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ROUVEN FRASSEK AND ALEXANDER TSYMBALIUK

Abstract. We construct Lax matrices of superoscillator type that are solutions of the RTT-
relation for the rational orthosymplectic R-matrix, generalizing orthogonal and symplectic oscillator
type Lax matrices previously constructed by the authors in [Fr1,FT1,FKT]. We further establish
factorisation formulas among the presented solutions.
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1. Introduction

1.1. Summary.
The study of supersymmetric solutions to the Yang-Baxter equation goes back to the works of

Kulish and Sklyanin in the early 80’s, see e.g. [KS], who introduced the R-matrix that generates
the supersymmetric Yangian of gl(n|m), see [N]. As common for Lie superalgebras, the underlying
vector space is equipped with a Z2-grading to incorporate bosonic and fermionic degrees of freedom.
Similarly to the purely bosonic case, there exists an evaluation map ev : Y (gl(n|m)) → U(gl(n|m))
from the Yangian of gl(n|m) into the universal enveloping algebra of the Lie superalgebra gl(n|m),
see [K,N], which facilitates the study of the spectrum of supersymmetric spin chains. In particular,
the algebraic Bethe ansatz for a large class of representations in the quantum space and the
construction of the corresponding transfer matrices are well-understood, see [K]. The same is
true for the functional relations (T -systems and QQ-systems) among such transfer matrices and
Q-operators, see [Ts1,Ts2,KSZ,Ts3] as well as [KNS] for an overview.

The construction of the Q-operators has been carried out more recently in [FLMS] employing
certain degenerate Lax matrices of superoscillator type (see also [KLT] for a different approach).
The Lax matrices for Q-operators in the trigonometric case were obtained in [BT] for n + m = 3
and in [Ts4,Ts5] for arbitrary n, m. The degenerate solutions of the Yang-Baxter equation with a
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rational (resp. trigonometric) R-matrix arise naturally by taking certain limits of the evaluation
representation of the Yangian (resp. quantum affine algebra) in the parabolic Verma modules of
the underlying Lie algebra, realized in terms of superoscillator algebras. The crucial difference
between the solutions that arise from the ordinary Yangian and the degenerate solutions is that the
coefficients of the leading power of the spectral parameter are not of full rank in degenerate case.
Therefore, this class of solutions does not arise through the ordinary Yangian, but is rather related
to the so-called (RTT antidominantly) shifted Yangians, as has been recently realized in [FPT]
(cf. [CGY] for an interpretation via the 4d Chern-Simons theory). The latter are usually defined
in terms of Drinfeld’s current realization, see e.g. [BFN, Appendix B], and the identification
with the aforementioned RTT ones goes through the Gauss decomposition of the generating
matrix T (x) as in the ordinary case [BK], see [FPT, Theorem 2.54]. For the bosonic case of gl(n),
the degenerate Lax matrices that are linear in the spectral parameter were constructed in [FP],
while the reconstruction of degenerate Lax matrices at any order of the spectral parameter has
been achieved in [FPT] using the results of [BFN]. Using the S(n)-invariance of the rational
R-matrix of gln one can further obtain other degenerate Lax matrices which do not admit a Gauss
decomposition (and thus are no longer directly related to the shifted Yangians). Thus, the transfer
matrices are constructed from representations of the ordinary Yangian, while the Q-operators are
constructed from representations of the shifted Yangian, cf. [HZ] and references therein. We note
that this approach allows to deduce functional relations among transfer matrices and Q-operators
directly from the Yang-Baxter equation using certain factorisation properties of the Lax matrices
combined with the BGG-type resolutions for the underlying Lie algebras, see [BLZ,BHK,FKT].

The situation changes drastically for the Yangians of the orthosymplectic Lie superalgebras
osp(N |2m) which unify the bosonic cases in BCD-types, that is, Yangians of orthogonal soN and
symplectic sp2m Lie algebras. Similarly to BCD-type, the evaluation map no longer exists and
representations of the orthosymplectic Lie superalgebra cannot be always lifted to representations
of the corresponding Yangian. The R-matrix in the defining vector representation was obtained
in [AACFR], generalizing the BCD-type R-matrix of [ZZ], but other solutions of the Yang-Baxter
relation or the RTT-relation (for the Lax matrix) are scarce, see [FIKK,IKK] and references therein.
The algebraic Bethe ansatz has been obtained for spin chains in the defining vector representation
in [GM], but little is known about other representations as well as the underlying functional relations.
A glimpse towards the latter appeared in the study [BCFGT] of the AdS/CFT-correspondence in
relation to the quantum spectral curve for AdS4/CFT3, but remain to be confirmed from the first
principles. Further results for more general Lie superalgebras were recently obtained in [Ts6]. The
full understanding of the QQ-system may yield new methods of solving Bethe equations similar
to the method developed in [MV] for gl(n|m).

In this paper, we enlarge the class of representations of the orthosymplectic (shifted) Yangians
by introducing several Lax matrices of superoscillator type, which can be used to construct
transfer matrices and Q-operators. We anticipate the BGG-type functional relations among those,
generalizing our recent BCD-type results of [FKT].

Finally, let us note that there has been an increased mathematical interest in the theory of
quantum supergroups. In the context of orthosymplectic Yangians of osp(N |2m) specifically, their
Drinfeld realizations were established recently in [MR] and [M] for the cases N = 1 and N > 3
with the standard parity, respectively. In the sequel paper [FT2], we present uniform Drinfeld
realizations of orthosymplectic Yangians for any N, m and, most importantly, any parity sequence.

1.2. Outline.
The structure of the present paper is the following:

• In Section 2, we recall the key results of [FLMS] on gl(n|m)-type Lax matrices that serve as
motivation and prototype for our new constructions in the orthosymplectic type.
• In Section 3, we set the notation for the orthosymplectic R-matrix and the corresponding Lax
matrices, as well as discuss the invariance of this R-matrix that is needed for our latter results.
• In Section 4, we construct some linear superoscillator Lax matrices of orthosymplectic type.
First, we construct a degenerate linear Lax matrix in Theorem 4.11. Fusing two of those, we then
construct a non-degenerate linear Lax matrix in Proposition 4.55, whose normalized limits recover
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back the degenerate Lax matrices, see Remark 4.60. In the special cases m = 0 or n = 0, we
recover the corresponding orthogonal and symplectic Lax matrices of [Fr1,FT1,FKT], respectively.
• In Section 5, we investigate some quadratic orthosymplectic Lax matrices of superoscillator
type. First, fusing two degenerate linear Lax matrices from Section 4, we construct a Lax matrix
of size (N + 2m) × (N + 2m) for even N in Theorem 5.44. We call this matrix degenerate
quadratic Lax as its diagonal is ∼ (x2, x, . . . , x, 1) with respect to the spectral parameter x. A
further degeneration of this matrix, depending only in N + 2m − 2 pairs of superoscillators, is
obtained in Proposition 5.52. A similar formula provides an orthosymplectic Lax matrix for odd
N , see Conjecture 5.64. Finally, fusing two degenerate quadratic Lax matrices we derive explicit
non-degenerate quadratic orthosymplectic Lax matrices in Proposition 5.80 and Theorem 5.85,
whose normalized limits recover back the degenerate quadratic Lax matrices, see Remark 5.90.
• In Appendix A, we present explicit formulas (A.1, A.2) and (A.4, A.5, A.6) for the twists needed
to define both the transfer matrices and the Q-operators, as mentioned in the Introduction above.
While the constructions of Sections 4–5 are presented for the specific parity sequences (3.4) or (5.58),
similar Lax matrices exist for other parity sequences as well, according to Remarks 3.16, 4.62, 5.89.
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project CUP-E93C23002040005, and by the INdAM–GNFM project codice CUP-E53C22001930001.
The work of A.T. was partially supported by NSF Grants DMS-2037602 and DMS-2302661.
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2. General linear Lax matrices

The first results on superoscillator type Lax matrices for Q-operators and their factorisation
formulas were presented in [FLMS] for the rational R-matrices of gl(n|m)-type. The Lax matrices
for the trigonometric case were obtained in [BT] for n + m = 3 and in [Ts4,Ts5] for arbitrary n, m.
In this section, we briefly recall the results of [FLMS] that are relevant to the rest of the paper.

Fix n, m ≥ 0 and consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vn+m such that
each vi is either even (that is, vi ∈ V0̄) or odd (that is, vi ∈ V1̄) and dim(V0̄) = n, dim(V1̄) = m.
For 1 ≤ i ≤ n + m, we define |i| := |vi| ∈ Z2. We define the parity sequence associated to V via

ΥV :=
(
|v1|, . . . , |vn+m|

)
∈

{
0̄, 1̄

}n+m
. (2.1)

For a superalgebra A and homogeneous elements a, a′ ∈ A, their supercommutator is defined as
[a, a′] = aa′ − (−1)|a||a′| a′a , (2.2)

where |a| denotes the Z2-grading of a. Given two superspaces A = A0̄ ⊕ A1̄ and B = B0̄ ⊕ B1̄,
their tensor product A ⊗ B is also a superspace with (A ⊗ B)0̄ = A0̄ ⊗ B0̄ ⊕ A1̄ ⊗ B1̄ and
(A ⊗ B)1̄ = A0̄ ⊗ B1̄ ⊕ A1̄ ⊗ B0̄. Furthermore, if A and B are superalgebras, then A ⊗ B is also a
superalgebra, called the graded tensor product of A and B, with the multiplication defined by

(a ⊗ b)(a′ ⊗ b′) = (−1)|b||a′| (aa′) ⊗ (bb′) (2.3)
for any homogeneous elements a ∈ A|a|, a′ ∈ A|a′|, b ∈ B|b|, b′ ∈ B|b′|.

Let P: V ⊗ V → V ⊗ V be the permutation operator defined by

P =
n+m∑
i,j=1

(−1)|j| eij ⊗ eji , (2.4)

whose action is explicitly given by:
P(vj ⊗ vi) = (−1)|i||j| vi ⊗ vj . (2.5)

Consider the corresponding rational R-matrix (of general linear type, or super A-type for short):
R(x) = RV(x) = xId + P , (2.6)
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which satisfies the famous Yang-Baxter equation (with a spectral parameter):
R12(x)R13(x + y)R23(y) = R23(y)R13(x + y)R12(x) . (2.7)

For any superalgebra A, an even matrix L(x) = LV(x) = (Lij(x))n+m
i,j=1 ∈ End V ⊗ A[[x, x−1]] is

called an (A-valued) Lax matrix if it satisfies the corresponding RTT-relation with R(x) of (2.6)
R12(x − y)L1(x)L2(y) = L2(y)L1(x)R12(x − y) , (2.8)

viewed as an equality in End V ⊗ End V ⊗ A[[x, y, x−1, y−1]]. Coefficient-wise, the equation (2.8) is
equivalent to (see [G]) the well-known system of equations for all 1 ≤ i, j, k, ℓ ≤ n + m:

[Lij(x), Lkℓ(y)] = (−1)|i||j|+|i||k|+|j||k|

x − y

(
Lkj(y)Liℓ(x) − Lkj(x)Liℓ(y)

)
. (2.9)

Remark 2.10. (a) Here, we identify the matrix (Lij(x))n+m
i,j=1 with

∑n+m
i,j=1(−1)|i||j|+|j| eij ⊗ Lij(x).

