enough to consider y = y′fi for some i. Then by Proposition 2.4 and Lemma 3.16, we have:

(ȳ, x̄)H = (ȳ′fi, x̄)H =
1

ri − si
(ȳ′, pi(x̄))H =

1

ri − si
(ȳ′, p̄i(x))H

=
1

ri − si

 1

(ri − si)ci−1
·
∏
j ̸=i

1

(rj − sj)cj

(ψ+(φ(y′)), ψ+(p̄i(x))
)

(3.12)
=

(
n∏

i=1

1

(ri − si)ci

)(
ψ+(φ(y′)), ∂i(ψ

+(x))
)
=

(
n∏

i=1

1

(ri − si)ci

)(
eiψ

+(φ(y′)), ψ+(x)
)

=

(
n∏

i=1

1

(ri − si)ci

)(
ψ+(φ(y′fi)), ψ

+(x)
)
=

(
n∏

i=1

1

(ri − si)ci

)(
ψ+(φ(y)), ψ+(x)

)
,

where we used the induction hypothesis in the second line. This completes the proof of the theorem. ■

Corollary 3.18. The above algebra homomorphisms ψ± are actually algebra isomorphisms:

(3.13) ψ+ : U+
r,s

∼−→F̄ and ψ− : U−r,s
∼−→F̄ ′.

Proof. Suppose that ψ+(x) = 0 ∈ F̄ for some x ∈ (U+
r,s)µ. Then in particular, we have (ψ+(φ(y)), ψ+(x)) = 0

for all y ∈ (U−r,s)−µ, and therefore Theorem 3.17 implies that (ȳ, x̄)H = 0 for all y ∈ (U−r,s)−µ. However, since
(·, ·)H is non-degenerate (see Proposition 2.11) and y 7→ ȳ is an algebra automorphism, we thus get x = 0.

Now suppose that ψ−(y) = 0 ∈ F̄ ′ for some y ∈ (U−r,s)−µ. As φ ◦ψ− = ψ+ ◦φ, we have ψ+(φ(y)) = 0, so

that φ(y) = 0 by above. Thus y = 0 as claimed, since φ : U−r,s → U+
r,s is an anti-isomorphism. ■

Combining Proposition 2.11 with Theorem 3.17 and using (3.13) to identify F̄ with U+
r,s, we obtain:

Corollary 3.19. The pairing (·, ·) : U+
r,s × U+

r,s → C(r, s) is non-degenerate.

4. Shuffle Algebras

In this Section, we introduce the two-parameter shuffle algebra (F , ∗), relate it to the positive subalgebra
U+
r,s, and provide a shuffle interpretation of some of the structures on the latter. Our exposition closely

follows that of the one-parameter setup from [L, Section 2] and [CHW, Section 3].

4.1. Two-parameter shuffle algebra.
Recall that F is the free associative C(r, s)-algebra generated by the finite alphabet I = {1, 2, . . . , n},

and W is the set of words in I. Recall also the notation [i1 . . . id] = i1i2 . . . id for the elements in W, where
i1, . . . , id ∈ I. As before, F has a natural Q+-grading induced by declaring the degree of [i] equal to αi. For
a homogeneous element x ∈ F , we write |x| for the degree of x. For any a, b ∈ C(r, s), we now define the
quantum shuffle product ∗a,b : F × F → F inductively via

(4.1) (xi) ∗a,b (yj) = (x ∗a,b (yj))i+ a−⟨|xi|,αj⟩b⟨αj ,|xi|⟩((xi) ∗a,b y)j, ∅ ∗a,b x = x ∗a,b ∅ = x,

for all i, j ∈ I and all homogeneous x, y ∈ F . By iterating this definition, we find that

(4.2) [i1 . . . im] ∗a,b [im+1 . . . im+d] =
∑
σ

ea,b(σ)[iσ−1(1) . . . iσ−1(m+d)],

where

(4.3) ea,b(σ) =
∏

k≤m<l
σ(k)<σ(l)

a−⟨αik
,αil
⟩b⟨αil

,αik
⟩

and the sum runs over all (m, d)-shuffles of {1, 2, . . . ,m + d}, i.e. the permutations σ ∈ Sm+d such that
σ(1) < σ(2) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ d). There are four choices of a, b that are of interest
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to us; in these cases, the inductive formula (4.1) takes the following form:

(xi) ∗r,s (yj) = (x ∗r,s (yj))i+ (ω′|xi|, ωj)
−1((xi) ∗r,s y)j,

(xi) ∗s,r (yj) = (x ∗s,r (yj))i+ (ω′j , ω|xi|)((xi) ∗s,r y)j,
(xi) ∗s−1,r−1 (yj) = (x ∗s−1,r−1 (yj))i+ (ω′j , ω|xi|)

−1((xi) ∗s−1,r−1 y)j,

(xi) ∗r−1,s−1 (yj) = (x ∗r−1,s−1 (yj))i+ (ω′|xi|, ωj)((xi) ∗r−1,s−1 y)j,

cf. (2.15), and the corresponding expressions for ea,b(σ) of (4.3) are:

er,s(σ) =
∏

k≤m<l
σ(k)<σ(l)

(ω′ik , ωil)
−1, es,r(σ) =

∏
k≤m<l

σ(k)<σ(l)

(ω′il , ωik),

es−1,r−1(σ) =
∏

k≤m<l
σ(k)<σ(l)

(ω′il , ωik)
−1, er−1,s−1(σ) =

∏
k≤m<l

σ(k)<σ(l)

(ω′ik , ωil).

Since the product structure ∗r,s will be used most frequently, we shall often omit the subscript for this
operation, and just use the notation ∗ instead.

We have the following basic result, the proof of which is a direct computation using (4.1):

Proposition 4.1. The bilinear map ∗a,b : F × F → F is associative.

For the later use, we note that ∗r,s and ∗s,r are related via the following result:

Proposition 4.2. For all homogeneous x, y ∈ F , we have

x ∗r,s y = (ω′|x|, ω|y|)
−1y ∗s,r x.

Proof. We proceed by induction on m = ht(|x|)+ht(|y|). If m = 0 or 1, then the result is obvious, because in
these cases one of x and y must be the empty word. Thus, we may assume that ht(|x|) ≥ 1 and ht(|y|) ≥ 1,
and that the result holds for all homogeneous elements x, y with ht(|x|) + ht(|y|) < m. We may further
assume that x, y ∈ W. Then we may write x = x′i and y = y′j for some i, j ∈ I, and by induction we have:

x ∗r,s y = (x′i) ∗r,s (y′j) = (x′ ∗r,s (y′j))i+ (ω′|x|, ωj)
−1((x′i) ∗r,s y′)j

= (ω′|x′|, ω|y|)
−1((y′j) ∗s,r x′)i+ (ω′|x|, ωj)

−1(ω′|x|, ω|y′|)
−1(y′ ∗s,r (x′i))j

= (ω′|x|, ω|y|)
−1 ((ω′i, ω|y|)((y′j) ∗s,r x′)i+ (y′ ∗s,r (x′i))j

)
= (ω′|x|, ω|y|)

−1(y′j) ∗s,r (x′i) = (ω′|x|, ω|y|)
−1y ∗s,r x.

This completes the proof. ■

Let π+ : F → U+
r,s and π− : F → U−r,s be the canonical algebra homomorphisms determined by π+(i) = ei

and π−(i) = fi for i ∈ I. We note that by the definition of ∆r,s on F̄ ≃ U+
r,s, cf. (3.13), we have

∆r,sπ+ = (π+ ⊗ π+)∆r,s.

For w = [i1 . . . id] and any P = {k1 < · · · < km} ⊆ {1, 2, . . . , d}, define wP = [ik1
. . . ikm

]. We then have

∆r,s(w) =
∑

P⊆{1,2,...,d}

z(P ),

where z(P ) = z1⊙r,s · · ·⊙r,s zd with zk = ik⊗1 when k ∈ P and zk = 1⊗ ik when k ∈ P c = {1, 2, . . . , d}\P .
If σP denotes the (d−m,m)-shuffle determined by σP (d−m+ i) = ki, then we have

z(P ) = er,s(σP )wP ⊗ wP c ,

which follows immediately from formula (3.1) for ⊙r,s and the definition (4.3) of er,s(σ). This implies that

∆r,s(w) =
∑

P⊆{1,2,...,d}

er,s(σP )wP ⊗ wP c .

Let F∗ be the graded dual of F , and for each word w ∈ W we define w∗ ∈ F∗ by

(4.4) w∗(v) = δw,v for all v ∈ W.
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Consider the product on F∗ defined by:

(fg)(x) = (g ⊗ f)(∆r,s(x)).

Lemma 4.3. The linear map ϕ : F∗ → (F , ∗) defined by w∗ 7→ w is a C(r, s)-algebra isomorphism.

Proof. The map ϕ is clearly a vector space isomorphism, so we only need to show that ϕ(fg) = ϕ(f) ∗ ϕ(g).
For this, let u = [i1 . . . id] ∈ W, v = [id+1 . . . id+m] ∈ W, and let w be any word of weight |u|+ |v|. Then

(u∗v∗)(w) = (v∗ ⊗ u∗)

 ∑
P⊆{1,...,d+m}

er,s(σP )wP ⊗ wP c

 .

If λwu,v =
∑
er,s(σP ) with the sum over all P ⊆ {1, 2, . . . , d+m} satisfying wP = v, wP c = u, then we get:

(4.5) u∗v∗ =
∑

λwu,vw
∗.

On the other hand, we have

u ∗ v =
∑
σ

er,s(σ)[iσ−1(1) . . . iσ−1(d+m)],

so that the coefficient of any word w ∈ W of weight |u| + |v| in the expansion of u ∗ v is precisely equal to∑
er,s(σ), where the sum ranges over all (d,m)-shuffles σ such that, if P = {σ(d + 1), . . . , σ(d +m)}, then

wP = v and wP c = u. We thus get u ∗ v =
∑
λwu,vw, which together with (4.5) completes the proof. ■

Proposition 4.4. There is a unique C(r, s)-algebra homomorphism Ψ: U+
r,s → (F , ∗) such that Ψ(ei) = i.

Moreover, Ψ is injective.

Proof. The quotient map π+ : F → U+
r,s induces an embedding of graded duals π∗+ : (U+

r,s)
∗ → F∗, where

multiplication is defined by (fg)(x) = (g⊗f)(∆r,s(x)) in both cases. As the pairing (·, ·) on F̄ ≃ U+
r,s is non-

degenerate by Corollary 3.19, we have a vector space isomorphism ψ : U+
r,s → (U+

r,s)
∗ given by ψ(x)(y) = (x, y)

for all x, y ∈ U+
r,s. Evoking that (fg)(x) = (g ⊗ f)(∆r,s(x)) for f, g ∈ (U+

r,s)
∗, we thus obtain:

(xx′, y) = (x′ ⊗ x,∆r,s(y)) = (ψ(x′)⊗ ψ(x))(∆r,s(y)) = (ψ(x)ψ(x′))(y).

This shows that the map ψ is actually an algebra isomorphism. Now, define Ψ = ϕ ◦ π∗+ ◦ ψ. Then Ψ is an
algebra embedding, and since ((π∗+ ◦ψ)(ei))(j) = ψ(ei)(ej) = (ei, ej) = δij , it also follows that Ψ(ei) = i. ■

We shall now give an alternative description of the above map Ψ, making use of the operators ∂′i introduced
in (3.3). For each word w = [i1 . . . id] ∈ W, we define

∂′w = ∂′i1∂
′
i2 . . . ∂

′
id
.

We then define a C(r, s)-linear map Υ: U+
r,s → F by

(4.6) Υ(u) =
∑

w∈Wµ

∂′w(u)w for u ∈ (U+
r,s)µ.

We will show in Proposition 4.6 below that this map coincides with the map Ψ of Proposition 4.4. To do so,
we need to introduce analogues of the operators ∂′i for (F , ∗), which is the content of the following lemma:

Lemma 4.5. For each i = 1, 2, . . . , n, define the C(r, s)-linear map ϵ′i : F → F by

ϵ′i([i1 . . . id]) = δi,id [i1 . . . id−1], ϵ′i(∅) = 0.

Then ϵ′i(j) = δij and we have

ϵ′i(x ∗ y) = ϵ′i(x) ∗ y + (ω′|x|, ωi)
−1(x ∗ ϵ′i(y))

for all homogeneous x, y ∈ F .

Proof. It suffices to assume that x, y ∈ W. If one of x, y has length zero, then the formula is obvious.
Otherwise, we may write x = x′j, y = y′k. Then, we have:

ϵ′i(x ∗ y) = ϵ′i((x
′ ∗ (y′k))j + (ω′|x|, ωk)

−1((x′j) ∗ y′)k)

= δij(x
′ ∗ (y′k)) + δik(ω

′
|x|, ωk)

−1((x′j) ∗ y′) = ϵ′i(x) ∗ y + (ω′|x|, ωi)
−1(x ∗ ϵ′i(y)),

as desired. ■
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For a word w = [i1 . . . id], we also define ϵ′w : F → F via

(4.7) ϵ′w = ϵ′i1ϵ
′
i2 . . . ϵ

′
id
.

Then for any word v ∈ W, we have ϵ′w(v) = δw,v.

Proposition 4.6. The map Υ: U+
r,s → F of (4.6) is an injective algebra homomorphism satisfying Υ(ei) = i

for all i ∈ I, and hence it coincides with the map Ψ of Proposition 4.4.

Proof. First, we note that Ψ ◦ ∂′i = ϵ′i ◦Ψ, by (3.4) and Lemma 4.5. Therefore, if u ∈ (U+
r,s)µ, w ∈ Wµ, and

γw(u) is the coefficient of w in Ψ(u), then

γw(u) = ϵ′w(Ψ(u)) = Ψ(∂′w(u)) = ∂′w(u)Ψ(1) = ∂′w(u).

This shows that Ψ = Υ and completes the proof. ■

Let U denote the image of Ψ, that is U = Ψ(U+
r,s), which is the subalgebra of (F , ∗r,s) generated by I.

Proposition 4.7. The element x =
∑

w∈W γ(w)w ∈ F lies in U if and only if

(4.8)

1−aij∑
k=0

(−1)k
[
1− aij
k

]
ri,si

(risi)
1
2k(k−1)(rs)k⟨αj ,αi⟩γ(z[i]k[j][i]1−aij−kt) = 0

for all i ̸= j and z, t ∈ W.

Proof. Let K be the C(r, s)-subspace of F spanned by the set of elements
∑

w∈W γ(w)w satisfying (4.8).
For any u ∈ (U+

r,s)µ, consider

x = Ψ(u) =
∑
|w|=µ

γw(u)w.

Then, for any word w = [i1 . . . id] with |w| = µ, Proposition 4.6 and Lemma 3.16 imply that

γw(u) = ∂′i1 . . . ∂
′
id
(u) = (ei1 . . . eid , u).

Therefore x ∈ K according to Theorem 3.5, so that U ⊆ K.
To prove the other inclusion, consider the linear map L : F → F∗ defined by w 7→ w∗ for w ∈ W, where

w∗ was defined in (4.4). Then, f ∈ K if and only if we have L(x)(f) = 0 for all x ∈ ker(π+), since ker(π+) is
generated by {Sij}i,j∈I of (3.7) due to (3.13). Thus, it follows that dim(Kµ) = dim(U+

r,s)µ for any µ ∈ Q+.

