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ABSTRACT. We construct finite R-matrices for the first fundamental representation V' of two-parameter
quantum groups U, s(g) for classical g, both through the decomposition of V' ® V' into irreducibles U s(g)-
submodules as well as by evaluating the universal R-matrix. The latter is crucially based on the construction
of dual PBW-type bases of Uﬁlfs (g) consisting of the ordered products of quantum root vectors defined via
(r, s)-bracketings and combinatorics of standard Lyndon words. We further derive explicit formulas for affine
R-matrices, both through the Yang-Baxterization technique of [GWX] and as the unique intertwiner between
the tensor product of V' (u) and V (v), viewed as modules over two-parameter quantum affine algebras U s (g)
for classical g. The latter generalizes the formulas of [Jim] for one-parametric quantum affine algebras.
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1. INTRODUCTION

1.1. Summary.

Let g be a Kac-Moody Lie algebra of finite type. Then, it admits a root space decomposition g = n~®hdn™
with n* = @,ce+C - e1q corresponding to a polarization of the root system ® = &+ L (—®*). The elements
e1q are called root vectors. Thus, U(g) = U(n")®@U(h) ® U(n™) and the ordered products in {€4q}aca+
form a basis of U(n™) for any total order on ®*. The root vectors can actually be normalized so that'

(1.1) [ea,ep] = €nep —€geq € L™ - eqyp for all «,B8 € ®* such that a+ 3 € &%,

This inductively recovers all root vectors from the generators {e; };cr, corresponding to simple roots {«;}icr.
When g is a Kac-Moody algebra of affine type, the root subspaces corresponding to imaginary roots are no
longer one-dimensional. However, the theory of such algebras and their representations are well-understood
due to their alternative realization as central extensions of the loop algebras Lg for g of finite type:

(1.2) 0—+C—g—Lg—0.

For any Kac-Moody algebra g, Drinfeld and Jimbo simultaneously introduced the quantum groups Uy (g)
which quantize the universal enveloping algebras of g. Similarly to U(g), the quantum groups admit a
triangular decomposition U, (g) = U,(n™) @ U,(h) ® U, (n*). Furthermore, U, (n*) admit PBW-type bases

(1.3) Un) = @ C@)-cany..ocn,

Y122y €T

formed by the ordered products of g-deformed root vectors ei, € U,(n¥), defined via Lusztig’s braid
group action, which requires one to choose a reduced decomposition of the longest element wy in the Weyl
group W of g. Tt is well-known ([P’]) that this choice precisely ensures that the order > on ®* is convex,
in the sense of Definition 5.7. Moreover, the g-deformed root vectors satisfy a g-analogue of relation (1.1),
where «, 8 and « + 3 are any positive roots satisfying o < a + 8 < 8 and the minimality property (5.9):

(1.4) [easeply = as — 4" Pepea € Zla, a7 - cass

where (+,-) denotes the scalar product corresponding to the root system of type g. Therefore, the ¢-deformed
root vectors can be defined (up to scalar multiple) as iterated g-commutators of the Drinfeld-Jimbo generators
e;, using the combinatorics of the root system and the chosen convex order on ®7.

There is however a purely combinatorial approach to the construction of PBW-type bases of Uq(ni)7
cf. (1.3), that goes back to the works of [[X1, {2, Le, Ro]. To this end, recall Lalonde-Ram’s bijection [LR]:

(1.5) 0ot {standard Lyndon words in I}.

We note that in the context of (1.5), the notion of standard Lyndon words intrinsically depends on a fixed

total order of the indexing set I of simple roots. Furthermore, (1.5) gives rise to a total order on ®* via:
a<fB <= [L(a) <) lexicographically.

It was shown in [Ro] (see [Le, Proposition 26]) that this total order is convex, and hence can be applied to

obtain root vectors e1, € U,(n*) for all @ € T, cf. (1.4), thus eliminating Lusztig’s braid group action.
When g is of finite type and g is not a root of unity, the representation theory of U,(g) is completely

parallel to that of g. On the other hand, to develop the representation theory of U,(g) for affine g one needs

an alternative “new Drinfeld” realization U} (g) from [D], a g-analogue of (1.2). The isomorphism
(1.6) v U(?r(g) - Uy(9) for affine g
was constructed in [13] using an affine braid group action, while ¥~! was stated in [D] using ¢-bracketings.

One of the key features of quantum groups is that they are actually quasitriangular Hopf algebras. The
corresponding universal R-matrices R € U,(g) ® U,(g) (one needs to consider a completion here) satisfy

(1.7) quantum Yang-Baxter equation R12R13R23 = Ro3R13R12-

In particular, for any two finite-dimensional U, (g)-modules V, W one obtains a U,(g)-module intertwiner

(1.8) Byw = (pw @ py)(R)oT: VO W =W @V,

1Throughout the paper, we use R* to denote the set of nonzero elements of any ring R.
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where 7: VW — W®V is the flip map v @ w — w®wv, and py: U,(g) = End(V), pw : U,(g) — End(W).

In fact, quantum groups first appeared in the quantum inverse scattering method, the study of exactly
solvable statistical models and quantum integrable systems arising through the quantum Yang-Baxter equa-
tion (1.7). In this context, one starts with a solution of (1.7) or its version with a spectral parameter

(1.9) Riz2(z)Ri3(2y)Ras(y) = Ros(y)Riz(zy) Rz (),

and defines the algebra UqRTT(g) via the so-called RTT-relations, see | ]. The isomorphisms

(1.10) T: Uy(g) = UfTT(g) for finite type g

and

(1.11) T: U(?r(g) %UfTT(g) for affine type g

were first constructed in [DF] for types A, AS} ) through the Gauss decomposition of the generating matrices.
For other classical Lie algebras and their affinizations, such isomorphisms were first discovered in [[TM] and

were revised much more recently in | , ]-

The theory of multiparameter quantum groups goes back to the early 90s, see e.g. | , Re, Ta]. However,
the current interest in the subject stems from the papers | - ], which study the two-parameter
quantum group U, 4(gl,,) and provide a further application to pointed finite-dimensional Hopf algebras.
In | |, they developed the theory of finite-dimensional representations in a complete analogy with the one-
parameter case, computed the two-parameter R-matrix for the first fundamental U, ;(gl,,)-representation,
and used it to establish the Schur-Weyl duality between U, 4(gl,,) and a two-parameter Hecke algebra.

The above works of Benkart and Witherspoon stimulated an increased interest in the theory of two-
parameter quantum groups. In particular, the definition and the basic structural results on U, s(g) for other
classical simple Lie algebras g were provided in [ , ]. Since then, multiple papers have treated
such algebras case-by-case; we refer the reader to [HP] for a more uniform treatment and complete references.

The generalization of this theory from simple finite-dimensional Lie algebras to affine Lie algebras started
with the work [ ] (which however had some gaps in the exposition, see [Ts] for an alternative treatment
of the PBW results stated in | | without any proof). Subsequently, some attempts were made to provide
a uniform Drinfeld-Jimbo presentation of such algebras, establishing the triangular decomposition and the
Drinfeld double construction for them. More importantly, a new Drinfeld realization of these algebras U, (@)
was established on a case-by-case basis for g being of type A, (see | D), types D,, and Eg (see [[172]),
type G2 (see | 1), and type C, (see [[1Z1]). However, we note a caveat in this treatment: while a
surjective homomorphism from the Drinfeld-Jimbo to the new Drinfeld realization is constructed similarly
to =1 of (1.6), there is no proper proof of its injectivity. The aforementioned new Drinfeld realization of
U, s(g) was used to construct the vertex representations of U, s(g) in an analogy with the one-parameter
case (cf. [F']]). Finally, the FRT-formalism for two-parameter quantum groups was carried out for U, .(gl,,)

and Um(é\[n) in [JLI, ], establishing the two-parameter analogues of (1.10, 1.11) for types A, and AD.

In this work (followed up by [ 1), we develop the FRT-formalism for both U, s(g), U, s(g) when g is
an orthogonal or symplectic Lie algebra. The present note is mostly concerned with the derivation of finite
and affine R-matrices (denoted by R and R(u)), while in [ ] we use R, R(u) to construct (1.10, 1.11),
naturally generalizing [ , | to the two-parameter setup. The latter, in particular, immediately
provides the new Drinfeld realization of U, s(g) (which seemed to be missing for B,,). Let us outline the key
ingredients.

To derive the finite R-matrix RVV, we factorize the universal R-matrix into the “local” ones (one factor for
each positive root of g) and then evaluate the result on the first fundamental representation V' of U, s(g). Due
to the absence of Lusztig’s braid group action on U, 4(g) (noted first in | ]), we use the aforementioned
construction of orthogonal dual bases of positive and negative subalgebras of U, s(g) through standard
Lyndon words and the technique of quantum shuffle algebras, which goes back to [I[{1, 2, Le, Ro] in the one-
parameter setup, to | ] in the super case, and finally to [BH, , , | and our accompanying
note | | for the two-parameter case. We note, however, that once the explicit formula is obtained, one
can directly check that it coincides with the R-matrix Ryv by verifying that it intertwines the U, s(g)-action
on V ® V and acts by the same scalars on the highest weight vectors of V ® V as Ryv.
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To derive the affine R-matrix Ry v (u/v), we use the Yang-Bazterization technique of | ]. Since Ry
has three distinct eigenvalues (in contrast to the case g = sl,, when it has only two distinct eigenvalues), there
are 12 possible resulting operators, and in each case one needs to check some extra conditions to guarantee
that they satisfy the Yang-Baxter equation. Instead, once the explicit formula for the correctly chosen one
is derived, it is straightforward to check that it intertwines the U, s(g)-actions on the tensor products of
evaluation modules V(u) ® V(v) — V(v) ® V(u). The results of [Jim] then guarantee that the space of all
such intertwiners is at most one-dimensional, and therefore the operator R(u/v) constructed through the
Yang-Baxterization coincides with va(u /v), thus producing a solution of (1.9) by further composing with
the flip map 7.

While we were finishing the present note, closely related preprints | , , ] appeared on arXiv.
Though we communicated our results to one of those authors back in February 2024, it is a pity they decided
not to consolidate our papers to be posted simultaneously. Partially due to this flaw, the present note is
separated from a more straightforward part | ] that will be posted later.

1.2. Outline.
The structure of the present paper is the following:

e In Section 2.1, we recall two-parametric quantum groups U, s(g) for simple finite-dimensional Lie alge-
bras g, see Definition 2.2, and summarize their basic properties (including the pairing of Proposition 2.5).

e In Section 3, we explicitly construct the first fundamental representations of U, 4(g) for classical g, see
Propositions 3.1-3.4. We further decompose the tensor product V@V into irreducible U, ;(g)-submodules,
see Proposition 3.9. The proof of the latter is derived, through a reduction to the Lie algebra limit, by
providing explicitly the corresponding highest weight vectors.

e In Section 4, we evaluate the universal intertwiner va from Theorem 4.1 on the first fundamental
U, s(g)-representations from Section 3 for g = 509,41, 5pPs,,, 502, see Theorems 4.4-4.6. This generalizes
the corresponding formula of Theorem 4.3 discovered first in | ]. Our proof is slightly different though,
as we only match the eigenvalues of the three highest weight vectors in V' ® V' featured in Proposition 3.9
(see Lemmas 4.8-4.10), and then verify the intertwining property with the action of f;’s (see Lemma 4.11).

e In Section 5, we provide an alternative proof of the formulas for Ryv from Theorems 4.3-4.6 by showing
that they arise as the product of “local” operators parametrized by the positive roots of ®. Since
Lusztig’s braid group action has no analogue for U, s(g), we instead use a combinatorial approach to the
construction of orthogonal PBW bases, see Theorem 5.12 (which constitutes the main result of | D-
To this end, we construct the (quantum) root vectors iteratively by using the combinatorics of standard
Lyndon words, recalled in Subsections 5.1 and 5.3. The factorization formula that results from these
considerations is stated in Theorem 5.13. We conclude the section with a case-by-case treatment of each
classical series, providing proofs of the formulas (4.6, 4.7, 4.9, 4.11) that are more conceptual than those
presented in Section 4.

e In Section 6, we introduce the two-parameter quantum affine algebras U, (g), see Definition 6.2, which
is in agreement with [ , , ] for g of types A,,C,, D,. We also introduce their counterparts
U, +(@) without degree generators and extend the first fundamental U, ;(g)-representations p from Propo-
sitions 3.1-3.4 to evaluation U] ,(g)-representations in Propositions 6.4-6.7. The latter ones are upgraded
to U, s(g)-representations in Proposition 6.8. The main results of this section are Theorems 6.10-6.12,
which evaluate the universal intertwiner of U, 4(g) on the tensor product of two such representations for
g = 502,41, 5Pa,,, 502,. This generalizes the corresponding formula (6.22) of Theorem 6.9, first discovered
in [J1.2]. According to [Jim], composing R(z) of (6.22)-(6.25) with a flip map 7 produces solutions of the
Yang-Baxter relation with a spectral parameter (1.9). While the proofs are straightforward, the origin of
these formulas (whose one-parameter counterparts were discovered in [Jim]) is postponed till Section 7.

e In Section 7, we derive the formulas (6.22)—(6.25) through the Yang-Baaterization technique of | ].
e In Appendix A, we realize U,(g) with ¢ = r'/2571/2 as a subalgebra (of an extension) of U, 4(g).

e In Appendix B, we discuss the relation between the two-parameter R-matrices of U, s(g) and U, (g) and
their one-parameter counterparts of [Jim] via a classical twist construction of [Re]. While in A-type they
can be matched as shown in Proposition B.1, we emphasize a surprising discrepancy in BCD-types.
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2. NOTATIONS AND DEFINITIONS

Throughout the paper, we will work over an algebraically closed field K D C(r,s), where r and s are
indeterminates.

2.1. Two-parameter finite quantum groups.

Let E be a Euclidean space with a symmetric bilinear form (-,-), and ® C F be an indecomposable
reduced root system with an ordered set of simple roots IT = {«;,...,a,}. Let g be the complex simple Lie
algebra corresponding to this root system. Let C' = (cij)zjzl be the Cartan matrix of g, explicitly given by

cij = 2&"&’9, and let d; = (v, ;) where (-, ) is normalized so that the short roots have square length 2.

We denote the root and weight lattices of g by @ and P, respectively:

i=1 i=1
Having fixed above the order on the set of simple roots II, we consider the (modified) Ringel bilinear form

(-,-y on @, such that (unless {i,j} = {n — 1,n} in type D,,) we have:

dicij if 4 <J
(21) (ai,aj> = dZ if sz 5

0 if 1>
while in the remaining case of D, -type system, we set:
(22) <an71>an> = <5n71 —E&nyEn—1+ 5n> = _17 <an7an71> = <<€n71 +En,En—1— 5n> =1.
We note that (u,v) = (u,v) + (v, u) for any p,v € Q.

Remark 2.1. The modification (2.2) is made to ensure that the algebra U, s(s02y,) defined below matches
its original definition in | ].

We shall also need two-parameter analogues of g-integers and g-factorials (cf. | , (2.2))):
[mlys = % =rm 254 4™ 24 5™ forall meN,
(Mol = [m]ps[m—1]r s [1]rs for m >0, [0],s!' =1,

and most importantly two-parameter analogues of Gaussian binomial coefficients:

(2.3) [7;:]” = [m—[/T]]Tt'Ek]rs' forall 0<k<m.
Finally, in analogy with the one-parameter case (see [Jan, §4.2]), we define
(2.4) 7y = r(0N/2, 5, = s(1/2 forall e @,

TP =T, = rdi, S; = Sq; = s forall 1<i<n.

We are ready now to introduce the main actor of this paper, the two-parameter quantum group of g,
following [HP]. While this definition is uniform for all types, we will make it more explicit for classical Lie
algebras g in Subsection 2.3.
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Definition 2.2. The two-parameter quantum group U, s(g) of a simple Lie algebra g is the associative
K-algebra generated by {e;, fi,wit, (w)) T}, with the following defining relations (for all 1 <i,j < n):

(2.5) [wi,wj] = [wi,wj] [wl,wj] 0, wﬂijl =1=(w )il(wz)ﬂ,

(2.6) wie; = r(aj7ai>s_<ai7aj>€jwi7 wifj = r_<aj’“i>8<ai’aj>fjwi,

(2.7) wgej — 7'_<ai’aj>8<aj’ai>ejw;—, wz/‘fj _ r(auaj)s—(ajﬂi)fjw;,
w; — W}

(2.8) eifj — fiei = 0y r: o

and quantum (r, s)-Serre relations

1—c;j
I —cy —cij— . .
(29) e
J 1 - Ci. 1 — [eF R 170@77’6 . .
Z“”k{ k ] (risi) D (rs)F el frf 7T =0 Vi ]
k=0 Ti,84

Remark 2.3. We note that this definition does depend on the choice of an order of II. We shall make a
standard choice for classical g in the end of this section, thus matching the rest of the literature | , ].
We note that the algebra U, s(g) is Q-graded via
deg(e;) = i, deg(fi) = —ay, deg(w;) =0, deg(w,) =0 forall 1<i<n.
For n € Q, let U, s(g), (or simply (Uys),) denote the degree yu component of U, s(g) under this Q-grading.

Analogously to the one-parameter case (cf. [Jan, §4.11]), there is a Hopf algebra structure on U, s(g),
where the coproduct A, counit €, and antipode S are defined on generators by the following formulas:
A = @ wf e(wit) = Swit) = wit
A((w))* ) = (wi)il ® (W)™ e((w))* ) S((wi)* ) (OJQ)]F1
Ale;)) =, @14+ w; ®e; e(e;) = S(e;) = €;
A(f)_1®fz+fz®w (fz): (fz) _fz( )
Remark 2.4. The simplest way to see how the definition above generalizes the usual Drinfeld-Jimbo one-
parametric quantum groups Uy (g) (cf. [Jan, §4]) is to work in the numeric setup. To this end, letr,s € C\{0}

with r2 # s and define U, s(g) as in Definition 2.2, but now viewed as an algebra over K = C. Then, for
any q € C with ¢* # 1, there is a natural Hopf algebra epimorphism

7 Uyg-1(g) » Ugg) given by e E;, fi— Fy, w; = K, wi— K71 forall 1<i<n.
Moreover, the kernel of m is the two-sided ideal J generated by {w] — w; ~1 ™1 Thus, we get:
(2.10) Hopf algebra isomorphism U, ,-1(g)/J == Uy(g).
We shall also realize U,(g) (with ¢ = r'/2s=1/2) as a subalgebra of an extension of U, 4(g) in Appendiz A.

