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Abstract. We study the RTT orthosymplectic super Yangians and present their Drinfeld real-
izations for any parity sequence, generalizing the results of [JLM] for non-super case, [Mo] for a
standard parity sequence, and [P,T] for the super A-type.
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1. Introduction

1.1. Summary.
The original definition of Yangians Y (g) associated to any simple Lie algebra g is due to [D1],

where these algebras are realized as Hopf algebras with a finite set of generators (known as the
J-realization). The representation theory of such algebras is best developed using their alternative
(new) Drinfeld realization (also known as the current realization) proposed in [D2], though the
Hopf algebra structure is much more involved in this presentation (for example, a proof of the
coproduct formula was given only recently in [GNW]).
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For g = gln, a closely related algebra Y rtt(gln) was studied earlier in the work of Faddeev’s
school on the quantum inverse scattering method, see e.g. [FRT], where the algebra generators
were encoded by an n× n square matrix T (u) subject to a single RTT-relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) (1.1)
involving Yang’s R-matrix R(u) satisfying the Yang-Baxter equation with a spectral parameter

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) . (1.2)
We note that the sln-version Y rtt(sln) is recovered by imposing an extra relation

qdetT (u) = 1 . (1.3)
The Hopf algebra structure on both Y rtt(gln) and Y rtt(sln) is extremely simple with the coproduct

∆: T (u) 7→ T (u) ⊗ T (u) . (1.4)
This RTT realization is well suited for the development of both the representation theory and the
corresponding integrable systems (involving Bethe subalgebras on the mathematical side).

An explicit isomorphism from the new Drinfeld to the RTT realizations of type A Yangians
is constructed using the Gauss decomposition of T (u), a complete proof been provided in [BK]
(curiously enough the trigonometric version of this result was established a decade earlier in [DF]).
A similar explicit isomorphism for the remaining classical BCD-types was obtained only a decade
later in [JLM], where it was again constructed using the Gauss decomposition of the generating
matrices T (u) which are subject to the RTT-relations (1.1) with the rational solutions of (1.2)
first discovered in [ZZ]. An implicit existence of such an isomorphism for any g was noted by
Drinfeld back in the 80’s, while a detailed proof of his result was established only recently in [W].

Finally, we note that the RTT realization of the (antidominantly) shifted Yangians Yµ(g)
from [BFN] was recently obtained in [FPT,FT1] for classical g. This significantly simplifies some
of their basic structures such as the coproduct homomorphisms ∆: Yµ1+µ2(g) → Yµ1(g) ⊗ Yµ2(g),
cf. (1.4), and allows to introduce integrable systems on the corresponding quantized Coulomb
branches of 3d N = 4 quiver gauge theories. An important aspect of this setup in A-type is that
the central series qdetT (u) encodes all masses of the corresponding physical theory, cf. (1.3).

The theory of Yangians associated with Lie superalgebras is still far from a full development. In
particular, there is no uniform J- or Drinfeld realizations of those. The cases studied mostly up to
date involve rather the RTT realization. The general linear RTT Yangians Y rtt(gl(n|m)) and the
orthosymplectic RTT Yangians Y rtt(osp(N |2m)) first appeared in [N] and [AACFR], respectively,
using the super-analogues of the Yang’s and Zamolodchikov-Zamolodchikov’s rational R-matrices.

A novel feature of Lie superalgebras is that they admit several non-isomorphic Dynkin diagrams.
The isomorphism of the Lie superalgebras corresponding to different Dynkin diagrams of the same
finite/affine type was obtained by Serganova in the Appendix to [LSS]. Likewise, one may define
various quantizations of the universal enveloping superalgebras starting from different Dynkin
diagrams, and establishing isomorphisms among those is quite a non-trivial task. In the case of
quantum finite/affine superalgebras in their Drinfeld-Jimbo realization, this was accomplished by
Yamane in [Y] two decades ago.

Despite the absence of the definition of super Yangians, the rational setup admits some benefits.
As an example, the RTT realization of Y rtt(gl(n|m)) manifestly provides an isomorphism between
these algebras corresponding to different Dynkin diagrams, which is far from being obvious when
considering their Drinfeld realizations as developed in [P,T]. We note however that the positive
subalgebras in the Drinfeld realization do essentially depend on a choice of the Dynkin diagram.

One of the major objectives of the present note is to generalize [T, §2] to the orthosymplectic
Yangians. To this end, we study the RTT Yangians Y rtt(osp(N |2m)) and their extended versions
Xrtt(osp(N |2m)) associated to an arbitrary Dynkin diagram. Alike the aforementioned gl(n|m)-
type, these algebras are manifestly isomorphic, while their Drinfeld realizations look quite different.
In fact, one of our key results is the Drinfeld realization of these algebras for all Dynkin diagrams.
We note that the case of N ≥ 3 and the standard Dynkin diagram was recently treated in [Mo].

Our approach is quite straightforward, generalizing [BK] for A-type, [JLM] for BCD-types,
and [Mo] for the distinguished Dynkin diagram. The above crucially used the rank reduction
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embeddings that are compatible with the Gauss decompositions. Let us emphasize that while
the proof of the existence of such embeddings solely utilized the RTT formalism in non-super
case of [JLM], this approach is not fully applicable in the present setup (due to the possible
singularity of R(u) at u = 1), and we rather use an update of the corresponding core computation
from [Mo]. With the help of these embeddings, the quadratic relations in the Drinfeld presentation
of orthosymplectic Yangians are derived from the super A-type analogue and rank ≤ 2 cases
handled by brute force. Additionally, we also have Serre relations (standardly deduced from their
Lie-theoretic counterparts). The Drinfeld realization of osp(1|2)-Yangians previously appeared
in [ACFR], where many details were missing and an opposite Gauss decomposition was used.