But since Ψ: U+
r,s → U is an isomorphism, we also have dim(Uµ) = dim(U+

r,s)µ for all µ ∈ Q+.
Therefore, we must actually have the equality K = U . ■

4.2. Additional structures.

Proposition 4.8. (1) Let τ : F → F be the C-linear map defined by τ(r) = s−1, τ(s) = r−1, and

τ([i1 . . . id]) = [id . . . i1].

Then, τ(x ∗r,s y) = τ(y) ∗r,s τ(x) for all x, y ∈ F .
(2) Let x 7→ x̄ be the C-linear map F → F defined by r̄ = s, s̄ = r, and

[i1 . . . id] =

(∏
k<l

(ω′il , ωik)
−1

)
[id . . . i1].

Then, x ∗r,s y = x̄ ∗r,s ȳ for all x, y ∈ F .

Proof. To prove part (1), let x = [i1 . . . im] and y = [im+1 . . . im+d]. Then

τ([i1 . . . im] ∗r,s [im+1 . . . im+d]) = τ

(∑
σ

er,s(σ)[iσ−1(1) . . . iσ−1(m+d)]

)
=
∑
σ

∏
k≤m<l

σ(k)<σ(l)

τ
(
(ω′ik , ωil)

−1
)
[iσ−1(m+d) . . . iσ−1(1)]

=
∑
σ′

∏
k≤m<l

σ′(k)>σ′(l)

(ω′il , ωik)
−1[i(σ′)−1(1) . . . i(σ′)−1(m+d)],

(4.9)
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where the first two sums are taken over all (m, d)-shuffles σ ∈ Sm+d, the last sum is taken over all σ′ ∈ Sm+d

such that σ′(m+ d) < σ′(m+ d− 1) < · · · < σ′(m+ 1) and σ′(m) < σ′(m− 1) < · · · < σ′(1), and the final
equality is obtained by matching these {σ} and {σ′} via σ 7→ σ′ = w0σ with the longest element w0 ∈ Sm+d.

On the other hand, we have:

[im+d . . . im+1] ∗r,s [im . . . i1] =
∑
σ̃

∏
k̃≤d<l̃

σ̃(k̃)<σ̃(l̃)

(ω′im+d+1−k̃
, ωim+d+1−l̃

)−1[i(σ̃w0)−1(1) . . . i(σ̃w0)−1(m+d)]

=
∑
σ̃

∏
k≤m<l

σ̃w0(l)<σ̃w0(k)

(ω′il , ωik)
−1[i(σ̃w0)−1(1) . . . i(σ̃w0)−1(m+d)],

(4.10)

where both sums are taken over all (d,m)-shuffles σ̃ ∈ Sm+d, and the indexes k, l in the latter sum are

related to k̃, l̃ in the former via k = m+ d+ 1− l̃ = w0(l̃), l = m+ d+ 1− k̃ = w0(k̃). The right-hand sides
of (4.9, 4.10) coincide under a natural bijection between the corresponding {σ̃} and {σ′} given by σ′ = σ̃w0.
This completes the proof of part (1).

For part (2), we first note that for any homogeneous x′, y′ ∈ F and i, j ∈ I, we have by part (1):

(ix′) ∗r,s (jy′) = τ((τ(y′)j) ∗r,s (τ(x′)i))

= τ
(
(τ(y′) ∗r,s (τ(x′)i))j + (ω′|y′j|, ωi)

−1((τ(y′)j) ∗r,s τ(x′))i
)

= j((ix′) ∗r,s y′) + (ω′i, ω|jy′|)
−1i(x′ ∗r,s (jy′)).

(4.11)

For x, y ∈ W, we proceed by induction on m = ht(|x|) + ht(|y|). Note first that if either ht(|x|) = 0 or
ht(|y|) = 0, then the claim is trivial. In particular, the assertion holds for m = 0 and m = 1. For the step of
induction, suppose that ht(|x|),ht(|y|) ≥ 1, m = ht(|x|) + ht(|y|), and the claim holds for all x′, y′ ∈ W with
ht(|x′|) + ht(|y′|) < m. By assumption, there are i, j ∈ I and x′, y′ ∈ W such that x = ix′ and y = jy′, and

we have ht(|x′|) + ht(|y′|) = m− 2. Thus, combining (4.11) with the equality (ω′µ, ων)−1 = (ω′ν , ωµ) and the
induction hypothesis, we obtain:

(ix′) ∗r,s (jy′) = j((ix′) ∗r,s y′) + (ω′i, ω|jy′|)−1i(x′ ∗r,s (jy′))

= (ω′|ix′|ω
′
|y′|, ωj)

−1
(
(ix′) ∗r,s y′

)
j + (ω′|jy′|, ωi)(ω

′
|x′|ω

′
|jy′|, ωi)

−1
(
x′ ∗r,s (jy′)

)
i

= (ω′|ix′|ω
′
|y′|, ωj)

−1(ix′ ∗r,s ȳ′)j + (ω′|x′|, ωi)
−1(x̄′ ∗r,s jy′)i

= (ω′|ix′|ω
′
|y′|, ωj)

−1(ω′|x′|, ωi)
−1((x̄′i) ∗r,s ȳ′)j + (ω′|x′|, ωi)

−1(ω′|y′|, ωj)
−1(x̄′ ∗r,s (ȳ′j))i

= (ω′|x′|, ωi)
−1(ω′|y′|, ωj)

−1 ((x̄′i) ∗r,s (ȳ′j)) = ix′ ∗r,s jy′,

which completes the proof. ■

Comparing the above result with Proposition 2.6, we obtain:

Corollary 4.9. (1) For all u ∈ U+
r,s, we have τΨ(u) = Ψτ(u), where τ : U+

r,s → U+
r,s is the C-algebra

anti-automorphism defined in Proposition 2.6(2).

(2) For all u ∈ U+
r,s, we have Ψ(u) = Ψ(ū), where ¯: U+

r,s → U+
r,s is the C-algebra automorphism defined in

Proposition 2.6(3).

Finally, we equip F with a coproduct:

Proposition 4.10. Let ∆: F → F ⊗F be the linear map defined by

∆([i1 . . . id]) =
∑

0≤k≤d

[ik+1 . . . id]⊗ [i1 . . . ik].

Then, ∆(x ∗ y) = ∆(x) ∗∆(y), where we define the shuffle product ∗ on F ⊗ F via

(4.12) (w ⊗ x) ∗ (y ⊗ z) = (ω′|x|, ω|y|)
−1(w ∗ y)⊗ (x ∗ z).

Furthermore, we have ∆Ψ = (Ψ⊗Ψ)∆r,s.
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Proof. It is enough to prove the claim when x, y ∈ W. In this case, we write ∆(x) =
∑

(x) x1 ⊗ x2 and

∆(y) =
∑

(y) y1 ⊗ y2. We note that for any i ∈ I, we have:

∆(xi) = ∆(x) · (i⊗ 1) + 1⊗ xi =
∑
(x)

x1i⊗ x2 + 1⊗ xi,

where · denotes the term-wise multiplication on F ⊗ F :

(4.13) (w ⊗ x) · (y ⊗ z) = wy ⊗ xz.

We shall now proceed by induction on ht(|x|)+ht(|y|) = m. The cases m = 0, m = 1, as well as when one
of x, y has length zero are trivial. Suppose now x, y ∈ W satisfy ht(|x|),ht(|y|) ≥ 1 and m = ht(|x|)+ht(|y|),
and the claim holds for all x′, y′ ∈ W with ht(|x′|) + ht(|y′|) < m. By this assumption, we can write x = x′i
and y = y′j for some i, j ∈ I and x′, y′ ∈ W. Then, we have:

∆((x′i) ∗ (y′j)) = ∆((x′ ∗ (y′j))i) + ∆((ω′|x′i|, ωj)
−1((x′i) ∗ y′)j)

= ∆(x′ ∗ (y′j)) · (i⊗ 1) + 1⊗ (x′ ∗ (y′j))i+ (ω′|x′i|, ωj)
−1 (∆((x′i) ∗ y′) · (j ⊗ 1) + 1⊗ ((x′i) ∗ y′)j) ,

so the induction hypothesis implies that

∆((x′i) ∗ (y′j)) = (∆(x′) ∗∆(y′j)) · (i⊗ 1) + (ω′|x′i|, ωj)
−1(∆(x′i) ∗∆(y′)) · (j ⊗ 1) + 1⊗ ((x′i) ∗ (y′j))

=

∑
(x′)

x′1 ⊗ x′2

 ∗
∑

(y′)

(y′1j)⊗ y′2 + 1⊗ (y′j)

 · (i⊗ 1)

+ (ω′|x′i|, ωj)
−1

∑
(x′)

(x′1i)⊗ x′2 + 1⊗ (x′i)

 ∗
∑

(y′)

y′1 ⊗ y′2

 · (j ⊗ 1)

+ 1⊗ ((x′i) ∗ (y′j))

=
∑

(x′)(y′)

(ω′|x′
2|
, ω|y′

1j|)
−1(x′1 ∗ (y′1j))i⊗ (x′2 ∗ y′2) +

∑
(x′)

(x′1i)⊗ (x′2 ∗ (y′j))

+ (ω′|x′i|, ωj)
−1

∑
(x′)(y′)

(ω′|x′
2|
, ω|y′

1|)
−1((x′1i) ∗ y′1)j ⊗ (x′2 ∗ y′2)

+ (ω′|x′i|, ωj)
−1
∑
(y′)

(ω′|x′i|, ω|y′
1|)
−1(y′1j)⊗ ((x′i) ∗ y′2) + 1⊗ ((x′i) ∗ (y′j))

=
∑

(x′)(y′)

(ω′|x′
2|
, ω|y′

1j|)
−1((x′1i) ∗ (y′1j))⊗ (x′2 ∗ y′2)

+

∑
(x′)

(x′1i)⊗ x′2

 ∗ (1⊗ (y′j)) + (1⊗ (x′i)) ∗

∑
(y′)

(y′1j)⊗ y′2

+ 1⊗ ((x′i) ∗ (y′j))

=

∑
(x′)

(x′1i)⊗ x′2 + 1⊗ (x′i)

 ∗
∑

(y′)

(y′1j)⊗ y′2 + 1⊗ (y′j)

 = ∆(x′i) ∗∆(y′j).

This completes the proof of ∆(x ∗ y) = ∆(x) ∗∆(y).
As per the equality ∆Ψ = (Ψ⊗Ψ)∆r,s : U

+
r,s → F ⊗F , it suffices to verify its validity on the generators,

where it immediately follows from ∆(Ψ(ei)) = [i]⊗ ∅+ ∅ ⊗ [i] = (Ψ⊗Ψ)(∆r,s(ei)) for each i ∈ I. ■

5. Orthogonal Bases

This Section closely follows [CHW, Sections 4-5], which in turn is largely based on [L]. So we shall only
highlight the key changes in the present setup.
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5.1. Dominant and Lyndon words.
From now on, we fix an order ≤ on the alphabet I, which induces a lexicographical order on the monoidW.

For a nonzero x ∈ F , its leading term max(x), is a word w ∈ W such that x =
∑

u≤w tu · u with tu ∈ C(r, s)
and tw ̸= 0. Following the terminology of [CHW, §4.1], we call a word w ∈ W dominant if it appears as a
leading term of some element from U . We useW+ to denote the subset ofW consisting of all dominant words.
Then we have the following basic result, proved exactly as in [L, Proposition 12], cf. [CHW, Proposition 4.1]:

Proposition 5.1. (1) There is a unique basis of homogeneous vectors {mw |w ∈ W+} in U such that for
all w1, w2 ∈ W+ with |w1| = |w2|, we have (cf. (4.7)):

ϵ′w1
(mw2

) = δw1,w2
.

(2) The set
{
ew = ei1 . . . eid

∣∣w = [i1 . . . id] ∈ W+
}
is a basis of U+

r,s.

A word w = [i1 . . . id] is called Lyndon if it is smaller than any of its proper right factors:

w < [ik . . . id] ∀ 1 < k ≤ d.
We use L to denote the set of all Lyndon words. It is well-known that any word w admits a unique
factorization as a product of non-increasing Lyndon words:

(5.1) w = ℓ1ℓ2 . . . ℓk, ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓk, ℓ1, . . . , ℓk ∈ L.
The following Lemma is an extension of [L, Lemma 15] (which covers the case k = 1):

Lemma 5.2. For any ℓ ∈ L and w ∈ W with ℓ ≥ w, we have max(ℓk ∗ w) = ℓkw for all k ≥ 1.

Proof. We proceed by induction on k. The base case k = 1 is analogous to [CHW, Lemma 4.5]. Suppose
that k > 1, and the result holds for all smaller values of k. Since all terms in ℓk ∗w appear with coefficients
in Z≥0[r±1, s±1], it follows that the coefficient of ℓkw in ℓk ∗ w is nonzero. Thus, if u is a word in ℓk ∗ w,
it suffices to show that u ≤ ℓkw. Given such a word u, there is some factorization w = w1w2 (with w1

or w2 possibly empty) such that u occurs in (ℓk−1 ∗ w1)(ℓ ∗ w2). Then since ℓ ≥ w ≥ w1, the induction
hypothesis implies that max(ℓk−1 ∗w1) = ℓk−1w1, and therefore u is less than or equal to all words appearing
in ℓk−1w1(ℓ∗w2). Then since every word that appears in w1(ℓ∗w2) also appears in ℓ∗w, and the case k = 1
implies that max(ℓ ∗ w) = ℓw, all words that appear in ℓk−1w1(ℓ ∗ w2) are less than or equal to ℓkw. This
implies that u ≤ ℓkw, which completes the proof. ■

Let L+ =W+∩L be the set of all dominant Lyndon words. Then Lemma 5.2 implies the following result,
analogous to [L, Proposition 16] (cf. [CHW, Proposition 4.7]):

Proposition 5.3. If ℓ ∈ L+ and w ∈ W+ satisfy ℓ ≥ w, then ℓw ∈ W+.

Completely analogously to [L, Proposition 17], we also have:

Proposition 5.4. A word w ∈ W is dominant if and only if it has the form

w = ℓ1ℓ2 . . . ℓk, ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓk,
where ℓ1, . . . , ℓk are dominant Lyndon words (such a decomposition is unique and coincides with (5.1)).

Finally, due to our earlier dimension count from Proposition 2.8, we also have the following analogue of
[L, Proposition 18] (cf. [CHW, Theorem 4.8]):

Theorem 5.5. The map ℓ 7→ |ℓ| defines a bijection from L+ to Φ+.

We shall denote the inverse of this bijection by ℓ : Φ+ → L+.

5.2. Bracketing.
For homogeneous elements x, y ∈ F , define their (r, s)-bracketing

[x, y]r,s = xy − (ω′|y|, ω|x|)yx.

For a Lyndon word ℓ ∈ L, a decomposition ℓ = ℓ1ℓ2 is called a costandard factorization if ℓ1, ℓ2 are nonempty,
ℓ1 ∈ L, and the length of ℓ1 is the maximal possible. In this case, it is known that ℓ2 is also a Lyndon word.
Following [L, §4.1] and [CHW, §4.3], given a Lyndon word ℓ we define its bracketing [ℓ] ∈ F inductively via:

• [ℓ] = ℓ if ℓ ∈ I,
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• [ℓ] = [[ℓ1], [ℓ2]]r,s if ℓ = ℓ1ℓ2 is the costandard factorization of ℓ.

Evoking the canonical factorization of (5.1), we define the bracketing of any word w ∈ W via:

[w] = [ℓ1][ℓ2] . . . [ℓk].