Let us also define several subalgebras of U, s(g):

e the “positive” subalgebra U, (g), generated by {e;}i;,

the “negative” subalgebra U, (g), generated by {f;}i-,,

the “Cartan” subalgebra U?(g), generated by {w;™', (w})*}r,
the “non-negative subalgebra” UZ, (g), generated by {e;,w Ehn
+1\n

the “non-positive subalgebra” U, (g), generated by {f;, (w])='}7,.

[ )
L]
[ )
. Wi

When g is clear from the context, we will use U, ; instead of U, s(g), and similarly for the above subalgebras.

For any p = Y7 | ki € Q, we define w,,w;, € U (g) via:

wa =l ke, ol = @) ) ()
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2.2. Hopf pairing.

One of the basic structural properties of U, s(g) is that it may be realized as a Drinfel’d double of its
subalgebras Uss(g) and UTZ)S (g) with respect to the Hopf algebra pairing. This was established case-by-case
in the literature, and we shall rather just refer to [[TP]:

Proposition 2.5. There exists a unique bilinear pairing

(2.11) () Us(9) x Uzl (g) =+ K

satisfying the following structural properties

(212)  (w2) =@ oy, Al), (y2)=(A@ly).o' @) Vo' € UZ(), vy € UL(g),

as well as being given on the generators by:

(213) (fiij) = 07 (wia ei) - 07 (fue]> - 61] s; — 1

(Wh,w,) = rmg= A for all A, pe Q.

forall 1<14,5<mn,

We can also formally extend this pairing to the weight lattice P as follows:

n

(2.14) (wh,wy) = H (W), wy) it for any weights A = Z \ioi; € P, = Zuiai eP.
i=1

i,j=1 i=1
Although A;, u; may not be integers, the expression above still makes sense because K is algebraically closed.

Remark 2.6. As mentioned in the beginning of this Subsection, the above pairing allows for the realization
of any two-parameter quantum group U, s(g) as a Drinfel’d double of its Hopf subalgebras Ués(g), Ugs(g)
with respect to the pairing (-,-) of (2.11).

Let us list several basic properties of this pairing that will be needed later.

e First, if x € U, 5(g), and v € @, then we have:

(2.15) worw, b = (w!

H,w,,)x, wl/x(wy)il = (w;ku)7 €.

e Second, the pairing (-, -) is of homogeneous degree zero, i.e.

(2.16) (y,z) =0 for ze€ Ufs(g)#, y € Uss(g),,, with p # v
e Third, similarly to the one-parameter case (cf. [Jan, §6.14-6.15]), we have
(2.17) A)ez@l+ P Ul(@)u—vwr @ Ul (g) +w, @,
o<vr<p
(2.18) Aly)eyow,+ P U@ @ U, (8)-(u-nw, + 1@y,
o<v<p

for any z € U;f,(g), and y € U, ,(g) . Here, we use the standard order < on Q:

(219) vSpuEs=Spu—v= Zkiai with k; € Zzo.

(2

Then, combining the properties (2.16)—(2.18) with the defining properties (2.12, 2.13), we obtain:

(w;y,m) = (wL,wu)(y,LL‘), (ywiux) = (yvx)a

(2.20) (y,wp2) = (W w)(y2),  (y,2w) = (y,2),

for any = € Uﬁs(g)y and y € U (9)—p-
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2.3. Classical types.

Since in this paper we are only interested in the classical Lie algebras g, it will be helpful to have more
explicit formulas for the bilinear form, avoiding the use of the form (-,-) on @ defined in (2.1, 2.2). To this
end, let us first recall the explicit realization of the classical root systems as well as specify the choice of
simple roots for them:

o A, -type (corresponding to g ~ sl,y1).
Let {&;}71" be an orthonormal basis of R"*!. Then, we have
(221) @An:{Ei—Ej‘ISZ.?éjSH+1}CRn+1,
. g, ={os =& —eipa bity
e B, -type (corresponding to g ~ §09,,41)-
Let {e;}_; be an orthogonal basis of R™ with (g;,&;) = 2 for all i. Then, we have
o) Bp, ={teite;|1<i<j<n}U{te|l<i<n}CR"
2.22
g, = {ai =¢&; — EH_l}?;ll U {an = En}.
e C,-type (corresponding to g =~ sp,, ).
Let {e;}7_; be an orthonormal basis of R"”. Then, we have
Oc, ={xe; ¢ |1 <i<j<n}uU{£2e|1<i<n}CRY,
2.23
(223) M= {a; =e; —eiy1}17 U{a, = 2e,}.
e D, -type (corresponding to g ~ s09y,).
Let {e;}_; be an orthonormal basis of R™. Then, we have
Op, ={te; +e;|1<i<j<n}CR"
(2.24) ’ n-1
HDn = {Oéi =&; — €i+1}i:1 U {Oén =&cp_1+ En}.
Remark 2.7. We note that (g;,¢;) = 2 in type B, in agreement with our scaling of the form (-,-).

Then we have the following respective formulas for the pairing of Cartan elements (we note that while
the second formula follows from the first one in each case, it will be convenient to use both later on):

o A, -type
2.25 (wi\awz) = T(Ei’A)S(EH—l’)\)a
(2.25) (W) = =N g ()
e B, -type
) B rEaN) gleir,A)  f <i<n
(W)\, wl) - T(en,)\) (rs)*)\n lf Z =n ’
2.26
(2.26) ( | poENg=(EN) if 1<i<n
Wi, wy) = i '
i %A Sf(ﬁm)‘)(rs))‘" if i=n
o Cp-type
( / ) rEiA) g(eit1,2) if 1<i<n
Wy, w = . . ’
( ) A H 742(571)\) (7‘5)_2)‘" if i=n
2.27
/ B 7”7(61417)\)3*(51")‘) if 1<i<n
(wi,wy) = s72EnN ()2 if =g
o D, -type
;o r(EiA) g(eig1,A) if 1<i<n
( ) (w)nwl) T(sn—11>\)57(6’n1>\) (r5)72)‘"_1 if i=n ’
2.28

p _ p(EA) g (502) if 1<i<n
(Wi 00) = (eah) g en 1) (r) ot i i—n
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3. COLUMN-VECTOR REPRESENTATIONS

Let N = n + 1 for A,-type, N = 2n + 1 for B,,-type, and N = 2n for C,,- and D,-types. Let V = KV
with standard basis vectors {v;}2¥ ;. In this Section, we construct an action of U, 5(g) on V for any classical
g by specifying explicitly p: U, s(g) = End(V'), and further decompose V' ® V into irreducible submodules.

3.1. First fundamental representations.
While the A-type representation goes back to | ], we decided to include it since it serves as a prototype
for the other classical types, new in the literature.

Proposition 3.1. | , §1] The following defines a representation p: Uy s(sl,41) — End(V):
pei) = Eiiv1,  p(fi) = Eiv1,,
G i+1 G i+l
p(wz) =rkE; + SEi+1,i+1 -+ Z Ejj s p(w:) =skE;; + TEi—l—l,i-‘rl + Z Ejj .
1<j<n+1 1<j<n+1
In what follows, we shall use the involution ’ on the indexing set {1,..., N} defined via:

7=N4+1—i forall 1<i<N.
Proposition 3.2. (Type B,,) The following defines a representation p: U, s(§02p,41) — End(V):

plei) = Eiiy1 — By, 1<i<n,

- Eii1,:— (TS)_QEZ-/’@_H)/ if 1<i<n
plfi) = (r 4+ s DEpin—(rt+s HEyp if i=n ’
G il
T2E“‘ + 52Ei+1,i+1 + 7’72E7;/7;/ + 572E(i+1)/7(i+1)/ + Z (Ejj + Ej/j/) + Eptin+1 if 1<i<n
plw;) = I 1<j<n
rs 1 En, + Eyiint1 + r Y sEn i + Z (T_ls_lEjj + ’I“SEj/j/) if i=n
j=1
il
SQEZ'Z‘ + TQEi+1’Z'+1 + S_2Ei/i/ + r_2E(i+1)’,(i+1)’ + Z (Ejj + Ej'j/) +Eppine if 1<i<n
p(w;) = n—1 t=y=n
r Y sEp, + Entint1+ rs B + Z (rilsflEjj + rsE]—/j/) if i=n
j=1

Proof. The proof is straightforward, as we just need to verify that the above linear operators satisfy the
defining relations (2.5)—(2.9). The relation (2.5) is obvious since all the operators p(w;), p(w}) act diagonally
in the basis {v;}2_,. To check the first equality of (2.6), we note that both sides act trivially on vy unless
ke {j+1,5'}. In the latter case, one needs to compare the ratios of eigenvalues of p(w;) on v; and v;41,
or v(j41)y and vy, to the pairing (w,w;). The other three relations of (2.6)—(2.7) are verified analogously.
The relation [p(e;), p(f;)] = 0 for i # j is obvious as both p(e;)p(f;) and p(f;)p(e;) then act trivially on
V. On the other hand, for 1 < i < n, the commutator [p(e;), p(f;)] acts diagonally in the basis {vg}&_,,
with nonzero eigenvalues 1, —1,772572, —r~2572 only for k = 4,7 + 1, (i + 1)’,4’, respectively, which exactly
coincide with the eigenvalues of %@f&’”. Likewise, the commutator [p(e,), p(f,)] acts diagonally in the

-1

basis v, with nonzero eigenvalues 7~ + s~!, —r~! — 571 only for kK = n,n’, respectively, which exactly

coincide with the eigenvalues of %ﬁ(w;’). Finally, the Serre relations (2.9) hold as each summand acts

trivially on all vy. |
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Proposition 3.3. (Type C,,) The following defines a representation p: Uy 5(spgy,,) — End(V):

i

Eiii1— By if 1<i<
plegy = ot T
En if i=n

Eii1:—(rs) 'Ey jaqy if 1<i<n
p(fz) _ { +1, ( ) ,(i4+1)

(rs) ' Epn if i=n ’
G i1
rEii + 5B ion + 1 B+ 5 By ey + (B + By if 1<i<n
plw;) = - 1<j<n ’
s 1 Epp + 1 tsEpm + Z (r_ls_lEjj + rsEj/j/) if i=n
j=1
G i+1
sEjj +1Eit1i41 + S_lEi/i/ + T_IE(i+1)/7(i+1)/ + Z (Ejj + Ej/j/) if 1<i<n
p(wg) = n—1 tssn
r Y sEpy + 18V Epips + Z (rilsflEJ—j + rsEj/j/) if i=n
j=1
Proof. The proof is analogous to that of Proposition 3.2; we leave details to the interested reader. |

Proposition 3.4. (Type D, ) For n > 2, the following defines a representation p: Uy s(s02,) — End(V):

Ei,i+1 —F i+1),d if 1<i<n
plei) = oo L :
(rs) 'Ep_1p — Ep (no1y if i=n
EiJrLi — (7"8)71Ei/7(1+1)/ if 1<i<n
p(fi) = . ;
Enn-1—En-1)ymn if i=n
i1
rEy +sEif1 i1 + TﬁlEZ‘/Z‘/ + SilE(Z#l)/’(Z;H)/ + Z (Ejj + Ej/j/) if 1<i<n
— 1<j<n
p(wi) - n—2 )
s_lEn,Lnfl +71Enn + SEm—_1) (n-1y + r Y B+ Z (r_ls_lEjj + rsEjrj/) if i=n
j=1
G+l
$Eii +1Eiv1,41 + 8 "By + T_lE(i+1)/,(z'+1)/ + Z (Ej; + Ejj) if 1<i<n
plw)) = SIS,
P Entne1 + By + 1Bty o1y 45 B + ) (17 s T By 4rsEyy) i i=n
j=1
Proof. The proof is analogous to that of Proposition 3.2; we leave details to the interested reader. |

The classification of finite-dimensional U, s(g)-modules for classical g is completely parallel to that of
one-parameter quantum groups (cf. [Jan, §5]). For A-type, this has been carried out in [ |, while for
BC D-types this constitutes the major result of | ]. Let us recall only the notions relevant to the rest
of this section. A vector v in a U, 4(g)-module V is said to have weight A\ € P if

(3.1) wiv = (Wh,w;)v and  wlv= (W,wy)"'v  forall 1<i<n.
Let V[A] denote the subspace of all weight A vectors in V. The following result is straightforward:

Lemma 3.5. (a) For the vector representation V' from Propositions 3.2 in type B,,, we have:

V=Vole@ (Ve ©Vi-&]) with V[0]=Kvng1, V[e] =Ko, V[-&]=Kvy for 1<i<n.
=1
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(b) For the vector representation V' from Proposition 3.5 in type C,,, we have:

V= @ Ve ® V]-e]) with V[g]=Kuv;, V[-&] =Koy for 1<i<n.

(¢) For the vector representation V' from Proposition 3.4 in type D,,, we have:
V= @ [ei] ® V[—g]) with Vieg] =Kuv;, V[-&] =Koy for 1<i<n.

We note that €; = w; is the first fundamental weight of g. Since the vector v; is clearly annihilated by
all p(e;) and p(U?,(g)) acts diagonally on the basis {vx}n—, with distinct joint eigenvalues, we conclude:

Corollary 3.6. For g being one of the Lie algebras s02,41,5Pay,,502,, the Uy s(g)-module V' constructed
respectively in Propositions 3.2, 3.3, 3.4 is isomorphic to L(wy), the first fundamental U, s(g)-representation.

3.2. Decomposition of the tensor square.
In the rest of this section, we shall study the decomposition of the tensor square V' ® V into irreducible
U, s(g)-submodules. In type A,, this has been carried out in | , Proposition 5.3]:

Proposition 3.7. | | The Uy s(sl,11)-module V ® V' decomposes into the direct sum of two irreducible
modules V@V ~ L(2e1) ® L(e1 + e2) with the highest weight vectors v1 @ v1 and v1 ® vy — TV2 Q V1.

In contrast, we shall show in Proposition 3.9 that V ® V' actually decomposes into the direct sum of three
irreducible U, s(g)-submodules in the remaining classical types B,,, Cy, D,, (with n > 2 for types C,, D,,).
To this end, we start by establishing the following preliminary result (which is of independent interest):

Proposition 3.8. If A € P" is a dominant integral weight, then the irreducible U, s(g)-module L(\) of the
highest weight \ has the same dimension as the corresponding irreducible g-module.

Proof. The idea of the proof is to specialize r to ¢ and s to ¢~ !, and then appeal to the analogous result in

the one-parameter case. The argument presented below closely follows that of [Jan, §5.12-5.15].
Let us first set up some notation. Let M (\) = U, +(g) Rz, (g K be the Verma U, s(g)-module of highest

weight A € P* and let V = L()) be its finite-dimensional irreducible quotient, with highest weight vector
denoted by vy (cf. | , ). Let F = C(r) and A = F[s,s™!]. For any sequence Z = (iy,...,ix) €
{1,2,...,n}* set fr = fi, -+ fi,, so that V is spanned by all the vectors frvy. Since V is finite-dimensional
and @Q-graded, we note that frvy = 0 for all but finitely many sequences Z. Therefore the A-submodule

Va = Z Afzoa
T

is finitely generated, and is clearly also torsion-free. Thus, V4 is a free A-module since A is a PID. Further-
more, one can easily check that the natural map K®4 V4 — V is an isomorphism (since K contains the field
of fractions of A), so that rkaV4 = dimg V. On the other hand, we have an isomorphism F =% C(q) given
by r + ¢, which may be further extended to a homomorphism A — C(q) via s — ¢~ !, making C(q) into an
A-module. Consider the module V = C(q) ®4 Va, which has an obvious C(g)-vector space structure. Note
that any basis of V4 over A yields a basis of V over C(g). Thus, it suffices to make V into a U,(g)-module in
such a way that V ~ L()) as U,(g)-modules, where U, (g) is the Drinfeld-Jimbo quantum group over C(q) (as
the irreducible highest weight modules over g and U,(g) have the same dimension, cf. [Jan, Theorem 5.15]).
Let us first show that V4 is actually stable under the action of all the generators f;, ez,wﬂ, (wg)il. For
fi, this is obvious. Moreover, since all the pairings (wj,, wi) L (w, M)il belong to A, the fact that Vy is
stable under wil (wg)ﬂ follows from the fact that V4 has a weight space decomposition. Finally, to prove
stability of V4 under e;, we first note that if v € V,,, then
wi — W' plai) g—=(aap) _ p—=(ai,n) g{maq)

Ly = v = (rs)" (s
TP — S T — 8; i — 8

>T(ai,u) — glai,p)

v,

which belongs to V4 since («, pt) is divisible by d;. Evoking ejvy = 0 for all j, we thus get:
is=] _ /

W
ejfil"'fikv)\: Z fll fls 1 r slsf’bs+1.”fikv)\7

1<s<k T
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which is in V4 by what we have already proved.

It remains to note that the factors r(@i-@i) g={@i.25) and p—(@ia)) gleg.ai) gpecialize to ¢(®*®) and ¢~ (@i-%5)
respectively, under the specialization r +— ¢, s — ¢~1. Therefore, the operators e;, fi, w;, w, on V satisfy
the same relations as the generators F;, F;, K;, K;l of U,(g), so that V is a U,(g)-module. Since V is also a

finite-dimensional highest weight module with the highest weight A, we have V' ~ L(\) as U,(g)-modules. W

Proposition 3.9. For g being one of the Lie algebras 09,41, 5Pa,,, 502, (wheren > 2 if g = sp,y,, or g = $02,,)
and V being the corresponding U, s(g)-representation from Propositions 3.2, 3.3, 3.4, we have the following
decomposition into irreducibles:

(3.2) V@V ~L2e)® Ler +e2) @ L(0).
Proof. We shall only present complete details for g = s09,,+1, the other cases being analogous.
Type B,,.
Let us first show that the following are highest weight vectors for the U, s(s02,41)-action on V @ V:
VI QU —Ts e v if n=1

!
wy =v @1, we =11 QU2 — (We,,wW1)v2 ® U = 9 . ;
V] @ Vg — V9 ® Uy if n>1

(3.3)

n n
2(i—1 2n-1 -1 2n—1 2(i—n)—1
w3=zr<l Jv; @ vy + 12" s Un+1®vn+1+§ 2l @ ;.
i=1 =1

The equality e;(w;) = 0 for all 7 follows immediately from:

v; if j=i+1
€; Uj = —U(i+1)/ lf ] = i/
0 otherwise

Likewise, since e;(v2) = 0 unless i = 1 and e;(v2) = v1,w1(v1) = (W

L ,w1)v1, we also obtain:

ei(wz) = wi(v1) ® e;(v2) — (Wi, ,w1)e;(v2) ® vy =0 forall 1<i<n.
It remains to check that ws is a highest weight vector. Indeed, for k < n we get:

2n—182(k—n)—1 2n—182(k—n)+1wk(

V(k+1) ®vk—r2(k_1)wk (Uk)®v(k+1)’ +r U(k+1)’)®vk

2n7182(k7n)71 2n7182(k7n)+1

2%k
ex(w3) = "V @V(jq1y —T

2(k—1),.2

= 7’2k1}k QU(gy1)y —T Vg QU(gy1y — 7T V(k+1) @V +T 872U(k+1)1®vk =0,

and similarly for £k = n we have:

2n—1 2n—1_-1 2(n—1)

$T Upy1 @ Uy — T m-lg-

en(wS) =T Silvn QUpy1 — 7T wn(vn) QUnpt1+ 7 S 1wn(vn+1) & Un

2n—1_-1 —1

on—1_-1 —1  2(n-1 2n—1
=r STV @Upy1 — TS U1 ® U, — TS 2 )vn®vn+1+r” § Upt1 @ vy = 0.