We note that the orthosymplectic type simultaneously resembles all three classical types B,C,D.
In the sequel note [FT2], we construct orthosymplectic Lax matrices generalizing our orthogonal
and symplectic Lax matrices from [FT1,FKT].

While we were preparing the present note and [FT2], the work [MR] appeared that independently
treats the N = 1 case. The arguments of loc.cit. are quite similar to ours and also crucially rely
on the Drinfeld realization of Xrtt(osp(1|2)), thus filling in the aforementioned gaps of [ACFR].

1.2. Outline.
The structure of the present paper is the following:

• In Section 2, we recall basic results on the orthosymplectic Lie superalgebras osp(V ). We recover
their Dynkin diagrams of [FSS] from the parity sequences ΥV ∈ {0̄, 1̄}⌊dim(V )/2⌋ (see Subsection 2.3)
as well as recall their Serre-type presentations from [Z] highlighting the presence of the higher
order Serre relations of orders 3, 4, 6, or 7 for specific parity sequences ΥV (see Subsection 2.4).

• In Section 3, we introduce the RTT (extended) Yangians Xrtt(osp(V )), Y rtt(osp(V )) and establish
their basic properties. We emphasize that both algebras Xrtt(osp(V )) and Y rtt(osp(V )) depend
(up to isomorphism) only on the total number of 0̄’s and 1̄’s in ΥV , according to Lemma 3.12
and Corollary 3.24. Thus, all of them are isomorphic to the (extended) orthosymplectic Yangians
Xrtt(osp(N |2m)) and Y rtt(osp(N |2m)) of [AACFR], which correspond to the standard parity case
(where all 0̄’s are placed after all 1̄’s). This observation allows us to generalize some of the basic
structural results of [AACFR], such as the tensor product decomposition (3.19) and the PBW-type
results of Proposition 3.29 and Corollary 3.34, to arbitrary parity sequences ΥV .

The rest of this note is devoted to the Gauss decomposition (3.35) of the generator matrix T (u).
To this end, we first establish our key technical tool of rank reduction in Theorem 3.47 (the proof
of which closely follows the arguments of [Mo, §3]). The latter implies the commutativity of some
of the generating currents, see Corollary 3.52. We also establish Lemma 3.55 that significantly
simplifies several computations in the rest of the note. Finally, we recall the defining relations among
the generating currents of the super A-type Yangians Y rtt(gl(V)) in Theorem 3.70, and deduce the
corresponding relations for the currents of Xrtt(osp(V )) with ΥV = ΥV, see Corollaries 3.89, 3.91.

• In Section 4, we recover explicit formulas for all entries of the matrices E(u), F (u), H(u) from the
Gauss decomposition (3.35) in terms of the generating currents ei(u), fi(u), hi(u) from (3.36, 3.40).
We also derive a factorized formula for the central series cV (u) of (3.16) in Lemmas 4.31, 4.45, 4.49.
In Subsection 4.4, we establish some higher order relations generalizing those from Subsection 2.4.

• In Section 5, we establish quadratic relations between the generating currents ei(u), fi(u), hı(u)
of Xrtt(osp(V )) in rank ≤ 2. The arguments are straightforward (though tedious) and we present
them in a uniform way (eliminating the smaller rank reduction of [JLM] for non-super types).

• In Section 6, we present Drinfeld realizations of RTT (extended) orthosymplectic super Yangians
Xrtt(osp(V )) and Y rtt(osp(V )), associated with any parity sequence, see Theorems 6.33 and 6.100.
The corresponding relations follow from those for Y rtt(gl(V)) and Y rtt(sl(V)) through Corollaries
3.89, 3.91, the commutativity of Corollary 3.52, the Serre relations (the higher order ones generalize
those from Subsection 4.4), and the quadratic relations in rank ≤ 2 as established in Section 5.
To prove the sufficiency of these relations, we use the standard argument (originating from [BK])
of passing through the associated graded algebras and utilize the PBW result of Corollary 3.34.
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• In Appendix A, we recall the isomorphisms Xrtt(so3) ≃ Y rtt(gl2), Y rtt(so3) ≃ Y rtt(sl2) of [AMR],
see Proposition A.5, whose proof is based on the important 6-fold R-matrix fusion of Lemma A.3.
We then establish similar isomorphisms Xrtt(so6) ≃ Y rtt(gl4), Y rtt(so6) ≃ Y rtt(sl4) in Proposi-
tion A.11, the proof of which is based on the analogous 6-fold R-matrix fusion of Lemma A.9. Finally,
we explain in Remark A.13 why applying the above R-matrix fusion approach to Y rtt(gl(1|2))
recovers an algebra that looks surprisingly different from Xrtt(osp(2|2)), despite osp(2|2) ≃ sl(1|2).
We conclude by matching the resulting two 16×16 R-matrices with those of [RM], see Remark A.22.
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2. Orthosymplectic Lie superalgebras

In this section, we recall the basic results on orthosymplectic Lie superalgebras. We recover their
various Dynkin diagrams from the parity sequences, and discuss their Serre-type presentations.