Evoking (2.3), the extra sign (−1)|i||j|+|j| ensures that the product of matrices is calculated as
usual. The above “even” condition means that Z2-grading of all coefficients of Lij(x) is |i| + |j|.
(b) The data of a Lax matrix LV(x) = (Lij(x))n+m

i,j=1 with Lij(x) ∈ δij + x−1A[[x−1]] for all i, j is
equivalent to an algebra homomorphism Y rtt(gl(V)) → A from an RTT super Yangian of gl(V).
(c) Unless we want to emphasize the dependence on ΥV, the superscript V will be ignored.

Remark 2.11. Let Ṽ be another superspace with a C-basis ṽ1, . . . , ṽn+m such that each ṽi is
even or odd and dim(V0̄) = dim(Ṽ0̄), dim(V1̄) = dim(Ṽ1̄). Pick a permutation σ ∈ S(n + m) such
that vi ∈ V and ṽσ(i) ∈ Ṽ have the same Z2-grading for all 1 ≤ i ≤ n + m, and define a superspace
isomorphism Jσ : V ∼−→ Ṽ via vi 7→ ṽσ(i). The corresponding R-matrices (2.6) are related via

RṼ(x) = (Jσ ⊗ Jσ) RV(x) (Jσ ⊗ Jσ)−1 . (2.12)

As a result, if LV(x) = (Lij(x))n+m
i,j=1 is a solution of (2.8), then LṼ(x) := JσLV(x)J−1

σ is a solution
of (2.8) for Ṽ used instead of V. In other words, having constructed some Lax matrices, a natural
S(n + m)-symmetry allows for analogous Lax matrices for all parity sequences (2.1).

Among other Lax matrices, the following family {LV
a (x)}n+m

a=0 was constructed in [FLMS]1:

La(x) = LV
a (x) =

 xIda − K̄K K̄

−K Idn+m−a

 (2.13)

with

K̄ =



ξ̄1,a+1 ξ̄1,a+2 · · · ξ̄1,n+m

ξ̄2,a+1 ξ̄2,a+2 · · · ξ̄2,n+m

...
...

. . .
...

ξ̄a,a+1 ξ̄a,a+2 · · · ξ̄a,n+m


(2.14)

and

K =



(−1)|1|ξa+1,1 (−1)|2|ξa+1,2 · · · (−1)|a|ξa+1,a

(−1)|1|ξa+2,1 (−1)|2|ξa+2,2 · · · (−1)|a|ξa+2,a

...
...

. . .
...

(−1)|1|ξn+m,1 (−1)|2|ξn+m,2 · · · (−1)|a|ξn+m,a


. (2.15)

Here, (ξij , ξ̄kℓ) are superoscillators with Z2-grading |ξij | = |i| + |j| and |ξ̄kℓ| = |k| + |ℓ| that obey
the following commutation relations:

[ξij , ξ̄kℓ] = δiℓδjk , [ξij , ξℓk] = 0 , [ξ̄kℓ, ξ̄ji] = 0 (2.16)

1It is obtained from the linear canonical L-operator of [FLMS, (2.20)] for the trivial representation of the
additional generators of gl(p|q) in loc.cit., i.e. setting Eab 7→ 0, and an appropriate shift of the spectral parameter x.
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for any 1 ≤ j, k ≤ a < i, ℓ ≤ n + m, with the supercommutator [−, −] defined in (2.2).
It was further noticed in [FLMS] that for any 0 ≤ a ≤ n + m, one has a total of

(n+m
a

)
Lax

matrices analogous to (2.13), see [FLMS, (2.12)] onwards, corresponding to the number of choices
to distribute a spectral parameters x on the main diagonal of the Lax matrix of size n + m.
Evoking the invariance of the R-matrix (2.6) under the symmetric group S(n + m), see (2.12),
these Lax matrices can be obtained by permuting rows and columns of the one in (2.13), see
Remark 2.11. The following family of such Lax matrices will be relevant to us in the following:

L̄a(y) = L̄V
a (y) =

 Ida K̄

K yIdn+m−a + KK̄

 . (2.17)

Let us first explain how these Lax matrices are related to those in (2.13). To this end, let V̄ be
the superspace with a basis {v̄i}n+m

i=1 whose parity sequence (2.1) is opposite to that of V, that is
|v̄i| = |vn+m+1−i| ∀ 1 ≤ i ≤ n + m . (2.18)

The corresponding rational R-matrices are related via (2.12) with σ(i) = n + m + 1 − i, so that

Jσ = Jn+m =


0 · · · 0 1
... . .

.
. .

.
0

0 . .
.

. .
. ...

1 0 · · · 0

 . (2.19)

Then, as noted in Remark 2.11, the matrix L̂Ṽ
n+m−a(z) obtained from (2.17) through

L̂V̄
n+m−a(x) = Jn+mL̄V

a (x)J−1
n+m (2.20)

is Lax and has opposite Z2-grading to that of L̄V
a (x), i.e. the underlying vector superspaces have

opposite parity sequences. Using the notation ā = n + m − a and i′ = n + m + 1 − i, we find that

L̂V̄
ā (x) =

 xIdā + QQ̄ Q

Q̄ Idn+m−ā

 (2.21)

with

Q̄ =



ξ̄(ā+1)′,1′ ξ̄(ā+1)′,2′ · · · ξ̄(ā+1)′,ā′

ξ̄(ā+2)′,1′ ξ̄(ā+2)′,2′ · · · ξ̄(ā+2)′,ā′

...
...

. . .
...

ξ̄(n+m)′,1′ ξ̄(n+m)′,2′ · · · ξ̄(n+m)′,ā′


(2.22)

and

Q =



(−1)|(ā+1)′|ξ1′,(ā+1)′ (−1)|(ā+2)′|ξ1′,(ā+2)′ · · · (−1)|(n+m)′|ξ1′,(n+m)′

(−1)|(ā+1)′|ξ2′,(ā+1)′ (−1)|(ā+2)′|ξ2′,(ā+2)′ · · · (−1)|(n+m)′|ξ2′,(n+m)′

...
...

. . .
...

(−1)|(ā+1)′|ξā′,(ā+1)′ (−1)|(ā+2)′|ξā′,(ā+2)′ · · · (−1)|(n+m)′|ξā′,(n+m)′


. (2.23)

Applying further the particle-hole transformation

ξ̄i′j′ 7→ −(−1)|j′|ξij , ξj′i′ 7→ (−1)|i′|ξ̄ji ∀ 1 ≤ j ≤ ā < i ≤ n + m , (2.24)

we obtain the Lax matrix of (2.13) defined on the vector space V̄ with the opposite grading, i.e.

LV̄
ā (x) = L̂V̄

a (x)|p.h. . (2.25)

It thus follows that LV
a (x) of (2.13) and L̄V

a (x) of (2.17) satisfy the same RTT-relation (2.8).
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Remark 2.26. The Lax matrix (2.17) is obtained through a particle-hole transformation (2.24)
from that of [FLMS, (3.4)] for I = {1, . . . , a}, J = {a + 1, . . . , n + m}, the trivial representation of
the additional copy of gl(p|q), and an appropriate shift of the spectral parameter, cf. Footnote 1.

Let us now consider two copies of mutually supercommuting superoscillators
{(

ξ
[r]
ij , ξ̄

[r]
ji

)}a<i≤n+m

1≤j≤a
,

where the superscript r = 1, 2 indicates whether they appear in L
V,[1]
a (x) or L̄

V,[2]
a (y), respectively.

The subsequent factorisation was considered in [FLMS, §3.1]:

LV,[1]
a (x)L̄V,[2]

a (y) =

 xIda − K̄′
1K′

1

(
(y − x)Ida + K̄′

1K′
1

)
K̄′

1

−K′
1 yIdn+m−a + K′

1K̄′
1


 Ida K̄′

2

0 Idn+m−a

 (2.27)

where
K′

1 = K1 − K2 , K̄′
1 = K̄1 ,

K̄′
2 = K̄2 + K̄1 , K′

2 = K2 ,
(2.28)

and the subscript r = 1, 2 denotes the corresponding family of oscillators. As noted in [FLMS, §3.1],
the generators (2.28) are related to those in (2.13)–(2.17) through a similarity transformation:

K′
r = SaKrS−1

a , K̄′
r = SaK̄rS−1

a (r = 1, 2) (2.29)
with

Sa = exp

a<j≤n+m∑
1≤i≤a

ξ̄
[1]
ij ξ

[2]
ji

 . (2.30)

We note that all the summands in the exponent above are bosonic2 and pairwise supercommute.

Remark 2.31. It immediately follows from (2.29), but can be also directly checked from (2.28),
that the entries of the matrices K′

r, K̄′
r encode mutually supercommuting pairs of superoscillators.

It follows that for any x1, x2 ∈ C, the matrix

Lx1,x2(x) = LV
x1,x2(x) =

 (x + x1)Ida − K̄1K1
(
(x2 − x1)Ida + K̄1K1

)
K̄1

−K1 (x + x2)Idn+m−a + K1K̄1

 (2.32)

is a solution to the RTT-relation (2.8), hence, is Lax. Moreover, it arises through the fusion

LV,[1]
a (x + x1)L̄V,[2]

a (x + x2) = Sa LV
x1,x2(x)

 Ida K̄2

0 Idn+m−a

 S−1
a (2.33)

with the similarity transformation Sa of (2.30).