It is clear that wq, wo, w3 are linearly independent, and since w; has weight 2e1, wo has weight €; + €5, and
w3 has weight 0, the result of the Proposition will follow if we can match the corresponding dimensions:

(3.4) dim L(ey) + dim L(e; + &2) 4+ dim L(0) = (2n + 1)2.

In view of Proposition 3.8, we can prove this by using the Weyl dimension formula. In type B,,, we have

n

DL ED LS Bt

acedt =1
and therefore

(prei—e))=j—i,  (peite)=2n+1—i—j,  (pe)=n+z—i

Consequently, we obtain:

H(p,a)=<H(n+;—i)> T G-Den+1-5-1)

1<i<j<n
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A similar computation yields

H(251+p,a)=(H(1+z’)(2n+2—i)(n+§—z’)>(n+§) II G-den+1-i—j)],

aedt =2 2<i<j<n
and thus we get
Ha€<1>+ (251 +p, 04)

d1mL(251) = H o (p a)

=n(2n + 3).

Similarly, we obtain:
dim L(e1 +€2) = n(2n + 1).
This completes the proof of the equality (3.4) and hence of the Proposition, since dim L(0) = 1.
Type C,.
The highest weight vectors for U, s(sp,,,)-action on V @ V are:
wp =v1QV1, W2 =1 Qv — (wélawl)UQ Qv =v1 ® Vg — TV ® V1,

3.5 n ) .
( ) wsy = Z (Tzflvi ® v — rnszfnflvi/ ® U'L) ,
=1

and we have

dim L(2¢1) = n(2n + 1), dimL(e; +¢e2) = 2n+1)(n — 1), dim L(0) = 1.

Type D,,.
The highest weight vectors U, 5(s02y,)-action on V ® V' are:
w; =v1 QV1, W2 =1 Qv — (w21,w1)02®v1 = V1 QU — TV Q V1,

3.6 o :
(3.6) w3 = Z (r' o @uvy + 1" T Moy @ v;)
i=1

and we have

dim L(2¢1) = (2n — 1)(n + 1), dim L(e1 4+ 2) = n(2n — 1), dim L(0) = 1.

4. R-MATRICES

In this Section, we evaluate the U, ;(g)-module isomorphism V@V 5 V@V for g one of $02,41,5P2,,, 502,
and their first fundamental representation V' from Section 3, arising through the universal R-matrix. This
produces two-parametric solutions of the quantum Yang-Baxter equation for classical Lie algebras, cf. (1.7):

(4.1) RioR13R23 = Ro3Ri3Ryo.

4.1. Universal construction.
Let us first recall the general construction (1.8) of a U, 4(g)-module isomorphism V@ W — W ®V arising

through the universal R-matrix (see | , §4] for U, s(sl,,) and [ , §3] for other classical U, s(g), both
modeled after the treatment of one-parameter case in [Jan, §7]). To this end, we pick dual bases {z!'} and
{yi'} of Ut (9), and U, (@), with respect to the Hopf pairing (2.11), and set
(4.2) ©=1+Y 6, with ©,=) y'ea

n>0 i

Let 7: VW — W ®V be the flip map v ® w — w ® v. Finally, consider f: P x P — K* satisfying
fA+vp)=fNwfvp),  fp+v)=FAmf(Av),

FOvai) = (Whwn) ™ flow, ) = (wy,,w) 1,
for all \,u € P, v € Q, and a; € HN. Then, for any two qm(g)—modules V and W with weight space
decomposition, we define a linear map f: VW — VW via f(v@w) = f(A, u)-v@w ifv € V[A],w € Wy

(4.3)
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Theorem 4.1. For any finite-dimensional U, s(g)-modules V and W, the map
(4.4) Ryw=0o0for: VW -WaV

is an isomorphism of U, s(g)-modules.

Let Ryw = Ryyor = GOf: VoW — V@W. Given finite-dimensional U, 4(g)-modules V1, Vs, V3, define
three endomorphisms of V4 ® V2 ® V3: R1a = Ry, v, @ Idy,, Res = Idy, ® Ry, vy, R13 = 1d @ 7)R12(Id @ 7).
We likewise define linear operators Ria, Ras, R13. According to [ , |, modelled after [Jan], we have:

(45) RioRi3R33 = RogR13R12: Vi@ Va®@ Vs = Vi@ Vo ® Vs,
. Ri2Ra3Ria = RysRiaRoz: Vi@ Vo @ Vs —» V3 @ Vo @ V.
In particular, we obtain a whole family of solutions of the quantum Yang-Baxter equation:

Corollary 4.2. For any finite-dimensional U, ,(g)-module V, the operator Ryy = Ryy o T satisfies (4.1).

4.2. Explicit R-matrices.
For the representation V' of Proposition 3.1, the explicit formula for Ry was obtained in | , 85]:

Theorem 4.3. (Type A, ) The U, s(sl,4+1)-module isomorphism Ryv: VRV -5VeV from Theorem /.1
for the Uy s(sl,,+1)-module V' from Proposition 3.1 coincides with the following operator:

n+1
(46) R = ZEii(g)Eii-i‘T Z Eji®Eij+s_1 Z Eij®Eji—|—(1—7"S_1) Z Ejj@Eii.
i=1 1<i<j<nt1 1<i<j<nt1 1<i<j<nt1

The main results of this Section generalize the above formula to the other classical series.

Theorem 4.4. (Type B,,) The U, 5(502,+1)-module isomorphism Ryy: VeV =5V&V from Theorem 4.1
for the Uy 5(502,41)-module V' from Proposition 3.2 coincides with the following operator:

A i#n+1 i#En+1
R=r"'s Z Ei @ Eii + Eniini1 @ Enyingr +75 1 Z Eiy @ Ey;
1<i<2n+1 1<i<2n+1
g7, n ) )
(4.7 + Z aijEij @ Eji + (r* — s?)(rs) ™ Z(rQ("_l)HSQ(’_")_l —1)E;yy @ By
1<i,j<2n+1 i=1
i i
+ (s =) (rs)~! Z Eii @ Ejj+ (r* — s?)(rs) ™! Z tit?lEi/j ® Eijr,
i>j i<j

with the constants t; and a;; given explicitly by:

g2(i—n)—1 if i<nt1 - o
(4.8) ti=19 s* if i=n+1 = (rs)=77 if i <j,j" or i>j,j
. 1 T - b} . P . . . . . . )
p2(n+1-10)+1 Zf i>n+1 / (7’8)"“’1 ’Lf j<i <]/ or j/ <i<j

where we set
-1 ifi<n+1
g, =<0 if i=n+1.
1 ifi>n+l
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Theorem 4.5. (Type C,,) The U, 4(sps,,)-module isomorphism Ryv:V @ V-5V @V from Theorem 4.1
for the U, s(spy,,)-module V' from Proposition 3.8 coincides with the following operator:

2n 2n
R=r"1/251/2 Z Ey @ Ey +1r'/2s71/2 Z Eii @ Eyr;
i=1 i=1
J#id n o
(4.9) + Y ayEi @B+ (s—r)(rs) V2 (ST Y 1) By © By
1<i,j<2n i=1
J# J#
+ (s —1)(rs)~4/? Z Eii @ Ejj + (r— s)(rs)"1/2 Z titj_lEi/j ® Eyjr

i>j i<j

with the constants t; and a;; given explicitly by:

(4.10) t sl df i<n (rs)=270 if i <j.j' or i>j.j
. P = . y Aij = . . . . . .
i i if i v (rs)2%i%  if j<i<j or j<i<j

where we set

{1 if i<n
g; = .

—1 if i>n

Theorem 4.6. (Type D,,) The U, s($02,)-module isomorphism Ryy: VeV =5V &V from Theorem j.1
for the U, s(s02,)-module V' from Proposition 3.4 coincides with the following operator:

2n 2n
R = 7“_1/281/2 Z Eii & Eii + 7“1/25_1/2 Z Eii’ ® Ei’i

i=1 i=1
G, n
(4.11) + Z aijEij @ Bji + (s —r)(rs)~'/? Z(l — " ) By ® By
1<4,j<2n i=1
) i
+(s=r)(rs) 2y By @ Ej+ (r—s)(rs)"? Y tit; By @ By
i>j i<j

with the constants t; and a;; given explicitly by:

(4.12) D T L _Jeeiem ip i<y oo i> g
. 7 rn+17i Zf 7:>7”L’ (¥ (rs)%o’io’j Zf j<1<]/ or jl<l<]’

where we set

“1 ifi>n

{1 if i<n
g; = .

Remark 4.7. Although the proofs of Theorems /./—/4.6 share many similarities with that of Theorem 4.3,
there are slight differences. Indeed, instead of explicitly determining bases of each irreducible component from
the decomposition (3.2) and computing the action off% on these basis vectors, we rather verify that operators
R from (4.7, 4.9, 4.11) do commute with the action of all f; acting on V ® V', and act on the three highest
weight vectors by the desired scalars. This approach is essential to our construction of R(z) in Section 6.

4.3. Proofs of explicit formulas.
To prove theorems in the previous subsection, we shall first study the operators R featured in (4.7, 4.9, 4.11).
Our first technical result evaluates R-action on the three highest weight vectors of V@V, see Proposition 3.9.

Lemma 4.8. (Type B, ) The highest weight vectors wy,wa, w3 € V.®V from (3.3) are eigenvectors of the
operator R from (4.7), with respective eigenvalues \; = 7715, Ao = —rs™1 A3 = r2ns=2n,

Lemma 4.9. (Type C, ) The highest weight vectors wy,wq,ws € V@V from (3.5) are eigenvectors for the
operator R from (4.9), with respective eigenvalues Ay = 2612 Ny = /25712 Ny = —pnt1/2g—n—1/2
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Lemma 4%.10. (Type D,,) The highest weight vectors wi,ws, w3 € V®V from (3.6) are eigenvectors of the

operator R from (4.11), with respective eigenvalues Ay = r/261/2 Ny = —p1/2571/2 \g = pn—1/2g—nH1/2,
Since the proofs of all three results are completely analogous, we shall prove only the first one.

Proof of Lemma 4.8. For wy, we clearly get:

I%(vl Q) =r"tsv @ 1.

Likewise, if n > 1, then for wy we obtain:

R(v1 ® vy — vy @ v1) = rsvg @ vy — 18 01 @ v — (82 — 12 )rs luy @ vy = —rs™H (v @ vo — vy @ vy).
If n =1, then we have a12 = a1 = 1, and so we get:
R(v1 @y — rs tuy QU1) =V @V — T8 v @y — rsil(rfls frsfl)vg Qv = frsfl(vl Rvg — 18 Tug ®v1).

Finally, for w3 we obtain:

r (Z TQ(i_l)Ui ® vy + 74271—18—1%+1 ® Ung1 + ZTQn—ls—Q(n—i)—lvi, ® %‘)

i=1 i=1

n
_ 2 :7"2%718711)1-/ ®v; + 7,27171871?)11_‘_1 & Vpi1 + E :r2n82(zfn)*2vi ® vy

i=1 =1
n
¥ (rs~l =1 ls) Z(rz(n—i)+182(i7n)71 _ 1)7,2n7182(i7n)711]i/ ® v;
=1
n ) n i—1 ) o
+ (rs7t —r7ls) Z p2n—1g20=) =1y @ u; + (rs™! —r71s) Z Z 7‘2(’71)52“71)1)]'/ ® v;
i=1 i=1j=1
n j#i

+ (rs™t —r7ls) Z Z titn 201y @ vy
i=11<5<(i+1)/

where the last three summands arise from the action of the last sum in (4.7).
The last two summands simplify as follows:

n 1—1 n—1 n n
D > NS = | Y S0 @ oy =) r¥s20T 0 — e vy @0
=1 j=1 Jj=1 =741 j=1
and

n VE) n n n
E § : tjtz-—,17'2n7182(7'7n)71’l)j/ Qv; = E E :r4n72l$2(2+j72n71)vj, ®v; — E 7,,4n72184(z7n)72,02_/ ® v;
i=1 1< < (i+1) i=1 j=1 i=1

n n n
4 Z Z T2(j7i+n)7152(i7n)71,0j ® vy + Z T4n72i52(i7n71)vn+1 ® Vnp1

=1 j=i+1 =1

n
(r?"s* 4" n],2 o — pAn =2 g0 =2y, @ v + E R e I | R R

j=1

I

~
I
—

2n —2n
s TE N2 2Vn41 © Upg-

+

Thus, the coefficient of vy ® v; in R(wg) for 1 <1 < n equals
P21l 4 (pgmh L) (p2n L 20 m) =y 20—l 20-m)= 1 (gl )20 20i-n) =1

+ T21—182(z—n)—1(r2(n—1) _ S2(n—l)) + T2n—ls2z—4n—1(r2n _ SQn) o T4n—2z—184(z—n)—3(r2 _ 82)

=T

4n—1321—4n—1 — T2n5—2n . T2n—182(z—n)—17

as desired. Likewise, the coefficient of v; ® v;/ in I%(wg) for 1 < i < n equals r2(nti=1) g=2n — p2ng=2n ,.2(i-1)

while the coefficient of v, 11 ® v, 11 equals r#"—1s=2n=1 = pIng=2n . p2n=1s=1 Thig completes the proof. M
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Next, we verify that the operators R are indeed U, s(g)-module homomorphisms.
Lemma 4.11. The operators R: V@V — V&V from (4.7, 4.9, 4.11) are isomorphisms of U, s(g)-modules.

Proof. In each case, it suffices to verify A(fx)R = RA(fi) € End(V @ V) for all k, since Lemmas 4.8-4.10
then imply that R acts as a nonzero scalar on each irreducible component of V ® V' (see Proposition 3.9).
We will present this verification only in type B,, since the arguments in the remaining cases are similar.
To make the computations more manageable, it will be helpful to break the operator R from (4.7) into
the following six pieces:
i#En+1
Ry =r""'s Z Ei @ Ejj + Epiint1 © Engtnt,
1<i<2n+1
i#En+1
Ry =rs™! Z Eii @ By,
1<i<2n+1
G,
R3 = Z aijEij @ Eji,
1<i,j<2n+1

Ry = (7,2 o 82)(7“8)71 Z(r2(n7i)+182(i7n)71 _ 1)Ez"i’ ® Eiia
=1

J#i
Rs = (82 — 7“2)(7'8)_1 Z FE;® Ejj,
i>7
J#i
Rg = (7’2 - 52)(7"5)71 Z titj_lEi/j ® Eyjr.
i<j
Now, for k < n, the matrix of A(fy) is
A(fy) =1® Epqrp — (rs) 21 ® Eyr (k1) + $2Eri1x @ Ep +1°Ery11 @ Epy1x41 + 5 2Erg1 1 @ Eprgr
Gk k41
+ 772 Ept1.6 ® Epy1y (k1) + Z (Bri1 @FEjj + Epp16 @ Ejrjr) + Erg1.6 @ Bt ng1

1<j<n
— T_ZEk’,(k—i-l)/ X Ekk — 8_2Ek’,(k+1)’ (024 Ek+1,k+1 — T_28_4Ek/,(k+1)/ (024 Ek’k/
J#k,k+1
- T_4S_2Ek/7(k+1)/ ® E(k+1)/,(k+1)’ — (7“8)_2 Z (Ek/,(k+1)’ 024 _EJj + Ek/’(k+1)/ 24 Ej’j’)

1<j<n
— () By (k1) ® Ens1ns1.
Thus, by direct computation, we get
RiA(fr) =17 " $Eri1,41 @ Epprp — 77 %5 "B @ By 51y

3.3
+78Eri1,k @ Epp1k41 — 778 "By (k1) @ Eprger,

A(fk)Rl = r_lsEkk (9 Ek-‘rlJC — T_gs_lE(k+1)/’(k+1)/ ® Ek/’(kJrl)/

+ 17 P By ® Bl — 7757 By k41 @ Bty (o1
RoA(fr) =78 " B, (ht1y @ Egerry e — 178 Epr i @ By g1y

+ (rs) "' Egrt1y k ® Epg1 (1) — (1) Eg 51y @ By,

A(fx)Re =18 "Bt @ By — T71873Ek+1,(k+1)' ® By g1

_3 _3
+7r8 "Bk @ B — 18 "B 11 @ By (k1)
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A(fx) = A(fr)Rs = rsEpi1, ® Egi + (18) ' B @ By — (r8) " Eps g1 ® Epg1 k1)
— (rs)*gEk/,(k_s_l)/ ® E(kg1) (k1) T r1sEL @ Eryix+ rs ' Ep ® Btk
—78Eki1,k ® Erg1he1 — (18) "By k @ B, (k1)
+ (rs) ' Bk (k1) ® Ewi + (r8) P Ejr k41 ® By — 17 s 3 it 51y © Err oyt
=173 Bty (et 1) @ By (1 — 787 Bt p41 © Egga g
=1 B (k1) ® Egerry i + 1708 Bk @ By g1y

+r7 P B @ By g1y

A(fy) = (’I“ - 52)(7“5)_1(’I“Z(n_k_l)+182(k+l_n)_l . l)E(kJrl)’,(chrl)’ ® Breg1k

—(r? = 32)7"*3571(7‘2(7“]“)“32(’“*")*1 — DEy (k+1y @ By,

A(fr)Ra = (r* = ) (rs) (P2 ETT ) By @ Brya g
_ (r2 . 32)r_13_3(7"2("_’“)_132(’“_”)“ _ 1)Ek/7(k+1), ® Ertt k1,
(rs ') Bk @ Epgr e+ (17 s — 78 ) Epg1 k1 © Erg1k
+ (s =15 ) By (k1) © Ek:+1 k= (r s =TT By @ By (ug1y
—(r~ 1g3 — rs)Ek_H £ ® Egr + (r~ - 1"573)Ek/7(k+1)/ ® Ept1,k+41
—(r” Y Ey (k1) @ Bk + (7"_58_1 — 173 B (k1) @ Bt 1y (k1)