2.1. Setup and notations.
Fix N ≥ 1,m ≥ 0, and consider the set I := {1, 2, . . . , N + 2m} equipped with an involution ′ :

i′ := N + 2m+ 1 − i . (2.1)

Consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vN+2m such that each vi is either even
(that is, vi ∈ V0̄) or odd (that is, vi ∈ V1̄), the dimensions are dim(V0̄) = N, dim(V1̄) = 2m, and the
vectors vi, vi′ have the same parity for any i (in particular, v(N+1)/2+m ∈ V0̄ for odd N), cf. (2.1).
The latter condition means that

i = i′ , (2.2)

where for i ∈ I, we define its Z2-parity i ∈ Z2 via:

i =
{

0̄ if vi ∈ V0̄
1̄ if vi ∈ V1̄

. (2.3)

We also define the sequence θV := (θ1, θ2, . . . , θN+2m) of ±1’s via:

θi = 1 and θi′ = (−1)i for any 1 ≤ i ≤ ⌈N
2 ⌉ +m. (2.4)

For a superalgebra A and its two homogeneous elements x and x′, we define

[x, x′] = adx(x′) := xx′ − (−1)|x|·|x′|x′x and {x, x′} := xx′ + (−1)|x|·|x′|x′x , (2.5)

where |x| denotes the Z2-grading of x (i.e. x ∈ A|x|) and we use conventions (−1)0̄ = 1, (−1)1̄ = −1.
Given two superspaces A = A0̄ ⊕ A1̄ and B = B0̄ ⊕ B1̄, their tensor product A⊗ B is also a

superspace with (A⊗B)0̄ = A0̄ ⊗B0̄ ⊕A1̄ ⊗B1̄ and (A⊗B)1̄ = A0̄ ⊗B1̄ ⊕A1̄ ⊗B0̄. Furthermore,
if A and B are superalgebras, then A⊗B is made into a superalgebra, the graded tensor product
of the superalgebras A and B, via the following multiplication:

(x⊗ y)(x′ ⊗ y′) = (−1)|y|·|x′|(xx′) ⊗ (yy′) for any x ∈ A|x|, x
′ ∈ A|x′|, y ∈ B|y|, y

′ ∈ B|y′| . (2.6)

We will use only the graded tensor products of superalgebras throughout this paper.
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2.2. Orthosymplectic Lie superalgebras.
A standard basis of the general linear Lie superalgebra gl(V ) is formed by the elements Eij

(1 ≤ i, j ≤ N + 2m) of parity i+ j with the commutation relations

[Eij , Ekℓ] = δkjEiℓ − δℓi(−1)(i+j)(k+ℓ)Ekj .

Consider a bilinear form BG : V × V → C defined by the anti-diagonal matrix
G = (gij)N+2m

i,j=1 with gij = δij′θi .

We regard the orthosymplectic Lie superalgebra osp(V ) associated with the bilinear form BG as
the Lie subalgebra of gl(V ) spanned by the elements

Fij = Eij − (−1)i·j+iθiθj Ej′i′ ∀ 1 ≤ i, j ≤ N + 2m. (2.7)

We note that Fj′i′ = −(−1)i·j+iθiθj · Fij . Furthermore, the elements{
Fij

∣∣∣ i+ j < N + 2m+ 1
}⋃{

Fii′

∣∣∣ |vi| = 1̄ , 1 ≤ i ≤ N
2 +m

}
(2.8)

form a basis of osp(V ). In what follows, we shall also need the explicit commutation relations:

[Fij , Fkℓ] = δkjFiℓ − δℓi(−1)(i+j)(k+ℓ) Fkj − δki′(−1)i·j+iθiθj Fj′ℓ + δℓj′(−1)i·k+ℓ·kθi′θj′ Fki′ . (2.9)

The Lie superalgebra osp(V ) is Z2-graded: osp(V ) = osp(V )0̄ ⊕ osp(V )1̄. We choose the Cartan
subalgebra h of osp(V ) (which by definition is just a Cartan subalgebra of osp(V )0̄) to consist of
all diagonal matrices. Thus, h has a basis {Fii}r

i=1 with r = ⌊N/2⌋ +m. Let {e∗
i }r

i=1 denote the
dual basis of h∗. We consider the root space decomposition osp(V ) = h ⊕

⊕
α∈∆ osp(V )α, where

∆ ⊂ h∗ is the root system. We further have a decomposition ∆ = ∆0 ∪ ∆1 into even and odd roots.

2.3. Dynkin diagrams with labels via parity sequences.
In this subsection, we explain how various Dynkin diagrams (with labels) of the orthosymplectic

Lie superalgebras osp(V ) can be easily read off the corresponding parity sequence
ΥV := (|v1|, . . . , |vr|) =

(
1, . . . , r

)
∈
{
0̄, 1̄
}r where r = ⌊N/2⌋ +m. (2.10)

Following [Z, §2.1] (cf. [FSS, §2.2]), let us first recall the construction of the Cartan matrices
and Dynkin diagrams for the orthosymplectic Lie superalgebras osp(V ). To this end, we consider
the non-degenerate invariant bilinear form (·, ·) : osp(V ) × osp(V ) → C defined via

(X,Y ) = 1
2sTr(XY ) ,

that is the supertrace form associated with the natural action osp(V ) ↷ V . Its restriction to the
Cartan subalgebra h of osp(V ) is non-degenerate, thus giving rise to an identification h ≃ h∗ and
inducing a bilinear form (·, ·) : h∗ × h∗ → C. Explicitly, we have (for 1 ≤ i, j ≤ r):

(e∗
i , e

∗
j ) = δij(−1)i = δij ·

{
1 if vi ∈ V0̄
−1 if vi ∈ V1̄

. (2.11)

Remark 2.12. We note that [FSS] used {ϵk}⌊N/2⌋
k=1 ∪ {δi}m

i=1 with (ϵk, ϵl) = ∓δkl and (δi, δj) = ±δij .
Our uniform choice of {e∗

i }⌊N/2⌋+m
i=1 with the pairing (2.11) is better suited for the discussions below.