Remark 2.34. Similarly to [FKT, §8], we note that we can vice versa obtain the degenerate linear
matrices LV

a (x) and L̄V
a (x) of (2.13, 2.17) from the non-degenerate linear Lax matrix LV

x1,x2(x)
of (2.32) via the renormalized limit procedures (which clearly preserve the property of being Lax):

LV
a (x) = lim

t→∞

{
LV

0,t(x) · diag
(

1, . . . , 1︸ ︷︷ ︸
a

; 1
t , . . . , 1

t︸ ︷︷ ︸
n+m−a

)}
,

L̄V
a (x) = lim

t→∞

{
diag

(
1
t , . . . , 1

t︸ ︷︷ ︸
a

; 1, . . . , 1︸ ︷︷ ︸
n+m−a

)
· LV

t,0(x)
}∣∣∣

ξ̄ij 7→−ξ̄ij , ξij 7→−ξij

.
(2.35)

3. Orthosymplectic Lax matrices

In this section, we set the notation for the orthosymplectic R-matrix and the corresponding
Lax matrices, as well as discuss the invariance of this R-matrix that will be instrumental later on.

2Elements of a superalgebra are called “bosonic” or “fermionic” if their Z2-degree is 0̄ or 1̄, respectively.
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3.1. Orthosymplectic setup.
Fix N, m ≥ 0, and consider the set I := {1, 2, . . . , N + 2m} equipped with an involution ′:

i′ := N + 2m + 1 − i . (3.1)

Let V be a superspace with a Z2-homogeneous basis v1, . . . , vN+2m such that

dim(V0̄) = N , dim(V1̄) = 2m , (3.2)

and the grading is Z2-symmetric in the following sense:

|vi| = |vi′ | ∀ 1 ≤ i ≤ N + 2m . (3.3)

For the major part of our constructions (except for Subsections 5.3–5.4), we shall assume that N
is even: N = 2n. In this case, we pick the following specific Z2-grading of V :

|i| := |vi| =


0̄ for 1 ≤ i ≤ n

1̄ for n + 1 ≤ i ≤ n + 2m

0̄ for n + 2m + 1 ≤ i ≤ 2n + 2m

(3.4)

which corresponds to the following parity sequence, cf. (2.1):

ΥV =
(

0̄, . . . , 0̄︸ ︷︷ ︸
n

, 1̄, . . . , 1̄︸ ︷︷ ︸
2m

, 0̄, . . . , 0̄︸ ︷︷ ︸
n

)
. (3.5)

Similarly to (2.4), we consider the permutation operator P: V ⊗ V → V ⊗ V defined by

P =
N+2m∑
i,j=1

(−1)|j| eij ⊗ eji . (3.6)

We also consider the operator Q: V ⊗ V → V ⊗ V defined by

Q =
N+2m∑
i,j=1

(−1)|i||j|θiθj eij ⊗ ei′j′ . (3.7)

Here, the sequence θ = θV = (θ1, . . . , θN+2m) of ±1’s is determined uniquely by the conditions

θi′ = (−1)|i|θi , θ≤(n+m) = 1 , (3.8)

so that
θ = θV =

(
1, . . . , 1︸ ︷︷ ︸

n+m

, −1, . . . , −1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

)
(3.9)

for the specific Z2-grading (3.4). Explicitly, the action of Q is given by:

Q(va ⊗ vb) =


0 if b ̸= a′∑N+2m

i=1 θi vi ⊗ vi′ if b = a′ , a > n + m

(−1)|a| ∑N+2m
i=1 θi vi ⊗ vi′ if b = a′ , a ≤ n + m

. (3.10)

We also introduce a constant κ via:

κ = N

2 − m − 1 = n − m − 1 . (3.11)

Consider the rational R-matrix (a super-version of the one considered in [ZZ]):

R(x) = RV (x) = x(x + κ)Id + (x + κ)P − xQ , (3.12)

which satisfies the Yang-Baxter equation with a spectral parameter (2.7) according to [AACFR].
For any superalgebra A, an even matrix L(x) = LV (x) = (Lij(x))N+2m

i,j=1 ∈ End V ⊗ A[[x, x−1]]
will be called an (orthosymplectic) Lax matrix if it satisfies the RTT-relation (2.8) with R(x)
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of (3.12). Coefficient-wise, this is equivalent to the following system of relations (see [AACFR]):

[Lij(x), Lkℓ(y)] = (−1)|i||j|+|i||k|+|j||k|

x − y

(
Lkj(y)Liℓ(x) − Lkj(x)Liℓ(y)

)
+

1
x − y + κ

δki′

N+2m∑
p=1

Lpj(x)Lp′ℓ(y)(−1)|i|+|i||j|+|j||p|θiθp −

δℓj′

N+2m∑
p=1

Lkp′(y)Lip(x)(−1)|p|+|j|+|i||k|+|i||p|+|j||k|θpθj

 .

(3.13)

Remark 3.14. The data of a Lax matrix (Lij(x))N+2m
i,j=1 with Lij(x) ∈ δij+x−1A[[x−1]] is equivalent

to an algebra homomorphism Xrtt(osp(V )) → A from an RTT extended orthosymplectic Yangian.

Remark 3.15. We recover orthogonal and symplectic types as special cases of the above setup:
• For m = 0, we have θ = (1, . . . , 1︸ ︷︷ ︸

2n

) and |i| = 0̄ for all 1 ≤ i ≤ 2n, so that R(x) of (3.12)

coincides with the Dn-type rational R-matrix of [FKT, (1.19)].
• For n = 0, we have θ = (1, . . . , 1︸ ︷︷ ︸

m

, −1, . . . , −1︸ ︷︷ ︸
m

) and |i| = 1̄ for all 1 ≤ i ≤ 2m, so that our

R(−x) of (3.12) coincides with the Cm-type rational R-matrix of [FKT, (1.19)].

Remark 3.16. Let Ṽ be another superspace with a C-basis ṽ1, . . . , ṽN+2m satisfying (3.2, 3.3).
Pick a permutation σ ∈ S(n + m) such that vi ∈ V and ṽσ(i) ∈ Ṽ have the same Z2-grading for all
1 ≤ i ≤ n + m, and extend it to σ ∈ S(N + 2m) via σ(i′) = σ(i)′. Define a superspace isomorphism
J̃σ : V ∼−→ Ṽ via vi 7→ ṽσ(i). The corresponding R-matrices (3.12) are related via

RṼ (x) = (J̃σ ⊗ J̃σ) RV (x) (J̃σ ⊗ J̃σ)−1 . (3.17)

As a result, if LV (x) = (Lij(x))N+2m
i,j=1 is a Lax matrix corresponding to the fixed parity ΥV , then

LṼ (x) := J̃σLV (x)J̃−1
σ is a Lax matrix corresponding to the parity ΥṼ , cf. Remark 2.11.

3.2. Symmetries of the orthosymplectic R-matrix.
In this section, we establish the invariance of the R-matrix (3.12) under certain graded per-

mutation matrices that will be used in the later constructions. The proofs are based on direct
computations of the commutators of the corresponding operators with P, Q of (3.6, 3.7). To this
end, let us recall the explicit formulas for the action of P and Q, cf. (2.5, 3.10):

P: vi ⊗ vj 7→ (−1)|i||j| vj ⊗ vi ,

Q: vi ⊗ vi′ 7→ (−1)|i|θi

N+2m∑
j=1

θj vj ⊗ vj′ , vi ⊗ vȷ ̸=i′ 7→ 0 .
(3.18)

Henceforth, Jr will denote the r × r matrix with “1” on the antidiagonal, cf. (2.19).

Lemma 3.19. The R-matrix (3.12) commutes with the tensor product of two matrices

Jθ =

 0 −Jn

Jn+2m 0

 (3.20)

that is, [R(x), Jθ ⊗ Jθ] = 0.

Proof. The tensor product of the matrices Jθ acts explicitly via
Jθ ⊗ Jθ : vi ⊗ vj 7→ (−1)δi>n+2m+δj>n+2m vi′ ⊗ vj′ . (3.21)

We thus have:
P (Jθ ⊗ Jθ) : vi ⊗ vj 7→ (−1)|i′||j′|+δi>n+2m+δj>n+2m vj′ ⊗ vi′ , (3.22)

(Jθ ⊗ Jθ) P: vi ⊗ vj 7→ (−1)|i||j|+δj>n+2m+δi>n+2m vj′ ⊗ vi′ , (3.23)
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so that [P, Jθ ⊗ Jθ] = 0 since |ι| = |ι′| for all ι.
To check the invariance of Q, we first note that

Q (Jθ ⊗ Jθ) (vi ⊗ vȷ) = 0 = (Jθ ⊗ Jθ) Q (vi ⊗ vȷ) for ȷ ̸= i′ .

It thus remains to compare the images of vi ⊗ vi′ under both Q (Jθ ⊗ Jθ) and (Jθ ⊗ Jθ) Q:

Q (Jθ ⊗ Jθ) : vi ⊗ vi′ 7→ (−1)|i′|+δi>n+2m+δi′>n+2mθi′

N+2m∑
j=1

θj vj ⊗ vj′ , (3.24)

(Jθ ⊗ Jθ) Q: vi ⊗ vi′ 7→ (−1)|i|θi

N+2m∑
j=1

(−1)δj>n+2m+δj′>n+2mθj vj′ ⊗ vj . (3.25)

The right-hand sides of (3.24, 3.25) coincide due to the first equality in (3.8) and the identity
(−1)δi>n+2m+δi′>n+2m = (−1)δi>n+2m+δi≤n = −(−1)|i|

that follows immediately from (3.4). This verifies [Q, Jθ ⊗ Jθ] = 0.
As Jθ ⊗ Jθ commutes with both P and Q, so it does with the R-matrix (3.12). □

Lemma 3.26. The R-matrix (3.12) commutes with the tensor product of two matrices

J̃ =


0 0 1
0 IdN+2m−2 0

1 0 0

 (3.27)

that is, [R(x), J̃ ⊗ J̃] = 0.

Proof. The tensor product of the matrices J̃ acts explicitly via

J̃ ⊗ J̃ : vi ⊗ vj 7→ vĩ ⊗ vj̃ with ĩ =
{

i′ if i = 1, 1′

i if i = 2, . . . , 2′ . (3.28)

We thus have:
P

(
J̃ ⊗ J̃

)
: vi ⊗ vj 7→ (−1)|̃i||j̃| vj̃ ⊗ vĩ , (3.29)(

J̃ ⊗ J̃
)
P: vi ⊗ vj 7→ (−1)|i||j| vj̃ ⊗ vĩ , (3.30)

so that [P, J̃ ⊗ J̃] = 0 since |ι̃| = |ι| for all ι.
To check the invariance of Q, we first note that

Q
(
J̃ ⊗ J̃

)
(vi ⊗ vȷ) = 0 =

(
J̃ ⊗ J̃

)
Q (vi ⊗ vȷ) for ȷ ̸= i′ .