A(fx)Rs — RsA(fr) =

RGA(fk) (7” - 82)(7"8)_17”2(n_k)_182(k_n)_1Ek/’(k+1)/ X Ekk:
_ (7”2 _ 82)(7,5)7152(k7n)+17,2(n7k)7

- (7'8_1 — T_ls)Ek+17(k+1)/ ® E(k+1)’,k + (7”_18_3 — T_SS_l)Ek/k X Ek,(k:+1)’7

"By (k1) © Brpg

A(fr)Re = (r* — 32)(7“3)717“2("%)7132(’67”)71Ek',(k+1)' ® Byt k41
_ (T2 . 82)(7‘8)717’2(n7k)+182(k7n)71Ek/k/ ® Ek+1,k

+ (s —r s By 1 ® B, (k1) — (rs™® —r 's Y Eri1 0 @ By

In particular, we obtain

R4A(fk) + R(;A(fk) = —(?“8_1 — T_ls)E(k:+1)/’(k+1)/ X Ek+1’k + (7“_18_1 — r_3S)Ek’,(k+1)/ ® Erp,

— (’I"Si1 — rils)Ek_,_l,(;H_l)/ ® E(k+1)’,k + (7‘71573 — 7’73571)Ek/k X Ek,(k-i—l)’

and

A(fe)Rs + A(fr)Re = —(rs™ ' = 17'8) By @ By + (1572 =17 s ™D Ep k1) ® Eggt i1

+ (rs ™ =17 T B g1 @ Bt (kg1y — (1872 =17 s T B e @ B,
From the computations above, we finally get

R3A(fr) — A(fr)Rs + RiA(fr) + ReA(fx) — A(fe)R1 — A(fx) R
=0 ts —r 3T Epp ® By (k1) + (rs! — rils)EkH,(,@H)/ ® Ehy1) k
(4.13) + (s =T ST Bk @ By kg1y + (rs — 7' 8%) Ejga ke ® Epg
+(r s = s ) B @ B+ (rs™® =17 T B g1 @ B (k1)

+ (7’_58_1 — T'_38_3)Ek/7(k+1)/ X E(k+1)/,(k+l)’ + (7"_18 — Ts_l)EkJrl’k;Jrl ® EkJrl,k



TWO-PARAMETER QUANTUM GROUPS AND R-MATRICES 19

and
A(fe)Rs — RsA(fi) + A(fk)Ra + A(fx) R — RaA(fi) — ReA(fk)
=(rts— rs_l)EkH’kH ® Ept1k + (r s —r 35 HEwp ® Eyr (kt1y
(4.14) +(rs =7 18%) B @ B + (1% =727 By o1y © By (ki
+ (rs™3 — r_ls_l)Ek/,kH ® Epg1, (k1) + (rts™t — rs_?’)EkH,k/ Q Eyrp.
+ (rs7t — rils)Ek_H,(k_H)/ ® Eggy1y i + (r3st—r s B ® By (k41y-

The right-hand sides of (4.13) and (4.14) are obviously equal, which implies RA(fi) = A(fi)R for k < n.
The computation for & = n is similar. This completes the proof of the lemma. |

Now we are ready to prove the main results of this section, Theorems 4.4, 4.5, 4.6. We present full details
only for the first one, since the other two are completely analogous (details are left to the interested reader).

Proof of Theorem 4.4. According to Theorem 4.1 and Proposition 3.9, the action of Ryvy on the tensor
product V ® V' is uniquely determined by the eigenvalues of the highest weight vectors wy, ws, w3 from (3.3)
under its action. We shall now verify that these eigenvalues are precisely equal to A1, A2, A3 from Lemma 4.8.

The eigenvalue Xl of the Ry -action on w; is equal to f(e1,e1). Since 61 = a1 + ... + an, f(e1,q;) =
(wWhwe, )7L, and a computation using (2.26) yields (wi, we,) = 572 (W, we,) =78, (W,we,) =1if 1 <i<n,
we thus obtain A\ = r~1s = ).

The eigenvalue Xg of the Ry y-action on ws equals the coefficient of v; ® vy in RVV(’LUQ), and the latter
appears only from applying fo7 to the multiple of vy ®v;. Thus, we have Ay = —rs~Lf(e1,0) = —rs~! = Ay
if n = 1. On the other hand, if n > 1, then Xg = —r2f(e1,e2), and since €3 = ag + ... + ay, a similar
calculation to the one above yields Ay = —r2 - (rs)~! = —rs~! = \,.

The eigenvalue Xg of the va-action on w3 equals the coefficient of v; ® vy, in va(wg). The latter
appears only from applying f o 7 to the multiple of vy ® vy, so that Ay = r2"~1s!=2nf(e; —g). As
fle1,—¢e1) = f(e1,e1)" ! = rs~ 1, we thus get Xg =r2ngT2n = ). [ ]

Remark 4.12. The above proofs of Theorems j./—/.6 are quite elementary, but they require knowing the
correct formulas for R in the first place. In the next Section, we provide the conceptual origin of these
formulas by factorizing them into an ordered product of “local” operators, one for each positive root of g.

5. PBW BASES, ORTHOGONALITY, AND FACTORIZATION

In this Section, we present the factorization formulas for R from (4.7,4.9,4.11). In the absence of Lusztig’s
braid group action on U, 4(g), one rather needs to use the combinatorial construction of orthogonal dual
bases of U,t,(g) and U, ((g), based on the combinatorics of standard Lyndon words, cf. [I[{1, X2, Le, Ro].

5.1. Standard Lyndon words.

Let I = {1,2,...,n} be a finite ordered alphabet parametrizing the simple roots of g, and let I* be the
set of all finite length words in the alphabet I. For w = [i1...i] € I*, we define its length by |u| = k. We
introduce the lexicographical order on I'* in a standard way:

11 =71, +y0a = Jartar1 < jar1 for some a >0
[il...ik]<[j1...jl] if or
11 = J1y---s 0k = Jk and k <
For a word w = [iy ... 1] € I'*, the subwords:
(5.1) Wq| = [i1...14] and Wi = [ik—at1 - ik]

with 0 < a < k will be called a prefiz and a suffiz of w, respectively. We call such a prefix or a suffix proper
if 0 < a < k. We start with the following important definition:

Definition 5.1. A word w is Lyndon if it is smaller than all of its proper suffizes:
(5.2) w < W forall 0<a < |wl

We recall the following two basic facts from the theory of Lyndon words:
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Proposition 5.2. ([l.o, Proposition 5.1.3]) Any Lyndon word £ has a factorization:
(5.3) £ =1l10s

defined by the property that €1 is the longest proper prefix of £ which is also a Lyndon word. Then, {5 is also
a Lyndon word.

The factorization (5.3) is called a standard factorization of a Lyndon word.
Proposition 5.3. ([L.o, Proposition 5.1.5]) Any word w has a unique factorization:
(5.4) w=2"~... 0
where {1 > --- > £y, are all Lyndon words.

The factorization (5.4) is called a canonical factorization.

Let n* be a Lie subalgebra of g generated by all {e;}" ;. The standard bracketing of a Lyndon word ¢
(with respect to the Lie algebra n't) is defined inductively by the following procedure:

o ey =eent foriel,
o ¢ = [ejg,], €jey)] € 0T, where £ = (145 is the standard factorization (5.3).
The following definition is due to [LR]:

Definition 5.4. A Lyndon word ¢ is called standard Lyndon if e, cannot be expressed as a linear combi-
nation of e, for various Lyndon words m > £.

The major importance of this definition is due to the following result:
Theorem 5.5. ([L}]) The set {e}y|¢{—standard Lyndon word} provides a basis of n'*.
Due to a root space decomposition nt = @D.oco+ 9o with all g, being one-dimensional, we get
(5.5) ¢: @+ =~ {standard Lyndon words},
the so-called Lalonde-Ram’s bijection, mentioned in (1.5). This bijection was described explicitly in [Le]:

Proposition 5.6. ([, Proposition 25]) The bijection £ is inductively given as follows:

o for simple roots, we have {(a;) = [i],
o for other positive roots, the value of £(«) is determined using Leclerc’s algorithm:

(5.6) f(a) = max {£0n)l(3) | @ = 1 + 92, 71,72 € @F, €m) < £(92) }.
We shall also need one more important property of £. To the end, let us recall:
Definition 5.7. A total order on the set of positive Toots ®T is convex if:
(5.7) a<a+fB<p
for all o < B € ®T such that o+ 8 is also a Toot.
The following result is [Le, Proposition 28], where it is attributed to [Ro] (see also [N'T, Proposition 2.34]):
Proposition 5.8. Consider the order on ®T induced from the lexicographical order on standard Lyndon words:
(5.8) a<f << {a)<{(B) lexicographically.
This order is convex.

Finally, recall that given any convex order on ®*, a pair («, 3) of positive roots is called a minimal pair
fory=a+ (€ dTif

(5.9) a<pB and Pa<d <y<p <pB suchthat o +p5 =+.
The following result goes back to [Ro, Le] (cf. [NT, Proposition 2.38]):

Proposition 5.9. For any v € &1, consider the standard factorization (5.3), so that {1 = {(a) and by =
0(B). Then (a, B) is a minimal pair for v = a + B.
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5.2. Convex orders for classical types.
Let ® be a root system of classical type, and choose the order of I exactly as in Subsection 2.3. Combining
Propositions 5.6 and 5.8, we obtain the following explicit convex orders on the sets ®T of positive roots:

o Type A,
(5,10) g <ata< - <at...ta, <a < < ap-1 <anp_1+a, <a,.

e Type B,

g <artoa< <o+ Fay
(5.11) <ar+...+an1+20, < <ay 20+ ...+ 20, <

Qo < < a1 < Qpo1+an < a1+ 20, < ap.
o Type C,

agp<aptag<--<ar+t...tap 1 <20 +...4+20p 1t+an<ag+...+a,
(5.12) <at.tap gt tan <o <art 20+ 200 F o <
a2<-~-<an_1<2an_1+an<an—1+an<an~

e Type Dy,

g <ot <o+ ...tapota, 1 <o+ ...tapota, <o+ ... +a,
(5.13) <ar+...4+ap3+2a, otap1ta, < - <ag+2a+... 420 9+ a1+ a, <

g < < U< Opnot+ap_1 < dp_2+a, <2+ ap_1+a, <ap,_1<ay.

Remark 5.10. An important feature of these convex orders on root systems of type X, (with X = A, B,C, D)
is their telescopic structure, that is, erasing all roots containing o provides the order alike on the rank 1
smaller root system of type X,,—1. This will significantly simplify our calculations in Subsection 5.4.

Remark 5.11. It is a classical result, due to [P], that the convex orders on ®T are in bijection with the
reduced decompositions of the longest element wg of the Weyl group W of the root system ®. In particular, the
convex orders (5.10)—(5.13) correspond respectively to the following reduced decompositions of wg ($; = Sa,; ):
® Wy = (8182 . sn)(slsg ce Sn—l) ce (8182)(81),
® wy=(81.--81-1508n—1---51)(82 .- Sn—18n8n—1---52) .- (Sn—18nSn—1)(8n),
® wy=(81..-8,-150Sn—1---51)(82 .- Sn—18nSn—1---52) ... (Sn—18nSn—1)(8n),
wo = { (81 Sn—15nSn—2-..51)(S2...Sp—28nSn—1.-.52) ... (Sn—28n—-15n5n—2)(SnSn—1) mn—odd

(51 Sn—15n5n-2---51)(52. . Sn_25,8n_1---51) -+ (Sn—25n5n_15n—2)(Sn_15n) n-—even

Let us set up convenient notation for the positive roots in each type, and identify the minimal pairs arising
through the standard factorization of the corresponding standard Lyndon words, see Proposition 5.9.

Type A,,. Let v = a;+...+ay for 1 <i < j <n,sothat & = {v,;}i<;. For roots v = v;; with ¢ < j, the
minimal pair arising through the standard factorization of £(v) is («, B) = (Vi j—1, ).

Type By. Let v;j = o; +...+a; for 1 <i<j<n,andlet §;; =a; + ... +aj-1 + 205 + ... + 20, for
1 <i< j <n. Let us now indicate the minimal pairs arising through the standard factorization of £(7y):

o for the roots v = v;; with ¢ < j, the minimal pair is (a, 8) = (vi j—1,a;);

e for the roots v = f;, with 1 <14 < n, the minimal pair is («, 8) = (Yin, n);

o for the roots v = f;; with ¢ < j < n, the minimal pair is (o, §) = (8; j+1, ®j)-

Type Cy,. Let vij =a; + ...+ ajfor 1 <i¢<j<m,andlet B =a; + ...+ oj_1 4+ 205 + ...+ 2ap_1 + ayp
for 1 <1i < j <n. Let us now indicate the minimal pairs arising through the standard factorization of ¢():

for the roots v = ~;; with 4 < j, the minimal pair is (o, 8) = (Vi,j—1, 5);

for the roots v = f3;; with @ < j < n — 1, the minimal pair is (o, 8) = (8 j+1,5);
for the roots v = §;; with 1 < ¢ < n, the minimal pair is (&, 8) = (Vin—1,Vin);

for the roots v = f; ,—1 with 1 <4 < n — 1, the minimal pair is (o, 8) = (Vin, @n—1)-
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Type D,,. Following (2.24), let v;; = ¢; — €1 for 1 <1 < j < mn,andlet B;; =¢; +¢j for 1 <i<j<n.
Then v =a; +...+a;for 1 <i<j<n, Bin=0a;+... +an_o+ay, Bin-1=0a;+...+ ay, and finally
Bij=a;+... 4051 4+205+ ...+ 202+ ap_1 +ay for j <n—1. Let us now indicate the minimal pairs
arising through the standard factorization of £(v):

o for the roots v = v;; with ¢ < j, the minimal pair is (o, 8) = (7i j—1,a;);
o for the roots v = f3;,, with ¢ <n — 2, the minimal pair is (o, 8) = (Vi,n—2,n);
e for the roots v = f;; with ¢ < j < n, the minimal pair is (a, 8) = (8 j+1, ;).

5.3. Root vectors and the PBW theorem.

The following construction of (quantum) root vectors e, f, goes back to [I{1, K2, Le, Ro] in the one-
parameter setup, to | ] in the super setup, and to [BI], , , ] in the two-parameter setup.
For v = «; € 11, we set

ea; =€,  fa, = fi-
By induction on the height of a root, for any v € ®+\II, define (cf. (1.4)):
(5'14) €y = €alp — (W,nga)eﬁea , f’y = fﬁfa - (Wg{awﬂ)ilfafﬂa

where the minimal pair («, 8) of 7 corresponds to the standard factorization of £(7y), see Proposition 5.9.

The following is the two-parameter version (a detailed proof of which is presented in Theorem 7.1 of the
companion paper | ] crucially utilizing the technique of appropriate quantum shuffle algebras) of the
classical result of [K1, K2, Le, Ro] (see also [ | where it was adapted to the super case):

Theorem 5.12. (a) The ordered products

— —
(5.15) H en' | my >0 and H I (my, >0
yEDPT yePt

are bases for Uﬁs (9) and U, ,(g), respectively. Here and below, the arrow < over the product signs refers to
the total order (5.8) on ®*.

(b) The Hopf pairing (2.11) is orthogonal with respect to these bases. More explicitly, we have:

(5.16) 17 T e ) = T1 (8nm, (0.

yeD+ yeP+ yEDT

(¢c) For each v € ®* and m > 0, we have (cf. notation (2.4)):

(5.17) (fr,elt) = s;m(m_l)/gc;"[m]

Yoy TSy *

The constants c+ featured in this formula are defined recursively by

Sa — Ta){Sg —T _
(518) Cy = ((1 - 51?&,5,0)[pa7,3 + l]ga,sa ( (S )_(T,B) B) + (w,/B?wOé) - (wtl)uwﬁ) 1) Calp,
Y Y

where (e, B) is the minimal pair of Proposition 5.9 corresponding to the standard factorization of £(v), and
Pa,s =max{k >0|a—kB € ®}.
As an immediate corollary, we obtain the following factorization formula:
Theorem 5.13. The operator © of (4.2) can be factorized as follows:

—

(519) 0= H Z (milemfgl@e? y

~eD+ \m>0 VY Y

with e, f,, defined in (5.14) and (fJ',€l}') evaluated in (5.17).
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Remark 5.14. In fact, © can be expressed in an even more compact form by using (5.19) in conjunction
with (r, s)-exponential

Zm
exp, ,(z) = gmm=1/2_—_
= 2
Indeed, for each v € ®*, we have
1 s’ryn(m—l)/Q 1
(520) Z W,ﬂ;ﬁb X e:ryn = Z W‘f;ﬂ ® 6ZYn = eXpT-va’v (C'Y f»y X 67).
m>0 7Y Y m>0 TrysSy*

Thus, the factorization formula (5.19) simplifies as follows:

—
6= H exp, . (' fy®ey).

yeD+
We conclude this subsection by presenting explicit formulas for ( 3 e;”) in all classical types:
o Type A,
|
(5.21) ( ’:Z_Lj’ef/’zj) = (_l)ms—m(m—l)/Q(’)EWi]rs’;'m for 1<i<j<n.
e Type B,
|
_ _ ( _1) [m}r2’s2. . .
(Fp ) = ()77 B for 1<i<j<n,
|
(5.22) (fr L em )= (—1)msm<m1>/2([m]“‘;' for 1<i<n,
in in r—s m
m m m m —2m(n—j) ,—m(m— [m]rz,s2! . .
(5 ef) = (=)™ 217 (rs) —2m (=) gmmim=1) R for 1<i<j<n.
e Type C,,
m o om N\ _ (_1\m —m(m—1)/2 [m]r,s! . . . ..
(f,w,e%j)—( H™s 7(7“—5)7" for 1<i<j<n with (4,j)# (n,n),
m m m _—m(m— [m]rz’sz!
(£ €)= (1)ms ™™D
(5.23) (r S[ )] '
m ,m m m  —m(m— mir2 g2 .
<f5n‘765n‘) = (_1) [2]72"75 S e (’I“2 — 52)m for 1<i<n,
m m m —m(n—j) ,.—m(m— m 7',8! . .
(€)= (—1)™(rs) == 5=l 1)/2&_18)771 for 1<i<j<n.
e Type Dy,
|
o (fm e ) = (~1)ms—mlm=1)/2 (im]rsi;'m for 1<i<j<n,
' , !
(f[;?j,egij) = (71)m(Ts)fm(nfj)sfm(mfl)/Z (i”i]?;;m for 1<i<y<n.