Finally, we also define Ξ: (F , ·)→ (F , ∗) as the algebra homomorphism given by Ξ([i1 . . . id]) = i1 ∗ · · · ∗ id.
Then we have the following three results, whose proofs are exactly the same as those of Proposition 19,
Proposition 20, and Lemma 21 in [L]:

Proposition 5.6. For any ℓ ∈ L, we have [ℓ] = ℓ+ x, where x is a linear combination of words v > ℓ.

Proposition 5.7. The set
{
[w]
∣∣w ∈ W} is a basis for F .

Lemma 5.8. A word w ∈ W is dominant if and only if it cannot be expressed modulo ker(Ξ) as a linear
combination of words v > w.

For any dominant word w ∈ W+, we define

Rw = Ξ([w]).

For any x, y ∈ F , let us introduce the following notation:

x⊛ y = x ∗r,s y − x ∗s,r y.
Recall from Proposition 4.2 that x ∗r,s y = (ω′|x|, ω|y|)

−1y ∗s,r x, so we have

x⊛ y = x ∗r,s y − (ω′|y|, ω|x|)y ∗r,s x.
This formula immediately implies:

Lemma 5.9. Let ℓ ∈ L+, and let ℓ = ℓ1ℓ2 be its costandard factorization. Then

Rℓ = Rℓ1 ⊛Rℓ2 .

For any word w = [i1 . . . id], set
ϵw = i1 ∗ i2 ∗ · · · ∗ id.

Then completely analogously to [CHW, Proposition 4.13], we obtain:

Proposition 5.10. For w ∈ W+, we have

Rw = ϵw +

v>w∑
v∈W+

χwvϵv

for some χwv ∈ C(r, s). In particular, the set {Rw |w ∈ W+} is a basis for U .

We call {Rw |w ∈ W+} the Lyndon basis of U . Due to Proposition 5.4, we have (cf. [L, Theorem 23]):

Proposition 5.11. The Lyndon basis has the form{
Rℓ1 ∗ · · · ∗Rℓk

∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk
}
.

Let us also recall Leclerc’s algorithm for computing the set L+ of dominant Lyndon words. For each
β ∈ Φ+, let

C(β) =
{
(β1, β2) ∈ Φ+ × Φ+ |β1 + β2 = β, ℓ(β1) < ℓ(β2)

}
,

where ℓ : L+ → Φ+ denotes the inverse of the bijection in Theorem 5.5. Then we have:

Proposition 5.12. For any β ∈ Φ+, we have ℓ(β) = max{ℓ(β1)ℓ(β2) | (β1, β2) ∈ C(β)}.

Proof. Because there is a unique dominant Lyndon word of weight β for each β ∈ Φ+, it will suffice to show
that the set L+ of dominant Lyndon words coincides with the set GL of good Lyndon words considered
in [L]; then the Proposition is just a restatement of [L, Proposition 25].

To avoid confusion with our notation, we will denote the shuffle product ∗ on F defined in [L] by ∗q, and
we will write Uq for the image of the embedding of U+

q into F constructed in [L].

Now, let Ar,s = C[r±1, s±1] and let Aq = C[q, q−1]. Consider the free Ar,s-module FAr,s
=
⊕

w∈W Ar,sw
and the free Aq-module FAq

=
⊕

w∈W Aqw. Note that FAr,s
and FAq

are both subrings of F under the
products ∗r,s and ∗q, respectively. Set UAr,s = U ∩ FAr,s

and Uq
Aq

= Uq ∩ FAq
.
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Let ψ0 : Ar,s → Aq be the ring homomorphism defined by ψ0(r) = q and ψ0(s) = q−1. If we then
define ψ : FAr,s → FAq by ψ(

∑
cww) =

∑
ψ0(cw)w, then it is immediate from the definitions of ∗r,s

and ∗q that ψ is a ring homomorphism. Moreover, if u =
∑

w∈W γ(w)w ∈ UAr,s
, then we know from

Proposition 4.7 that the coefficients γ(w) satisfy the linear equations (4.8). If we apply ψ0 to the equations
in (4.8), then we precisely recover the linear equations in [L, (12)], and therefore [L, Theorem 5] implies
that ψ(u) =

∑
w∈W ψ0(γ(w))w ∈ Uq

Aq
. Now, for any ℓ ∈ L+, consider the homogeneous element mℓ of the

basis {mw |w ∈ W+} constructed in Proposition 5.1. By the defining properties of {mw |w ∈ W+}, the only
element of W+ that occurs as a summand of mℓ is ℓ, and therefore ℓ = max(mℓ). Since ℓ also occurs with
coefficient 1, we have max(ψ(mℓ)) = ℓ, which means that ℓ ∈ GL. This proves that L+ ⊆ GL, and since
both L+ and GL are in bijection with the finite set Φ+, the inclusion must actually be an equality. ■

Combining Proposition 5.12 with the convexity result [L, Proposition 26], we obtain (cf. [L, Corollary 27]):

Corollary 5.13. For β ∈ Φ+, the dominant Lyndon word ℓ(β) is the smallest dominant word of weight β.

The following result is analogous to [CHW, Lemma 4.18] (we choose to present the proof below in order
to highlight the only essential calculation):

Lemma 5.14. Let ℓ = [i1 . . . id] ∈ L+. Then each word appearing in the expansion of Rℓ starts with i1.

Proof. We proceed by induction on d, with d = 1 being trivial. Let ℓ = ℓ1ℓ2 be the costandard factorization.
Then Rℓ = Rℓ1 ⊛Rℓ2 , and by the induction assumption every word appearing in the expansion of Rℓ1 starts
with i1. Now, by [L, Lemma 14], we may write ℓ2 = ℓk1wi, where k ≥ 0, w is a (possibly empty) left factor
of ℓ1, and i is a letter such that wi > ℓ1. If k > 0 or w is nonempty, then ℓ2 starts with i1, and thus every
word appearing in the expansion of Rℓ2 also starts with i1. In this case, the definition of the shuffle product
implies that every word in Rℓ1 ⊛ Rℓ2 starts with i1. In the remaining case ℓ2 = i, we have Rℓ2 = i, and for
any word ℓ′ = [i1j2 . . . jd] in the expansion of Rℓ1 , we obtain:

ℓ′ ⊛ i = ℓ′ ∗r,s i− (ω′i, ω|ℓ′|)i ∗r,s ℓ′ = iℓ′ − (ω′i, ω|ℓ′|)(ω
′
i, ω|ℓ′|)

−1iℓ′ +
∑

cww =
∑

cww,

where in the last sum the words w start with i1 and cw ∈ C(r, s). This completes the proof. ■

Finally, the following important lemma is completely analogous to [CHW, Lemma 4.19]:

Lemma 5.15. For ℓ ∈ L+, we have max(Rℓ) = ℓ.

Combining this with Lemma 5.2, we get the following result:

Corollary 5.16. For w ∈ W+, we have max(Rw) = w.

Proof. By Proposition 5.4, we can write w = ℓ1 . . . ℓk, where ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓk, and each ℓi ∈ L+. Then
by definition, we have Rw = Rℓ1 ∗ . . . ∗ Rℓk . We proceed by induction on k. If k = 1, the statement
reduces to Lemma 5.15. Now suppose k > 1, and the result holds for smaller k. Let d be the largest integer
such that ℓ1 = ℓ2 = . . . = ℓd. By induction, max(Rℓ1 ∗ . . . ∗ Rℓd−1

) = ℓ1 . . . ℓd−1 = ℓd−11 , and we know
from Lemma 5.15 that max(Rℓd) = ℓd = ℓ1. Thus, if u is any word in Rℓd−1

1
and v is any word in Rℓ1 ,

then every word appearing in u ∗ v is less than or equal to the corresponding shuffle in ℓd−11 ∗ ℓ1. Hence,

max(Rℓ1 ∗ . . . ∗Rℓd) = max(ℓd−11 ∗ ℓ1) = ℓd1, by Lemma 5.2.
If d = k, then we are done. If d < k, then by the induction assumption, we have max(Rℓd+1

∗ . . . ∗Rℓk) =
ℓd+1 . . . ℓk, and by the choice of d, ℓ1 > ℓd+1. We shall now argue that ℓ1 > ℓd+1 . . . ℓk. If this inequality
holds, then by using Lemma 5.2 and arguments similar to those above, we will be able to conclude that
max(Rℓ1 ∗ . . . ∗Rℓk) = max(ℓd1 ∗ (ℓd+1 . . . ℓk)) = ℓ1 . . . ℓk = w, which will complete the proof.

Suppose instead that we have ℓ1 ≤ ℓd+1 . . . ℓk. Then we can write ℓ1 = ℓd+1 . . . ℓtℓ
′
t+1v, where d ≤ t < k

(if t = d, then ℓ1 = ℓ′d+1v), ℓ
′
t+1 is a proper (and possibly empty) left factor of ℓt+1, and v is a (possibly

empty) word such that ℓ′t+1v ≤ ℓt+1. But then since ℓ1 is Lyndon and ℓ′t+1v is a right factor of ℓ1, we have
ℓ1 ≤ ℓ′t+1v ≤ ℓt+1, which is a contradiction. Therefore we must have ℓ1 > ℓd+1 . . . ℓk. ■

5.3. Orthogonal PBW Bases.
The following result is an analogue of [CHW, Lemma 5.6] (and the proof is very similar):
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Lemma 5.17. For any ℓ ∈ L+, we have

∆(Rℓ) =
∑

ℓ1,ℓ2∈W+

ϑℓℓ1,ℓ2Rℓ2 ⊗Rℓ1 ,

where ϑℓℓ1,ℓ2 = 0 unless |ℓ1|+ |ℓ2| = |ℓ|, ℓ1 ≤ ℓ, and ℓ ≤ ℓ2 whenever ℓ2 ̸= ∅.

Proof. The condition |ℓ1|+ |ℓ2| = |ℓ| holds because ∆ preserves the grading. To prove that ℓ1 ≤ ℓ, note that
Lemma 5.15 implies that we can write

Rℓ =
∑
w≤ℓ

ϕℓww

for some ϕℓw ∈ C(r, s). Then
∆(Rℓ) =

∑
w1,w2, w1w2=w≤ℓ

ϕℓww2 ⊗ w1,

and since w1 ≤ w ≤ ℓ, Lemma 5.15 implies that ϑℓℓ1,ℓ2 = 0 unless ℓ1 ≤ ℓ. To prove that ℓ ≤ ℓ2 whenever

ℓ2 ̸= ∅, we proceed by induction on the length of ℓ. If ℓ is a letter, the claim is obvious. For the induction
step, let ℓ = wv be the costandard factorization of ℓ, so that Rℓ = Rw ⊛Rv = Rw ∗r,sRv−Rw ∗s,rRv. Since
{Rw |w ∈ W+} is a basis for U , we can write ∆(Rw ∗r,s Rv) =

∑
h,k∈W+ zh,kRh ⊗Rk for some zh,k ∈ C(r, s).

Moreover, interchanging r and s in Proposition 4.10 shows that we have ∆(x ∗s,r y) = ∆(x) ∗s,r ∆(y), where

(w ⊗ x) ∗s,r (y ⊗ z) = (ω′|y|, ω|x|)(w ∗s,r y)⊗ (x ∗s,r z).

Thus, ∆(Rw ∗s,r Rv) =
∑

h,k∈W+ z̄h,kRh ⊗Rk, since r̄ = s and s̄ = r. This implies that

∆(Rℓ) = ∆(Rw ∗r,s Rv −Rw ∗s,r Rv) =
∑

h,k∈W+

(zh,k − z̄h,k)Rh ⊗Rk.

On the other hand, we can also compute ∆(Rℓ) using the formula Rℓ = Rw ∗r,s Rv − (ω′|v|, ω|w|)Rv ∗r,s Rw.

By the induction hypothesis, we have

∆(Rw ∗r,s Rv) =
∑

ϑww1,w2
ϑvv1,v2(Rw2

⊗Rw1
) ∗r,s (Rv2 ⊗Rv1),

where the sum is over all w1, w2, v1, v2 ∈ W+ satisfying w1 ≤ w ≤ w2 unless w2 = ∅ and v1 ≤ v ≤ v2
unless v2 = ∅. Now, by Proposition 5.10, the transition matrix from the basis {Rw |w ∈ W+} to the basis
{ϵw |w ∈ W+} is triangular, and therefore we can rewrite the expression above as

∆(Rw ∗r,s Rv) =
∑

h≥w2v2
k≥w1v1

Θh,kRh ⊗Rk

for some Θh,k ∈ C(r, s). Similar arguments show that

∆(Rv ∗r,s Rw) =
∑

h≥v2w2
k≥v1w1

Θ′h,kRh ⊗Rk,

where Θ′h,k ∈ C(r, s).
Since zh,k = Θh,k by definition, it follows that Θh,k = 0 if and only if Θ′h,k = 0. Indeed, if Θh,k = 0,

then zh,k = zh,k = 0, so the coefficient of Rh ⊗ Rk in the expansion of ∆(Rℓ) is zero. This implies that
0 = Θh,k − (ω′|v|, ω|w|)Θ

′
h,k = −(ω′|v|, ω|w|)Θ

′
h,k, which forces Θ′h,k = 0. Conversely, if Θ′h,k = 0, then we have

Θh,k = zh,k = zh,k − zh,k, and this implies that zh,k = 0, so we also have Θh,k = zh,k = 0.
Now, suppose that zh,k − zh,k ̸= 0, so there are dominant words w2, v2, such that h ≥ w2v2. If w2 ̸= ∅,

then unless v2 = ∅, we get h ≥ w2v2 ≥ wv ≥ ℓ, as desired. If v2 = ∅ but w2 > w, then since w2 has length
at most that of w, we still have h ≥ w2 > wv = ℓ. Now suppose that v2 = ∅ and w2 = w. Then the term
Rh ⊗Rk must have come from (Rw ⊗ 1) ∗r,s (1⊗Rv), so that h = w and k = v. But since v is a right factor
of the Lyndon word ℓ, we have ℓ < v, which contradicts the fact that ϑℓℓ1,ℓ2 = 0 unless ℓ1 ≤ ℓ. If w2 = ∅,
then in the case that v2 ̸= ∅, we have h ≥ v2 ≥ v > ℓ as v is a right factor of ℓ, while in the case that v2 = ∅,
we have h = ∅. This completes the proof of the lemma. ■

We shall also need the analogue of the above lemma for R̄l, with ¯ introduced in Proposition 4.8:
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Lemma 5.18. For any ℓ ∈ L+, we have

∆(R̄ℓ) =
∑

ℓ1,ℓ2∈W+

ϑ̂ℓℓ1,ℓ2R̄ℓ1 ⊗ R̄ℓ2 ,

where ϑ̂ℓℓ1,ℓ2 = 0 unless |ℓ1|+ |ℓ2| = |ℓ|, ℓ1 ≤ ℓ, and ℓ ≤ ℓ2 whenever ℓ2 ̸= ∅.

Proof. This follows from Lemma 5.17 once we show that if ∆(w) =
∑

i ui ⊗ vi, then ∆(w̄) =
∑

i ϱiv̄i ⊗ ūi
for some ϱi ∈ C(r, s). To this end, if w = [i1 . . . id], then

∆(w) =

 ∏
1≤l<m≤d

(ω′im , ωil)
−1

 ∑
0≤k≤d

[ik . . . i1]⊗ [id . . . ik+1]

=
∑

0≤k≤d

 ∏
1≤l≤k<m≤d

(ω′im , ωil)
−1

 [i1 . . . ik]⊗ [ik+1 . . . id],

as desired. ■

For any w ∈ W+, consider its canonical factorization into dominant Lyndon words (Proposition 5.4)

(5.2) w = w1w2 . . . wd, w1 ≥ w2 ≥ · · · ≥ wd, w1, w2, . . . , wd ∈ L+.