It thus remains to compare the images of vi ⊗ vi′ under both Q
(
J̃ ⊗ J̃

)
and

(
J̃ ⊗ J̃

)
Q:

Q
(
J̃ ⊗ J̃

)
: vi ⊗ vi′ 7→ (−1)|̃i|θĩ

N+2m∑
j=1

θj vj ⊗ vj′ , (3.31)

(
J̃ ⊗ J̃

)
Q: vi ⊗ vi′ 7→ (−1)|i|θi

N+2m∑
j=1

θj vj̃ ⊗ vj̃′ , (3.32)

and the two images coincides as θĩ = θi (which uses that |v1| = 0̄).
As J̃ ⊗ J̃ commutes with both P and Q, so it does with the R-matrix (3.12). □

Lemma 3.33. The R-matrix (3.12) commutes with the tensor product of two matrices

Ĵθ =



1 0 0 0
0 0 Gn−1,m 0

0 Jn+m−1 0 0

0 0 0 −1


with Gn−1,m =

 0 −Jn−1

Jm 0

 (3.34)

that is, [R(x), Ĵθ ⊗ Ĵθ] = 0.
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Proof. As Ĵθ = J̃ · Jθ, the result follows immediately from the previous two lemmas. □

Lemma 3.35. For N = 0, the R-matrix (3.12) commutes with the tensor product of two matrices

Idθ =

 Idm 0

0 −Idm

 (3.36)

that is, [R(x), Idθ ⊗ Idθ] = 0.

Proof. For N = 0, the θ of (3.9) are given by θi = (−1)δi>m , so that

Idθ ⊗ Idθ : vi ⊗ vj 7→ θiθj vi ⊗ vj . (3.37)

The commutativity [P, Idθ ⊗ Idθ] = 0 follows immediately from

P (Idθ ⊗ Idθ) : vi ⊗ vj 7→ (−1)|i||j|θiθj vj ⊗ vi , (3.38)

(Idθ ⊗ Idθ) P: vi ⊗ vj 7→ (−1)|i||j|θiθj vj ⊗ vi . (3.39)

Similarly, for the operator Q we have:

Q (Idθ ⊗ Idθ) : vi ⊗ vi′ 7→ (−1)|i|θi′

2m∑
j=1

θj vj ⊗ vj′ , (3.40)

(Idθ ⊗ Idθ) Q: vi ⊗ vi′ 7→ (−1)|i|θi

2m∑
j=1

θj′ vj ⊗ vj′ , (3.41)

and the two images coincide as θι = −θι′ for all ι. This implies [Q, Idθ ⊗ Idθ] = 0.
As Idθ ⊗ Idθ commutes with both P and Q, so it does with the R-matrix (3.12). □

Remark 3.42. (a) More generally, the R-matrix (3.12) commutes with
∑n+m

i=1 (aieii+bieii′ +ciei′i+
diei′i′) with either ai, di ∈ {±1} and bi = ci = 0 (for which we set γi := aidi) or bi, ci ∈ {±1} and
ai = di = 0 (for which we set γi := (−1)|i|bici), and such that γi are the same for all 1 ≤ i ≤ n + m.

(b) According to Remark 3.16, using some other permutation matrices (J̃σ from loc.cit.) will rather
produce orthosymplectic Lax matrices for other Z2-gradings of V , see Remarks 4.62 and 5.89.

4. Linear orthosymplectic Lax matrices

In this section, we construct some linear orthosymplectic Lax matrices of superoscillator type.

4.1. Degenerate linear orthosymplectic Lax matrices.
In this subsection, we construct a degenerate linear orthosymplectic Lax matrix for the parity

sequence (3.5). To this end, let us consider first bosonic pairs of superoscillators:{
(aij , āji)

∣∣∣ n + 2m + 1 ≤ i ≤ 2n + 2m − 1 , 1 ≤ j ≤ n − 1 , i + j ≤ 2n + 2m
}

, (4.1)

{
(bij , b̄ji)

∣∣∣ n + m + 1 ≤ i ≤ n + 2m , n + 1 ≤ j ≤ n + m , i + j ≤ 2n + 2m + 1
}

, (4.2)

with |aij | = |āji| = |i|+|j| = 0̄, |bij | = |b̄ji| = |i|+|j| = 0̄, and the only nonzero supercommutators

[aij , āji] = aij āji − ājiaij = 1 , [bij , b̄ji] = bijb̄ji − b̄jibij = 1 . (4.3)

In addition, we also consider fermionic pairs of superoscillators{
(cij , c̄ji)

∣∣∣ n + m + 1 ≤ i ≤ n + 2m , 1 ≤ j ≤ n
}

(4.4)

with |cij | = |c̄ji| = |i| + |j| = 1̄ and the only nonzero supercommutators

[cij , c̄ji] = cij c̄ji + c̄jicij = 1 . (4.5)
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We encode the above bosonic and fermionic generators by the corresponding three pairs of matrices:

Ā =



ā1,n+2m+1 · · · ā1,2n+2m−1 0
... . .

.
0 −ā1,2n+2m−1

ān−1,n+2m+1 0 . .
. ...

0 −ān−1,n+2m+1 · · · −ā1,n+2m+1


, (4.6)

A =



an+2m+1,1 · · · an+2m+1,n−1 0
... . .

.
0 −an+2m+1,n−1

a2n+2m−1,1 0 . .
. ...

0 −a2n+2m−1,1 · · · −an+2m+1,1


(4.7)

that are (skew-symmetric along the antidiagonal) n × n matrices encoding (4.1),

B̄ =



b̄n+1,n+m+1 · · · b̄n+1,n+2m−1 2b̄n+1,n+2m

... . .
.

2b̄n+2,n+2m−1 b̄n+1,n+2m−1

b̄n+m−1,n+m+1 2b̄n+m−1,n+m+2 . .
. ...

2b̄n+m,n+m+1 b̄n+m−1,n+m+1 · · · b̄n+1,n+m+1


, (4.8)

B =



bn+m+1,n+1 · · · bn+m+1,n+m−1 bn+m+1,n+m

... . .
.

bn+m+2,n+m−1 bn+m+1,n+m−1

bn+2m−1,n+1 bn+2m−1,n+2 . .
. ...

bn+2m,n+1 bn+2m−1,n+1 · · · bn+m+1,n+1


(4.9)

that are (symmetric along the antidiagonal) m × m matrices encoding (4.2),

C̄ =


c̄1,n+m+1 · · · c̄1,n+2m

...
. . .

...

c̄n,n+m+1 · · · c̄n,n+2m

 , C =


cn+m+1,1 · · · cn+m+1,n

...
. . .

...

cn+2m,1 · · · cn+2m,n

 (4.10)

that are n × m and m × n matrices encoding (4.4).
Now we are ready to present the main result of this subsection:

Theorem 4.11. The following is a solution to the RTT-relation (2.8) with the R-matrix (3.12):

L(x) =

 xIdn+m − K̄K K̄

−K Idn+m

 (4.12)

with

K̄ =

 C̄ Ā

B̄ −JmC̄tJn

 and K =

 C −B

A JnCtJm

 . (4.13)

Here, t denotes the standard (bosonic) transpose, Jn is the n×n matrix with “1” on the antidiagonal,
and the matrices Ā, A, B̄, B, C̄, C are as in (4.6)–(4.10).

Proof. The proof is straightforward and is analogous to that for C- and D-types, directly verifying
the commutation relations using Lemma 4.24 below. In the first step, we insert the relations (4.25)
and (4.26) into (3.13) and split the resulting equations into 4 × 4 block structure according to
the block structure of the Lax matrices (4.12). The supercommutator on the left-hand side of
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(3.13) indicates that the right-hand side is symmetric under the combined exchange of i ↔ k,
j ↔ ℓ and x ↔ y when multiplied by the factor −(−1)(|i|+|j|)(|k|+|ℓ|). This symmetry also holds for
both terms individually on the right-hand side. For the first term, proportional to (x − y)−1, the
symmetry follows from the relation

Lkj(y)Liℓ(x) − Liℓ(x)Lkj(y) = Lkj(x)Liℓ(y) − Liℓ(y)Lkj(x) . (4.14)

For the second term, proportional to (x − y + κ)−1, the symmetry is less obvious. It follows by
noting that

1
x − y + κ

∑
p

Lpj(x)Lp′ℓ(y)(−1)|j||p|θp + (−1)|ℓ||j|

y − x + κ

∑
p

Lpℓ(y)Lp′j(x)(−1)|ℓ||p|θp =

δjℓ′θj′
κ(x + y + κ)

(x − y + κ)(y − x + κ)

(4.15)

and
1

x − y + κ

∑
p

Lkp′(y)Lip(x)(−1)|i||p|θp′ + (−1)|i||k|

y − x + κ

∑
p

Lip′(x)Lkp(y)(−1)|k||p|θp′ =

δi′kθi
κ(x + y + κ)

(x − y + κ)(y − x + κ) .

(4.16)

These equations are verified using Lemma 4.24. Thus, the 4 × 4 = 16 equations arising from the
block structure are reduced to 10 equations. In the following, we verify the remaining commutation
relations.

We start with the “diagonal terms” where the indices are chosen such that the commutator
on the left-hand side is among the elements of the Lax matrices within the same block. In this
case, the second term on the right-hand side always vanishes because of the Kronecker deltas.
Further, unless we are considering the upper left block the first term on the right-hand side has to
vanish as the entries of the Lax matrix will not depend on the spectral parameter. The case with
1 ≤ i, j, k, ℓ ≤ n + m follows from the following equality:[

(K̄K)ij , (K̄K)kℓ

]
= (−1)|i||j|+|i||k|+|j||k|

(
δkj(K̄K)iℓ − δiℓ(K̄K)kj

)
. (4.17)

This equality follows in turn from

Kn+m−i+1,jK̄k,n+m−ℓ+1 − (−1)(|i|+|j|)(|k|+|ℓ|)K̄k,n+m−ℓ+1Kn+m−i+1,j =

(−1)|j|δiℓδjk − (−1)|i||j|+|j|δikδjℓ

(4.18)

for 1 ≤ i, j, k, ℓ ≤ n + m, or equivalently (written in terms of the Lax matrix)[
L(x)i′j , L(y)kℓ′

]
= (−1)|i||j|+|j|δikδjℓ − (−1)|j|δiℓδjk . (4.19)

This leaves us with 6 equations to verify. The case

[Lij(x), Lkℓ′(y)] = 1
x − y

(−1)|i||j|+|i||k|+|j||k|
(
Lkj(y)Liℓ′(x) − Lkj(x)Liℓ′(y)

)
−

1
x − y + κ

θj(−1)|j|+|i||k|+|j||k|δℓj

∑
p

Lkp′(y)Lip(x)(−1)|p|+|i||p|θp

(4.20)

with 1 ≤ i, j, k, ℓ ≤ n + m is reduced to proving

[(K̄K)ij , K̄k,n+m−ℓ+1] = (−1)|i||j|+|i||k|+|j||k|δkj K̄i,n+m−ℓ+1 + (−1)(|i|+|j|)|k|δℓj′ K̄k,n+m−i+1 .
(4.21)

Similarly, the case

[Lij(x), Lk′ℓ(y)] = 1
x − y

(−1)|i||j|+|i||k|+|j||k|
(
Lk′j(y)Liℓ(x) − Lk′j(x)Liℓ(y)

)
+

1
x − y + κ

(−1)|i|+|i||j|θiδki

∑
p

Lpj(x)Lp′ℓ(y)(−1)|j||p|θp

(4.22)
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with 1 ≤ i, j, k, ℓ ≤ n + m is reduced to proving
[(K̄K)ij , Kn+m−k+1,ℓ] = −(−1)|i||j|+|i||k|+|j||k|δiℓ Kn+m−k+1,j − (−1)|j|+|i|+|i||j|δki Kn+m−j+1,ℓ .