A root β ∈ ∆ is called isotropic if (β, β) = 0 (in particular, β ∈ ∆1). In what follows, we need
l2min := min

{
|(β, β)|

∣∣β ∈ ∆−not isotropic
}
. (2.13)

Let Π = {α1, . . . , αr} be the set of simple roots of ∆, relative to a Borel subalgebra of osp(V )
(that is, the maximal solvable subalgebra of osp(V ) containing a Borel subalgebra of osp(V )0̄).
Define the symmetrized Cartan matrix of osp(V ) associated with the choice Π of simple roots via

B = (bij)r
i,j=1 with bij = (αi, αj) . (2.14)

We also define the diagonal matrix D = diag(d1, . . . , dr) via (cf. (2.13))

di =
{ (αi,αi)

2 if (αi, αi) ̸= 0
l2min/2κ if (αi, αi) = 0

, where κ =
{

0 if N is odd
1 if N is even

. (2.15)
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Finally, we define the Cartan matrix of osp(V ) associated with the choice Π of simple roots via
A = D−1B = (aij)r

i,j=1 . (2.16)

Let us now recall a construction of the Dynkin diagram of osp(V ) from the Cartan matrix A. It

is a graph with r vertices, colored in one of the three colors: vertex i is colored white if αi is

an even root, grey if αi is an odd isotropic root, black if αi is an odd not isotropic root.
We join i-th and j-th vertices with nij lines, where:

nij =
{

max{|aij |, |aji|} if aii + ajj ≥ 2
|aij | if aii = ajj = 0

. (2.17)

Finally, if the i-th vertex is not grey and is connected by more than one edge to the j-th vertex,
then we orient them from i-th towards j-th if aij = −1, and from j-th towards i-th if aij < −1.

In the discussions below, we follow the notations of [FSS]:
– use a small black dot in a Dynkin diagram to represent a white or grey vertex
– use an integer K to denote the number of grey vertices among those small black dots.

The corresponding Lie superalgebras form four classical series, which we now treat case-by-case.
• N = 2n with n > 1 (which corresponds to the so-called D(n,m)-series).

In this case, the root system is (cf. [FSS, (2.9)]):

∆ =
{

± e∗
i ± e∗

j

∣∣∣ 1 ≤ i < j ≤ n+m
}⋃{

± 2e∗
i

∣∣∣ vi ∈ V1̄ , 1 ≤ i ≤ n+m
}
.

The latter follows from the explicit description of the basis (2.8), in particular, 2e∗
i correspond to

nonzero Fii′ . The choice of simple roots crucially depends on the Z2-parity of the vector vn+m:
(1) If vn+m ∈ V0̄, then the simple positive roots are the same as in the Dn+m-type:
α1 = e∗

1 − e∗
2 , α2 = e∗

2 − e∗
3 , . . . , αn+m−1 = e∗

n+m−1 − e∗
n+m , αn+m = e∗

n+m−1 + e∗
n+m ;

(2) If vn+m ∈ V1̄, then the simple positive roots are as follows:
α1 = e∗

1 − e∗
2 , α2 = e∗

2 − e∗
3 , . . . , αn+m−1 = e∗

n+m−1 − e∗
n+m , αn+m = 2e∗

n+m ,

since we have e∗
n+m−1 + e∗

n+m = (e∗
n+m−1 − e∗

n+m) + 2e∗
n+m.

Likewise, the highest root θ depends on the Z2-parity of the vector v1:
(A) If v1 ∈ V0̄, then θ = e∗

1 + e∗
2 as in the Dn+m-type;

(B) If v1 ∈ V1̄, then θ = 2e∗
1.

Let us now use the above to read off the Dynkin diagrams of [FSS] together with their labels
{ai}n+m

i=1 , the latter defined as the coefficients of the highest root in the basis of simple roots

θ =
n+m∑
i=1

aiαi .

Case 1: ΥV = (1̄, ∗, . . . , ∗, 1̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

22 2 1

1

Indeed, we have (αn+m−1, αn+m−1) = (αn+m, αn+m) = 0 and (αn+m−1, αn+m) = −2 ̸= 0. The
number K of grey dots among is even since it equals the number of 1 ≤ i ≤ n+m− 2 such
that i ̸= i+ 1 and 1 = n+m− 1. Finally, the labels on the diagram are read off the equality:

2e∗
1 = 2(e∗

1 − e∗
2) + · · · + 2(e∗

n+m−2 − e∗
n+m−1) + (e∗

n+m−1 − e∗
n+m) + (e∗

n+m−1 + e∗
n+m) .

Case 2: ΥV = (0̄, ∗, . . . , ∗, 1̄, 0̄) with each ∗ being either 0̄ or 1̄.
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In this case, we get the following diagram with labels from [FSS, Table 2]:

21 2 1

1

This is analogous to the Case 1, except that now K is odd and the labels on the diagram are
rather read off the following equality:
e∗

1 +e∗
2 = (e∗

1 −e∗
2)+2(e∗

2 −e∗
3)+ · · ·+2(e∗

n+m−2 −e∗
n+m−1)+(e∗

n+m−1 −e∗
n+m)+(e∗

n+m−1 +e∗
n+m) .

Case 3: ΥV = (0̄, ∗, . . . , ∗, 0̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

21 2 1

1

Indeed, we have (αn+m−1, αn+m−1) = (αn+m, αn+m) = 2, (αn+m−1, αn+m) = 0. The number K of
grey dots among is even since it equals the number of 1 ≤ i ≤ n+m− 2 such that i ̸= i+ 1
and 1 = n+m− 1. The labels on the diagram are read off the same equality as in Case 2:
e∗

1 +e∗
2 = (e∗

1 −e∗
2)+2(e∗

2 −e∗
3)+ · · ·+2(e∗

n+m−2 −e∗
n+m−1)+(e∗

n+m−1 −e∗
n+m)+(e∗

n+m−1 +e∗
n+m) .