5.4. R-Matrix computation.
We shall now use the factorization formula (5.19) to compute © and Ry for all classical types.
Throughout this subsection, we will use the more convenient notation (cf. (5.20))

1
(5.25) 0, = Z (7f;n ® el for any e ®*,

mm)
m>0 7Y Y

so that equation (5.19) becomes

o
o= [] e,

yEPT
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5.4.1. Factorized formula in type A,.
We start by evaluating the action of {e, f,},co+ on the U, (sl,41)-representation V from Proposition 3.1:

Lemma 5.15. p(ey,;) = E;jy1 and p(fy,;) = Ej, for any 1 <i <j<n.

Proof. The proof is straightforward and proceeds by induction on the height |v;;| = j — ¢ + 1, where we use

—1
€rij = €y 5165 — (‘*’éﬁwi .- ‘wjfl)eje"/i,j—l7 f"/ij = fjf’Yz‘,j—l - (w; .- 'w;él’wj) f'Yi,j—lf.j

and the explicit U, s(sl,+1)-action on V, cf. (5.14) and Proposition 3.1. [ |
Clearly, p(e,,;)? = p(fy,,)* = 0 for all i < j, so that
O, =101+ (s=7)Ej11:® Ei j11
on the U, s(sl,41)-representation V' ® V. To evaluate O, let us first set

0, = e'Yin@’Yi,n—l s 6"/1,i+1 6%7
so that
©=0,0,_1...01.

Since Ej11,i ® Fi jy1 - Ery1,i ® Ej g1 = 0 for any ¢ < k < j, we thus obtain
n
O, =1®1+(s—7) > Ejy1:®E;j41.
j=i+1

Moreover, since Ejy1,; @ Ej k41 Fep1,i @ B 41 = 0 for any k£ > 5 > ¢ and £ > i, we get

1<i<j<n+1
For type A, the function f of (4.3) takes the following values on the weights of V', see | , Lemma 4.4]:
s7hoif i<y
f(EZ',Ej) = 1 if 4 Zj .
r if >3

Combining this formula with the formula (5.26) and the flip map 7, we recover the explicit formula (4.6)
for Ryy =©o for:V®V — V ®V, thus providing an alternative proof of Theorem 4.3, and giving a
factorization of the R-matrix of | ] into “local” operators, parametrized by the set of positive roots ®¥.

5.4.2. Factorized formula in type B,.
We start by evaluating the action of {e,, f,},co+ on the U, s(502,41)-module V' from Proposition 3.2:
Lemma 5.16. (a) Fori < j <n, we have

2(j—1)

pler;) = Eijy1—s Egiv1y s

p(f ) _ Ej+1,i — Sz(iij) (rs)*in/,(j_H), Zf ] <n
Yij (Tfl 4 871)(En+1,i _ s2(i7n)Ei/7n+1) if i=n .
(b) Fori < j <mn, we have
pleg,) = (1) (Eiy = 800020070 () By,
P(fo) = (1) (7 45712 PO (20T By — 207 () Ey).

Proof. The proof is straightforward and proceeds by an increasing induction on j (from j =4 up to j = n)
for the roots v = 7;;, and then by a descending induction on j (from j = n till j = i + 1) for the roots
v = Bi;. Here, we use the explicit U, ;(§025,41)-action on V from Proposition 3.2, the explicit list of minimal
pairs («, 8) as specified in Subsection 5.2, and finally the inductive construction (5.14). |
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According to Lemma 5.16(a), we have p(e,,)? = p(fy,;)? =0 for 1 <i < j <n, so that
(5.27) 0y, =101+ (s" =17 (Ej+1,i - SQ(i_j)(TS)_inu(ﬂl)’) ® (Em‘ﬂ - Sz(j_i)E(jH)ui’)
for any 1 <4 < j < n. In contrast, for j = n, we have:
p(e’wn>2 = _SQ(n_i)Eii'7 p(f’nn>2 = _SQ(i_n) (T + 3)2(T5>_2Ei’i7 p(e’wn>3 = p(f’wn>3 =0.
Therefore, we obtain:
(5.28) 0,, =1®1+ (s> —r?)(rs)~* (En+17i - 52(1‘7")Ei/,n+1) ® (Ei,n+1 - 52("7")En+1,i/)
+ 77257 (r? = 8?)(r — 8) By @ Eyyr.

According to Lemma 5.16(b), we also have p(eg,,)* = p(f,,)> = 0 for all i < j <n, so that
(5.29) Op, =1®1+ (s> —1%)(rs)~? (rz(j*”)Ej/i - sz(i*”)(rs)Ei/O ® (rz(”*j)Eij/ — 520 (rs)Eji/) .
To evaluate ©, let us first set
0 =035,,..08,.10---03,, 0;=0,,0, ,...0,,..06,, ©6;,=0/6;
so that

0= @n@nfl e @1.

We will now show by induction on n — k that

(5.30)
0" .=0,0, 1...0, =101+ CZ (r’ls - rQ(”’i)sw’")) E;y; @ Eipr
i=k
te) (TSEji ® Eij — U7 SEy @ By — r ' P0IN E  @ By + (rs) " By ® Ej’i’)

k<i<j<n

n
+c Z (En+1,i ® Ey py1 — T2(n_i)En+1,i ® Bt — S_Q(H_i)Ei’,n-i-l ® Eint1 + By 1 ® En+1,i’)
i—k

+c Z ((TS)_lEj/i & Eij/ - 7’2(n_i)82(j_n)Ej/i ® Ejif - T2(n_j)82(i_n)Ei/j ® Eij/ + TSEi/j ® Eji/) y

k<i<j<n

where ¢ = (s2 — 72)(rs)~!. For k = 1, this provides the desired formula for © = @),
Let us start by computing a single ©;. First, it is easy to see from (5.27) and (5.28) that the only non-zero
products in ©.,,, © ..0,, involve 1 ® 1, and thus

Yi,n—1 *
@{L =1 ® 1 + c(r_ls - 1)Ei’i ® Eii’
+c Z (TSEjZ' & Eij - T'Sg(j_i)_lEji X Ej/i/ — T_182(i_j)+1Ei/j/ & Eij + (TS)_lEi/j/ ® Ej/i/)
j=i+1
+c (En+1,¢ @ Eipp1 — 52"V Ey1 ® Bppr — 82V E i1 @ Bipg1 + By ® En+1,z") :
For similar reasons, we have
0/=1®1
+c Z ((TS)_lEj/i & Eij/ — TQ(j_n)SQ(n_i)Ej/i ® Eji/ - TQ(n_j)Sz(i_n)Ei/j & Eij/ + T‘SEi/j &® Eji/) .
j=i+1

On the other hand, when computing the product ©7©/, there are some non-zero products not involving
1 ® 1, namely er?("=)s20-"E, . @ Eijyr - ers?0=0"1E;; @ Ejip for i < j < n. The overall contribution of
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those equals
2p2ntlg—2n-1 Z 2 g2 Eyi @ By = czmz(z—n)ﬂ[n _ i]TQ’SQEi,i ® Eyy

=c (1 — 1"2(”71‘)52(1;”)) Ey; @ By,
and therefore we have

(5.31)
@,’ = @;/@; =1®1+c (7’715 — ’I"Z(nii)82(iin)> Ei’i ® Eii’

n
+c Z (TSE_” & E” — TS2(j_i)_1Eji ® Ej’i’ — 7"_132(i_j)+1Ei/j/ %) EZ] + (TS)_lEi/j/ X Ej/i')
j=i+1

+c (En+1,i ® Ei py1 — 52(n_i)En+l,i ® Epy1,i — Sz(i_")Ei',nH ® Eyipy1 + Eyropy1 ® En+1,z")

+c Z ((TS)_lEj/i ® Eij/ - Tz(j_n)SZ(n_i)Ej/i ® Eji/ — TQ(TL_j)SQ(i_n)Ein ® Eij/ + ’I“SEi/j (9 Eji’) .
j=it+1

In particular, for i = n we get

@n =1®1+ c(r_ls - 1>Ei’i ® Eii’
+c (En+1,n X En,n+1 - En+1,n & En+1,n’ - En’,n—i—l oy En,n+1 + En’,n—i—l X En—i—l,n’) )

which agrees with the claimed formula (5.30) when k = n, thus establishing the base of our induction.

Let us now prove the step of induction in (5.30). It suffices to treat the k = 1 case, due to the telescopic
structure of the action on V and order on ®T, see Remark 5.10. It thus remains to evaluate @) = ©(2). @y,
where ©®) is given by (5.30) and ©; was just evaluated above. In addition to the terms of this product that
involve 1 ® 1, we get the following extra summands:

(5.32a) (‘CZ s2 0By i ® Ez’,n+1> (_052(n71)En+1,1 ® En+1,1'> =(?=s?)?) r 2 BB,
1=2

n
=2

e Z P20 20N B @ B (lesngﬂ ®E¢/1/>

2<i<j<n =2
n—1 n
=c Z Z p?n= 20t =1p @ By
(5.32b) mam

n

J—1
_ CZ Z (Z r2(n—i)+182(j+i—n—1)—l> Ej’l ® Ejl’
7j=3 \i=2

n
=(r? —s%)? Zrﬂ"*j)HsQU*”)*l[j — 2,2 52Ej1 @ Ej1v,

Jj=2
n
—C Z 7’2(’”7‘])52(17”)Ei/j X El]’ 7CZTS2‘773E]‘1 X Ej/l’
2<i<j<n =2
n—1 n
(5.32¢) _ (T,z _ 52)2 Z Z p2n=i)-120H-n=2-1 | p. o B,
i=2 \j=i+1l

n
— (7“2 _ 82)2 Zr—184i—2n—3[n _ i]rz,sin’l ® Eq,
=2



TWO-PARAMETER QUANTUM GROUPS AND R-MATRICES 27

n n
(CZ(T_13 — 202N B @ Eii’) (‘CZ rs?DT B, @ Em')

(5.32d) =2 . =
— (,’,2 _ 82)2 (T2(7z—i)—184i—2n—5 _ T_282(i_2))Ei/1 ® Ei1’7
i=2
n
—c Z T71$2(i7j)+1Ei/j/ ® Ey; —chQ(j*”)sz("*l)qu ® Ej1/
2<i<j<n Jj=2
n—1 n
(5.32¢) _ (r2 _ 52)2 Z Z r2(—n—1)=12(n+i—j—1)-1 Ei® Ej
i=2 \j=i+tl
= (r? —5%)? Z P2 =128 ]2 2 B ® B,
i=2
n
e Z r2U=)"sp @ By <—c2 rs* By @ Em')
2<i<j<n i=2
= (2 - 32)22 Z r2(j7i71)s2(i72)Ej1 ® Eji1s
(5.32f) =2 :.”11
n J—
= (r? = s%)? Z (Z 7«2(3‘—@_1)82(1’—2)) Ej1 ® Eji
j=3 \i=2
— (12— )23 — 2o e B @ By,
j=2
(—c Z r2(n*i)En+17i & En+1,i’> (—c Z rs* 3By @ Ei’l’)
i=2 =2
(5.32g)

_ (7"2 _ 52)2 (Z r2(n—i)—182(i—2)—1> Epi11® Enpr1v

i=2
= (7"2 — 82)2(7’8)71[’” — 1]r2752En+1,1 X En-l—l,l/-
Thus, the overall contribution of the terms {Ej1 ® Ej/17}1<j<nt1 into © equals
Z(,r,2 _ 82)82(j_2)Ej1 ® Ej’l/ + 2(72 _ 32)2[j _ 2]7‘2,S2Ej1 ® Ej’l’ _ (,,,2 _ 82) Zrz(j—Q)Ejl ® Ej’l’a
j=2 j=3 j=2
where the first summand arises from 1 ® 1-©; and the second from (5.32f). Likewise, the overall coefficient
of En+1’1 ® En+171/ in © is

(r? — 52)(7"3)*132(”*1) + (r? = s%)%(rs) "t n — 1,2 52 = (r? — 32)(7"3)*17“2(”*1),

where the first summand arises from 1 ® 1 - ©; and the second from (5.32g). Finally, the remaining
terms (5.32a)—(5.32e) contribute to the coefficients of {E;1 ® Ej1/}a2<j<n. Combining these with the corre-
sponding terms from 1 ® 1 - O, one eventually arrives at

(r® = s*)(rs) ™! Z P2 D20 B @ B
i=2
Thus, (5.32a)—(5.32¢g) and their counterparts from 1 ® 1 - ©; match the corresponding part in the right-
hand side of (5.30) for &k = 1. On the other hand, it is easy to see that the remaining terms arising from
0® .1®1 and 1®1- 0, exactly match with the remaining terms in the right-hand side of (5.30) for k = 1.
This completes our proof of the induction step, thus establishing (5.30).
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To derive the formula for Ry it only remains to evaluate the values of f from (4.3) on the weights of V.
In accordance with (4.3), we have

f(>\a:u) = (w/{uw)\)ila
where we extend the Hopf pairing to the weight lattice as in (2.14). From the formulas (2.26), the equality
€k = Qg + ...+ ay, and the basic properties of the Hopf pairing, we derive:

(rs)=t if i<j
(5.33) fleivgj) = f(—ei,—gj) =q rts  if i=j,
] if i>7

while the remaining values are then determined by:

(5.34) f(ei,—e5) = f(—eire5) = fleie5) Y, f(0,0) = f(0,%¢;) = f(£e:,0) = 1.
We also note that, if we set ,,41 = 0 and g = —¢; for all 1 < ¢ < n, then we have
(5.35) f(eise)) = aij for all i # j,j',

where a;; are given by (4.8). Combining the formulas (5.33, 5.34) with the formula (5.30) for £ = 1 and the

flip map 7, we recover the explicit formula (4.7) for Ryyv =00 for:V®V =V ®YV, thus providing an
alternative proof of Theorem 4.4.

5.4.3. Factorized formula in type C,.

The calculations in this case are very similar to those for type B,,, so we highlight only the main points. As
before, we start by deriving explicit formulas for the action of {e, fy},ca+ on the U, ;(sp,, )-representation
V from Proposition 3.3:

Lemma 5.17. (a) Fori < j <n, we have

ey~ [ B =9 By i<
Yij Ein/ + Sn+17’LEni, ’Lf ,]: n )
p(fr,) = Ejt1, —Si_j(fs)_lEi’v(j“)/ if j<mn )
Yij (TS)_lEn/i + Sﬁ—n—lEi," Zf j=n

(b) For 1 < i < n, we have
p(eﬂu‘) = Sn_i(T + S)Eii’7
p(fﬂu‘) Si_n(T_l + S_l)Ei’i'

(c) For 1 <i<j<mn, we have
ples,;) = (1" (Bijr + 177" Eyy),
p(fpy) = (=Y (I (rs) T By + 8T T Byy).
Similarly to the above treatment of B,-type, we define

0; = 65m+1 s Gﬂi,n—lg’nn Gﬂiie’n,n—l .0 S for 1<i<n,

CMYii1 Yoy

where each factor is evaluated through (5.25) by using Lemma 5.17 and formulas (5.23). The following
formula is derived completely analogously to (5.31):

;=11 +c(r" s 4 8)Eyy @ By
+c Z (rsEj; ® Ejj — 18’ 'E;; @ Ejrgy — 87T Eyy @ Bij + Eyyr @ Ejpyr)
(5.36) j=i+l

n
+c Z (Ej/i (%9 Eij/ + Tj7n$n+17iEj/i X Eji/ + Tn7j+18i7nEi/j ® Eij/ + T‘SEi/j ® Eji/) ,
j=it1
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where ¢ = (s—r)(rs)~!. Consider the following family of operators %) = ©,,0,,_;...0y, so that © = (1),
We claim that ©) is explicitly given by the following formula:

oW =191+ cZ(rn_iHsi_" + 8)Eiri @ Eyir

i=k
(537) +c Z (TSEji & Eij — TjiiSEjZ' ® Ej’i’ - Si7j+1Ei/j/ ® Ez'j + Ei’j’ X Ej/i/)
k<i<j<n
+c Z (Ej/i & Eij/ + Tn+17i8j7nEj/i X Eji/ + Tn7j+18i7nEi/j ® Eij/ + TSEi/j ® Eji/) .
k<i<j<n

The proof proceeds by an induction on n — k, with the base case k = n following from (5.36). As per the
step of induction, we note that when opening brackets in 1) = @@, besides for the summands where
one of the terms is 1 ® 1, we get the following additional terms:
(s _ 7’) Z rn_lsj_n_l(l _ (T_ls)j_2)Ej/1 ® Ejl’,
j=2
(s—1) Z Pl g2 — I TS T By @ By,
j=2

—(T _ 8)2 Z Sj—3(lr7z—j8j—n + ’F_IS)Ejll ® Ejl’u
j=2
(s—r) er_"_ls"_l(r"_jsj_” —-1)E;n ® Ejv,
j=2

(s=r) 27"3‘72(7"273‘53‘*2 —1)Ej1 @ Ejy.
j=2

Combining these summands with the appropriate terms from 1 ® 1-©; and ©® .1 ® 1 matches precisely
the right-hand side of (5.37) for k = 1, thus providing the formula for ©.
From (2.27), the equality ey = ap + ...+ ap—1+ %an, and basic properties of the Hopf pairing, we derive:
(rs)~1/2 if i<y
(539) f(EZ',Ej) = f(—El', —Ej) = (T_18)1/2 if 4 :j 5
(rs)t/? if i>j

while the remaining values are then determined by:

(5.40) flei,—¢5) = f(—ei,e5) = f(Eivgj)_l-
Furthermore, setting £;; = —¢; for all 1 < i < n, we have
(541) f(Ei,Ej) = Q4j for all 14 7é j, j/,

where a;; are given by (4.10). Combining the formulas (5.39, 5.40) with the formula (5.37) for k = 1 and

the flip map 7, we recover the explicit formula (4.9) for Ryy =0o fo 7:V®V =V ®V, thus providing
an alternative proof of Theorem 4.5.