(4.23)
Both equations (4.21) and (4.23) can be derived directly from (4.18).

The case with i, j′, k′, ℓ for 1 ≤ i, j, k, ℓ ≤ n + m is verified using (4.19) and Lemma 4.24, while
the remaining three equations follow directly from Lemma 4.24.

This completes our proof of the theorem. □

Lemma 4.24. For the matrix L(x) of (4.12), we have the following matrix equalities:

θj′
∑

p

(−1)|j||p|θp Lpj(x)Lp′ℓ(y) =

 −(x − y + κ)Jn+mK (x + κ)Jn+m

yJn+m 0


j,ℓ

(4.25)

and

θi

∑
p

(−1)|p|+|i||p|θp Lkp′(y)Lip(x) =

 (x − y + κ)K̄Jn+m yJn+m

(x + κ)Jn+m 0


k,i

. (4.26)

Proof. Let us verify (4.25). For the lower right block, we use that
(−1)|i||j|θi′Li′j(x) + (−1)|j|θjLj′i(x) = 0 for n + m + 1 ≤ i, j ≤ 2n + 2m , (4.27)

which can be shown using the equality
K̄j,n+m−i+1 = −(−1)|i||j|K̄i,n+m−j+1 for 1 ≤ i, j ≤ n + m . (4.28)

For the upper right block, we use that

(−1)|j||ℓ|+|j|θjθℓ Lℓj(x) +
n+m∑
p=1

θj(−1)|j||p|+|j|+|p|θp Lp′j(x)Lpℓ′(y) = (x + κ)δjℓ (4.29)

for any 1 ≤ j, ℓ ≤ n + m. The proof of this follows from the equality

−
n+m∑
p=1

(−1)|j||p|+|j|+|p| Kn+m−p+1,jK̄p,n+m−ℓ+1 − (−1)|j||ℓ|+|ℓ|(K̄K)ℓj = κ δjℓ (4.30)

for any 1 ≤ j, ℓ ≤ n + m. For the lower left block, we use the relation

Ljℓ(y) + θj

n+m∑
p=1

(−1)|j||p|θp Lpj′(x)Lp′ℓ(y) = yδjℓ for 1 ≤ j, ℓ ≤ n + m (4.31)

based on

(K̄K)jℓ +
n+m∑
p=1

(−1)|j||p| K̄p,n+m−j+1Kn+m−p+1,ℓ = 0 for 1 ≤ j, ℓ ≤ n + m , (4.32)

which follows from (4.28). Finally, for the upper left block, we note that
n+m∑
p=1

(−1)|j||p|+|j|Lpj(x)Lp′ℓ(y) +
n+m∑
p=1

(−1)|j||p|+|j|+|p|Lp′j(x)Lpℓ(y) = −(x − y + κ)Kn+m−j+1,ℓ

(4.33)
for any 1 ≤ j, ℓ ≤ n + m. This relation is equivalent to

n+m∑
p=1

(−1)|j||p|+|j|(K̄K)pjKn+m−p+1,ℓ +
n+m∑
p=1

(−1)|j||p|+|j|+|p| Kn+m−p+1,j(K̄K)pℓ =

− κ Kn+m−j+1,ℓ . (4.34)
Due to the symmetry

(−1)|j||ℓ|+|j|+|ℓ| Kn+m−ℓ+1,j = −Kn+m−j+1,ℓ for 1 ≤ j, ℓ ≤ n + m , (4.35)
the relation (4.34) can be easily verified using (4.30).
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The proof of (4.26) is completely analogous; we leave details to the interested reader. □

Remark 4.36. In particular, we recover orthogonal and symplectic degenerate linear Lax matrices:
• For m = 0, we recover precisely the Dn-type Lax matrix of [FT1, (2.231)], constructed

first in [Fr1, (4.3)].
• For n = 0, we get

L(−x) =

 −xIdm + B̄B B̄

B Idm

 = −LF KT (x)

 Idm 0

0 −Idm

 , (4.37)

where LF KT (x) is the Cm-type Lax matrix of [FKT, (8.55)], discovered first in [FT1, (3.50)].
We note that the constant matrix above is Idθ of (3.36) and hence it can be dropped out
of the RTT-relation due to the invariance [R(x), Idθ ⊗ Idθ] = 0 established in Lemma 3.35.

4.2. Non-degenerate linear Lax matrix through the fusion of two degenerate.
Similarly to the gl(n|m)-case of Section 2, one can fuse two degenerate orthosymplectic Lax ma-

trices to obtain a non-degenerate linear one. The main result of this subsection is Proposition 4.55.
Evoking the Lax matrix L(x) of (4.12), we define

L̄θ(x) = JθL(x)J−1
θ (4.38)

with Jθ as in (3.20):

Jθ =

 0 −Jn

Jn+2m 0

 , J−1
θ =

 0 Jn+2m

−Jn 0

 . (4.39)

Due to the invariance [R(x), Jθ ⊗ Jθ] = 0 of the orthosymplectic R-matrix (3.12), established in
Lemma 3.19, the matrix L̄θ(x) in (4.38) is a solution to the same RTT-relation (2.8), hence, is a
Lax matrix.

Remark 4.40. In contrast to (2.20), Z2-gradings of the Lax matrices L̄θ(x) and L(x) coincide.

Explicitly, we have:

L̄θ(y) =

 Idn+m Kθ

K̄θ yIdn+m + K̄θKθ

 (4.41)

with

K̄θ =

 C̄t JmB̄Jm

−JnĀJn JnC̄Jm

 and Kθ =

 Ct JnAJn

JmBJm −JmCJn

 . (4.42)

We further apply the fermionic particle-hole transformation
cij 7→ c̄ji , c̄ji 7→ cij for 1 ≤ j ≤ n , n + m + 1 ≤ i ≤ n + 2m , (4.43)

as well as the bosonic particle-hole transformation
aij 7→ −āji , āji 7→ aij for 1 ≤ j ≤ n − 1 , n + 2m + 1 ≤ i ≤ 2n + 2m − j , (4.44)

bij 7→ (1+ δij′)b̄ji , b̄ji 7→ − 1
1 + δij′

bij for n+1 ≤ j ≤ n+m < i ≤ 2n+2m+1− j . (4.45)

This yields the following Lax matrix:

L̄(y) = L̄θ(y)|p.h. =

 Idn+m K̄

K yIdn+m + KK̄

 (4.46)

with K̄, K precisely as in (4.13).

Remark 4.47. In particular, we recover orthogonal and symplectic degenerate linear Lax matrices:
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• For m = 0, we recover precisely the Dn-type Lax matrix L(−,...,−)(x) of [FKT, (8.84)]
(after swapping indices in the generators, i.e. aij 7→ aji, āji 7→ āij).

• For n = 0, we get

L̄(−x) =

 Idm B̄

−B −xIdm − BB̄

 =

 Idm 0

0 −Idm

 L−
F KT (x) , (4.48)

where L−
F KT (x) is the Cm-type Lax matrix equivalent to L(−,...,−)(x) of [FKT, (8.56)]

(after swapping indices and redistributing factor 2, i.e. bij 7→ (1 + δij′)bji, b̄ji 7→ 1
1+δij′

b̄ij).
We note that the constant matrix above is Idθ of (3.36) and hence it can be dropped out
of the RTT-relation due to the invariance [R(x), Idθ ⊗ Idθ] = 0 established in Lemma 3.35.

Let us now consider two copies of mutually supercommuting superoscillators labelled by the extra
superscript i = 1, 2, which will be now encoded by the corresponding matrices Āi, Ai, B̄i, Bi, C̄i, Ci,
hence also, the subscript in K̄i, Ki. We consider the following two orthosymplectic Lax matrices:

L[1](x) =

 xIdn+m − K̄1K1 K̄1

−K1 Idn+m

 , L̄[2](y) =

 Idn+m K̄2

K2 yIdn+m + K2K̄2

 (4.49)

of (4.12, 4.46) with

K̄i =

 C̄i Āi

B̄i −JmC̄t
iJn

 and Ki =

 Ci −Bi

Ai JnCt
iJm

 . (4.50)

The Lax matrices in (4.49) obey the following factorisation formula, cf. (2.27, 2.28):

L[1](x)L̄[2](y) =

 xIdn+m − K̄′
1K′

1

(
(y − x)Idn+m + K̄′

1K′
1

)
K̄′

1

−K′
1 yIdn+m + K′

1K̄′
1

 .

 Idn+m K̄′
2

0 Idn+m


(4.51)

where we set
K′

1 = K1 − K2 , K̄′
1 = K̄1 ,

K̄′
2 = K̄2 + K̄1 , K′

2 = K2 .
(4.52)

Moreover, similarly to (2.29, 2.30), the transformation (4.52) can be expressed through a similarity
transformation in the superoscillator space:

K′
i = SKiS−1 , K̄′

i = SK̄iS−1 (i = 1, 2) (4.53)

with

S = exp

∑
i,j

ā[1]
ji a[2]

ij +
∑
i,j

b̄[1]
ji b[2]

ij +
∑
i,j

c̄[1]
ji c[2]

ij

 , (4.54)

where the indices i, j take all possible values as given in (4.43)–(4.45). We note that all the
summands in the exponent above are bosonic and pairwise supercommute.