Case 4: ΥV = (1̄, ∗, . . . , ∗, 0̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

22 2 1

1

This is analogous to the Case 3, except that now K is odd and the labels on the diagram are
rather read off the same equality as in Case 1:
2e∗

1 = 2(e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−2 − e∗

n+m−1) + (e∗
n+m−1 − e∗

n+m) + (e∗
n+m−1 + e∗

n+m) .

Case 5: ΥV = (1̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

22 2 1

Indeed, we have αn+m = 2e∗
n+m so that (αn+m, αn+m) = −4 and (αn+m−1, αn+m) = 2. The

number K of grey dots among is even since it equals the number of 1 ≤ i ≤ n+m− 1 such
that i ̸= i+ 1 and 1 = n+m. The labels on the diagram are read off the following equality:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + (2e∗

n+m) .

Case 6: ΥV = (0̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

21 2 1

This is analogous to the Case 5, except that now K is odd and the labels on the diagram are
rather read off the following equality:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + (2e∗
n+m) .
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• N = 2 (which corresponds to the so-called C(m+ 1)-series.1)
The descriptions of simple roots {αi}m+1

i=1 and the highest root θ are the same as for even N > 2.
The corresponding parity sequence ΥV consists of a single 0̄ and m 1̄’s, hence, the following cases:

1) For ΥV = (0̄, 1̄, . . . , 1̄), one clearly obtains the (labelled) Dynkin diagram of [FSS, p. 463]:2

21 2 1

2) For ΥV = (1̄, . . . , 1̄, 0̄, 1̄, . . . , 1̄), one obtains the following (labelled) Dynkin diagram with
two consecutive black dots being gray and the rest being white:

22 2 1

3) For ΥV = (1̄, . . . , 1̄, 0̄), one obtains the following (labelled) Dynkin diagram:

22 2 1

1

• N = 2n+ 1 with n ≥ 1 (which corresponds to the so-called B(n,m)-series).
In this case, the root system is (cf. [FSS, (2.7)]):

∆ =
{

±e∗
i ±e∗

j

∣∣∣ 1 ≤ i < j ≤ n+m
}⋃{

±e∗
i

∣∣∣ 1 ≤ i ≤ n+m
}⋃{

±2e∗
i

∣∣∣ vi ∈ V1̄ , 1 ≤ i ≤ n+m
}
.

The latter follows from the explicit description of the basis (2.8). In contrast to the case of even
N , the simple roots are uniformly given by:

α1 = e∗
1 − e∗

2 , α2 = e∗
2 − e∗

3 , . . . , αn+m−1 = e∗
n+m−1 − e∗

n+m , αn+m = e∗
n+m .

Similarly to the case of even N , the highest root θ depends on the parity of v1:

θ =
{
e∗

1 + e∗
2 if v1 ∈ V0̄

2e∗
1 if v1 ∈ V1̄

.

We shall now match the (labelled) Dynkin diagrams of [FSS, Table 2] with the parity sequences.
Case 1: ΥV = (0̄, ∗, . . . , ∗, 0̄) with each ∗ being either 0̄ or 1̄.

In this case, we get the following diagram with labels from [FSS, Table 2]:

21 2 2

The number K of grey dots among is even since it equals the number of 1 ≤ i ≤ n+m− 1 such
that i ̸= i+ 1 and 1 = n+m, while the labels on the diagram are read off the following equality:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + 2(e∗
n+m) .

Case 2: ΥV = (1̄, ∗, . . . , ∗, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

22 2 2

The number K of grey dots among is odd since it equals the number of 1 ≤ i ≤ n+m− 1 such
that i ̸= i+ 1 and 1 ̸= n+m, while the labels on the diagram are read off the following equality:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + 2(e∗

n+m) .

1We warn the reader not to confuse this with the symplectic Cm+1-series, corresponding to osp(0|2m + 2).
2We note that this choice actually differs from the standard choice made in [Mo] for even N > 2, cf. (2.19).
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Case 3: ΥV = (1̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

22 2 2

The number K of grey dots among is even since it equals the number of 1 ≤ i ≤ n+m − 1
such that i ̸= i+ 1 and 1 = n+m, while the labels are read off the same equality as in Case 2:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + 2(e∗

n+m) .

Case 4: ΥV = (0̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [FSS, Table 2]:

21 2 2

The number K of grey dots among is odd since it equals the number of 1 ≤ i ≤ n + m − 1
such that i ̸= i+ 1 and 1 ̸= n+m, while the labels are read off the same equality as in Case 1:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + 2(e∗
n+m) .

• N = 1 (which corresponds to the so-called B(0,m)-series).
In this case, there is only one parity sequence ΥV = (1̄ , . . . , 1̄), that is, |v1| = . . . = |vm| = 1̄.

The corresponding root system is (cf. [FSS, (2.8)]):

∆ =
{

± e∗
i ± e∗

j

∣∣∣ 1 ≤ i < j ≤ m
}⋃{

± e∗
i

∣∣∣ 1 ≤ i ≤ m
}⋃{

± 2e∗
i

∣∣∣ 1 ≤ i ≤ m
}
,

with simple roots given by

α1 = e∗
1 − e∗

2 , α2 = e∗
2 − e∗

3 , . . . , αm−1 = e∗
m−1 − e∗

m , αm = e∗
m ,

and the highest root
θ = 2e∗

1 .