5.4.4. Factorized formula in type D,,.
As in the previous types, we start by deriving explicit formulas for the action of {e, fy},co+ on the
Uy, s(802, )-representation V' from Proposition 3.4:

Lemma 5.18. (a) For 1 <i < j <mn, we have
plers;) = iy — 87 By,
p(fr.,) = Ejr1i— 87 (rs) "By (j41y-
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(b) For 1 <i < j<mn, we have
ple,;) = (=1)" 7 ((rs) ' Eyjr — 7" T By,
p(fei;) = ()" ((rs) " Ejri — s ).
Similarly to the previous types, we define
0, = 9ﬁi,i+l s G,Bim,—l@ﬁine')/i,n—l@"/i,n—2 e @'Yi,i+1604i for 1<i< n,
and derive the following counterpart of the formulas (5.31, 5.36):
0;=1®1+c(s —r" s T""Ey @ By

(5.42) +c¢ Y (rsEji®Eij —rs' 'Ej; @ By — 8" 7T Eijy @ Eij + Eirys @ Ejrr)
. j=i+1

+c Z (Ejli & Eij’ — Tj+1_n8n_iEj/i ® Eji’ - Tn_jSH_l_nEilj (39 Eij’ + ’I“SEilj (39 Ejy),
J=i+1

where ¢ = (s — 7)(rs)~!. Consider the following family of operators ©%) = ©,,_;...0y, so that © = O(1).
We claim that ©) is explicitly given by the following formula:

G(k) =1 X 1 -+ CZ(S — Tn7i$i+17n)Ei/i & Eii’
i=k
(543) +c Z (TSEji ® E'U — Tj_iSEji ® Ej’i' — Si_j-‘rlEi/j/ X EU + Ei/j/ X Ej/i/)
k<i<j<n
+c Z (Ej’i @By —r" ST B, @ By — " s T By @ By +rsEiy @ Ej,»/) )
k<i<j<n

The proof proceeds by an induction on n — k — 1, with the base case k = n — 1 following from (5.42). As
per the step of induction, we note that when opening brackets in ©(1) = ©(2)@,, besides for the summands
where one of the terms is 1 ® 1, we get the following additional terms:

n
Z(r —8)r" 25T (1 = I B ® By,
j=2

Z(T — )T R (L — I E L @ By,

Jj=2

Z(r —s)?r I (r ST — 1) By @ By

Z(r — s)rd "2 (P — 1) By @ By
j=2
Z(r —8)ri 72 (1 — 1?8172 By @ Ejiy.
Jj=2
Combining these summands with the appropriate terms from 1 ® 1-©; and ©® .1 ® 1 matches precisely
the right-hand side of (5.43) for k = 1, thus providing the formula for ©.
Since f is again given by (5.39), we recover the explicit formula (4.11) for Ryy = Qo for: VRV = VRV,

thus providing an alternative proof of Theorem 4.6.
6. R-MATRICES WITH A SPECTRAL PARAMETER

In this Section, we generalize the previous constructions to the affine setup of two-parameter quantum
affine algebras, which were introduced and studied in the literature case-by-case, see | , , , ]
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6.1. Two-parameter quantum affine algebras and evaluation modules.
We start with a uniform definition of U, ;(g). To this end, let # € ®* be the highest root of g, so that the

new simple root g of g is given by oy = 6 — 0. Define the matrix of structural constants Q = (Qij)?j:o by:

(6.1) Q= (whwj), Qo= (W gwj), Qo= (wjw_p), Qo= (w g,w_g) forall 1<ij<n.
We also recall that the Cartan matrix C' = (cij)ij—o for g is given by

2(a;, @) 2(—0, ;) 2(a;, —0) .
6.2 = = 0= ————=, =2 forall 1<i,j<n.
(6.2) T g, ) 0 (6,0) 7 o) 00 e shI=
Thus, C is the extended Cartan matrix of the Cartan matrix C' of g from Section 2.1.

Remark 6.1. For the reader’s convenience, we specify the new values ofé and Q in classical types:

o Type A, (n > 2)
Qoo =757, Qo1 =771, Qop = 5, Q0 = 8, Qo = 77", and Qo; = Qip = 1 for 1 <i <n;

Co1 = Cop = C10 = Cpo = —1 and co; = ¢ =0 for 1 < i <n.
e Type B, (n > 3)
Qoo = 12572, Q01 = 772572, Q02 = 772, Q0 = 17252, Qg = 1252, Qo9 = 82,00 = 772572, and
Qoi:Qi0:1f0T2<i<n,'
Co2 = Co0 = —1, cp1 =190 =0, anchi:cionf0r2<i§n.

e Type Cy, (n > 2)
Qoo =12572, Q01 =772, Qon =122, Qo = 82, Qo =7r"2572, and Qo = Qo =1 for 1 <i < mn;
cor = —1,c10 = =2, and cp; = cip =0 for 1 <i < n.
e Type D,, (n >4)
Qoo = 7“8_1,901 = ’I“_ls_l,QoQ = ’I“_l,Qon = 7“282,910 =15, = 8,00 = 7"_28_2, and Qp; =
QiozlfOT’2<Z'<TL;
Co2 = €30 = —1, cp1 =190 =0, andcm:cio:()for2<i§n.

Definition 6.2. The two-parameter quantum affine algebra U, ;(g) is the associative K-algebra gen-
erated by {e;, fi,wE', (WHF Y, U {yE, (v)E1} U {DE! (D)) E} with the following defining relations:

Dil . D:Fl _ 1’ (D/)il . (D/):Fl _ 1’ DDI _ D/D,
(63) [Dvwi] =0, [Dvw;] =0, [D/vwi] =0, [D/WJ;] =0,
De;D™' =riie;, DD =1 f;, D'ey(D)) Tt =8, D'fy(D')h =5 f,

(6.4) v =ws = wowp, ¥ = wjs = wywy — central elements,
(6.5) wiswy] = [wi,wj] = Wioj] =0, wilwft =1=(w)* W)T,
(6.6) wie; = Qjejw;, wifj = Qj_ilfjwi,
(6.7) wie; = Q;jleng, wifj = Qij fws,
/
(6.8) eifj — fiei = di ‘“;z :j;)
1—ci;

7124 [

1—cj 1p(k— cij 1—cij— . .

(—1)k[ kc J] (TiSi)ék(k DOk shei el =ci kejef =0 Vi # 7,

k=0 Ti,Sq

1—cij 1
- Ci’ 1 — kcij —C,;]‘—k . .

(—D’“[ L J] (risi) R0k sic fh g pl =0 Vi#j

T4,S4

k=0

It is often more convenient to work with the version of U, (g) without the degree generators D, D’:

Definition 6.3. Let U, ((g) be the associative K-algebra generated by {e;, fi,wiﬂ, (WHFr U {vE, ()}
with the defining relations (6.4)—(6.9).
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P

We now extend the U, ;(g)-modules V' from Section 3 to U;. ,(g)-modules V'(u) with u € C*, depending on
two additional parameters a,b € C*. We shall further extend them to U, (g)-modules V (u) with u viewed
as an indeterminate. We call the resulting U, ((g)- and U, 4(g)-modules as evaluation representations p&®.

Proposition 6.4. (A,,n > 1) For any nonzero a,b € C set ¢ = rs-ab. Then the Uy 4(sl,41)-action p on V
from Proposition 3.1 can be extended to a U{n’s(slnﬂ)—action P& on the vector space V(u) =V by setting
(6.10) %t () = p(x) for all z € {e;, fi,wi,w,}1

and defining the action of ey, fo,wo,w},,y via

pil(e0) = au- Eny1,1,  pL(fo) =bu™' - E1pqr, pY0(7) = cld = pP(v),

(6.11) i=2

n
PZ’b(Wé) =c (51E11 +r st ZE” + rlEn+17n+1> .
i=2

Proposition 6.5. (B,,,n > 2) For any nonzero a,b € C set ¢ = (rs)?ab. Then the Uy s(802n41)-action p on
V' from Proposition 3.2 can be extended to a U] ,(802,11)-action p&® on the vector space V (u) =V by setting

(6.12) &t () = p(x) for all =z € {e;, fi,wi,wi}i
and defining the action of eg, fo,wo,wj, ¥, via

p2P(eg) = au - (Evo —1°s*Ean), P2 (fo) = but- (B2 — Er), pet(v) = cld = pl*(+'),

n
pz’b(wo) =c <52E11 + 7”72E22 + Z (T72572E“' -+ 7"282Ei/i/) + 7"2E2/2/ + 872E1,1/ + En+1,n+1> ,

(6.13) =

n
Pt (wp) = ¢ <T2E11 +s "B + Z (r=2s*Eu+1?s*Eyi) + 5° Eyy + 177 By + En+1,n+1> :
=3

Proposition 6.6. (C,,,n > 2) For any nonzero a,b € C set ¢ = rs-ab. Then the U, s(spy,)-action p on V
Jrom Proposition 3.3 can be extended to a U} ,(spy,,)-action p&® on the vector space V(u) =V by setting

(6.14) %t () = p(x) for all z € {e;, fi,wi,w,}7;
and defining the action of ey, fo,wo,w},,y via

p2(eg) = au- By, pL(fo) =bu™ - By, p2P(y) = cld = p2b(v)),

b 1 —1.-1 -1
pz’ wo)=c|r sk + s " Ey;+rsEyy)+rsT Eu |,
o () ( 1 )

> (r

i=2

P2t (wh) = ¢ (rleu + Z (rilsflE“‘ +rsBEyq) + rlsE1/1,> .
i=2

Proposition 6.7. (D,,,n > 3) For any nonzero a,b € C set ¢ =rs-ab. Then the U, s(s02,)-action p on 'V
from Proposition 3.4 can be extended to a U] (502, )-action p&? on the vector space V(u) =V by setting

(6.16) P2t (x) = p(x) for all = € {e;, fi,wi,w, }1y
and defining the action of eg, fo,wo,wj, ¥, via
P’ (eo) = au- (Eva —rsEan),  pi(fo) = bu™" - (Ear — Era),  pi®(y) = cld = pi*(v),

n
pZ’b(wo) =c <8E11 +r 1 Ey 4+ Z (rilsflEii + rsEi/i/) 4 rEoigr + $1E1/1/> ,

(6.17) i=3

Pt (wp) =c (TEM + 5 1By + Z (r's 'Ey +rsEyy) + sEyo + T_1E1'1'> .
=3
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These evaluation U}, ,(g)-modules p%® can be naturally upgraded to U, s(g)-modules in the standard way:

Proposition 6.8. Let u be an indeterminate and redefine the vector space via V(u) = V ®¢ Clu,u™!]
accordingly. Then, the formulas defining p>® on the generators from Propositions 6./—6.7 together with

(6.18) P2t (D) (v @uP) =rf - veu, P2t (D (v @ uk) = sk v @u” forall veV, keZ
give rise to the same-named action p2® of U, 4(g) on V(u).

The proofs of all these results are straightforward, cf. our proof of Proposition 3.2.

6.2. Affine R-matrices.
Let UZ,(g) be the subalgebra of U, s(g) generated by {e;,w; 1 AEL pEYR and similarly let U< (g) be

the subalgebra generated by {f;, (w})*!, (v)*!, (D)1 }1,. L1kew1se we define the subalgebras U, Z(g) and
U =(9) of U/ ,(g). We note that the same formulas as in Section 2.1 for U, 4(g) can be used to deﬁne the

Hopf algebra structures on both U, 4(g) and U ,(g), so that UZ,(g), U=,(g) and U;:SZ (9), UT/;SS (g) are also

Hopf subalgebras of U, s(g) and U/ ,(g). Finally, parallel to Proposition 2.5, one has bilinear Hopf pairings
(): Us(@) x UZ,(8) = K,

(6.19) /
(): UnS(@) x UpZ(8) — K.

We note that the second of these pairings is actually degenerate as (7' — 1, U;;SZ (@)=0= (UT S(@),y—1).
On the other hand (which is one of the key reasons to add the generators D, D’), the first pairing in (6.19) is
non-degenerate, and hence allows to realize the two-parameter quantum affine algebra U, s(g) as a Drinfel’d

double of its Hopf subalgebras U,fs (), U,? (9) with respect to the pairing above.

The above discussion yields the universal R-matrix for U, 4(g), which induces intertwiners VoW -~ WV
for suitable U, 4(g)-modules V, W, akin to Section 4.1. In order to not overburden the paper, we choose to
skip the detailed presentation on this standard but rather technical discussion. Instead, We shall now proceed
directly to the main goal of this paper—the evaluation of such intertwiners when V = p&® W = p2® are the
modules from Section 6.1. In this context, we are looking for U, s(g)-module 1ntertw1ners R(u/v) satisfying

(6.20) R(ufv) o (pi" @ pi") () = (0 © pi*) () © R(u/v)

for all € U, s(g) (equivalently, one can rather request € U] (@) in the context of U]  (g)-modules).
According to [Jim, Proposition 2], it suffices to check the validity of (6.20) only for x = f; (0 < i <mn). In
fact, the space of such solutions is one-dimensional, see [Jim, Proposition 1], which is essentially due to the
irreducibility of the tensor product p2*®p% (which still holds when viewing them as U, 4(@)-modules as long
as u,v are generic), in contrast to Proposition 3.9. As an immediate corollary, see [Jim, Proposition 3|, the
operator R(u/v) = R(u /v) o T satisfies the aforementioned Yang-Baxter relation with a spectral parameter:

ng(v/’IU)ng(U/w)R23 (’LL/U) = R23 (u/v)ng(u/w)ng (v/w),
Ri2(v/w) Ros(u/w)Rya(u/v) = Ros(u/v)Ris(u/w)Ras(v/w),

with notation as in Subsection 4.1. We shall now present explicit formulas for such R(z) in all classical
types, generalizing [Jim] for the one-parameter setup®. We note that the origin of these formulas will be
explained in the next section, where they will be derived through the so-called Yang-Baxterization technique
of | ]. However, once the formulas are guessed, the above discussions imply that it suffices to check that
they satisty (6.20) for z = f; (0 <i < mn).

We start with the simplest case of A-type (part (b) of which goes back to [JL2, §2]):

Theorem 6.9. (Type A,,) (a) Let z = u/v. For Uhs(;[n_,_l)—modules P& and p»® from Proposition 6./, the
—1.

(6.21)

following operator R(z) satisfies (6.20) whenever ab = (rs)

n+1
R(Z) = (1 — ZTSil) Z By @ By + (1 — Z)T’Z B @ By + (1 — 2)371 ZEij ® Ey;
(6.22) i=1 i>] 1<j
+(17r5 ZE”®E]]+ (1—rs~ ZE“@)EM
i>] 1<j

2We note that a twist of [1R¢] is needed to recover the formulas of [Jin, §3] due to a different coproduct [Jim, (2.10)] on Uy (3).
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(b) The operator R(z) = R(z) o T given explicitly by

n+1
R(z)=(1—zrs! ZE”@)E”—I—(l—z ZE“Q@E”_F (1—2)s 1ZE”®
>] 1<j
(1—rs” ZE23® (1—rs™ ZEUQ@
i>] 1<j

satisfies the Yang-Baxter equation with a spectral parameter (6.21).
The main results of this Section generalize the above theorem to the other classical series.

Theorem 6.10. (Type B,,) (a) Let z = u/v. For U, s(502,+1)-modules p° and p®® from Proposition 6.5,

the following operator R(z) satisfies (6.20) whenever ab = (rs)~2:
. z;ﬁn-i—l Y ERA j#i’
R(z)=(z—r"? &) > Ei®Ei+ Y ay(2)Ei; @ Ej+(1-r72)(2 €)Y By ® By
(623) 1<z<2n+1 1<4,j<2n+1 i>7
j#d 2n+1
+(1—7"_22 ZE12®EJJ+ZI)’L] 1]®E7ij’7
1<j 4,j=1
where & = p2ntlg2n—1
() rls(z —1)(z = &)(rs) 7% if i <j,j or i>j,j
a;;(z) = )
" rls(z —1)(z = &)(rs)7%  if j<i<j or j<i<j
(r=2s22 - &) (2 —1) if j=4, i#n+1
bii(2) = rls(z=1D)(z-+ 22 -1)(E-1)z if i=j=n+1
! (r=2s® = D)(etit; (= 1) = by (=€) if i< ’
(r—2s2 — l)z(titj_l(z —1)—=8(2=8) if i>j

with t;,0; precisely as in (4.8).
(b) The operator R(z) = R(z) o7 is a solution of the Yang-Bazter equation with a spectral parameter (6.21).

Theorem 6.11. (Type C,,) (a) Let z = u/v. For U, 4(§py,)-modules p2° and p®® from Proposition 6.6, the
following operator R(z) satisfies (6.20) whenever ab = (rs)~!:

J#id J#i
R(Z):(Z_T (z=¢ ZElZ@E”_FZa” Ezg®E]z+(1—7’ Z_g)ZEii®Ejj
(624) o 1<4,j<2n >3]
g7’
+(1—r's)2(z -8 Y Ei®Ej; + Z bi;(2)Eir; @ Eyjr,
1<j i,j=1

where & = p~ " Lgn L

() rV2812(2 = 1)(z = ) (rs) "2 if i< G j or i> ],
a;(%) = . . . . . . )
J 2512 (2 —1)(2 — §)(Ts)%”“’f if j<i<j or j<i<j

(r~tsz—&)(z—1) if j=1
bij(z) = ¢ (r7ts = 1)(&tit; (2 — 1) = iy (2 =€) if i<j,
(r~ls— 1)z(tit;1(z —1) =05 (2=8)) if i>j

with t;, 0; precisely as in

0).

(4.1
(b) The operator R(z) = R(z) o7 is a solution of the Yang-Baxter equation with a spectral parameter (6.21).
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Theorem 6.12. (Type D,,) (a) Let z = u/v. For U, ¢(502,)-modules p%° and p@* from Proposition 6.7, the
following operator R(z) satisfies (6.20) whenever ab = (rs)~!:

Vs J#i
R(Z):(Z_T (z—=¢ ZEm@Em‘FZaz] EZ]®Ej1+(1_T Z—f)ZEﬂ(@E]‘j
(625) 1<4,j<2n >3]
J#i 2n
+(1-r19)2(z =&)Y Eui@Ej;+ > bij(2)Ev; ® Eijy,
1<j i,j=1

where & = p~Hlgn—1

r=12s12(2 —1)(2 — f)(rs)*%"if’ﬂ' if 1<4,9 or i>3,5
ai5(2) = {r‘l/Qsl/Q(z—1)(2—5)(7"8)5‘7“” if j<i<j or jl<i<yj’
(r-lsz —&)(z—1) if =1
bij(z) = (rts —1)(&tit; (2 —1) = 65 (2 = &) if i<j,
(r=ts— 1)z(titj_1(z —1) =i (2 =8) if i>j
with t;, o; precisely as in (4.12).
(b) The operator R(z) = R(z) ot is a solution of the Yang-Baxter equation with a spectral parameter (6.21).