We thus obtain the key result of this subsection:

Proposition 4.55. (a) For any x1, x2 ∈ C, the matrix

Lx1,x2(x) =

 (x + x1)Idn+m − K̄1K1
(
(x2 − x1)Idn+m + K̄1K1

)
K̄1

−K1 (x + x2)Idn+m + K1K̄1

 (4.56)

is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix.
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(b) The Lax matrix from (a) is a fusion of two degenerate Lax matrices in (4.49) through:

L[1](x + x1)L̄[2](x + x2) = S Lx1,x2(x)

 Idn+m K̄2

0 Idn+m

 S−1 (4.57)

with the similarity transformation S of (4.54).

Remark 4.58. Similarly to Remarks 4.36 and 4.47, we note that the orthosymplectic Lax matrix
Lx1,x2(x) of (4.56) generalizes the authors’ previous work for orthogonal and symplectic types:

• For m = 0, we recover precisely the Dn-type Lax matrix of [FKT, (6.2)] when setting
x1 = t and x2 = −t − n + 1.

• For n = 0, setting x1 = −t and x2 = t + m + 1, we recover the Cm-type Lax matrix
LF KT (−x) of [FKT, (5.3)]:

Lx1=−t,x2=t+m+1(x) =

 (x − t)Idm + B̄B B̄
(
(2t + m + 1)Idm − BB̄

)
B (x + t + m + 1)Idm − BB̄

 = −LF KT (−x) .

(4.59)

Remark 4.60. Similarly to Remark 2.34 and generalizing [FKT, §8], we can vice versa obtain
the matrices L(x) and L̄(x) of (4.12, 4.46) from the non-degenerate linear Lax matrix Lx1,x2(x) of
(4.56) via the renormalized limit procedures (which clearly preserve the property of being Lax):

L(x) = lim
t→∞

{
L0,t(x) · diag

(
1, . . . , 1︸ ︷︷ ︸

n+m

; 1
t , . . . , 1

t︸ ︷︷ ︸
n+m

)}
,

L̄(x) = lim
t→∞

{
diag

(
1
t , . . . , 1

t︸ ︷︷ ︸
n+m

; 1, . . . , 1︸ ︷︷ ︸
n+m

)
· Lt,0(x)

}∣∣∣
K̄7→−K̄ , K 7→−K

.
(4.61)

Remark 4.62. According to Remark 3.16, the Lax matrix L(x) from Theorem 4.11 and the
Lax matrix Lx1,x2(x) from Proposition 4.55(a) give rise to the corresponding degenerate and
non-degenerate linear Lax matrices for all Z2-gradings of V .

5. Quadratic orthosymplectic Lax matrices

In this section, we investigate some quadratic superoscillator orthosymplectic Lax matrices.

5.1. From linear to quadratic Lax matrices.
In this subsection, we consider a factorisation formula different from the one presented in

Subsection 4.2 that allows to derive a degenerate quadratic Lax matrix, see Theorem 5.44.
Consider the Lax matrix of (4.12) written in the block form with blocks on the diagonal of size

1 × 1, (n + m − 1) × (n + m − 1), (n + m − 1) × (n + m − 1), and 1 × 1, respectively:

L(x) =



x − v̄v −v̄K◦ v̄ 0

−K̄◦v xIdn+m−1 − K̄◦K◦ + Jn+m−1v̄tvtG−1
n−1,m K̄◦ −Jn+m−1v̄t

−v −K◦ Idn+m−1 0

0 −vtG−1
n−1,m 0 1


. (5.1)

Here, we expressed K̄, K of (4.13) via

K̄ =

 v̄ 0

K̄◦ −Jn+m−1v̄t

 , K =

 v K◦

0 vtG−1
n−1,m

 (5.2)



ORTHOSYMPLECTIC SUPEROSCILLATOR LAX MATRICES 17

with

Gn−1,m =

 0 −Jn−1

Jm 0

 (5.3)

as in (3.34), and used the (n + m − 1)-dimensional vectors

v̄ =
(

c̄1,n+m+1 · · · c̄1,n+2m ā1,n+2m+1 · · · ā1,2n+2m−1

)
, (5.4)

v =
(

cn+m+1,1 . . . cn+2m,1 an+2m+1,1 · · · a2n+2m−1,1

)t
. (5.5)

Finally, the submatrices K◦, K̄◦ of K, K̄ appearing in (5.2) read as follows:

K̄◦ =

 C̄◦ Ā◦

B̄ −Jm(C̄◦)tJn−1

 and K◦ =

 C◦ −B

A◦ Jn−1(C◦)tJm

 , (5.6)

where the block matrices Ā◦, A◦ and C̄◦, C◦ encode the bosonic and fermionic superoscillators via

Ā◦ =



ā2,n+2m+1 · · · ā2,2n+2m−2 0
... . .

.
0 −ā2,2n+2m−2

ān−1,n+2m+1 0 . .
. ...

0 −ān−1,n+2m+1 · · · −ā2,n+2m+1


, (5.7)

A◦ =



an+2m+1,2 · · · an+2m+1,n−1 0
... . .

.
0 −an+2m+1,n−1

a2n+2m−2,2 0 . .
. ...

0 −a2n+2m−2,2 · · · −an+2m+1,2


, (5.8)

C̄◦ =


c̄2,n+m+1 · · · c̄2,n+2m

...
. . .

...

c̄n,n+m+1 · · · c̄n,n+2m

 , C◦ =


cn+m+1,2 · · · cn+m+1,n

...
. . .

...

cn+2m,2 · · · cn+2m,n

 , (5.9)

while the block matrices B̄, B encoding the bosonic superoscillators are precisely as in (4.8, 4.9).
To construct the degenerate quadratic Lax matrix, we define

L̂θ(x) = ĴθL(x)Ĵ−1
θ (5.10)

with Ĵθ as in (3.34):

Ĵθ =



1 0 0 0
0 0 Gn−1,m 0

0 Jn+m−1 0 0

0 0 0 −1


, Ĵ−1

θ =



1 0 0 0
0 0 Jn+m−1 0

0 Gt
n−1,m 0 0

0 0 0 −1


(5.11)

as Gt
n−1,m = G−1

n−1,m. The matrix L̂θ(x) in (5.10) is again a solution to the RTT-relation (2.8) with
the R-matrix (3.12), hence, is a Lax matrix. This follows from the invariance [R(x), Ĵθ ⊗ Ĵθ] = 0
of the orthosymplectic R-matrix (3.12), established in Lemma 3.33.

We rename the fermionic superoscillators
ci1 7→ ci′1 , c̄1i 7→ c̄1i′ for n + m + 1 ≤ i ≤ n + 2m (5.12)

and also rename the bosonic superoscillators
ai1 7→ −ai′1 , ā1i 7→ −ā1i′ for n + 2m + 1 ≤ i ≤ 2n + 2m − 1 . (5.13)
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We further apply the following particle-hole transformation of the remaining superoscillators:
cij 7→ c̄ji , c̄ji → cij for 2 ≤ j ≤ n , n + m + 1 ≤ i ≤ n + 2m , (5.14)

aij 7→ −āji , āji → aij for 2 ≤ j ≤ n − 1 , n + 2m + 1 ≤ i ≤ 2n + 2m − j , (5.15)

bij 7→ (1+δij′)b̄ji , b̄ji 7→ −1
1 + δij′

bij for n+1 ≤ j ≤ n+m < i ≤ 2n+2m+1−j . (5.16)

Applying the above operations (5.12)–(5.16) to (5.10) yields the following Lax matrix:

L̂(y) = L̂θ(y)|p.h. =



y − w̄w w̄ w̄K̄◦ 0

−w Id K̄◦ 0

−K◦w K◦ yId + K◦K̄◦ + G−1w̄twtJ G−1w̄t

0 0 wtJ 1


(5.17)

with
w̄ =

(
ā1,2 · · · ā1,n c̄1,n+1 · · · c̄1,n+m

)
, (5.18)

w =
(

a2,1 . . . an,1 cn+1,1 · · · cn+m,1

)t
, (5.19)

and the (n + m − 1) × (n + m − 1) matrices Id, J, G defined via:
Id = Idn+m−1 , J = Jn+m−1 , G = Gn−1,m . (5.20)

Similarly to (2.27) and (4.51), let us factorise the product of the Lax matrices in (5.1) and
(5.17). As before, we shall use the subscript i = 1, 2 to distinguish between the superoscillators
and the corresponding matrices (using i = 1 in the context of L(x), i = 2 in the context of L̂(y)).
One has the following factorisation:

L[1](x)L̂[2](y) = L′(x, y)


1 0 0 0

0 Id (K̄◦
2)′ 0

0 0 Id 0
0 0 0 1

 (5.21)

where
(K̄◦

2)′ = K̄◦
2 + K̄◦

1 , (K◦
2)′ = K◦

2 , (5.22)
and L′(x, y) is further factorised as

L′(x, y) =


1 ū′ 1

2 ū′M(ū′)t

0 IdN+2m−2 M(ū′)t

0 0 1




x · y 0 0

0 L′(x, y) 0

0 0 1




1 0 0

−u′ IdN+2m−2 0

1
2(u′)tMu′ −(u′)tM 1


(5.23)

with

M =

 0 −J

G−1 0

 . (5.24)

Let us now describe ū′, u′, and L′(x, y) featuring in (5.23). The first two are defined via

ū′ =
(

w̄′ v̄′
)

, u′ =

 w′

v′

 , (5.25)

where the vectors v̄′, v′ and w′, w̄′ are given by (cf. (5.4, 5.5, 5.6, 5.18, 5.19))
v̄′ = v̄ − w̄K̄◦

1 , v′ = v , (5.26)
w′ = w + K̄◦

1v , w̄′ = w̄ . (5.27)
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The matrix L′(x, y) in the middle factor of the factorisation (5.23) reads (cf. (4.56))

L′(x, y) =

 xId − (K̄◦
1)′(K◦

1)′
(
(y − x)Id + (K̄◦

1)′(K◦
1)′

)
(K̄◦

1)′

−(K◦
1)′ yId + (K◦

1)′(K̄◦
1)′

 (5.28)

where
(K◦

1)′ = K◦
1 − K◦

2 + vw̄ − G−1w̄tvtG−1 , (K̄◦
1)′ = K̄◦

1 . (5.29)

Remark 5.30. In the derivation of (5.23), we used the following two equalities:
(v̄′)t = v̄t − JK̄◦

1G−1w̄t , (w′)t = wt + vtG−1K̄◦
1J , (5.31)

where v̄′ and w′ are given by (5.26) and (5.27), respectively. To verify (5.31), we use
w̄Jv̄t = −v̄G−1w̄t , wtJv = −vtG−1w , (5.32)

as well as
vtG−1K̄◦

1v = 0 = w̄K̄◦
1G−1w̄t and w̄J(w̄K̄◦

1)t = 0 = (K̄◦
1v)tJv , (5.33)

where we take into account the Z2-grading of the superoscillators. It also follows from (5.33) that
ū′M(ū′)t = ūM(ū)t , (u′)tMu′ = (u)tMu (5.34)

with

ū =
(

w̄ v̄
)

, u =

 w

v

 . (5.35)

Let us also note that the first and third terms in the right-hand side of the factorisation (5.23)
can be written as exponential expansions that truncate after the second term, cf. [Fr1, (3.2)].