Then, we define

R̃w = Rwd
∗Rwd−1

∗ · · · ∗Rw1 ,

R̄w = R̄w1
∗ R̄w2

∗ · · · ∗ R̄wd
.

(5.3)

The following is the key result of this Section (see (2.1) for the notation r|ℓ|, s|ℓ|):

Theorem 5.19. Let ℓ, w ∈ W+. Then (R̃ℓ, R̄w) = 0 unless ℓ = w. Moreover, if ℓ = ℓm1
1 ℓm2

2 . . . ℓmh

h with
ℓ1 > ℓ2 > · · · > ℓh is the canonical factorization of ℓ into dominant Lyndon words, then we have

(5.4) (R̃ℓ, R̄ℓ) =

h∏
i=1

(
[mi]r|ℓi|,s|ℓi| ! r

− 1
2mi(mi−1)
|ℓi| (Rℓi , R̄ℓi)

mi

)
.

The proof of this theorem is similar to that of [CHW, Theorem 5.7]. However, we prefer to present full

details because our PBW bases ({R̃ℓ}ℓ∈W+ and {R̄ℓ}ℓ∈W+) are different from those used in [CHW] (see a
single basis {Ei}i∈W+ of loc.cit.).

Proof. We may assume that |ℓ| = |w|, because otherwise the claim follows from the basic properties of (·, ·).
We then proceed by induction on the length of ℓ (which is equal to the length of w since |ℓ| = |w|). The case
when ℓ and w have length 1 is trivial. Suppose first that ℓ ∈ L+, and w ∈ W+ with |w| = |ℓ| but w ̸= ℓ.
If w = w1 . . . wd is the canonical factorization of (5.2), then d > 1, for otherwise w would be a dominant
Lyndon word of the same degree as the dominant Lyndon word ℓ. Using Lemmas 3.14 and 5.17, we get:

(R̃ℓ, R̄w) = (Rℓ, R̄w1 ∗ · · · ∗ R̄wd
) = (∆(Rℓ), R̄wd

⊗ (R̄w1 ∗ · · · ∗ R̄wd−1
))

=
∑

ℓ1,ℓ2∈W+

ϑℓℓ1,ℓ2(Rℓ2 , R̄wd
)(Rℓ1 , R̄w1

∗ · · · ∗ R̄wd−1
).

Since d > 1, we must have |wd| ≠ |ℓ|, so the only nonzero terms in the sum above satisfy ℓ1 < ℓ < ℓ2, |wd| =
|ℓ2|, and |ℓ1| = |w1 . . . wd−1|. As the length of wd is smaller than the length of w, we may apply the induction
assumption to conclude that all nonzero terms in the above sum satisfy ℓ2 = wd and ℓ1 = w1 . . . wd−1. Then

w1 ≤ w1 . . . wd−1 = ℓ1 < ℓ2 = wd ≤ w1,

which never holds. This finally implies that (R̃ℓ, R̄w) = 0 for ℓ ∈ L+ and w ̸= ℓ.
Now suppose that w ∈ L+, and ℓ ∈ W+ satisfies |ℓ| = |w| but ℓ ̸= w. Let ℓ = ℓ1 . . . ℓd be the canonical

factorization of ℓ, where ℓ1 ≥ · · · ≥ ℓd are dominant Lyndon words, cf. (5.2). Using Lemmas 3.14 and 5.17,
we likewise obtain:

(R̃ℓ, R̄w) = (Rℓd ∗ · · · ∗Rℓ1 , R̄w) =
∑

w1,w2∈W+

ϑ̂ww1,w2
(Rℓd−1

∗ · · · ∗Rℓ1 , R̄w1)(Rℓd , R̄w2).
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Repeating the above argument, we conclude that the only nonzero terms in the sum above satisfy

ℓ1 ≤ ℓ1 . . . ℓd−1 = w1 < w2 = ℓd ≤ ℓ1,

which is never possible. This again implies that (R̃ℓ, R̄w) = 0 in the present setup.
Now, for arbitrary ℓ, w ∈ W+

ν , we proceed by induction on the height of ν. The base case ν ∈ Π is trivial,

so suppose that ν /∈ Π, and for any µ ∈ Q+ with ht(µ) < ht(ν) and any u, v ∈ W+
µ , we have (R̃u, R̄v) = 0

unless u = v. Let ℓ = ℓ1ℓ2 . . . ℓd and w = w1w2 . . . we be the canonical factorizations of ℓ and w into products
of non-increasing dominant Lyndon words. We may assume that d, e > 1, for otherwise ℓ ∈ L+ or w ∈ L+,
which are the two cases already treated above.

We shall first consider the case when ℓ1 ≤ w1. Then, we have:

(R̃ℓ, R̄w) = (Rℓd ∗ · · · ∗Rℓ1 , R̄w1 ∗ · · · ∗ R̄we) = (∆(Rℓd) ∗ · · · ∗∆(Rℓ1), (R̄w2 ∗ · · · ∗ R̄we)⊗ R̄w1)

=
∑

ϑℓ1,1,ℓ1,2,...,ℓd,1,ℓd,2(Rℓd,2 ∗ · · · ∗Rℓ1,2 , R̄w2
∗ · · · ∗ R̄we

)(Rℓd,1 ∗ · · · ∗Rℓ1,1 , R̄w1
),

(5.5)

where every term in the sum above satisfies the following three properties (for all 1 ≤ t ≤ d):
ℓt,1, ℓt,2 ∈ W+, ℓt,1 ≤ ℓt, ℓt ≤ ℓt,2 unless ℓt,2 = ∅,

and ϑℓ1,1,...,ℓd,2 ∈ C(r, s). For a particular term in (5.5), we shall first show that (Rℓd,1 ∗ · · · ∗Rℓ1,1 , R̄w1) = 0
unless there is a unique k such that ℓk,1 = w1 and ℓt,1 = ∅ for all t ̸= k, cf. [CHW, Claim(**)].

To this end, let k be the maximal integer such that ℓk,1 ̸= ∅. Then
(Rℓd,1 ∗ · · · ∗Rℓ1,1 , R̄w1

) = (Rℓk,1
∗ · · · ∗Rℓ1,1 , R̄w1

)

=
∑

w1,1,w1,2∈W+

ϑ̂w1
w1,1,w1,2

(Rℓk−1,1
∗ · · · ∗Rℓ1,1 , R̄w1,1)(Rℓk,1

, R̄w1,2).

Suppose that a particular term

ϑ̂w1
w1,1,w1,2

(Rℓk−1,1
∗ · · · ∗Rℓ1,1 , R̄w1,1

)(Rℓk,1
, R̄w1,2

)

is nonzero. Then |ℓk,1| ≤ |ℓk| < |ℓ| and |w1,2| ≤ |w1| < |w|, so by induction on the weight, we have
(Rℓk,1

, R̄w1,2
) = 0 unless ℓk,1 = w1,2. In this case, w1,2 ̸= ∅, so that w1,2 ≥ w1. Thus, we obtain:

w1,2 = ℓk,1 ≤ ℓk ≤ ℓ1 ≤ w1 ≤ w1,2,

which shows that ℓk,1 = w1,2 = w1, and so w1,1 = ∅. This also implies that ℓt,1 = ∅ for all 1 ≤ t < k.
Thus, if (Rℓd,1 ∗ · · · ∗ Rℓ1,1 , R̄w1) ̸= 0, then there is a unique k such that ℓk,1 = w1 and ℓt,1 = ∅ for

t ̸= k, and since w1 = ℓk,1 ≤ ℓk ≤ ℓ1 ≤ w1, we also have ℓk,1 = ℓk = ℓ1 = w1. This means that for the
corresponding words ℓt,2, we have ℓt,2 = ℓt if t ̸= k, and ℓk,2 = ∅.

Now, let m1 be the largest integer such that ℓ1 = ℓ2 = · · · = ℓm1
. Then combining what we proved above

and using the obvious equalities ϑℓℓ,∅ = ϑℓ∅,ℓ = 1, (5.5) reduces to

(R̃ℓ, R̄w) = (Rℓd ∗ · · · ∗Rℓ1 , R̄w1
∗ · · · ∗ R̄we

)

=

m1∑
k=1

(
(Rℓd ⊗ 1) ∗ · · · ∗ (Rℓk+1

⊗ 1) ∗ (1⊗Rℓ1) ∗ (R
∗(k−1)
ℓ1

⊗ 1), (R̄w2
∗ · · · ∗ R̄we

)⊗ R̄ℓ1

)
=

(
m1∑
k=1

(ω′|ℓ1|, ω
k−1
|ℓ1| )

−1

)(
Rℓd ∗ · · · ∗Rℓ2 , R̄w2

∗ · · · ∗ R̄we

)
(Rℓ1 , R̄ℓ1),

where we used (4.12) in the last equality. So by induction, (R̃ℓ, R̄w) = 0 unless ℓ = w, and if ℓ = w, then
using (ω′|ℓ1|, ω|ℓ1|)

−1 = r−1|ℓ1|s|ℓ1| (cf. (2.1)) and the induction assumption, we obtain

(R̃ℓ, R̄ℓ)

=
[m1]r|ℓ1|,s|ℓ1|

rm1−1
|ℓ1|

h∏
i=2

(
[mi]r|ℓi|,s|ℓi| !r

− 1
2mi(mi−1)
|ℓi| (Rℓi , R̄ℓi)

mi

)
[m1 − 1]r|ℓi|,s|ℓi| !r

− 1
2 (m1−1)(m1−2)
|ℓi| (Rℓ1 , R̄ℓ1)

m1

=

h∏
i=1

(
[mi]r|ℓi|,s|ℓi| !r

− 1
2mi(mi−1)
|ℓi| (Rℓi , R̄ℓi)

mi

)
,
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where ℓ = ℓm1
1 ℓm2

2 . . . ℓmh

h is the canonical factorization of ℓ into dominant Lyndon words with ℓ1 > · · · > ℓh.
We now consider the case when ℓ1 > w1. Then

(R̃ℓ, R̄w) = (Rℓd ∗ · · · ∗Rℓ1 , R̄w1
∗ · · · ∗ R̄we

) = (Rℓ1 ⊗ (Rℓd ∗ · · · ∗Rℓ2),∆(R̄w1
) ∗ · · · ∗∆(R̄we

))

=
∑

ϑ̂w1,1,w1,2,...,we,1,we,2(Rℓ1 , R̄w1,1 ∗ · · · ∗ R̄we,1)(Rℓd ∗ · · · ∗Rℓ2 , R̄w1,2 ∗ · · · ∗ R̄we,2),

and as in (5.5) every term in the sum above satisfies (for all 1 ≤ t ≤ e):
wt,1, wt,2 ∈ W+, wt,1 ≤ wt, wt ≤ wt,2 unless wt,2 = ∅.

Suppose that (Rℓ1 , R̄w1,1 ∗ · · · ∗ R̄we,1) ̸= 0 for some term in the above sum. Since ℓ ̸= ∅, ℓ1 ̸= ∅, we have
wt,1 ̸= ∅ for at least one integer t; let k be the maximal such integer. Then, we have:

(Rℓ1 , R̄w1,1
∗ · · · ∗ R̄we,1

) = (Rℓ1 , R̄w1,1
∗ · · · ∗ R̄wk,1

)

=
∑

ℓ1,1,ℓ1,2∈W+

ϑℓ1ℓ1,1,ℓ1,2(Rℓ1,2 , R̄wk,1
)(Rℓ1,1 , R̄w1,1

∗ · · · ∗ R̄wk−1,1
).

Suppose that a particular term

ϑℓ1ℓ1,1,ℓ1,2(Rℓ1,2 , R̄wk,1
)(Rℓ1,1 , R̄w1,1

∗ · · · ∗ R̄wk−1,1
)

is nonzero. We have |wk,1| ≤ |wk| < |w| and |ℓ1,2| ≤ |ℓ1| < |ℓ|, so by induction on the weight, it follows that
ℓ1,2 = wk,1 for this term. In particular, this shows that ℓ1,2 ̸= 0, so that ℓ1,2 ≥ ℓ1. But then we obtain

w1 < ℓ1 ≤ ℓ1,2 = wk,1 ≤ wk ≤ w1,

a contradiction. Hence, (R̃ℓ, R̄w) = 0 when ℓ1 > w1, which exhausts all cases and proves the theorem. ■

In the next Section, we shall explicitly evaluate the constants {(Rℓ, R̄ℓ)}ℓ∈L+ for a specific ordering on I.
Combining this with the theorem above, we shall derive our main Theorems 7.1 and 7.2 in the last Section.

6. Root Vectors and their Pairings

In this Section, we explicitly compute Rℓ and the pairing (Rℓ, R̄ℓ) for each dominant Lyndon word ℓ ∈ L+,
with the ordering 1 < · · · < n on I = {1, . . . , n}. Similarly to [CHW, §6], we treat classical types case-by-case.
We shall use the notation for positive roots that was introduced in (2.16)–(2.19), and we also follow (2.15).

6.1. Type An.
For the order 1 < 2 < · · · < n, the dominant Lyndon words in type An are given by (cf. [L, §8.1]):

Lemma 6.1. The set of dominant Lyndon words is

L+ =
{
[i . . . j]

∣∣ 1 ≤ i ≤ j ≤ n}.
We shall now explicitly evaluate the corresponding elements Rℓ:

Proposition 6.2. For ℓ = [i . . . j] with 1 ≤ i ≤ j ≤ n, we have

Rℓ = (r − s)j−i[i . . . j].

Proof. We proceed by induction on j− i, with the case j− i = 0 being obvious. For j− i > 0, the costandard
factorization ℓ = ℓ1ℓ2 is explicitly given by ℓ1 = [i . . . (j−1)] and ℓ2 = [j]. Thus, by the induction assumption,
we have:

Rℓ = Rℓ1 ⊛Rℓ2 = (r − s)j−1−i[i . . . j − 1]⊛ [j]

= (r − s)j−1−i
(
[i . . . j − 1] ∗ [j]− (ω′j , ωγi,j−1)[j] ∗ [i . . . j − 1]

)
= (r − s)j−1−i

(
(ω′γi,j−1

, ωj)
−1 − (ω′j , ωγi,j−1)

)
[i . . . j] + (r − s)j−1−i([i . . . (j − 2)]⊛ [j])[j − 1],

which yields the result because (ω′γi,j−1
, ωj)

−1 = r, (ω′j , ωγi,j−1
) = s, and [i . . . (j − 2)]⊛ [j] = 0. ■

Finally, let us derive the formula for the pairing of the above elements:

Corollary 6.3. For ℓ = [i . . . j] with 1 ≤ i ≤ j ≤ n, we have

(Rℓ, R̄ℓ) = (r − s)j−i.
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Proof. We proceed by induction on j − i, the case j = i being clear. Evoking the costandard factorization
of ℓ (with ℓ1 = [i . . . (j − 1)], ℓ2 = [j]) and Lemma 3.14, we obtain:

(Rℓ, R̄ℓ) = (r − s)j−i([i . . . j], R̄ℓ1 ∗ [j]− r[j] ∗ R̄ℓ1) = (r − s)j−i(∆([i . . . j]), [j]⊗ R̄ℓ1 − rR̄ℓ1 ⊗ [j])

= (r − s)j−i([j]⊗ [i . . . (j − 1)], [j]⊗ R̄ℓ1) = (r − s)(Rℓ1 , R̄ℓ1) = (r − s)j−i,

where the last equality follows from Rℓ1 = (r − s)j−i−1[i . . . (j − 1)] and the induction hypothesis. ■

6.2. Type Bn.
For the order 1 < 2 < · · · < n, the dominant Lyndon words in type Bn are given by (cf. [CHW, §6.2]):

Lemma 6.4. The set of dominant Lyndon words is

L+ =
{
[i . . . j]

∣∣ 1 ≤ i ≤ j ≤ n} ∪ {[i . . . n n . . . j] ∣∣ 1 ≤ i < j ≤ n
}
.