Remark 6.13. The careful reader may have noticed that for r = q and s = q~1, the formula (6.23) does
not precisely match with the corresponding R-matriz of [Jim]. This discrepancy occurs because [Jim] uses a
coproduct A" on Uy(g) that differs from the more standard A of [Jan]. One may check that

A(z) = fY2A () f~1/? for all x € Uy(g),
where both sides are regarded as operators on M ® M’ for any finite-dimensional (type 1) Uy(g)-modules M

and M’ (see [Jan, Chapter 7] for the notation). Using this relationship, one may then show that

B = V2R
is the corresponding intertwiner relative to the coproduct A’ of [Jim]. The Yang-Baxterization results of
Section 7, then imply that the one-parameter specialization of our (6.23)—(6.25) should be related to the
corresponding formulas in [Jim] via conjugation by fY/2. The latter can be verified directly case-by-case.

6.3. Proofs of explicit formulas.
We shall now present the proofs of the theorems from the previous Subsection. We start with A-type:

Proof of Theorem 6.9. We shall only prove (a), since (b) follows from it (see also our discussion in Section 7).

As follows from Section 7, the operator R(uv=1) of (6.22) is a linear combination of R from (4.6) and
its inverse R, hence it satisfies (6.20) for = e;, f; (1 <i < n). For the remaining generators, it will be
helpful to record the explicit action of R(uv~") on the basis vectors v; ® v; of V(u) @ V (v):

(1 —wo=trs Yy, @ v; if i=j
(6.26) Rluv™v; @vj =% (1 —rs Do, @vj +5 (1 —uww M @ if i>7.
w1 —rs o, @vj+r(l—uww Yo, @v if i<j

In particular, R(uv~") preserves the weight subspaces, so that (6.20) holds also for & = w;,w] (0 <i < n).
We shall now verify (6.20) for x = eg. First, we note that

0 if i£1, j#1
UVpt1 R Vj if i=1,j7#1

(6.27) a_l(pu ® py)(eo)(vi ® 'Uj) =4 UUp41 QU1+ vrt o ® Unpr i i=j =1 ’
8 M Upg1 ® Vpg if i=n+1,j=1
vr~lsT oy @ vpg if iZln+1, j=1

and we have similar formulas for a=*(p, ® p,)(eo)(v; ®v;) with v and v interchanged. As shorthand, we shall
use the notation E,, and E,, to denote the operators a=*(p, ® p,)(eo) and a=1(p, ® pu)(eg), respectively.
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According to (6.26, 6.27), we clearly have R(uv™")(Eyy(vi ® v)) = 0 = Eyu(R(uv™1)(v; @ v;)) for 4,7 # 1.
We now consider the remaining cases:

o Ifi=1and j#1,n+1, then
R(uv™)(Euy(v1 @ v)) = s (1 — wv ™1 )v; @ vpgr +u(l — s HDvp @ vj,
which is equal to
EWR(uv_l)(vl ®v;) = Eyy (r(l —ww My @v w1 —rs o ® vj)
= sl —uv M @ vpgr +u(l — 15T Hvpg @ v
e Ifi=1and j =n+1, then
Ruv™)(Byy(v1 @ vnp1)) = (1 — uv ™ rs ™ Hopy1 @ vpgt,
which is equal to
Evu]:'i(uvfl)(vl ® Upt1) = rsilu(l — uvil)vnﬂ @ Vpi1 +u(l =75 i1 @ vpgy
=u(l —uv s Hupg1 ® vngr.
o If i = j =1, then we have
Ruv™ ) (Eyy(v1 @ 11)) = R(uv ™) (wvni1 @ v1 + 0r~ 01 @ vpyq)
=us 11 —uww o @vppr +u(l —rs vy @ vy
+ur (1 —rs Doy @ vpp1 Fo(l —uwv Do, @ v

1

=ur (1 —wotrs o @ vyt + (v — urs T v @ vy,

which is equal to
EyuR(uv™) (01 ® 1) = Eyu(1 —uwv ™ rs™ oy @ vy
=@ —urs Npp1 @u +ur (1 —uv lrsTHuy @ vy,
o Ifi=n+1and j=1, then
R(uv_l)(Em,(vnH ®up)) = vs_l(l — uv_lrs_l)vnH ® Upi1,
which is equal to
Ew]:?(uv_l)(vnﬂ ®v1) = Eyu (5_1(1 — uv_l)vl ® Upt1 + (1 — rs_l)vnH ® 1)1)
=vs M1 —ww N1 @vpyr Fus 1 —rs Doy @ vap
= Us_l(l — uv_lrs_l)vnﬂ ® Vpy1-
e Finally, if i 2 1,n 4+ 1 and j = 1, then
Ruv ™) (Eyp(v; @ v1)) = v8 1 (1 —uv™ Npy @ v +ur s (1 — rs™ oy @ vny1,
which is equal to
EpuRuv™)(v; @ v1) = By (s 1 —wv™ Hor @ v + (1 —rs™H)v; @ v1)
=us ' 1 —uww N @v; Fur s 1 — s @ vy

This completes our verification of (6.20) for z = eq.
The verification for x = fj is completely analogous. This completes the proof of Theorem 6.9(a). |

Let us now present the proof of Theorem 6.10 (the proofs of Theorems 6.11, 6.12 are completely analogous).

Proof of Theorem 6.10. As follows from Section 7, the operator R(uv~") of (6.23) is a linear combination of
R from (4.7), its inverse R~1, and the identity operator Id. Hence, it satisfies (6.20) for z = e;, f; (1 < i < n).
Moreover, R(uv~1) clearly preserves the weight subspaces, so it also satisfies (6.20) for # = w;, w! (0 < i < n).

We shall now verify (6.20) for x = fy, proceeding similarly to our proof of Lemma 4.11. To this end,
let F, = b71(p%® @ p2b)(fo) and F,,, = b~ (p%® @ p@b)(fy), where we assume that ab = (rs)~2, so that
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¢ = (rs)2ab = 1. Then we need to verify that R(uv™")Fy, = Fy,R(uv~') € End(V ® V). First, let us record
the explicit formula for F,, € End(V @ V):

F,, = v 1 ® Fayr — v 11 ® Fi9 + u_1T2E21/ ® Fi1 + U_IS_2E21/ ® Foo + U_182E21/ ® Eoror

+u 2 Fyy @ By +u By @ Byt + Z (u='(rs)?Eo1 ® Ey; +u~ ' (rs)*Ear ® Eyry)
=3
—u "By @ BEyp —u's 2By @ Bas —u” s’ By ® Eyyr —u” 1 2By @ By

—u ' By @ Bpyinpr — », (u ' (rs) Ery ® Eii + u” ' (rs)*Fry @ Eii)
i=3

while F, is given by the same formula with u and v interchanged. As in the proof of Lemma 4.11, it will
be helpful to break the operator R(uv™!) from (6.23) into the following six terms:

i#n+1

Ri(uv™) = (uwv™! —r 28} (uwv™! = §) Z E; ® E;
1<i<2n41
+ (rts(uot = D(uo™t = &) + (r 2 = D)(E = Duv ™) Bng1ng1 © Bnginga,
i#n+1
Ro(uv™1) = (r2s%uv™t — &)(uv™ — 1) Z Ey; @ E;y,
1<i<2n+1
J#id
Ry(uwv™) = > ay(uwo™)Ey; @ Ey,
1<i,j<2n+1
j#i’
Ry(uwv™) = (1 =r2*)(uwv™" =€) Y Eq® Ejj,
i>j
J#
Rs(uwv™) = (1 —r2s)uv  (uv™ =€) Z E; ® Ej;,
i<j
i#]
Rg(uvfl) = Zbij(uvfl)Ei/j ® Eyjr.
1<i,j<2n+1

Then a direct computation yields

Ri(uv™)Fu = v Huv™! —

rfzsz)(uvfl — &) Eoy @ Eopr — v Y uw ™t — r7252)(u071 —¢)E11 ® By
+u s 2wt — 728 (uv Tt — €) Fapr @ Fog — u” e (uw ™!

— T_QSQ)(’U,’U_I — €)E12/ X E117

FyuRi(uwv™) =u " (uv™t —

Fo b2 (o - 22

r 25 (uw™ = OBy @ By —uH(wwmt — r2s?
s (uv™! = €)Eoy @ By — v s (uv ™!

r25") (uv ™! — ) Eyyr @ By
—r 28 (uv™! — &) By @ By,

Ro(uv™ N Fu = v (1 28%uv™ — &) (wv™ — 1)Eae @ Bory — v H(r28%uv™ — &) (uv™ — 1)E1y @ Eprg
+u s (r 252 un™! — &) (uv™! = 1)Earp @ Foyr — w2 (r 2% uv ™! — ) (uv™! — 1)Epy @ Fyy,

FyuRo(uv™) =t (r2s%uv™ — &) (uv™' = 1)E1p @ Eop —u H(r 2s%uv™ — &) (uv™! — 1) Eoy @ Eio
+o 12 (r2ur T — O)(wv Tt — 1) By @ Brp — v s 2 (r 252 un ™ — &) (uwvT! — 1) B ® Eaor,
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Ry(uv™ N Fyy — FyuR3(uv™) = s?2v Huv™ = 1)(uv™" — €) By @ Eqv/

+r 20 N uw™ = D(uv™! = €)Eyy @ By —r 20 Huw™ = D (uv™! = &) B ® Egy

—s2o Hwv ™ = D(uw™! = E1y @ Eyy +u Huv™ = 1) (uwv™ — €)E1pr @ Foy

+ 772820 (ww ™ — D(uw™ = By @ Fopr —r2u Y uw ™ — 1) (uv ™! — ) By @ Ea

— s Huv ™ = 1) (vt = €)Fyy @ By —u M (uv ™t — 1) (uv™! — ) Eyy ® By
r282u (wv ™ = D) (uv™! = &) Eyy @ iy 4+ s2u N uv ™t — 1)(uv™! — €) B ® Epy

+r 2 uw™ = 1) (vt = €)Bry @ Ery — v Huw ™ = 1) (uv ™t — €) By @ Eay

— ’I"7232’U71( -1 1)( — S)Egg/ ® Forir + Uﬁl(uvil — 1)(’&1)71 — f)EH ® Eia
+ o 282w = D)(wv™t — €) By ® By,
FouRs(uv™) — Ry(uv ™ Fp = (r2s% = 1)(uv™! — v By @ Eovs
2

+ (1 =772 (uv ™! — E)v By @ Eoyr + (
+ (1 =722 (wv ™t — )v 1By @ By + (
+ (r72s = D) (uv ™ = v B @ Ery + (82 — rH)(uv™! — Hu By @ Eny
+ (r? 7)) (uww = Huv 2By @ By,

)
(’U/U ) _1E2/2/ ® E21/
(

1-— _232)
1—r728%)(w ™" = &)o' Byy @ Eny

FuuRy(uv™) — Rs(uv™ ") Fyp = (r2s* = 1) (uv ™ — uv™2E; ® By
+ (7’74 2 TﬁQ)(U’Uil — g)U71E21/ X El/l/ —+ (872 — 7’72)(’&1171 — f)UﬁlElg/ [ E22

+ (82 —r 25w = v Bl @ FBorgr + (17282 — D)(uv™ — & u ' Eyy @ Ery
+ (572 )(uv*1 — & By @ Fog + (52 —r 7 2t (wv™t — &) By @ By
(32 )( — v By ® By,
Re(uv™"F,, = (1"7452 —r ) (uww™ = D)o By ® Ery — ( 7252 —D(ww™! = 1o ¢Eyy ® Eas
—(r?s = D(uwo ™ = v Eyy @ By — (r72st — ) (uvt — v By @ Eory
— (r 2t = 52)(uv VD)o By @ By + (r2s% — 1)( —1D)év By @ By
— (2 = D(w ! =D (wwt = uT By @ By + (r728 = 1) (wv™ = v By ® By
G (T [ 5)”71E12/ ® By + (r 452 T 2)(u071 v "By ® By,
FWRG( =0 =) (w T = OuT By @ By 4 (r25% — D)(ww ™ = 1)vT By ® By
+ (r~ 1)(uv — v By ® By + (7’2 — ) (uv™t = 1)év " Ey ® By
+ (7‘_2 - 3_2)( — T By @ Bog + (72 — s ) (uv™! — 1)év ™' E1p ® Foy
—(r 2 = D(uwv ™ = Do By @ EBoy — (r72s* = D(uwv™ — Ouwv2E1; @ Eay.

Combining the expressions above, we get
Ry(uv™ " Fyy — FyuR3(uv™) + Ry (uv ™) Fuy + Ra(uv™ 1) Fuy — FyuRy(uv™') — Fyy Ro(uv™1)
=(1- 7“_282)(uv_1 — v By @ Eop 4 (r28* — 1)(wv ™t — v B ® By

(uv™' — v Eoyr @ Fog + (82 —r?)(wv™ — v By @ Eqy
(uv™' = )& Eyy @ FEoryr 4+ (1 — v 2% (uv™ — 1)év ' By @ By

r st — s )(uv — 1) By @ Bygr + (r 2 =178 (uwv™ = 1)v ' Epy @ By
(

(572

(r~

(r~

(r2s%* = D(uv™ ' =)o 'EByy @ oy + (1 —r28%) (wv™ — v Eargr @ B
(r~

(

(

)
r2s% — 1)
(6.28) 2

8% — 2 (vt — v Eyy @ By 4 (87 — r 28N (uv ! — v By @ Forg
1—r2s) (ww™ — 1) ' By @ Boy + (r2s* — D) (uwv™ — D)o ' Eyy @ Eqp
r?— )( -1 1)§U_1E21 ® Ei1 + (7‘_2 — 8_2)(UU_1 — 1)€U_1E12 ® Foor
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and
(FouRs(uv™) — Ry(uv™ ") Fup) + (FyuRy(uv™) — Rs(uv™ 1) Fuy) + FouRe(uv™1) — Rg(uv™ 1) Fy,
=22 = D(ww ™ — v By @ Bopr + (1 — 177282 (o™ — €)v ' By @ Foys
1-— 1“7252)(1;1171 — v Eyo ® Ero + (7’7252 —D(w ™ = v B ® By
P48 —r ) (ww Tt — T By @ By + (8% — 28t (uv T — v By ® By
Yuv™ — v By @ Egp + (52 — r2)(uv71 — v By ® By
r72s% — D(uww™ = 1o By @ Bio + (r? — 8% (uv™! — 1)év ™ By @ Fyys
r 2 — 572) wt = D By @ Eay + (1 — 7’7252)(1“)71 - 1)1}71E11/ & Eoy
P2 =7 (wv T = DT By @ Brp 4 (r72%s% — 1) (wwt — 1)év " Fayr @ Fory
+ (r7 2t =) (uwv™ = 1) By @ Eay + (1 —r 2% (uv™! — 1)év ' E1y @ Eprgr.

n
n
(6.29)  +
n
"

The right-hand sides of (6.28) and (6.29) are clearly equal, which completes the proof of (6.20) for z = fj.

In the same way, one can verify (6.20) for 2 = ey (although according to [Jim], it is actually sufficient to
check (6.20) only for z = f;). This completes the proof of part (a) of Theorem 6.10. The proof of part (b)
actually follows from (a), as in [Jim, Proposition 3]. |

Remark 6.14. Similarly to Remark /.12, we note that the qbove proofs of Theorems 6.10-0.12 are quite
elementary, but they require knowing the correct formulas for R(z) at the first place. In the next Section, we
present the origin of these formulas, by using the Yang-Baxterization technique of | ].

7. YANG-BAXTERIZATION

In this last Section, we present a natural derivation of the rather complicated formulas (6.22)-(6.25)
from their finite counterparts (4.6, 4.7, 4.9, 4.11). This is based on a so-called Yang-Bazterization technique
of | ], which produces R(z) satisfying (6.21) from R satisfying (4.5) when the latter has 2 or 3 eigenvalues.

Yang-Baxterization in A-type.
For a uniform presentation, we start by recalling the derivation of (6.22) through that technique. As
noted in | ], the R-matrix R of (4.6) is diagonalizable with two eigenvalues Ay = —rs~!, Ay = 1, so that

RV = AR+ (A + A DI
In that setup, the Yang-Baxterization of | , (3.15)] produces the following solution of (6.21):
(7.1) R(z) = 'R+ 20 R
Combining (7.1) with (4.6) and the above formula for R~!, one immediately derives the operator (6.22).

Yang-Baxterization in BC D-types.
Let us treat the other three classical series. To this end, we recall that the R-matrices R of (4.7, 4.9, 4.11)
have three distinct eigenvalues A1, A2, A3, in accordance with Lemmas 4.8, 4.9, 4.10. In that setup, the

Yang-Baxterization of | , (3.29), (3.31)] produces the following two solutions to (6.21):
R A A A A 1 -
(7.2) Riz)=Mz(z—DR '+ (1+ 2+ 224+ 22) 2ld — —(z — 1R,
PSS VIR AW A3
. . AA A A1 :
. =Xz(z— DR+ (1+ 5+ = L) 2ld — -1
(7.3) R(z) 1z2(z—= 1R + ( + e + " + /\2)\3> z " (z — 1R,
provided that R satisfies the additional relations of [ , (3.27)] (cf. correction [ , (A.9)]), which, in

particular, hold whenever Risa representation of a Birman- Wenzl algebra.

Remark 7.1. For the purpose of the present section, we shall not really need to verify these additional rela-
tions, since according to Theorems 6.10-06.12 the constructed R(z) do manifestly satisfy the relation (6.21).
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To apply formulas above, it remains to evaluate R~L. To this end, we consider the C-algebra automorphism
(7.4) 0:U,s(g) > U,s(g) givenby e —e;, firfi, wirwl, w, —w, T8 ST
Evoking the notation (4.2), we define

(7.5) =)0, with ©,=(®0)(®,) foral pu
n=>0

We also introduce another coproduct homomorphism A: U, (g) — U, s(g) ® U, s(g) via

(7.6) A=(c®c)oAoo .