Finally, we note that there is a similarity transformation in the superoscillator space such that
(K◦

1)′ = SK◦
1S−1 , (K̄◦

2)′ = SK̄◦
2S−1 , (K̄◦

1)′ = SK̄◦
1S−1 , (K◦

2)′ = SK◦
2S−1 ,

w′ = SwS−1 , v̄′ = Sv̄S−1 , w̄′ = Sw̄S−1 , v′ = SvS−1 .
(5.36)

Here, S is given explicitly by
S = S◦S3 (5.37)

with
S3 = exp

(
−w̄K̄◦

1v
)

(5.38)
and

S◦ = exp

∑
i,j

ā[1]
ji a[2]

ij +
∑
i,j

b̄[1]
ji b[2]

ij +
∑
i,j

c̄[1]
ji c[2]

ij

 , (5.39)

where the indices i, j take all possible values as they appear in (5.6). It is obvious that the
summands in the exponents of (5.38) and (5.39), respectively, are bosonic and pairwise commute
(however, S◦ and S3 do not commute!).

Remark 5.40. The equalities in (5.36) are verified by direct computations. Let us only evaluate
the transformation of K◦

1 under S3 (the rest of computations being much simpler), cf. (5.29):
S3(K◦

1)ijS−1
3 = (K◦

1)ij − w̄K̄◦
1v(K◦

1)ij + (K◦
1)ijw̄K̄◦

1v
= (K◦

1)ij − w̄k(K̄◦
1)kℓvℓ(K◦

1)ij + (K◦
1)ijw̄k(K̄◦

1)kℓvℓ

= (K◦
1)ij − w̄k(K̄◦

1)kℓvℓ(K◦
1)ij + (−1)(|n+m−i+1|+|j+1|)|k+1|w̄k(K◦

1)ij(K̄◦
1)kℓvℓ

= (K◦
1)ij + viw̄j − (G−1w̄t)i(vtG−1)j ,

(5.41)
where we summed over all possible k, ℓ. The last equality above follows from (4.18) which yields

(−1)(|n+m−i+1|+|j+1|)|k+1|w̄k(K◦
1)ij(K̄◦

1)kℓvℓ =

w̄k(K̄◦
1)kℓvℓ(K◦

1)ij + viw̄j − (−1)|n+m−i+1|+|j+1|w̄n+m−ivn+m−j

(5.42)
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with
(G−1w̄t)i = −(−1)|n+m−i+1|w̄n+m−i , (vtG−1)j = −(−1)|j+1|vn+m−j . (5.43)

We thus obtain the key result of this subsection:

Theorem 5.44. (a) For any x1, x2 ∈ C, the matrix
Lx1,x2(x) =

1 ū 1
2 ūM ūt

0 IdN+2m−2 M ūt

0 0 1




(x + x1)(x + x2) 0 0

0 Lx1,x2(x) 0

0 0 1




1 0 0
−u IdN+2m−2 0

1
2utMu −utM 1


(5.45)

with

ū =
(

w̄ v̄
)

and u =

 w

v

 , (5.46)

cf. (5.4, 5.5, 5.18, 5.19), and Lx1,x2(x) being the linear osp(2n − 2|2m) type Lax matrix of (4.56):

Lx1,x2(x) =

 (x + x1)Id − K̄◦
1K◦

1

(
(x2 − x1)Id + K̄◦

1K◦
1

)
K̄◦

1

−K◦
1 (x + x2)Id + K◦

1K̄◦
1

 , (5.47)

cf. (5.28), is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix.
(b) The Lax matrix from (a) is a fusion of two degenerate Lax matrices through:

L[1](x + x1)L̂[2](x + x2) = S Lx1,x2(x)


1 0 0 0

0 Id K̄◦
2 0

0 0 Id 0
0 0 0 1

 S−1 (5.48)

with the Lax matrices L(x), L̂(x) of (5.1, 5.17) and the similarity transformation S of (5.37)–(5.39).

Remark 5.49. For m = 0, we recover precisely the Dn-type Lax matrix of [Fr1, (5.24, 5.25)]
when setting x1 = s, x2 = −s − n + 2.

5.2. Degenerate quadratic Lax matrices: even N case.
Dropping the index 1 in the oscillators of (5.4, 5.5, 5.18, 5.19), we consider the vectors

u =
(

a2 . . . an cn+1 · · · cn+m cn+m+1 · · · cn+2m an+2m+1 · · · a2n+2m−1

)t
(5.50)

and
ū =

(
ā2 · · · ān c̄n+1 · · · c̄n+m c̄n+m+1 · · · c̄n+2m ān+2m+1 · · · ā2n+2m−1

)
, (5.51)

cf. (5.46), so that aj = aj,1, cj = cj,1, āj = ā1,j , and c̄j = c̄1,j .
As an immediate corollary of Theorem 5.44, we obtain the following result:

Proposition 5.52. The matrix

L(x) =


1 ū 1

2 ūM ūt

0 IdN+2m−2 M ūt

0 0 1




x(x − κ + 1) 0 0

0 xIdN+2m−2 0

0 0 1




1 0 0

−u IdN+2m−2 0

1
2utMu −utM 1


(5.53)
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with u of (5.50), ū of (5.51), M of (5.24), is a solution to the RTT-relation (2.8) with the
R-matrix (3.12), hence, is a Lax matrix. It can be explicitly written as

L(x) =



x(x − κ + 1) − xūu + 1
4 ūM ūtutMu xū − 1

2 ūM ūtutM
1
2 ūM ūt

−xu + 1
2M ūtutMu xIdN+2m−2 − M ūtutM M ūt

1
2utMu −utM 1


. (5.54)

Proof. According to Theorem 5.44, the matrix Lx1,x2(x) of (5.45) is a solution to the RTT-relation
(2.8) with the R-matrix (3.12). The superoscillators used in u and ū pairwise supercommute with
the ones used in the construction of Lx1,x2(x). Furthermore, the coefficients of the latter generate
an orthosymplectic subalgebra. To prove that the matrix L(x) in (5.53) is a solution to the
same RTT-relation, we consider the trivial representation of the aforementioned orthosymplectic
subalgebra. It is obtained from the action of the Lax matrix Lx1,x2(x) on the Fock vacuum |0⟩ (in
the Fock module for the superoscillator algebra generated by the entries of K◦, K̄◦ from (5.6),
so that K◦|0⟩=0) and further fixing x2 = x1 − κ + 1 with κ = n − m − 1 as in (3.11). Using the
simple equalities

K◦K̄◦|0⟩ = (κ − 1) Id|0⟩ , K̄◦K◦K̄◦|0⟩ = (κ − 1) K̄◦|0⟩ , (5.55)
we find

Lx1,x2=x1−κ+1(x)|0⟩ = (x + x1)IdN+2m−2|0⟩ . (5.56)
Specializing further x1 = 0, we conclude that (5.54) is indeed an orthosymplectic Lax matrix. □

Remark 5.57. For m = 0, we recover precisely the Dn-type Lax matrix of [Fr1, (4.12)].

5.3. Degenerate quadratic Lax matrices: odd N case.
In this subsection, we consider the case N = 2n+1. In this setup, the operators P, Q are defined

as in (3.6, 3.7), where we choose the following specific Z2-grading of the superspace V :

|i| := |vi| =



0̄ for 1 ≤ i ≤ n

1̄ for n + 1 ≤ i ≤ n + m

0̄ for i = n + m + 1
1̄ for n + m + 2 ≤ i ≤ n + 2m + 1
0̄ for n + 2m + 2 ≤ i ≤ 2n + 2m + 1

. (5.58)

This Z2-grading corresponds to the parity sequence

ΥV =
(

0̄, . . . , 0̄︸ ︷︷ ︸
n

, 1̄, . . . , 1̄︸ ︷︷ ︸
m

, 0̄, 1̄, . . . , 1̄︸ ︷︷ ︸
m

, 0̄, . . . , 0̄︸ ︷︷ ︸
n

)
(5.59)

and the following choice of θi’s:

θ = θV =
(

1, . . . , 1︸ ︷︷ ︸
n+m+1

, −1, . . . , −1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

)
. (5.60)

In this case, we upgrade (5.50, 5.51) by adding extra bosonic superoscillators:

u =
(

a2 . . . an cn+1 · · · cn+m an+m+1 cn+m+2 . . . cn+2m+1 an+2m+2 · · · a2n+2m

)t
, (5.61)

ū =
(

ā2 · · · ān c̄n+1 · · · c̄n+m ān+m+1 c̄n+m+2 · · · c̄n+2m+1 ān+2m+2 · · · ā2n+2m

)
. (5.62)

We also modify (5.24) by introducing the following (N + 2m − 2) × (N + 2m − 2) matrix:

M =


0 0 −J
0 −1 0

G−1 0 0

 . (5.63)
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Conjecture 5.64. The matrix L(x) given by (5.53, 5.54) with u of (5.61), ū of (5.62), M
of (5.63) is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix.

Remark 5.65. (a) This has been confirmed for n, m ≤ 2, but a general proof is currently missing.
(b) For m = 0, we recover precisely the Bn-type Lax matrix of [FKT, (9.1)].

5.4. Non-degenerate quadratic Lax matrix through the factorisation.
In this subsection, we present a factorisation formula for quadratic Lax matrices that yields a

non-degenerate quadratic orthosymplectic Lax matrix of superoscillator type. We uniformly treat
both cases of even and odd N , assuming the validity of Conjecture 5.64.