We shall now explicitly evaluate the corresponding elements Rℓ:

Proposition 6.5. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j ≤ n, we have

Rℓ = (r2 − s2)j−i[i . . . j].

(2) For ℓ = [i . . . n n . . . j] with 1 ≤ i < j ≤ n, we have

Rℓ = (rs)2(j−n)(r2 − s2)2n−i−j+1[i . . . n n . . . j].

Proof. Because (ω′j , ωγi,j−1) = s2 and (ω′γi,j−1
, ωj)

−1 = r2 for all 1 ≤ i ≤ j ≤ n, the proof of part (1) is

exactly the same as the proof of Proposition 6.2. For (2), we proceed by induction on n − j. If n − j = 0,
then ℓ = [i . . . n n], and its costandard factorization is ℓ = ℓ1ℓ2 where ℓ1 = [i . . . n] and ℓ2 = [n]. Thus:

Rℓ = Rℓ1 ⊛Rℓ2 = (r2 − s2)n−i ([i . . . n] ∗ [n]− (ω′n, ωγin
)[n] ∗ [i . . . n])

= (r2 − s2)n−i
(
(ω′γin

, ωn)
−1[i . . . n n] + ([i . . . (n− 1)] ∗ [n])[n]

)
− (r2 − s2)n−i

(
(ω′n, ωγin)[i . . . n n] + (ω′n, ωγin)(ω

′
n, ωn)

−1([n] ∗ [i . . . (n− 1)])[n]
)

= (r2 − s2)n−i
(
([i . . . (n− 1)] ∗ [n])[n]− s2([n] ∗ [i . . . (n− 1)])[n]

)
= (r2 − s2)Rℓ1 [n] = (r2 − s2)n+1−i[i . . . n n],

where we use the equalities (ω′γin
, ωn)

−1 = (ω′n, ωγin
) = rs and (ω′n, ωn)

−1 = r−1s in the fourth line.
Now suppose that n − j > 0 and the result holds for all larger j. Then, the costandard factorization of

ℓ = [i . . . n n . . . j] is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . n n . . . (j + 1)] and ℓ2 = [j]. Thus, by the induction assumption:

Rℓ = Rℓ1 ⊛Rℓ2

= (rs)2(j+1−n)(r2 − s2)2n−i−j([i . . . n n . . . (j + 1)] ∗ [j]− (ω′j , ωβi,j+1
)[j] ∗ [i . . . n n . . . (j + 1)])

= (rs)2(j+1−n)(r2 − s2)2n−i−j
(
(ω′βi,j+1

, ωj)
−1[i . . . n n . . . j] + ([i . . . n n . . . (j + 2)] ∗ [j])[j + 1]

)
− (rs)2(j+1−n)(r2 − s2)2n−i−j

(
(ω′j , ωβi,j+1

)[i . . . n n . . . j]− (ω′j , ωβi,j+2
)([j] ∗ [i . . . n n . . . (j + 2)])[j + 1]

)
= (rs)2(j−n)(r2 − s2)2n−i−j+1[i . . . n n . . . j]

+ (rs)2(j+1−n)(r2 − s2)2n−i−j ([i . . . n n . . . (j + 2)] ∗ [j]− [j] ∗ [i . . . n n . . . (j + 2)]) [j + 1],

where we used the equalities (ω′βi,j+1
, ωj)

−1 = s−2, (ω′j , ωβi,j+1
) = r−2, and (ω′j , ωβi,j+2

) = 1 in the last line.

Thus, it suffices to prove that

[i . . . n n . . . (j + 2)] ∗ [j]− [j] ∗ [i . . . n n . . . (j + 2)] = 0

(for j = n − 1, the above equality should be rather interpreted as [i . . . n] ∗ [n − 1] − [n − 1] ∗ [i . . . n] = 0).
Since (ω′βik

, ωj)
−1 = 1, (ω′γik

, ωj)
−1 = 1, and (ω′j , ωk)

−1 = 1 for j + 2 ≤ k ≤ n, we have

[i . . . n n . . . (j + 2)] ∗ [j]− [j] ∗ [i . . . n n . . . (j + 2)] =

([i . . . (j + 1)] ∗ [j]− [j] ∗ [i . . . (j + 1)]) [(j + 2) . . . n n . . . (j + 2)]
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and thus it remains to verify [i . . . (j+1)]∗ [j]− [j]∗ [i . . . (j+1)] = 0 for i < j ≤ n−1. To this end, we have:

[i . . . (j + 1)] ∗ [j]− [j] ∗ [i . . . (j + 1)]

= (ω′γi,j+1
, ωj)

−1[i . . . (j + 1)j]− [i . . . (j + 1)j] + ([i . . . j] ∗ [j])[j + 1]− (ω′j , ωj+1)
−1([j] ∗ [i . . . j])[j + 1]

= ([i . . . j] ∗ [j]− r2[j] ∗ [i . . . j])[j + 1]

= ((ω′γij
, ωj)

−1[i . . . j j] + ([i . . . (j − 1)] ∗ [j])[j]− r2[i . . . j j]− s2([j] ∗ [i . . . (j − 1)])[j])[j + 1]

= (s2 − r2)[i . . . j j(j + 1)] +
1

(r2 − s2)j−1−i
R[i...j][j(j + 1)]

= (s2 − r2)[i . . . j j(j + 1)] + (r2 − s2)[i . . . j j(j + 1)] = 0.

This completes the proof of (2). ■

Finally, let us derive the formula for the pairing of the above elements:

Corollary 6.6. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j ≤ n, we have

(Rℓ, R̄ℓ) = (r2 − s2)j−i.
(2) For ℓ = [i . . . n n . . . j] with 1 ≤ i < j ≤ n, we have

(Rℓ, R̄ℓ) = (rs)2(j−n)(r2 − s2)2n−i−j+1.

Proof. The proof of (1) is the same as the proof of Corollary 6.3. For (2), we proceed by induction on n− j.
If n − j = 0, then ℓ = [i . . . n n] and its costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . n] and ℓ2 = [n].
Therefore, we get:

(Rℓ, R̄ℓ) = (r2 − s2)n+1−i([i . . . n n], R̄ℓ1 ∗ [n]− rs[n] ∗ R̄ℓ1)

= (r2 − s2)n+1−i(∆([i . . . n n]), [n]⊗ R̄ℓ1 − rsR̄ℓ1 ⊗ [n])

= (r2 − s2)n+1−i([n]⊗ [i . . . n], [n]⊗ R̄ℓ1)

= (r2 − s2)([n], [n])(Rℓ1 , R̄ℓ1) = (r2 − s2)n+1−i,

where the last equality is a consequence of part (1).
If n− j > 0, then the costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . n n . . . (j + 1)], ℓ2 = [j]. Thus:

(Rℓ, R̄ℓ) = (rs)2(j−n)(r2 − s2)2n−i−j+1([i . . . n n . . . j], R̄ℓ1 ∗ [j]− s−2[j] ∗ R̄ℓ1)

= (rs)2(j−n)(r2 − s2)2n−i−j+1([j]⊗ [i . . . n n . . . (j + 1)], [j]⊗ R̄ℓ1)

= (rs)−2(r2 − s2)([j], [j])(Rℓ1 , R̄ℓ1)

= (rs)2(j−n)(r2 − s2)2n−i−j+1,

where the last equality follows from the induction hypothesis. ■

6.3. Type Cn.
For the order 1 < 2 < · · · < n, the dominant Lyndon words in type Cn are given by (cf. [CHW, §6.3]):

Lemma 6.7. The set of dominant Lyndon words is

L+ =
{
[i . . . j]

∣∣ 1 ≤ i ≤ j ≤ n} ∪ {[i . . . n . . . j] ∣∣ 1 ≤ i < j < n
}
∪
{
[i . . . (n− 1) i . . . n]

∣∣ 1 ≤ i < n
}
.

We shall now explicitly evaluate the corresponding elements Rℓ:

Proposition 6.8. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j < n and ℓ = [n], we have

Rℓ = (r − s)j−i[i . . . j].
(2) For ℓ = [i . . . n] with 1 ≤ i < n, we have

Rℓ = (r − s)n−1−i(r2 − s2)[i . . . n].
(3) For ℓ = [i . . . n . . . j] with 1 ≤ i < j < n, we have

Rℓ = (rs)j−n(r − s)2n−i−j−1(r2 − s2)[i . . . n . . . j].
(4) For ℓ = [i . . . (n− 1) i . . . n] with 1 ≤ i < n, we have

Rℓ = (r − s)2n−2i−1(r2 − s2)r ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n].
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Proof. The proofs of parts (1) and (2) are similar to the proof of Proposition 6.2, while the proof of part (3)
is similar to the proof of part (2) of Proposition 6.5. For part (4), we first note that [i . . . (n − 1)] ∈ U by
part (1), and therefore [i . . . (n − 1)] ∗ [i . . . (n − 1)] ∈ U as well. Moreover, it follows from Proposition 4.7
that also f = ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n] ∈ U . Now, by Lemma 5.2, we have max(f) = ℓ. Then, since
Lemmas 5.2 and 5.15 together imply that max(Rw) = w for all w ∈ W+, we may write

f =
∑

w≤ℓ, w∈W+

ϑwRw

for some ϑw ∈ C(r, s) with ϑℓ ̸= 0. But ℓ is the smallest dominant word of its degree, so we must have

Rℓ = ϑ−1ℓ f = ϑ−1ℓ ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n].

Using this, we can now compute Rℓ. Since the costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . (n−1)]
and ℓ2 = [i . . . n], we have:

Rℓ = Rℓ1 ⊛Rℓ2 = (r − s)2n−2i−2(r2 − s2) ([i . . . (n− 1)] ∗ [i . . . n]− rs[i . . . n] ∗ [i . . . (n− 1)])

= (r − s)2n−2i−2(r2 − s2) (([i . . . (n− 2)] ∗ [i . . . n])[n− 1]− r([i . . . n] ∗ [i . . . (n− 2)])[n− 1])

+ (r − s)2n−2i−2(r2 − s2)(r2 − rs)([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n].

Since we know that Rℓ is a multiple of ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n], it follows that

([i . . . (n− 2)] ∗ [i . . . n])[n− 1]− r([i . . . n] ∗ [i . . . (n− 2)])[n− 1] = 0,

and therefore

Rℓ = (r − s)2n−2i−1(r2 − s2)r ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n],

which completes the proof. ■

Finally, let us derive the formula for the pairing of the above elements:

Corollary 6.9. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j < n and ℓ = [n], we have

(Rℓ, R̄ℓ) = (r − s)j−i.

(2) For ℓ = [i . . . n], we have

(Rℓ, R̄ℓ) = (r − s)n−1−i(r2 − s2).
(3) For ℓ = [i . . . n . . . j] with 1 ≤ i < j < n, we have

(Rℓ, R̄ℓ) = (r − s)2n−i−j−1(r2 − s2)(rs)j−n.

(4) For ℓ = [i . . . (n− 1) i . . . n] with 1 ≤ i < n, we have

(Rℓ, R̄ℓ) = (r − s)2n−2i−1(r2 − s2)(r + s).

Proof. The proofs of parts (1)–(3) are similar to the arguments given in the preceding two Subsections, so
we shall only present the details for part (4). First, we note that (cf. (4.13))

∆(([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n])

= (∆([i . . . (n− 1)]) ∗∆([i . . . (n− 1)])) · ([n]⊗ 1) + 1⊗ ([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n].

Then, since the costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . (n− 1)] and ℓ2 = [i . . . n], we have

(Rℓ, R̄ℓ) = (r − s)2n−2i−1(r2 − s2)r
(
∆(([i . . . (n− 1)] ∗ [i . . . (n− 1)])[n]), R̄ℓ2 ⊗ R̄ℓ1 − rsR̄ℓ1 ⊗ R̄ℓ2

)
= (r − s)2n−2i−1(r2 − s2)r

(
(∆([i . . . (n− 1)]) ∗∆([i . . . (n− 1)])) · ([n]⊗ 1), R̄ℓ2 ⊗ R̄ℓ1

)
= (r − s)2n−2i−1(r2 − s2)r

(
(1 + r−1s)([i . . . n]⊗ [i . . . (n− 1)]), R̄ℓ2 ⊗ R̄ℓ1

)
= (r − s)2n−2i−1(r2 − s2)(r + s) · 1

(r − s)2n−2i−2(r2 − s2)
(Rℓ2 , R̄ℓ2)(Rℓ1 , R̄ℓ1)

= (r − s)2n−2i−1(r2 − s2)(r + s),

where the last equality follows from parts (1)–(2). ■
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6.4. Type Dn.
For the order 1 < 2 < · · · < n, the dominant Lyndon words in type Dn are given by (cf. [CHW, §6.4]):

Lemma 6.10. The set of dominant Lyndon words is

L+ =
{
[i . . . j]

∣∣ 1 ≤ i ≤ j < n
}
∪
{
[i . . . (n− 2)n]

∣∣ 1 ≤ i ≤ n− 2
}
∪{

[i . . . (n− 2)n (n− 1) . . . j]
∣∣ 1 ≤ i < j ≤ n− 1

}
.

We shall now explicitly evaluate the corresponding elements Rℓ:

Proposition 6.11. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j < n, we have

Rℓ = (r − s)j−i[i . . . j].

(2) For ℓ = [i . . . (n− 2)n] with 1 ≤ i ≤ n− 2, we have

Rℓ = (r − s)n−1−i[i . . . (n− 2)n].

(3) For ℓ = [i . . . (n− 2)n (n− 1) . . . j] with 1 ≤ i < j ≤ n− 1, we have

Rℓ = (rs)j+1−n(r − s)2n−i−j−1
(
[i . . . (n− 1)n (n− 2) . . . j] + (rs)−1[i . . . (n− 2)n (n− 1) . . . j]

)
.

Proof. The computations for parts (1)–(2) are completely analogous to those in the proof of Proposition 6.2,
so we shall only provide the details for part (3). We proceed by induction on n − j. If n − j = 1, then the
costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . (n− 2)n] and ℓ2 = [n− 1]. Therefore, we obtain:

Rℓ = (r − s)n−1−i
(
[i . . . (n− 2)n] ∗ [n− 1]− (ω′n−1, ωβin

)[n− 1] ∗ [i . . . (n− 2)n]
)

= (r − s)n−1−i
(
(ω′βin

, ωn−1)
−1 − (ω′n−1, ωβin)

)
[i . . . (n− 2)n (n− 1)]

+ (r − s)n−1−i
(
([i . . . (n− 2)] ∗ [n− 1])[n]− r−1(ω′n−1, ωn)

−1([n− 1] ∗ [i . . . (n− 2)])[n]
)

= (r − s)n−1−i(s−1 − r−1)[i . . . (n− 2)n (n− 1)]

+ (r − s)n−1−i ([i . . . (n− 2)] ∗ [n− 1]− s[n− 1] ∗ [i . . . (n− 2)]) [n]

= (r − s)n−i(rs)−1[i . . . (n− 2)n (n− 1)] + (r − s)R[i...(n−1)][n]

= (r − s)n−i
(
[i . . . (n− 1)n] + (rs)−1[i . . . (n− 2)n (n− 1)]

)
.