This obviously corresponds to the (labelled) Dynkin diagram of [FSS, p. 463]:

22 2 2

Remark 2.18. We note the following uniform formula for the first label: a1 =
{

1 if |v1| = 0̄
2 if |v1| = 1̄

.

The parity sequence (2.10) is called standard if

ΥV = (1̄, . . . , 1̄, 0̄, . . . , 0̄) . (2.19)

2.4. Chevalley-Serre type presentation.
We conclude this section with the Chevalley-Serre type presentation of the orthosymplectic Lie

superalgebras. This result is a partial case of such a presentation for all simple contragredient Lie
superalgebras, established in [Z, Main Theorem]. Let A = (aij)i,j be the Cartan matrix of (2.16).

Theorem 2.20. [Z] The Lie superalgebra osp(V ) is generated by {ei, fi, hi}r
i=1, with the Z2-grading

|ei| = |fi| =
{

0̄ if αi ∈ ∆0

1̄ if αi ∈ ∆1
, |hi| = 0̄ , (2.21)

subject to the quadratic Chevalley relations
[hi, hj ] = 0 ,
[hi, ej ] = aijej , [hi, fj ] = −aijfj ,

[ei, fj ] = δijhi ,

(2.22)
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the standard Serre relations
(adei)1−aij (ej) = 0 = (adfi

)1−aij (fj) for i ̸= j , with aii ̸= 0 or aij = 0 ,
[ei, ei] = 0 = [fi, fi] if aii = 0 ,

(2.23)

and the higher order Serre relations (2.26, 2.30, 2.32, 2.34) that are described in details below.

We shall now specify the aforementioned higher order Serre relations of degrees 4, 3, 6, or 7.
• For the sub-diagram

j t k with (αj , αt) · (αt, αk) < 0 (2.24)
or one of the following sub-diagrams

j t k or j t k (2.25)
the associated higher order Serre relations are:[

[ej , et], [et, ek]
]

= 0 ,[
[fj , ft], [ft, fk]

]
= 0 .

(2.26)

Remark 2.27. (a) We note that the relations
[
et,
[
ej , [et, ek]

]]
= 0 and

[
ft,
[
fj , [ft, fk]

]]
= 0

of [Z, §3.2.1(1,2,3)] are equivalent to (2.26), due to the relations [et, et] = 0 and [ft, ft] = 0.
(b) The above relations (2.26) also hold for the analogues of (2.24, 2.25) with the white t-th vertex.

In our setup, sub-diagrams (2.25) occur only if N = 2n + 1, n + m ≥ 3, n+m ̸= n+m− 1
(and k = n + m, t = n + m − 1, j = n + m − 2). Likewise, sub-diagrams (2.24) occur either if
t < ⌊N/2⌋ + m − 1 and t ̸= t+ 1 (with j = t − 1, k = t + 1) or N = 2n, j = n + m − 3, t =
n+m− 2, k = n+m and ΥV = (∗, . . . , ∗, 1̄, 0̄, 0̄) where each ∗ is either 0̄ or 1̄.

Remark 2.28. As noted in [Z, §2.2], the condition (αj , αt)·(αt, αk) < 0 in sub-diagrams (2.24) cannot
be ignored. In our setup, that excludes the corresponding sub-diagrams for N = 2n, n+m ≥ 3,
t = n+m− 2, j = n+m− 1, k = n+m, and ΥV = (∗, . . . , ∗, 1̄, 0̄, 0̄) where each ∗ is either 0̄ or 1̄.

• For the sub-diagram

i s

t

(2.29)
the associated higher order Serre relations are:[

et, [es, ei]
]

−
[
es, [et, ei]

]
= 0 ,[

ft, [fs, fi]
]

−
[
fs, [ft, fi]

]
= 0 ,

(2.30)

cf. [Z, §3.2.1(6)]. In our setup, that occurs only if N = 2n, n+m ≥ 3, and the parity sequence is
ΥV = (∗, . . . , ∗, 1̄, 0̄) where each ∗ is either 0̄ or 1̄ (and i = n+m− 2, t = n+m− 1, s = n+m).
• For the sub-diagram

j t k (2.31)
the associated higher order Serre relations are:[

[ej , et],
[
[ej , et], [et, ek]

]]
= 0 ,[

[fj , ft],
[
[fj , ft], [ft, fk]

]]
= 0 ,

(2.32)
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cf. [Z, §3.2.1(4)]. In our setup, that occurs only if N = 2n, n+m ≥ 3, and the parity sequence is
ΥV = (∗, . . . , ∗, 1̄, 0̄, 1̄) where each ∗ is either 0̄ or 1̄ (and j = n+m− 2, t = n+m− 1, k = n+m).
• For the sub-diagram

ji t k (2.33)
the associated higher order Serre relations are:[[

ei, [ej , et]
]
,
[
[ej , et], [et, ek]

]]
= 0 ,[[

fi, [fj , ft]
]
,
[
[fj , ft], [ft, fk]

]]
= 0 ,

(2.34)

cf. [Z, §3.2.1(5)]. In our setup, that occurs only if N = 2n, n+m ≥ 4, and ΥV = (∗, . . . , ∗, 0̄, 0̄, 1̄)
where each ∗ is either 0̄ or 1̄ (and i = n+m− 3, j = n+m− 2, t = n+m− 1, k = n+m).