Then, for any finite-dimensional U, s(g)-modules V' and W, we have
A(u)o®=00Au): VaW Ve W for all w € U, s(g),

cf. | , Lemma 4.10] and | , Lemma 3.3]. Applying ¢ ® o to the equality above, we then get
A(o(u))® = ©A(o(u)). Since o is an automorphism, the last equality can be written as A(u)© = OA(u)
for any u € U, s(g). Let us now also show that A(u)f = fA°P(u) on V@W. It suffices to verify this formula
when u is one of the generators. For v = w; or wj, this is obvious. For u = ¢; and any v € V[\], w € V[ul:

Alen)fw@w) = F\ (e @ w+ (w],wr) " v ® eqw)
and
FAP(e)) (v @ w)) = F(N p+ )o@ eqw + fF(N + i, ) (W), wi)eiv @ w,
which are equal due to the properties (4.3) satisfied by f. The proof for v = f; is completely analogous.
Putting all of this together, we find:
Tof To@oA) =70 f 'oA() 0O =70APw)of lo@=Aw)oTof 10O

as linear maps VW — W®V. Thus R=To f’l 00: VW — W®V is a U, s(g)-module isomorphism.

Specializing now to the case where V' = W is one of the representations from Propositions 3.2-3.4, one
can easily see from the defining formulas that p(o(u)) = o(p(u)) for any u € U, 4(g). Here, we regard p(u)
as an element of Maty (K), and 7: Maty (K) — Maty (K) is the C-algebra automorphism defined by

a(TkéilEz’j) = rgskEij VkleZ, 1<ij5<N.

By abuse of notation, we shall use & to denote similar C-algebra automorphisms Mat x (K)®? — Mat y (K)®?
and K — K. To obtain explicit formulas for R, which we present in equations (7.7)-(7.9) below, we just
need to evaluate 7o f L od(Ro7o f~!) from the respective formulas for R given in (4.7, 4.9, 4.11), see (4.4).
Most of the terms transform easily into the corresponding terms in (7.7)—(7.9), due to the equalities

b'v(f(gj,gi)) = f({‘:ivgj)il fOI‘ all iaj7

but some additional explanation is necessary for two of them. First, the term Zl i ai; B;j ® Ej; transforms
into the corresponding one in (7.7)—(7.9) due to the following identities satisfied by a,; of (4.8, 4.10, 4.12):

a;j = f(ei, g5) and a;il = aj; for all 4 #7,5.

For the former equality, see (5.35) and (5.41). Second, the term >, titj—lEi,j ® E;; transforms into the
corresponding one in (7.7)—(7.9) due to the additional observations that, unless i =n+1or j =n+1 in
type By, we have (with £; = —&; as defined prior to (5.35) and (5.41))

f(—¢€i,e) = flej,—¢5) and E(ti/tjf,l) = tﬁ;l forall 1<4i,57<N.

The former equality follows from our formulas (5.33, 5.34) for type B, and (5.39, 5.40) for types C,,, D,.
When i=n+1or j =n+1 in type B,, we rather use the following equalities:

£(0,0) =1, F(tns1)rs ™t =tnia, o(ty)=t; for i#n+1.

These results allow us to prove the following lemmas:
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Lemma 7.2. (Type B,,) The inverse of the operator RVeV-osVeV from Theorem 4.j is equal to

i#n+1 i#n+1
R=r71o0 f_l e} :'I‘S_l Z Ei; Q By + En+1,n+1 (39 En+1,n+1 + ’I"_lS Z E;i @ By
1<i<2n+1 1<i<2n+1
374, n ) )
(7.7) + Z aijBij @ Eji + (s —r?)(rs)™1 Y (P20 12000+ YL@ B
1<i,j<2n+1 i=1
J# g7
+ (r? — s?)(rs)™! Z E;i @ Ejj+ (s> —r%)(rs)™! Z titj*lEi/j ® Eij,

i<j (>

with the constants t; and a;; given explicitly by (4.8).
Lemma 7.3. (Type C, ) The inverse of the operator RVQV VeV from Theorem 4.5 is equal to

2n 2n
E =TO f71 (¢] @ :7"1/2871/2 Z E“ X E” -+ 7'71/251/2 Z Eii’ X Ei’i

i=1 i=1
G n
(7.8) + Z aijEij ® Eji + (r — s)(rs) /2 Z(ri_"_lsn"'l_i +1)Ei @ By
1<i,j<2n i=1
J#i’ J#i
+(r=s)(rs)2Y Ei @ Ejj+ (s —1)(rs) "V tit; By @ By,
1<j i>7

with the constants t; and a;; given explicitly by (4.10).
Lemma 7.4. (Type D, ) The inverse of the operator RVQV VeV from Theorem 4.6 is equal to

2n 2n
R=ro0 f”l 0@ —pl/24-1/2 ZE“ ® Ey; +r1/251/2 ZE“’ ® Ey;

=1 =1
G n
(7.9) + Z aijEij ® Eji + (r — s)(rs) /2 Z(l — """ Ny @ By
1<i,j<2n i=1
i i
+(r=8)(rs) 2> By @ By + (s =) (rs) "2 > it By @ By,
1<j >

with the constants t; and a;; given explicitly by (4.12).

Since R is a U, 5(g)-module intertwiner by the above discussions, it suffices to verify that the eigenvalues
of R on the highest weight vectors w, ws, w3 from our proof of Proposition 3.9 are inverse to those of R as
specified in Lemmas 4.8-4.10. As the arguments are very similar, we shall only present the proof in type B,,.
Proof of Lemma 7.2. For wy = v; ® vy, the eigenvalue of R is A = r~'s, while we clearly have:

R(wi) = R(vy ®@vy) = rs oy Qv = Al_lwl.

For ws, we have:
(7.10)

R(ws) = R(v1®@vy—1s tua@u;) = (rs_l —r 7180 @Ua F v @V —1rs Ty @ug = —1r Ls(v1 @Ua — s lua @)
for n =1, and

R(wz) = R(v; ®vy — r2uy ®up) = (7"571 - r*15)1)1 Ry + T8V Qv — 18 ] Qug = —rils(vl ® vy — 1209 ®wv1)
for n > 1. The corresponding eigenvalue for Ris Ay = —rs™!, so the claim is true in this case as well.

Finally, the eigenvalue of the R-action on ws equals the ratio of coefficients of vy ® vy in R(ws) and ws.
To compute the former, we note that only the third summand of (7.7) makes a nontrivial contribution of
r~ls-v ®vi. As the coefficient of v1/ @ v1 in ws equals 72?1527+ we conclude that R(ws) = 2 g2 g,

Thus, the eigenvalue of ws for R is indeed equal to A\;* = 252", [ |
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With these preliminaries out of the way, we can now present our formulas for R(z)7 which we obtain from
(7.2) in types By, and D,,, and from (7.3) in type C,, (the key reason to use a different formula in type C,
is because (7.2) does not produce a solution that also satisfies the intertwining property (6.20)):

e Type By,

R(z) =r"'sz(z = )R+ (1 — 72 TLs?=1)(1 — 7 25%)21d — r~2"s*" (2 — 1)R,

which after a direct computation simplifies to (6.23).
e Type C,,

R(z) =r Y225(z = )R+ (1 —r "1™ (1 — rs)zld — " 73/25743/2 (2 — 1R,
which after a direct computation simplifies to (6.24).
e Type Dy,
R(z) =172 22(2 — DR+ (1 — r L 1)(1 — rls)2ld — r " HY/2s7=1/2(; — )R,

which after a direct computation simplifies to (6.25).

APPENDIX A. TWO-PARAMETER VS ONE-PARAMETER QUANTUM GROUPS

In this Appendix, we realize U,(g) with ¢ = r'/2571/2 as a subalgebra of U, ,(g), extended by adjoining
wil/z, w!)EF/21n_in contrast to the specialization realization (2.10). To do so, we consider
[ [ =1

(A.1) modified generators ¢; =e¢; WV fi=s filw)™Y2, &= (;Jl-l/z(u;;)_l/2 V1<i<n.

K2 ? (2

The following is the key result of this Appendix:
Proposition A.1. The elements (A.1) satisfy the defining relations of Drinfeld-Jimbo generators for U,(g).

Proof. The proof consists of a straightforward verification of all of the defining relations.
o The commutativity [&;,w;] = 0 is a direct consequence of (2.5).
e Let us now check @;¢; = ¢(*®)¢;;. Using (2.6) and (2.7), we obtain

Tig; = wl/g( N~ 1/2gj = (r<ai,Oéj>+<aj’ai>8*<aj’ai>*<oéi7aj>)1/26 0 = q(a“%)e]wl

with the last equality due to (o, ;) = (o, ;) + (0, a).
o The verification of W; f; = g (@) f;W; is analogous to the above calculation.
e For i # j, we have wi_l/zfj = (W}, ws )I/QfJ ~1/2 and (W))~ 1/2g; (w37wi)1/2'€i(w3)’1/2, so that

(@i, F) = 5w w0i) /2 - fei, £5] - (winh) T2 = 0,
with the last equality due to (2.8).
e For ¢ = j, we likewise obtain

~ ~—1
Wi — W;

o~ 1S4 ~ ~_
Bin il = @isi - les, fi] - (wiw)) "2 = B2 (@, — 57 = p———
i — 4

)
Ty — S§

where we used (2.8) as well as the equalities (w},w;) = ¢*% = ¢? and ¢;5; = (rs)%/2.
o Finally, let us show that €; satisfy the ¢-Serre relation. Fix ¢ # j, and set m = 1 — ¢;;. First, we note

1 _
(Ed?)" = g Vg,

so that
(Etl) " el (el )
%

g m(m—l)r%(mfkr)(aj,ai)Jr%k(ai,aj)sfé(mfkﬂai,aj)f%k(aj,ai> . "V;n—k?"’_’é’f m/2w1/2.
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. ~ 1/2 ~ 1/2

Thus, plugging e; = eiw/ and e; = ejwj/
1 1

fact that 1 —m = ¢;; = (i, aj) = 5 ({4, o) + (), i), we get

into the first (r, s)-Serre relation of (2.9) and using the

(3

|: :| (risi)%k(kfl)(,r,s)k(aj,ai) (’eviwl/2)m*k( & 1/2)(6 w1/2)
Ti,Si

0
m m 1
1 _ sm(m—1) 1 sy —1 R 1 ~ ~] 2 1/2

:E [ } (Tisi)zk(k 1)%2 (m=1) Tm{a;ai) 2m(a1,a])(risi)2k(1 m)'é’m kej ic m/ j/

k=0 Ti,Si

1 ( ) Ui m

im(m—-1) 1 o) o— 2 i0 k 1p(k— —k~ ~k m/2 1/2
= q? pamlegai) g—ymlai,a;) E(_l) [ :| (risi)Q( m)g;n ejey | - wi w;’E

k=0 3,8

Combining the above with the identity

m _ e \—2k(m—Ek) m
|:k:|q1 (rlsl) 2 |:k:|ri’8i7

we thus obtain the desired ¢-Serre relation:

1—(1”'

1—cii| d—ciimke -
Z(—l)k{ kcj] g et =0,
q

k=0 i
e The verification of the fact that ﬁ satisfy the g-Serre relations is completely analogous.

This completes our proof of the proposition. |
Remark A.2. The above result admits a natural generalization to the affine setup of U/ [(g) and U, s(g).
For the former case, we use ezactly the same formulas (A.1) but now with 0 < i < n (the proof applies
without changes, provided that we set (a, o) = (=0, 0;), (@i, a0) = (e, —0), and (g, ag) = (=0, -0)). To
generalize this to U, s(g) we set D= D1/2(D )~ 1/2 " so that Del = qg‘” elD sz =qp 5‘”sz and le = wlD

As an important application of the Proposition above, let us relate the root vectors {e, f,},cao+ of Uy s(g)
from (5.14) to their counterparts {€, fy},co+ of Uy(g) defined via
(A.2) & =2als — (P20,  Fy=Fofa—a P fuls,
where the minimal pair (a, 8) of v corresponds to the standard factorization of ¢(v), see Proposition 5.9.
Here, the quantum parameter ¢ = r'/2s7/2 and we view U,(g) as a subalgebra of U, ;(g) via Proposition A.1:

UT1/2871/2 (g) — Ur,s(g)-

To state the result, we introduce the constants {#-}cq+ as follows:

e Type A,
Ky, = 5201 for 1<i<j<n.
e Type B,
K;%.j:sj_i for 1<i<j<n,
KB, = paHi—ngnty—i for 1<i<j<n.
o Type C,
Koy, — 52— for 1<i<j<n,
Koy = g3 (nH1=i=din) for 1<i<n,
Kg,; = p2li=n) gz (nti=i) for 1<i<j<mn,
Kg;; = rzgn ity for 1<i<n.
e Type D,

L
/@7..:35(]_2) for 1<i<j<n,

k¥

Kg,; = p2(i=n) g3 (n=1-9) for 1<i<j<n.
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For any v = Y"1, kia; € T, we also define d, =[]} . Then, we have the following result:

111

Proposition A.3. For any positive root v € ®1 of g, we have:
(A.3) G =ny e = dynt L (wl) T

Proof. Let us prove the first formula by an induction on the height of . If v = a4, then s, = 1, hence the
above equality follows from Proposition A.1. For the step of induction, pick a non-simple root v € ®* and
let (, 8) be the minimal pair used in (5.14) and (A.2). By the induction hypothesis, we have:

(A4) a = Ka -’evo/‘u}x/2 and eg = Kg -ggw;m.
Furthermore, the constants {x~} above are chosen to satisfy the following equality:
(A.5) Katp = Katkip(wh,wa) /2.

Combining (A.4, A.5) with (5.14) and (A.2), we obtain:

1/2
eﬁea) “Wo'ip

= HQRB(W%7WQ)1/2 (gagﬁ - (wlﬁ7wa)l/Q(wngﬁ)l/zeﬁga) ’ (i/Jrﬁ = Ra+BEyWy

ey = ealg — (W, Wa)epea = Kakp ((w%,wa)lﬂgagﬂ - (w};,wa)(w(’l,wg)lm

172
with the last equality due to the identity
1/2 _
(@) - (l00)) 17 = (r/2571/2)(0) = (D),
This completes our proof of the induction step and hence of the first formula in (A.3). The proof of the
second formula in (A.3) is completely analogous. ]
APPENDIX B. TWO-PARAMETER VS ONE-PARAMETER R-MATRICES

In this Appendix, we discuss the relation between the two-parameter finite and affine R-matrices evaluated
in this paper and their one-parameter counterparts through the classical twist construction of [Re].

A-type.
Let R(z) = R(z) o 7 be the affine R-matrix from Theorem 6.9(b), cf. [J1.2, Remark 2.3]:
(B.1) R(z)=(1—zrs” ZE QEj;+(1—2)r ZE ® Ejj + (1 - 2) 1ZE” ®E
> i<j
(1—rs” ZEU@ —TSil)ZZEij(@E
i>7 1<J

Note that setting z — 0 recovers the finite two-parameter R-matrix R = R o7 with R from Theorem 4.3:

(B.2) R= ZEH ®Ei+rY EBi®Ej;+s 'Y Ei@Ej;+1-rs )Y E;®E);
i>7 i<J i>]

-1

Specializing r — ¢, s — ¢~ in the formulas above, we obtain standard one-parameter R-matrices, cf. [DF]:

(B.3) R(2) = (1—2z¢%) ZE”®E“+ (1-2)¢Y Eu®Ej;+(1-¢*)> E;j®Eji+(1-¢")z» E;®E;
2] i>j 1<J
and
(B.4) R= ZE“®E“+qZE”®EM+ 1-¢*)> Ej;® Ej;.
i#] i>]
Recall the standard twist construction of [Re]. Given a quasitriangular Hopf algebra (H, A, €) with an
R-matrix R, and an element F € H® H (or some appropriate completion) satisfying the following conditions:
(B.5) (A®Id)F = FizFaz, (Id®@ A)F = FigF12, FiaFizFes = FazF13F12, FiaFor =1,

one constructs a twisted quasitriangular Hopf algebra (H, AV 7 )) with an R-matrix R as follows:

(B.6) AP = FAFY, P =¢ RY) =FIRF L
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The main result of this Appendix realizes (B.1) and (B.2) as such twists of (B.3) and (B.4), respectively. To

this end, generalizing [Ii¢, §3]°, we look for F in the following form:
(B.7) F =exp Z ¢ijEii @ Ejj with ¢ = —¢j; forall 1<4,5<n+1.
1<i,j<n+1

Proposition B.1. For g = r1/2s=1/2 and a skew-symmetric matriz (¢ij) such that exp(2¢;;) = /2512 for
i > j, we have R=F 'RF~1 and R(z) = F'R(2)F~! with F given by (B.7).

Proof. This is a direct calculation, based on the formula F(v; ® v;) = exp(¢i;) - v; ® v; for any 1, j. [ ]

BCD-types.
The generalization of the above result to other classical types fails on the nose. Let us illustrate this for
type B,,. The two-parameter finite R-matrix R = R o 7, with R evaluated in Theorem 4.4, is given by:

R=r"'s Z Ej; ® Eii + Ent1,n41 ® Ent1nt1 + 787! Z Eii @ By — Z (rs™t —r7ls) By ® Eji
i#En+1 i#n+1 i>g5F#1
+ Z aij By @ Ej; + Z(Tsfl — 7l ((rs™H)? T —1)Ey @ By + Z (rs™ — Tﬁls)ﬁEi’j/ ® Eij.
G0 i<n i< #i! J

1

Specializing r — ¢ and s — ¢~ *, we obtain the standard one-parameter R-matrix:

R=q¢? Y Ei®FEi+Eninn1®Euinn+d Y, Ei®Ew— Y (¢°—q¢°)E; ®Ej

i#£n+1 i#n+1 >
_ iy ot
+ D Ba® B+ (¢ —¢ )@Y DB @ B + ) (68— ) By © By,
G4, i<n i<j#Y J

where ¢; denotes the above specialization of t;. However, there is no skew-symmetric (d)ij)zn.ﬂ such that

,]=

the diagonal twist F = exp Z i By @ By satisfies R=F'-R-F 1,
i,j
alike to Proposition B.1. To see this, let us compare the respective summands in R and F~' - R - F~L
The identification of the first and second summands amounts to ¢;; = 0 for all 7. Identification of the
third summands amounts to ¢; = 0. Identification of the fourth summands amounts to ¢;; + ¢;; = 0 for
1 > j # 1. Identification of the sixth summands amounts to ¢;;s +¢;; = 0 for ¢+ < n. Identification of the fifth
summands amounts to the equalities exp(2¢;;) = a;jl for j # i,i’, which are compatible as a;ja;; = 1. These
already determine the matrix (¢; ;) uniquely. Yet, with this choice, the last summands do not match.
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