The factorisation is analogous to that for the linear case from Subsection 4.2. As before, we first
introduce another solution to the same RTT-relation via a proper conjugation of the degenerate
Lax matrix L(x) from Proposition 5.52 or Conjecture 5.64. To this end, recall the matrix J̃
of (3.27):

J̃ =


0 0 1
0 IdN+2m−2 0

1 0 0

 . (5.66)

The R-matrix (3.12) commutes with J̃ ⊗ J̃: for even N this is proved in Lemma 3.26, while for odd
N the argument is the same. Thus, we get another solution to the same RTT-relation (2.8) via

L̃(x) = J̃L(x)J̃−1 = J̃L(x)J̃ . (5.67)
We further apply the particle-hole transformation

ai 7→ āi′ , āi 7→ −ai′ , (5.68)
ci 7→ θic̄i′ , c̄i 7→ θici′ , (5.69)

to obtain the following Lax matrix:
ˆ̃L(y) = L̃(y)|p.h. =

1 ū 1
2 ūM ūt

u yIdN+2m−2 + uū yM ūt + 1
2uūM ūt

1
2utMu yutM + 1

2utMuū y(y − κ + 1) + yutMM ūt + 1
4utMuūM ūt


. (5.70)

Similarly to (2.27), (4.51), and (5.21), let us factorise the product of the Lax matrices L[1](x)

and ̂̃L[2]
(y) from (5.54) and (5.70), with two families of superoscillators encoded by (u1, ū1) and

(u2, ū2), respectively. Explicitly, one obtains the following factorisation:

L[1](x)ˆ̃L[2](y) = L′(x, y)H ′ (5.71)
with

L′(x, y) =


1 ū′

1
1
2 ū′

1M(ū′
1)t

0 IdN+2m−2 M(ū′
1)t

0 0 1

 · D′(x, y) ·


1 −ū′

1
1
2 ū′

1M(ū′
1)t

0 IdN+2m−2 −M(ū′
1)t

0 0 1

 (5.72)

where

D′(x, y) =


x(x − κ + 1) 0 0

−xu′
1 xyIdN+2m−2 0

1
2(u′

1)tMu′
1 −y(u′

1)tM y(y − κ + 1)

 ,
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M is given by (5.24) for N = 2n or by (5.63) for N = 2n + 1, and

H ′ =


1 ū′

2
1
2 ū′

2M(ū′
2)t

0 IdN+2m−2 M(ū′
2)t

0 0 1

 . (5.73)

Here, we introduced the following notation:
u′

1 = u1 − u2 , ū′
1 = ū1 , (5.74)

and
ū′

2 = ū2 + ū1 , u′
2 = u2 , (5.75)

cf. (2.28). Furthermore, we used the following simple properties:
ū2M ūt

1 = ū1M ūt
2 , ut

1Mu2 = ut
2Mu1 . (5.76)

Finally, we note that there is a similarity transformation in the superoscillator space such that
ū′

i = SūiS−1 , u′
i = SuiS−1 (i = 1, 2) , (5.77)

cf. (2.29, 2.30). For even N = 2n, it reads

S = exp

 n∑
i=2

ā[1]
i a[2]

i +
n+m∑

i=n+1
c̄[1]

i c[2]
i +

n+2m∑
i=n+m+1

c̄[1]
i c[2]

i +
2n+2m−1∑

i=n+2m+1
ā[1]

i a[2]
i

 , (5.78)

while for odd N = 2n + 1, we have

S = exp

 n∑
i=2

ā[1]
i a[2]

i +
n+m∑

i=n+1
c̄[1]

i c[2]
i + ā[1]

n+m+1a[2]
n+m+1 +

n+2m+1∑
i=n+m+2

c̄[1]
i c[2]

i +
2n+2m∑

i=n+2m+2
ā[1]

i a[2]
i

 .

(5.79)
We thus obtain the key result of this subsection:

Proposition 5.80. For any x1, x2 ∈ C, the matrix

Lx1,x2(x) =


1 ū1

1
2 ū1M ūt

1

0 IdN+2m−2 M ūt
1

0 0 1

 · Dx1,x2(x) ·


1 −ū1

1
2 ū1M ūt

1

0 IdN+2m−2 −M ūt
1

0 0 1

 (5.81)

with

Dx1,x2(x) =


(x + x1)(x + x1 − κ + 1) 0 0

−(x + x1)u1 (x + x1)(x + x2)IdN+2m−2 0

1
2 ut

1Mu1 −(x + x2)ut
1M (x + x2)(x + x2 − κ + 1)


is a solution to the RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix. Further-
more, it obeys the factorisation formula

L[1](x + x1)ˆ̃L[2](x + x2) = SLx1,x2(x)HS−1 (5.82)

with L(x) of (5.54), ˆ̃L(y) of (5.70), S of (5.78, 5.79), and H given by

H =


1 ū2

1
2 ū2M ūt

2

0 IdN+2m−2 M ūt
2

0 0 1

 . (5.83)

Remark 5.84. For m = 0, we recover the soN -type Lax matrix L−x1,−x2(x) of [FKT, (7.3)].
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5.5. Full non-degenerate quadratic Lax matrix through the factorisation.
For even N = 2n, the constructions from the previous subsection admit straightforward

generalizations when replacing L(x) with Lx1,x2(x) of (5.45):

Theorem 5.85. For N = 2n and any x1, x2, y1, y2 ∈ C, the matrix

Lx1,x2,y1,y2(x) =


1 ū1

1
2 ū1M ūt

1

0 Id2n+2m−2 M ūt
1

0 0 1

 · Dx1,x2,y1,y2(x) ·


1 −ū1

1
2 ū1M ūt

1

0 Id2n+2m−2 −M ūt
1

0 0 1


(5.86)

with

Dx1,x2,y1,y2(x) =


(x + y1)(x + y1 − κ + 1) 0 0

−Lx1,x2(x + y1)u1 (x + y2)Lx1,x2(x + y1) 0

1
2 ut

1Mu1 −(x + y2)ut
1M (x + y2)(x + y2 − κ + 1)


and Lx1,x2(x) being the linear osp(2n − 2|2m) type Lax matrix of (5.47), is a solution to the
RTT-relation (2.8) with the R-matrix (3.12), hence, is a Lax matrix. Furthermore, it obeys the
factorisation formula

L[1]
x1,x2(x + y1)ˆ̃L[2](x + y2) = SLx1,x2,y1,y2(x)HS−1 (5.87)

with ˆ̃L(x) of (5.70), H of (5.83), and Lx1,x2(x) of (5.45).

Remark 5.88. For m = 0, we recover the Dn-type Lax matrix Ln,s(x) of [Fr1, (5.36, 5.37)],
depending on the extra parameters x1, x2, when setting x1 = s, x2 = −s−n+2, y1 = −x1, y2 = −x2.

Remark 5.89. According to Remark 3.16, the Lax matrix Lx1,x2(x) from Theorem 5.44(a), the Lax
matrix L(x) from Proposition 5.52, and its generalization for odd N from Conjecture 5.64 give rise
to the corresponding degenerate quadratic Lax matrices for any other Z2-grading satisfying |v1| = 0̄.
Likewise, the Lax matrices Lx1,x2(x) from Proposition 5.80 and Lx1,x2,y1,y2(x) from Theorem 5.85
give rise to the corresponding non-degenerate quadratic Lax matrices for all Z2-gradings of V .

Remark 5.90. Similarly to Remarks 2.34, 4.60, we can obtain the degenerate Lax matrices (5.53)
and (5.70) from the non-degenerate Lax matrix (5.81) through the renormalized limit procedure:

L(x + x1) = lim
x2→∞

{
Lx1,x2(x) · diag

(
1, x−1

2 , . . . , x−1
2︸ ︷︷ ︸

N+2m−2

, x−2
2

)}∣∣∣
u1 7→u , ū1 7→ū

,

ˆ̃L(x + x2) = lim
x1→∞

{
diag

(
x−2

1 , x−1
1 , . . . , x−1

1︸ ︷︷ ︸
N+2m−2

, 1
)

· Lx1,x2(x)
}∣∣∣

u1 7→−u , ū1 7→−ū
.

(5.91)

Analogously, for even N = 2n, the degenerate Lax matrices (5.45) and (5.70) can be obtained as
the renormalized limits of the full non-degenerate quadratic Lax matrix Lx1,x2,y1,y2(x) from (5.86).

Appendix A. Twists for transfer matrices and Q-operators

In analogy to BCD-type spin chain transfer matrices, see [FKT, (8.69, 9.19)], the diagonal
twists D for the finite-dimensional transfer matrices should be of the following form:

• For N = 2n

D = diag
(
τ1, . . . , τn, τn+1, . . . , τn+m, τ−1

n+m, . . . , τ−1
n+1, τ−1

n , . . . , τ−1
1

)
(A.1)

• For N = 2n + 1

D = diag
(
τ1, . . . , τn, τn+1, . . . , τn+m, 1, τ−1

n+m, . . . , τ−1
n+1, τ−1

n , . . . , τ−1
1

)
(A.2)
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On the other hand, the twist Dosc used to construct Q-operators from the monodromy matrices
M(x) = L(x) ⊗ · · · ⊗ L(x)︸ ︷︷ ︸

N times

of degenerate Lax matrices L(x) is determined through the following invariance condition:
DL(x)D−1 = D−1

oscL(x)Dosc , (A.3)
cf. [FKT, (8.68, 9.18)]. Here, the twist D of (A.1, A.2) acts only on the matrix space, while the
twist Dosc acts only on the oscillator space. We thus derive the following explicit formulas:

• For N = 2n and the linear Lax matrix of (4.12), Dosc is given by

Dosc =

 ∏
1≤i<j≤n

(τiτj)−āij′ aj′i

  ∏
n+1≤i≤j≤n+m

(τiτj)−b̄ij′ bj′i

  n∏
i=1

n+m∏
j=n+1

(τiτj)−c̄ij′ cj′i

 (A.4)

which is a mixture of the corresponding D-type and C-type formulas [FKT, (8.66, 8.90)]
• For N = 2n and the quadratic Lax matrix of (5.53, 5.54), Dosc is given by

Dosc = τ
−

∑n

j=2(ājaj+āj′ aj′ )−
∑n+m

j=n+1(c̄jcj+c̄j′ cj′ )
1

 n∏
j=2

τ
ājaj−āj′ aj′
j

  n+m∏
j=n+1

τ
c̄jcj−c̄j′ cj′
j

 (A.5)

which is an analogue of [FKT, (9.16)]
• For N = 2n + 1 and the quadratic Lax matrix of Conjecture 5.64, Dosc is alike given by

Dosc =

τ
−ān+m+1an+m+1−

∑n

j=2(ājaj+āj′ aj′ )−
∑n+m

j=n+1(c̄jcj+c̄j′ cj′ )
1

 n∏
j=2

τ
ājaj−āj′ aj′
j

  n+m∏
j=n+1

τ
c̄jcj−c̄j′ cj′
j


(A.6)
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