Remark 2.35. (a) For odd N or even N but with the parity sequences ΥV ending in 0̄0̄ or 1̄1̄,
there may be only degree 4 higher order Serre relations.
(b) For even N ≥ 6 − 2m and parity sequences ΥV ending in 1̄0̄, we get new degree 3 Serre
relations.
(c) For even N ≥ 8 − 2m and parity sequences ΥV ending in 0̄1̄, we get new degree 6 or 7 Serre
relations.

Remark 2.36. (a) The degree 6 Serre relations (2.32) as well as the degree 7 Serre relations (2.34)
always hold in osp(V ) with N = 2n for any parity sequence ΥV .
(b) The degree 3 Serre relations (2.30) hold in osp(V ) with N = 2n iff vn+m is even (we note that
for odd vn+m the corresponding Dynkin diagram does not have the s ↔ t Z2-symmetry either).

3. RTT orthosymplectic Yangians

In this section, we recall the definition of the RTT (extended) Yangians of osp(V ) and their
basic properties. We establish the key rank-reduction result in Theorem 3.47, prove Lemma 3.55,
and explain the relevance of the defining relations for super A-type Yangians to the present setup.

3.1. RTT extended orthosymplectic super Yangian.
Let P : V ⊗ V → V ⊗ V be the permutation operator defined by

P =
N+2m∑
i,j=1

(−1)j eij ⊗ eji , (3.1)

whose action is explicitly given by:

P (vj ⊗ vi) = (−1)i·j vi ⊗ vj .

Evoking the definition (2.4), we also consider the operator Q : V ⊗ V → V ⊗ V defined by

Q =
N+2m∑
i,j=1

(−1)i·jθiθj eij ⊗ ei′j′ , (3.2)

whose action is explicitly given by:

Q(vı ⊗ vȷ) =


0 if ȷ ̸= ı′∑N+2m

i=1 θi vi ⊗ vi′ if ȷ = ı′ , ı > ⌈N
2 ⌉ +m

(−1)ı∑N+2m
i=1 θi vi ⊗ vi′ if ȷ = ı′ , ı ≤ ⌈N

2 ⌉ +m

.

We also introduce a constant κ via:
κ = N

2 −m− 1 . (3.3)
Consider the rational R-matrix (a super-version of the one considered in [ZZ]):

R(u) = I − P

u
+ Q

u− κ
∈ EndV ⊗ EndV . (3.4)
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According to [AACFR]3, it satisfies the famous Yang-Baxter equation with a spectral parameter:
R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) . (3.5)

Following [AACFR, §III], we define the RTT extended Yangian of osp(V ), denoted by Xrtt(osp(V )),
to be the associative C-superalgebra generated by {t(r)

ij }r≥1
1≤i,j≤N+2m with the Z2-grading |t(r)

ij | = i+j
and subject to the following defining relation (commonly called the RTT-relation, see (1.1)):

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) , (3.6)
viewed as an equality in EndV ⊗ EndV ⊗ Xrtt(osp(V )). Here, T (u) is the series in u−1 with
coefficients in the algebra EndV ⊗Xrtt(osp(V )), defined by:

T (u) =
N+2m∑
i,j=1

(−1)i·j+j eij ⊗ tij(u) with tij(u) := δij +
∑
r≥1

t
(r)
ij u

−r . (3.7)

Therefore, T1(u) =
∑N+2m

i,j=1 (−1)i·j+j eij ⊗ 1 ⊗ tij(u) and T2(v) =
∑N+2m

i,j=1 (−1)i·j+j 1 ⊗ eij ⊗ tij(v).

Remark 3.8. We identify the operator
∑N+2m

i,j=1 (−1)i·j+j eij ⊗ tij(u) with the matrix (tij(u))N+2m
i,j=1 .

Evoking the multiplication (2.6) for the graded tensor products, we see that the extra sign (−1)i·j+j

ensures that the product of matrices is calculated in the usual way.
Comparing the matrix coefficients ⟨vi ⊗vk| · · · |vj ⊗vℓ⟩ of both sides of the defining relation (3.6),

it is straightforward to see that the latter is equivalent to the following system of relations:

[tij(u), tkℓ(v)] = (−1)i·j+i·k+j·k

u− v

(
tkj(u)tiℓ(v) − tkj(v)tiℓ(u)

)
− 1
u− v − κ

×δki′

N+2m∑
p=1

(−1)i+i·j+j·pθiθp tpj(u)tp′ℓ(v) − δℓj′

N+2m∑
p=1

(−1)i·k+j·k+i·pθj′θp′ tkp′(v)tip(u)

 (3.9)

for all 1 ≤ i, j, k, ℓ ≤ N + 2m. Here, we only use (2.2), (2.6), and the property θi′ = (−1)iθi ∀ i ∈ I.
Remark 3.10. As follows from the direct verification using (3.9), the assignment (cf. [Mo, (2.9)])

τ : tij(u) 7→ (−1)i·j+j tji(u) ∀ 1 ≤ i, j ≤ N + 2m (3.11)
gives rise to an anti-automorphism τ of the superalgebra Xrtt(osp(V )), that is, we have:

τ(xy) = (−1)|x|·|y|τ(y)τ(x) for any homogeneous x, y ∈ Xrtt(osp(V )) .
In the particular case of the standard parity sequence (2.19), corresponding to the case

v1, . . . , vm ∈ V1̄, we recover the RTT extended Yangian Xrtt(osp(N |2m)). The latter was in-
troduced in [AACFR] and revised more recently in [Mo]; in particular, the relation (3.9) recov-
ers [AACFR, (3.3)], cf. [Mo, (2.8)]. Meanwhile, for a general parity sequence we actually get
isomorphic superalgebras, due to the following simple result:
Lemma 3.12. The superalgebra Xrtt(osp(V )) depends only on dim(V0̄),dim(V1̄), up to an iso-
morphism. Thus, Xrtt(osp(V )) is isomorphic to the RTT extended Yangian Xrtt(osp(N |2m)).
Proof. Let U be another superspace with a C-basis u1, . . . , uN+2m such that each ui is even or
odd, |ui| = |ui′ |, and dim(V0̄) = dim(U0̄),dim(V1̄) = dim(U1̄). Pick a permutation σ ∈ S(⌊N