Now, if n− j > 1, the costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . (n−2)n . . . (j+1)] and ℓ2 = [j].
Thus, by induction hypothesis, we have:

Rℓ = (rs)j+2−n(r − s)2n−i−j−2[i . . . (n− 2)(n− 1)n (n− 2) . . . (j + 1)]⊛ [j]

+ (rs)j+1−n(r − s)2n−i−j−2[i . . . (n− 2)n (n− 1)(n− 2) . . . (j + 1)]⊛ [j].

Note first that

[i . . . (n− 1)n (n− 2) . . . (j + 1)]⊛ [j]

= [i . . . (n− 1)n (n− 2) . . . (j + 1)] ∗ [j]− r−1[j] ∗ [i . . . (n− 1)n (n− 2) . . . (j + 1)]

= (s−1 − r−1)[i . . . (n− 1)n (n− 2) . . . j] + ([i . . . (n− 1)n (n− 2) . . . (j + 2)]⊛ [j])[j + 1].

Moreover, as (ω′βik
, ωj)

−1 = 1, (ω′k, ωj)
−1 = 1, and (ω′j , ωk)

−1 = 1 for all k ≥ j + 2, we have:

[i . . . (n−1)n (n−2) . . . (j+2)]⊛[j] = ([i . . . (j+1)]∗[j]−[j]∗[i . . . (j+1)])[(j+2) . . . (n−1)n (n−2) . . . (j+2)].

Finally, computations analogous to those in the proof of Proposition 6.5(2) show that

[i . . . (j + 1)] ∗ [j]− [j] ∗ [i . . . (j + 1)] = 0 for all i < j ≤ n− 2,

so that

[i . . . (n− 1)n (n− 2) . . . (j + 1)]⊛ [j] = (s−1 − r−1)[i . . . (n− 1)n (n− 2) . . . j].

Similarly,

[i . . . (n− 2)n (n− 1) . . . (j + 1)]⊛ [j]

= (s−1 − r−1)[i . . . (n− 2)n (n− 1) . . . j] + ([i . . . (n− 2)n (n− 1) . . . (j + 2)]⊛ [j])[j + 1],
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and as above, we have

[i . . . (n− 2)n (n− 1) . . . (j + 2)]⊛ [j] =

([i . . . (j + 1)] ∗ [j]− [j] ∗ [i . . . (j + 1)])[(j + 2) . . . (n− 2)n (n− 1) . . . (j + 2)] = 0.

Thus, we obtain:

Rℓ = (rs)j+2−n(r − s)2n−i−j−2(s−1 − r−1)[i . . . (n− 2)(n− 1)n (n− 2) . . . j]

+ (rs)j+1−n(r − s)2n−i−j−2(s−1 − r−1)[i . . . (n− 2)n (n− 1)(n− 2) . . . j]

= (rs)j+1−n(r − s)2n−i−j−1
(
[i . . . (n− 1)n (n− 2) . . . j] + (rs)−1[i . . . (n− 2)n (n− 1) . . . j]

)
,

which completes the proof. ■

Finally, let us derive the formula for the pairing of the above elements:

Corollary 6.12. (1) For ℓ = [i . . . j] with 1 ≤ i ≤ j < n, we have

(Rℓ, R̄ℓ) = (r − s)j−i.
(2) For ℓ = [i . . . (n− 2)n] with 1 ≤ i ≤ n− 2, we have

(Rℓ, R̄ℓ) = (r − s)n−1−i.
(3) For ℓ = [i . . . (n− 2)n (n− 1) . . . j] with 1 ≤ i < j ≤ n− 1, we have

(Rℓ, R̄ℓ) = (r − s)2n−i−j−1(rs)j−n.

Proof. The proofs of parts (1)–(2) are similar to the previous computations, so we shall omit the details.
For part (3), we proceed by induction on n − j. If n − j = 1, then the costandard factorization is ℓ = ℓ1ℓ2
with ℓ1 = [i . . . (n− 2)n] and ℓ2 = [n− 1], so that

(Rℓ, R̄ℓ) = (∆(Rℓ), [n− 1]⊗ R̄ℓ1 − s−1R̄ℓ1 ⊗ [n− 1])

= (r − s)n−i(∆([i . . . (n− 1)n] + (rs)−1[i . . . (n− 2)n (n− 1)]), [n− 1]⊗ R̄ℓ1 − s−1R̄ℓ1 ⊗ [n− 1])

= (r − s)n−i(rs)−1([n− 1]⊗ [i . . . (n− 2)n], [n− 1]⊗ R̄ℓ1)

= (r − s)(rs)−1(Rℓ1 , R̄ℓ1) = (r − s)n−i(rs)−1.
If n− j > 1, then the costandard factorization is ℓ = ℓ1ℓ2 with ℓ1 = [i . . . (n− 2)n . . . (j + 1)] and ℓ2 = [j],
so that we have

(Rℓ, R̄ℓ) = (∆(Rℓ), [j]⊗ R̄ℓ1 − s−1R̄ℓ1 ⊗ [j])

= (rs)j+1−n(r − s)2n−i−j−1(∆([i . . . (n− 1)n (n− 2) . . . j]), [j]⊗ R̄ℓ1 − s−1R̄ℓ1 ⊗ [j])

+ (rs)j+1−n(r − s)2n−i−j−1((rs)−1∆([i . . . (n− 2)n (n− 1) . . . j]), [j]⊗ R̄ℓ1 − s−1R̄ℓ1 ⊗ [j])

= (rs)j+1−n(r − s)2n−i−j−1([i . . . (n− 1)n (n− 2) . . . (j + 1)], R̄ℓ1)

+ (rs)j+1−n(r − s)2n−i−j−1((rs)−1[i . . . (n− 2)n (n− 1) . . . (j + 1)], R̄ℓ1)

= (rs)−1(r − s)(Rℓ1 , R̄ℓ1) = (rs)j−n(r − s)2n−i−j−1,
where the last equality follows from the induction hypothesis. ■

7. Orthogonal PBW Bases for Ur,s(g)

In this Section, we transfer (using Theorem 3.17) the orthogonal bases constructed in Section 5 to Ur,s(g),
which, along with the computations from Section 6, proves our main results (Theorem 7.1 and Theorem 7.2).

To state our results, we first need to introduce the corresponding notion of quantum root vectors of Ur,s(g).
To this end, we recall the notation ℓ : Φ+ → L+ for the inverse of the bijection from Theorem 5.5. Then, for
γ ∈ Φ+, we define

eγ = Ψ−1
(
R̄ℓ(γ)

)
and fγ = φ

(
Ψ−1

(
Rℓ(γ)

))
,

where the C-algebra bar-involution ¯ and the C(r, s)-algebra anti-automorphism φ were introduced in Propo-
sition 2.6. Explicitly, if α, β ∈ Φ+ are such that ℓ(γ) = ℓ(α)ℓ(β) is the costandard factorization of ℓ(γ), then:

eγ = eαeβ − (ω′β , ωα)eβeα and fγ = fβfα − (ω′α, ωβ)
−1fαfβ .
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We also note that the lexicographical ordering on L+ induces, via the bijection ℓ, a total ordering on Φ+:

(7.1) α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically.

For the order 1 < 2 < · · · < n, one can easily verify (using Lemmas 6.1, 6.4, 6.7, 6.10) that the corresponding
orderings on Φ+ are as follows:

• Type An

α1 < α1 + α2 < · · · < α1 + · · ·+ αn < α2 < · · · < αn−1 < αn−1 + αn < αn.

• Type Bn

α1 < α1 + α2 < · · · < α1 + · · ·+ αn

< α1 + · · ·+ αn−1 + 2αn < · · · < α1 + 2α2 + · · ·+ 2αn

< α2 < · · · < αn−1 < αn−1 + αn < αn−1 + 2αn < αn.

• Type Cn

α1 < α1 + α2 < · · · < α1 + · · ·+ αn−1 < 2α1 + · · ·+ 2αn−1 + αn < α1 + · · ·+ αn

< α1 + · · ·+ αn−2 + 2αn−1 + αn < · · · < α1 + 2α2 + · · ·+ 2αn−1 + αn

< α2 < · · · < αn−1 < 2αn−1 + αn < αn−1 + αn < αn.

• Type Dn

α1 < α1 + α2 < · · · < α1 + · · ·+ αn−2 + αn−1 < α1 + · · ·+ αn−2 + αn < α1 + · · ·+ αn

< α1 + · · ·+ αn−3 + 2αn−2 + αn−1 + αn < · · · < α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn

< α2 < · · · < αn−2 < αn−2 + αn−1 < αn−2 + αn < αn−2 + αn−1 + αn < αn−1 < αn.

We may now state our first main result, which corresponds to parts (a) and (b) of [MT, Theorem 5.12]:

Theorem 7.1. (1) The ordered products

(7.2)


←−∏

γ∈Φ+

emγ
γ

∣∣∣mγ ≥ 0

 and


←−∏

γ∈Φ+

fmγ
γ

∣∣∣mγ ≥ 0


are bases for U+

r,s(g) and U
−
r,s(g), respectively. Here and below, the arrow ← over the product signs refers to

the total order (7.1) on Φ+, thus ordering the positive roots in decreasing order.

(2) The Hopf pairing (2.9) is orthogonal with respect to these bases. More explicitly, we have:

(7.3)

 ←−∏
γ∈Φ+

fnγ
γ ,

←−∏
γ∈Φ+

emγ
γ


H

=
∏

γ∈Φ+

(
δnγ ,mγ

[mγ ]rγ ,sγ !s
− 1

2mγ(mγ−1)
γ (fγ , eγ)

mγ

H

)
.

Proof. For part (1), we first recall from Proposition 5.11 that{
Rw

∣∣w ∈ W+
}
=
{
Rℓ1 ∗ · · · ∗Rℓk

∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk
}

is a basis for U . Since x 7→ x̄ is a C-algebra automorphism, we find that

(7.4)
{
R̄w |w ∈ W+

}
=
{
R̄ℓ1 ∗ · · · ∗ R̄ℓk

∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk
}
.

is also a basis for U . Then, evoking (5.3), the set

(7.5)
{
R̃w

∣∣w ∈ W+
}
=
{
Rℓk ∗ · · · ∗Rℓ1

∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk
}

is yet another basis for U because, by Theorem 5.19, it is orthogonal to {R̄w |w ∈ W+} with respect to the
non-degenerate pairing (·, ·) on U .

Thus, applying Ψ−1 followed by the bar involution x 7→ x̄ on U+
r,s(g) to (7.4), we obtain the basis{

e|ℓ1| . . . e|ℓk|
∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk

}
={

eγ1
. . . eγk

∣∣ k ∈ Z≥0, γ1, . . . , γk ∈ Φ+, γ1 ≥ · · · ≥ γk
}
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for U+
r,s(g), where we use the bijection ℓ and the ordering it induces on Φ via (7.1). Similarly, as φ : U+

r,s → U−r,s
is an anti-isomorphism, applying φ ◦ (x 7→ x̄) ◦Ψ−1 to (7.5) yields a basis of U−r,s(g):{

f|ℓ1| . . . f|ℓk|
∣∣ k ∈ Z≥0, ℓ1, . . . , ℓk ∈ L+, ℓ1 ≥ · · · ≥ ℓk

}
={

fγ1
. . . fγk

∣∣ k ∈ Z≥0, γ1, . . . , γk ∈ Φ+, γ1 ≥ · · · ≥ γk
}

This completes the proof of part (1).

To prove part (2), we shall use Theorem 3.17. Given sequences (nγ)γ∈Φ+ , (mγ)γ∈Φ+ ∈ (Z≥0)Φ
+

, consider

dominant words ℓ =
←−∏

γ∈Φ+

ℓ(γ)nγ and w =
←−∏

γ∈Φ+

ℓ(γ)mγ . Furthermore, for any µ =
∑n

i=1 ciαi ∈ Φ+, we set

Cµ =

n∏
i=1

1

(si − ri)ci
.

We may assume that |ℓ| = |w|, because otherwise the claim is obvious. Then, since φ(fγ) = Ψ−1(Rℓ(γ)) and

ēγ = Ψ−1(R̄ℓ(γ)), Theorem 3.17 implies that

(7.6)

 ←−∏
γ∈Φ+

fnγ
γ ,

←−∏
γ∈Φ+

emγ
γ


H

= C|ℓ|

 −→∏
γ∈Φ+

Ψ−1
(
R

nγ

ℓ(γ)

)
,

←−∏
γ∈Φ+

Ψ−1
(
R̄

mγ

ℓ(γ)

) = C|ℓ|

(
R̃ℓ, R̄w

)
.

The last term in (7.6) is zero unless ℓ = w, i.e. nγ = mγ for all γ ∈ Φ+, due to the first part of Theorem 5.19.
Moreover, if ℓ = w, then according to the second part of Theorem 5.19, we have

(R̃ℓ, R̄w) =
∏

γ∈Φ+

(
[mγ ]rγ ,sγ !r

− 1
2mγ(mγ−1)

γ (Rℓ(γ), R̄ℓ(γ))
mγ

)
,

and therefore

C|ℓ|

(
R̃ℓ, R̄w

)
=
∏

γ∈Φ+

(
[mγ ]rγ ,sγ !s

− 1
2mγ(mγ−1)

γ Cmγ
γ (Rℓ(γ), R̄ℓ(γ))

mγ
)

=
∏

γ∈Φ+

(
[mγ ]rγ ,sγ !s

− 1
2mγ(mγ−1)

γ (fγ , eγ)
mγ

H

)
,

where the last equality follows from (fγ , eγ)H = Cγ(Rℓ(γ), R̄ℓ(γ)), due to (7.6), a corollary of Theorem 3.17.
This completes the proof. ■

By above theorem, the Hopf pairing (·, ·)H is completely determined by nonzero constants {(fγ , eγ)H}γ∈Φ+ .
Our second main result is the explicit evaluation of these constants. Below, we use the notation for the pos-
itive roots that was introduced in (2.16)–(2.19).

Theorem 7.2. (1) In type An (that is, g = sln+1), we have

(fγij
, eγij

)H =
1

s− r
for 1 ≤ i ≤ j ≤ n.

(2) In type Bn (that is, g = so2n+1), we have

(fγij
, eγij

)H =
1

s2 − r2
for 1 ≤ i ≤ j < n,

(fγin , eγin)H =
1

s− r
for 1 ≤ i ≤ n,

(fβij
, eβij

)H =
[2]2r,s(rs)

2(j−n)

s2 − r2
for 1 ≤ i < j ≤ n.
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(3) In type Cn (that is, g = sp2n), we have

(fγij
, eγij

)H =
1

s− r
for 1 ≤ i ≤ j ≤ n with (i, j) ̸= (n, n),

(fγnn
, eγnn

)H =
1

s2 − r2
,

(fβii
, eβii

)H =
[2]2r,s
s2 − r2

for 1 ≤ i < n,

(fβij
, eβij

)H =
(rs)j−n

s− r
for 1 ≤ i < j < n.

(4) In type Dn (that is, g = so2n), we have

(fγij
, eγij

)H =
1

s− r
for 1 ≤ i ≤ j < n,

(fβij
, eβij

)H =
(rs)j−n

s− r
for 1 ≤ i < j ≤ n.

Proof. (1) As γij = αi + · · ·+ αj for 1 ≤ i ≤ j ≤ n, combining Corollary 6.3 and Theorem 3.17, we obtain:

(fγij
, eγij

)H =
1

(s− r)j−i+1

(
Rℓ(γij), R̄ℓ(γij)

)
=

1

(s− r)j−i+1
(s− r)j−i = 1

s− r
.

(2) The computation for the roots γij with 1 ≤ i ≤ j < n is the same as the one above. For the roots
γin = αi + · · ·+ αn, combining Corollary 6.6(1) and Theorem 3.17, we get:

(fγin
, eγin

)H =
1

(s2 − r2)n−i
· 1

s− r
·
(
Rℓ(γin), R̄ℓ(γin)

)
=

1

s− r
.

For the roots βij = αi + · · · + αj−1 + 2αj + · · · + 2αn, combining Corollary 6.6(2) and Theorem 3.17, we
obtain:

(fβij
, eβij

)H =
1

(s2 − r2)2n−i−j
· 1

(s− r)2
·
(
Rℓ(βij), R̄ℓ(βij)

)
=

s2 − r2

(s− r)2
(rs)2(j−n) =

[2]2r,s(rs)
2(j−n)

s2 − r2
.

(3) We shall only carry out the verification for the roots βii, since the other formulas are proved as the ones
above. For the roots βii = 2αi + · · ·+ 2αn−1 + αn, combining Corollary 6.9(4) and Theorem 3.17, we get:

(fβii , eβii)H =
1

(s− r)2n−2i
· 1

s2 − r2
·
(
Rℓ(βii), R̄ℓ(βii)

)
=

1

s− r
(r + s) =

(r + s)2

s2 − r2
=

[2]2r,s
s2 − r2

.

(4) The computation for the roots γij with 1 ≤ i ≤ j < n is the same as the one in (1). For the roots
βin = αi + · · ·+ αn−2 + αn, combining Corollary 6.12(2) and Theorem 3.17 gives us

(fβin
, eβin

)H =
1

(s− r)n−i
·
(
Rℓ(βij), R̄ℓ(βij)

)
=

1

s− r
.

For the roots βi,n−1 = αi + · · ·+ αn with 1 ≤ i < n− 1, as well as the roots βij = αi + · · ·+ αj−1 + 2αj +
· · ·+ 2αn−2 + αn−1 + αn with 1 ≤ i < j < n− 1, combining Corollary 6.12(3) and Theorem 3.17 yields:

(fβij
, eβij

)H =
1

(s− r)2n−i−j
·
(
Rℓ(βij), R̄ℓ(βij)

)
=

(rs)j−n

s− r
.

This completes the proof of this theorem. ■

Appendix A. General Pairing Formulas for Root Vectors

In this Appendix, we derive a formula for the pairing (Rℓ, R̄ℓ) for certain types of dominant Lyndon words
ℓ ∈ L+ that is valid for any ordering of I = {1, . . . , n}. The types of dominant Lyndon words ℓ that we shall
mainly concern ourselves with in this Appendix are those whose first letter occurs exactly once. We note
that this is equivalent to saying that every left factor of ℓ is also Lyndon, so in particular, the costandard
factorization of ℓ has the form ℓ = ℓ1i, where i ∈ I is a single letter.

To prove the main result of this Appendix, we shall need a few lemmas on root systems. As in the rest
of the paper, Φ is an irreducible reduced root system with an ordered set of simple roots Π = {α1, . . . , αn}.

First, we remind the reader of some basic facts about root systems that we shall use frequently.
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Lemma A.1. (1) For all α, β ∈ Π, α ̸= β, we have (α, β) ≤ 0.
(2) If α, β ∈ Φ and α ̸= ±β, then α+ β ∈ Φ whenever (α, β) < 0, and α− β ∈ Φ whenever (α, β) > 0.

Lemma A.2. If γ ∈ Φ, and for distinct α, β ∈ Π, we have γ + α, γ + β ∈ Φ, then γ + α + β ∈ Φ ∪ {0}.
Likewise, if γ − α, γ − β ∈ Φ, then γ − α− β ∈ Φ ∪ {0}.

Proof. If γ+α is proportional to β, then we must have γ+α = −β, so that γ+α+β = 0. Similarly, if γ+β
is proportional to α, we have γ+β+α = 0. Thus, we may assume that neither of those two cases hold. Then
if γ+α+β /∈ Φ, we must have (γ+α, β) ≥ 0 and (γ+β, α) ≥ 0. This implies that (γ, β)+(γ, α) ≥ −2(α, β).
But since γ + β − (γ + α) = β − α /∈ Φ, we must have (γ + β, γ + α) ≤ 0. Combining this with the previous
inequality yields

0 ≥ (γ, γ) + (γ, β) + (γ, α) + (α, β) ≥ (γ, γ)− (α, β).

But (α, β) ≤ 0 because α and β are distinct simple roots, and (γ, γ) > 0. Thus, we have a contradiction.
The second claim follows by applying the first one to −γ. ■

Lemma A.3. Let γ ∈ Φ+, and suppose that for some i ̸= j, β = γ−αi ∈ Φ+ and β′ = γ−αj ∈ Φ+. Suppose
further that for some m ≤ ht(γ)−3, there is a sequence αk1

, . . . , αkm
∈ Π such that β−αk1

− . . .−αkt
∈ Φ+

and β′ − αk1
− . . .− αkt

∈ Φ+ whenever 0 ≤ t ≤ m. Then γ − αk1
− . . .− αkt

∈ Φ+ whenever 0 ≤ t ≤ m.

Proof. We proceed by induction on t. If t = 0, then the assertion is obvious. For the induction step, suppose
that γp = γ −αk1

− . . .−αkp
∈ Φ+ for all p < t. Let βp = β −αk1

− . . .−αkp
and β′p = β −αk1

− . . .−αkp
;

by assumption, both of these are positive roots. Moreover, βt−1 = γt−1 − αi and β
′
t−1 = γt−1 − αj . Thus,

Lemma A.2 implies that γ′t−1 = γt−1−αi−αj ∈ Φ+ as well. Now, because i ̸= j, we have kt ̸= i or kt ̸= j. If
kt ̸= i, then since β′t−1 −αi = γ′t−1 ∈ Φ+ and β′t−1 −αkt = β′t ∈ Φ+, we conclude from Lemma A.2 (and the
assumption that m ≤ ht(γ)− 3 if t = m) that γ′t = γt−1−αi−αj −αkt ∈ Φ+. Likewise, if kt ̸= j, then since
βt−1 − αj = γ′t−1 ∈ Φ+ and βt−1 − αkt = βt ∈ Φ+, we again conclude that γ′t = γt−1 − αi − αj − αkt ∈ Φ+.
Finally, since γ′t + αi = β′t ∈ Φ+ and γ′t + αj = βt ∈ Φ+, we have γ′t + αi + αj = γt−1 − αkt = γt ∈ Φ+ by
Lemma A.2, which completes the proof. ■

Lemma A.4. Let γ ∈ Φ+ be a positive root. Then there are at most three distinct simple roots α ∈ Π such
that γ − α ∈ Φ+.

Proof. Suppose otherwise, and let αi1 , αi2 , αi3 , αi4 ∈ Π be distinct simple roots such that γ − αik ∈ Φ+

for each k = 1, 2, 3, 4. Then by Lemma A.2, γ − αik − αil ∈ Φ+ whenever k ̸= l. But the element
γ′ = 2γ − αi1 − αi2 − αi3 − αi4 is nonzero, so we have

0 < (γ′, γ′) = ((γ − αi1 − αi2) + (γ − αi3 − αi4), (γ − αi1 − αi3) + (γ − αi2 − αi4)).

Then at least one of the values

(γ − αi1 − αi2 , γ − αi1 − αi3), (γ − αi1 − αi2 , γ − αi2 − αi4),

(γ − αi3 − αi4 , γ − αi1 − αi3), (γ − αi3 − αi4 , γ − αi2 − αi4),

must be positive; we can assume without loss of generality that (γ − αi1 − αi2 , γ − αi1 − αi3) > 0. But
(γ − αi1 − αi2)− (γ − αi1 − αi3) = αi3 − αi2 /∈ Φ, which contradicts Lemma A.1. ■

We are now ready to prove two technical lemmas that we shall need for the proofs of Theorems A.8
and A.9. In the proofs below, we will make frequent use of Leclerc’s algorithm; the reader should refer to
Proposition 5.12 for a reminder of its statement.

Lemma A.5. Suppose that ℓ = [i1 . . . id] is a dominant Lyndon word such that i1 occurs exactly once.
Suppose that j ̸= i1, id and |ℓ| − αj ∈ Φ+. Then if k is the smallest integer such that id−k = j, we have
ℓ(|ℓ| − αj) = [i1 . . . id−k−1id−k+1 . . . id].

Proof. We first consider the case that k = 1. Let ℓ′ = ℓ(|ℓ| − αj), and suppose that the Lemma does
not hold. Since j ̸= i1, the first letter of ℓ′ occurs exactly once, and hence the costandard factorization
of ℓ′ is ℓ′ = ℓ′1h for some h ∈ I. Because every left factor of ℓ is a dominant Lyndon word, we have
ℓ(|ℓ| − αid − αid−1

) = [i1 . . . id−2], and therefore by Leclerc’s algorithm, [i1 . . . id−2id] < ℓ′1h, which forces
[i1 . . . id−2] < ℓ′1. But using Leclerc’s algorithm again, we find that ℓ′1hid−1 < [i1 . . . id], which combined with
the previous inequality yields

ℓ′1hid−1 < [i1 . . . id] < ℓ′1,
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a contradiction.
Now, we proceed by induction on the length of ℓ. If ℓ has length 3 (every word satisfying the above

assumptions has length at least 3), then we have ℓ = [i1i2i3] with j = i2, so this case follows from the first
part of the proof.

For the induction step, suppose that the length of ℓ is d > 3, and that the Lemma holds for all ℓ of
smaller length. We can also assume that k ≥ 2. For 1 ≤ t ≤ d, let ℓt = [i1 . . . it]. Note that by the choice
of k, applying Lemma A.2 to |ℓt+1| shows that |ℓt| − αj ∈ Φ+ whenever d− k < t < d. For each such t, set
ℓ′t = ℓ(|ℓt| − αj). Then the word ℓd−1 satisfies the assumptions of the Lemma with id−1 in place of id, so by
induction, we have ℓ′d−1 = [i1 . . . id−k−1id−k+1 . . . id−1].

Now, let ℓ′d = [j1 . . . jd−1]. Because i1 still occurs exactly once in ℓ′d, and it is the smallest letter of
ℓ′d, it follows that every left factor of ℓ′d is also dominant Lyndon. Thus, if jd−1 = id, then we must have
[j1 . . . jd−2] = ℓ′d−1, so in this case we are done. Therefore we can assume that jd−1 ̸= id. But then we can
apply the induction hypothesis to ℓ′d with id in place of j and jd−1 in place of id. If e is the smallest integer
such that jd−e = id, then since ℓ′d−1 = ℓ(|ℓ′d| − αid), the induction hypothesis yields

[i1 . . . id−k−1id−k+1 . . . id−1] = ℓ′d−1 = [j1 . . . jd−e−1jd−e+1 . . . jd−1].

We now have three cases to consider: k < e, k > e, and k = e. Before proceeding, we introduce the notation
wt = [j1 . . . jt] for 1 ≤ t ≤ d− 1 (so in particular, wd−1 = ℓ′d), which we shall use in each of the three cases
below.

Suppose first that k < e. Then jp = ip for 1 ≤ p ≤ d− e− 1 and d− k+ 1 ≤ p ≤ d− 1, and jp+1 = ip for
d− e ≤ p ≤ d− k − 1. This implies that

ℓ′d = wd−1 = [i1 . . . id−e−1idid−eid−e+1 . . . id−k−1id−k+1 . . . id−1].

Now, every left factor of ℓ′d is dominant Lyndon, so in particular, [i1 . . . id−e−1idid−e] is a dominant Lyndon
word. On the other hand, we also know that [i1 . . . id−e] is dominant Lyndon, and therefore Leclerc’s
algorithm implies that [i1 . . . id−eid] < [i1 . . . id−e−1idid−e], i.e. id−e < id. However, this implies that

wd−1j > [i1 . . . id] = ℓ,

contradicting Leclerc’s algorithm.
Next, suppose that k > e. Then jp = ip for 1 ≤ p ≤ d− k − 1 and d− e+ 1 ≤ p ≤ d− 1, and jp = ip+1

for d− k ≤ p ≤ d− e− 1. Thus, it follows that in this case

ℓ′d = wd−1 = [i1 . . . id−k−1id−k+1 . . . id−eidid−e+1 . . . id−1].

Because every left factor of ℓ′d is Lyndon, [i1 . . . id−k−1id−k+1 . . . id−eidid−e+1] is a dominant Lyndon word.
But so is [i1 . . . id−k−1id−k+1 . . . id−eid−e+1] (it is a left factor of ℓ′d−1), so it follows from Leclerc’s algorithm
that

[i1 . . . id−k−1id−k+1 . . . id−eid−e+1id] < [i1 . . . id−k−1id−k+1 . . . id−eidid−e+1],

and hence id > id−e+1.
Now, note that αid−1

, αid−2
, . . . , αid−e+1

is a sequence of simple roots such that |ℓ′d| −αid−1
− . . .−αid−t

∈
Φ+ and |ℓd−1| − αid−1

− . . . − αid−t
∈ Φ+ whenever 1 ≤ t ≤ e − 1. Because d − 1 > e, we also have

e − 1 ≤ ht(|ℓ|) − 3 = d − 3, and therefore we are in a position to apply Lemma A.3, which tells us that for
1 ≤ t ≤ e − 1, |ℓ| − αid−1

− . . . − αid−t
∈ Φ+. Let vd−t = ℓ(|ℓ| − αid−1

− . . . − αid−t
) for 1 ≤ t ≤ e − 1.

Now, since i1 still occurs exactly once in each vd−t, we know that right factor of its costandard factorization
is a single letter. Suppose that the last letter of vd−e+1 is h ̸= j. Then since the dominant Lyndon word
[i1 . . . id−k−1id−k+1 . . . id−eid] has degree |vd−e+1| − αj , the induction hypothesis implies h = id. Thus, the
last letter of vd−e+1 must be either id or j, so it follows that vd−e+1 is either [i1 . . . id−k−1id−k+1 . . . id−eidj] or
[i1 . . . id−eid]. Now, note that by Leclerc’s algorithm, we have ℓ′dj < ℓ, and therefore id−k+1 < j. This implies
that [i1 . . . id−k−1id−k+1 . . . id−eidj] < [i1 . . . id−eid], so by Leclerc’s algorithm, vd−e+1 = [i1 . . . id−eid]. Let
us now determine vd−e+2. It follows from Lemma A.4 that vd−e+2 must be one of the following three words:
vd−e+1id−e+1 = [i1 . . . id−k−1jid−k+1 . . . id−eidid−e+1], wd−e+1j = [i1 . . . id−k−1id−k+1 . . . id−eidid−e+1j], or
ℓd−e+1id = [i1 . . . id−k−1jid−k+1 . . . id−eid−e+1id]. But then the inequalities id−k+1 < j and id−e+1 < id
imply that

wd−e+1j < ℓd−e+1id < vd−e+1id−e+1,
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so by Leclerc’s algorithm, vd−e+2 = vd−e+1id−e+1 = [i1 . . . id−eidid−e+1]. Continuing alike, we conclude that
vd−t = [i1 . . . id−eidid−e+1 . . . id−t−1] for 1 ≤ t ≤ e − 2, so in particular, vd−1 = [i1 . . . id−eidid−e+1 . . . id−2].
But then since id > id−e+1, we have

vd−1id−1 = [i1 . . . id−eidid−e+1 . . . id−1] > [i1 . . . id] = ℓ,

which violates Leclerc’s algorithm.
Finally, we consider the case k = e. Then we have jp = ip for all p ̸= d− e, and therefore

ℓ′d = wd−1 = [i1 . . . id−k−1idid−k+1 . . . id−1].

Then [i1 . . . id−k−1idid−k+1] is Lyndon. But so is [i1 . . . id−k−1id−k+1], so as in the previous cases we conclude
that id > id−k+1.

Now, as in the case that k > e, we can use Lemma A.3 to conclude that |ℓ| − αid−1
− . . . − αid−t

∈ Φ+

for 1 ≤ t ≤ k − 1, and as before we set vd−t = ℓ(|ℓ| − αid−1
− . . . − αid−t

). Again, we know that the right
factor in the costandard factorization of each vd−t is a single letter, and repeating the argument used in
the previous case shows that the last letter of vd−k+1 is either id or j. Therefore vd−k+1 is equal to either
[i1 . . . id−k−1idj] or [i1 . . . id−k−1jid]. Since we must have ℓ′dj < ℓ by Leclerc’s algorithm, it follows that
id < j, and hence vd−k+1 = [i1 . . . id−k−1jid]. Now we determine vd−k+2. Using Lemma A.4, we see that
there are three possibilities: vd−k+1id−k+1 = [i1 . . . id−k−1jidid−k+1], wd−k+1j = [i1 . . . id−k−1idid−k+1j], or
ℓd−k+1id = [i1 . . . id−k−1jid−k+1id]. Then using the inequalities id < j and id > id−k+1, we get

wd−k+1j < ℓd−k+1id < vd−k+1id−k+1,

so by Leclerc’s algorithm, vd−k+2 = [i1 . . . id−k−1jidid−k+1]. As in the previous case, we can continue in
this manner to obtain vd−t = [i1 . . . id−k−1jidid−k+1 . . . id−t−1] for 1 ≤ t ≤ k − 2. In particular, vd−1 =
[i1 . . . id−k−1jidid−k+1 . . . id−2]. But then since id > id−k+1, we have

vd−1id−1 > [i1 . . . id] = ℓ,

which violates Leclerc’s algorithm. Thus, we have a contradiction in all three cases, so the last letter of ℓ′d
must be id and the proof is complete. ■

For the rest of this Appendix, we shall only need the following slightly weaker corollary to Lemma A.5:

Corollary A.6. Suppose that ℓ = [i1 . . . id] is a dominant Lyndon word such that i1 occurs exactly once.
Suppose that j ̸= i1, id, and |ℓ|−αj ∈ Φ+. Let ℓ′ = ℓ(|ℓ|−αj) and ℓ

′′ = ℓ(|ℓ|−αj−αid). Then the costandard
factorization of ℓ′ is ℓ′ = ℓ′′id.

Proof. Since i1 occurs once in ℓ′, the above statement is equivalent to saying that the last letter of ℓ′ is id.
This is a direct consequence of Lemma A.5. ■

For the remainder of this Appendix, we will occasionally need to use the notion of the support of an
element of F . Given x ∈ F and its unique expression x =

∑
w∈W cww in terms of the basis W for F , we

define the support of x to be the set

supp(x) = {w ∈ W | cw ̸= 0}.

Below, we will also make frequent use of the notation C(r, s)∗ = C(r, s) \ {0}.

Lemma A.7. Let ℓ = [i1 . . . id] be a dominant Lyndon word such that i1 occurs exactly once. Then for any
j ∈ I \ {i1} such that |ℓ| − αj ∈ Φ, we have ϵ′j(Rℓ) ∈ C(r, s)∗Rℓ′ , where ℓ

′ = ℓ(|ℓ| − αj). Furthermore, if
|ℓ| − αj /∈ Φ, then ϵ′j(Rℓ) = 0.

Proof. We proceed by induction on the length of ℓ. If ℓ = i1 has length 1, then for all j ̸= i1, ϵ
′
j(Rℓ) = 0. If

ℓ has length 2, then |ℓ| − αj /∈ Φ if and only if j ̸= i1, i2, in which case we clearly have ϵ′j(Rℓ) = 0. If j = i2,
it is easy to verify that ϵ′i2(Rℓ) ∈ C(r, s)∗i1 = C(r, s)∗Ri1 .

Now suppose that ℓ has length at least 3, and the Lemma holds for any dominant Lyndon word of
smaller length that satisfies the assumptions. We know that the costandard factorization of ℓ is ℓ = ℓ1id,
where ℓ1 = [i1 . . . id−1]. Suppose first that j ̸= id, i1 and that |ℓ| − αj ∈ Φ. By Lemma A.2, we also have
|ℓ1| − αj ∈ Φ, and therefore by Corollary A.6, the costandard factorization of ℓ′ = ℓ(|ℓ| − αj) is ℓ′ = ℓ′′id,



ORTHOGONAL BASES FOR TWO-PARAMETER QUANTUM GROUPS 41

where ℓ′′ = ℓ(|ℓ1| − αj). This means that Rℓ′ = Rℓ′′ ∗ id − (ω′id , ω|ℓ′′|)id ∗ Rℓ′′ . On the other hand, the
induction hypothesis implies that ϵ′j(Rℓ1) = cRℓ′′ for some c ∈ C(r, s)∗, so we have

ϵ′j(Rℓ) = ϵ′j(Rℓ1 ∗ id − (ω′id , ω|ℓ1|)id ∗Rℓ1) = ϵ′j(Rℓ1) ∗ id − (ω′id , ω|ℓ1|)(ω
′
id
, ωj)

−1id ∗ ϵ′j(Rℓ1)

= c(Rℓ′′ ∗ id − (ω′id , ω|ℓ′′|)id ∗Rℓ′′) = cRℓ′ .

Now suppose that j = id. Since max(Rℓ) = ℓ by Lemma 5.15, we know that ϵ′id(Rℓ) ̸= 0, and it contains the
dominant Lyndon word ℓ1 = [i1 . . . id−1] in its support. Furthermore, if w is any other word in the support
of ϵ′id(Rℓ), then we know that wid < ℓ, and hence we must have w < ℓ1. This shows that max(ϵ′id(Rℓ)) = ℓ1.
However, if ϵ′id(Rℓ) /∈ C(r, s)∗Rℓ1 , then we can write

ϵ′id(Rℓ) =
∑

w∈W+

cwRw,

where each w in the sum above has degree |ℓ1|, and cw ̸= 0 for some w ∈ W+\{ℓ1}. But by Corollary 5.16, we
have max(Rw) = w, and therefore ℓ1 = max(ϵ′id(Rℓ)) ≥ w. This is a contradiction, because by Corollary 5.13,
ℓ1 is the smallest dominant word of its degree. Therefore we must have ϵ′id(Rℓ) ∈ C(r, s)∗Rℓ1 .

Finally, suppose that |ℓ| − αj /∈ Φ. If ϵ′j(Rℓ) ̸= 0, then we can write

ϵ′j(Rℓ) =
∑

w∈W+

cwR̃w,

where |w| = |ℓ| − αj whenever cw ̸= 0. Then by Theorem 5.19,

(ϵ′j(Rℓ), R̄w) = cw(R̃w, R̄w)

for all w ∈ W+. On the other hand, since (x, y ∗ j) = (ϵ′j(x), y) for all x, y ∈ U , we have

(ϵ′j(Rℓ), R̄w) = (Rℓ, R̄w ∗ j).
Now, upon transitioning to the monomial basis via Proposition 5.10, we get

R̄w ∗ j =

(
ϵw +

v>w∑
v∈W+

χ̄v,wϵv

)
∗ j = ϵwj +

v>w∑
v∈W+

χ̄v,wϵvj ,

for some χv,w ∈ C(r, s). Since v > w clearly implies that vj > wj, it follows from Proposition 5.10 again
that transitioning back to the Lyndon basis yields

R̄w ∗ j =
u≥wj∑
u∈W+

cu,wjR̄u,

for some cu,wj ∈ C(r, s). However, if cu,wj ̸= 0, then we must have |u| = |ℓ|, and since ℓ is dominant Lyndon,
Corollary 5.13 implies that ℓ ≤ u. Suppose that ℓ = u for some u ∈ W+ such that u ≥ wj. Then ℓ ≥ wj.
But we know that i1 occurs first in ℓ, and it is also the smallest letter of both ℓ and wj, so this inequality
implies that w starts with i1. But w is not Lyndon, so we can write w = w1w2 . . . wt for some t ≥ 2, where
w1 ≥ w2 ≥ . . . ≥ wt and each wk is dominant Lyndon (see (5.2)). Then each wk must start with i1, which
contradicts the fact that i1 occurs only once in w. Therefore we have ℓ < u for all u in the sum above with
cu,wj ̸= 0. But this implies that

cw(R̃w, R̄w) = (ϵ′j(Rℓ), R̄w) = (Rℓ, R̄w ∗ j) = 0,

for all w ∈ W+, which is a contradiction. ■

Theorem A.8. Let ℓ be a dominant Lyndon word such that the first letter occurs exactly once. Then

(A.1) supp(Rℓ) =
{
w = [j1 . . . jd]

∣∣∣ |w| = |ℓ|, and j1 ≤ jk and αj1 + . . .+ αjk ∈ Φ+ for all 1 ≤ k ≤ d
}
.

Proof. Denote the set on the right-hand side of (A.1) by Aℓ. Let us first show that supp(Rℓ) ⊆ Aℓ, which
we shall do by induction on the length of ℓ. If ℓ has length 1, then the claim is obvious. Now suppose
that ℓ = [i1 . . . id] has length d > 1, and let ℓ1 = [i1 . . . id−1], so that Rℓ = Rℓ1 ∗ id − (ω′id , ω|ℓ1|)id ∗ Rℓ1 .
We know from Lemma 5.14 that each w ∈ supp(Rℓ) begins with i1, and therefore j1 ≤ jk for all k if
w = [j1 . . . jd] ∈ supp(Rℓ). Now suppose that cww is a term in Rℓ, where cw ̸= 0 and w = [j1 . . . jd]. Then
cw[j1 . . . jd−1] is a nonzero term in ϵ′jd(Rℓ), so we must have αj1 + . . . + αjd−1

∈ Φ+, because otherwise we
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would have a contradiction to the second part of Lemma A.7. Then by the first part of Lemma A.7, we have
ϵ′jd(Rℓ) = cRℓ′ where ℓ

′ = ℓ(|ℓ| − αjd) and c ∈ C(r, s)∗. Then w′ = [j1 . . . jd−1] ∈ supp(Rℓ′), so by induction

we have αj1 + . . .+ αjk ∈ Φ+ whenever 1 ≤ k ≤ d− 1. This completes the proof that supp(Rℓ) ⊆ Aℓ.
To prove the other inclusion, we again proceed by induction on the length of ℓ, with the base case being

obvious. Let w = [j1 . . . jd] ∈ Aℓ. Then |ℓ| − αjd ∈ Φ+, so by Lemma A.7, ϵ′jd(Rℓ) = cRℓ′ for some
c ∈ C(r, s)∗. By induction, supp(Rℓ′) = Aℓ′ , so in particular, [j1 . . . jd−1] ∈ supp(Rℓ′) = supp(ϵ′jd(Rℓ)).
Hence [j1 . . . jd] ∈ supp(Rℓ). ■

For the next theorem, we define the number

pα,β = max
{
k ≥ 0 |α− kβ ∈ Φ

}
associated to any pair α, β ∈ Φ+. Note that if Φ is simply-laced and α+ β ∈ Φ+, then pα,β = 0.

Theorem A.9. Let ℓ be a dominant Lyndon word such that the first letter of ℓ occurs exactly once, and let
ℓ = ℓ1i be its costandard factorization. Then if p|ℓ1|,αi

= 0, we have

(Rℓ, R̄ℓ) =
(
(ω′|ℓ1|, ωi)

−1 − (ω′i, ω|ℓ1|)
)
(Rℓ1 , R̄ℓ1).

Proof. By the definition of R̄ℓ, we have(
Rℓ, R̄ℓ

)
=
(
Rℓ, R̄ℓ1 ∗ i

)
− (ω′|ℓ1|, ωi)

−1 (Rℓ, i ∗ R̄ℓ1

)
.

For the second term, note that, if we write Rℓ =
∑
cww, the definition of ∆ implies that

∆(Rℓ) =
∑

w1,w2∈W,
w=w1w2

cww2 ⊗ w1.

By Lemma 5.14, the first letter of ℓ must also be the first letter of w1 whenever w = w1w2 and cw ̸= 0. Since
i cannot be equal to the first letter of ℓ, we find that

(Rℓ, i ∗ R̄ℓ1) = (∆(Rℓ), R̄ℓ1 ⊗ i) = 0.

Thus,

(A.2) (Rℓ, R̄ℓ) = (Rℓ, R̄ℓ1 ∗ i) = (ϵ′i(Rℓ), R̄ℓ1).

Since p|ℓ1|,αi
= 0, Lemma A.7 implies that ϵ′i(Rℓ1) = 0. Therefore

ϵ′i(Rℓ) = ϵ′i(Rℓ1 ∗ i− (ω′i, ω|ℓ1|)i ∗Rℓ1) = (ω′|ℓ1|, ωi)
−1Rℓ1 − (ω′i, ω|ℓ1|)Rℓ1 .

Combining this with (A.2) completes the proof. ■

Finally, let us describe how Theorem A.9 translates to the Hopf pairing (·, ·)H on Ur,s(g).

Corollary A.10. Let γ ∈ Φ+ be a positive root such that the first letter of the dominant Lyndon word ℓ(γ)
occurs exactly once. Let α, β ∈ Φ+ be such that ℓ(γ) = ℓ(α)ℓ(β) is the costandard factorization of ℓ(γ). Then
if pα,β = 0, we have

(fγ , eγ)H =
(
(ω′β , ωα)− (ω′α, ωβ)

−1) (fα, eα)H(fβ , eβ)H .

Proof. Note first that the conditions on ℓ(γ) imply that β = αi ∈ Π for some i, and therefore (fβ , eβ)H =
1

si−ri . Suppose that α =
∑n

j=1 cjαj . Then, as in the proof of Theorem 7.2, combining Theorem 3.17 with
Theorem A.9 yields

(fγ , eγ)H =

 n∏
j=1

1

(sj − rj)cj

 · 1

si − ri
(
Rℓ(γ), R̄ℓ(γ)

)

=

 n∏
j=1

1

(sj − rj)cj

 · 1

si − ri

(
(ω′α, ωβ)−1 − (ω′β , ωα)

)
(Rℓ(α), R̄ℓ(α))

=
(
(ω′β , ωα)− (ω′α, ωβ)

−1) (fα, eα)H(fβ , eβ)H ,

as desired. ■
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