2 ⌋ +m)
such that vi ∈ V and uσ(i) ∈ U have the same parity for all 1 ≤ i ≤ ⌊N

2 ⌋ +m4. We then extend σ
to a permutation σ ∈ S(N + 2m) by

σ(i′) = σ(i)′ ∀ 1 ≤ i ≤ ⌊N
2 ⌋ +m, σ(N+1

2 +m) = N+1
2 +m for odd N . (3.13)

Then, the assignment
t
(r)
ij 7→ t

(r)
σ(i),σ(j) ∀ i, j ∈ I , r ≥ 1 (3.14)

is compatible with (3.9), thus giving rise to an isomorphism Xrtt(osp(V )) ∼−→ Xrtt(osp(U)). □
3While [AACFR, Theorem 2.5] established (3.5) only for the standard parity sequence (2.19), the general case

follows immediately by using the S(⌊ N
2 ⌋ + m)-symmetry as in our proof of Lemma 3.12 below.

4We abstain from using r instead of ⌊ N
2 ⌋ + m in this section, since we now have a similar looking index r ≥ 1.
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3.2. RTT orthosymplectic super Yangian.
Consider the matrix supertransposition t defined by (At)ij = (−1)i·j+jθiθj (A)j′i′ . In particular:

T t(u)ij = (−1)i·j+jθiθj tj′i′(u) . (3.15)

As shown in [AACFR]5, the product T (u− κ)T t(u) is a scalar matrix:

T (u− κ)T t(u) = cV (u) · Id , (3.16)

where cV (u) = 1 +
∑

r≥1 cru
−r with all cr belonging to the center ZXrtt(osp(V )) of Xrtt(osp(V ))

and, in fact, freely generating ZXrtt(osp(V )), which can be shown as in [AMR] for non-super case.
For any formal power series f(u) ∈ 1 + u−1C[[u−1]], the assignment

µf : T (u) 7→ f(u)T (u) (3.17)

gives rise to a superalgebra automorphism µf of Xrtt(osp(V )). Following [AACFR,Mo] for the
standard parity and [JLM] for non-super case, we define the RTT Yangian of osp(V ), denoted by
Y rtt(osp(V )), as the following C-subalgebra of Xrtt(osp(V )):

Y rtt(osp(V )) :=
{
y ∈ Xrtt(osp(V ))

∣∣∣µf (y) = y ∀ f(u) ∈ 1 + u−1C[[u−1]]
}
. (3.18)

Similarly to [Mo, (2.7)] for the standard parity (2.19), cf. [AMR] for non-super case, we have the
tensor product decomposition

Xrtt(osp(V )) ≃ ZXrtt(osp(V )) ⊗ Y rtt(osp(V )) . (3.19)

Thus, the RTT Yangian Y rtt(osp(V )) can be also realized as a quotient of Xrtt(osp(V )):

Y rtt(osp(V )) ≃ Xrtt(osp(V ))/(cV (u) − g(u)) ∀ g(u) ∈ 1 + u−1C[[u−1]] . (3.20)

Remark 3.21. There is a unique series zV (u) = 1 +
∑

r≥1 zru
−r with zr ∈ C[c1, c2, . . .] satisfying

zV (u− κ)zV (u) = cV (u) . (3.22)

According to (3.16), the automorphisms µf of (3.17), with f(u) ∈ 1 + u−1C[[u−1]], map cV (u) to
f(u)f(u− κ)cV (u), hence, µf (zV (u)) = f(u)zV (u). Therefore, the series {τij(u)}i,j∈I defined by

δij +
∑
r≥1

τ
(r)
ij u−r = τij(u) := zV (u)−1tij(u) (3.23)

are µf -invariant, and so their coefficients {τ (r)
ij }r≥1

i,j∈I belong to Y rtt(osp(V )) of (3.18). The corre-
sponding matrix T (u) = (τij(u))N+2m

i,j=1 satisfies the RTT relation (3.6) and T (u− κ)T t(u) = Id.
This clarifies why (3.20) is usually stated for g(u) = 1, cf. [AMR, Corollary 3.2] for non-super case.

Evoking Lemma 3.12, we thus immediately obtain:

Corollary 3.24. The superalgebra Y rtt(osp(V )) depends only on dim(V0̄),dim(V1̄), up to an
isomorphism. In particular, Y rtt(osp(V )) is isomorphic to Y rtt(osp(N |2m)) of [AACFR,Mo].

Remark 3.25. For m = 0, the assignment T (u) 7→ T (u) gives rise to isomorphisms

Xrtt(osp(N |0)) ∼−→Xrtt(soN ) and Y rtt(osp(N |0)) ∼−→Y rtt(soN ) .

For N = 0, the assignment T (u) 7→ T (−u) gives rise to isomorphisms

Xrtt(osp(0|2m)) ∼−→Xrtt(sp2m) and Y rtt(osp(0|2m)) ≃ Y rtt(sp2m) .

Thus, the orthosymplectic setup generalizes classical BCD-types all at once.

5While [AACFR, Theorem 3.1] established this only for the standard parity sequence (2.19), the general case
follows immediately by utilizing the S(⌊ N

2 ⌋ + m)-symmetry as in our proof of Lemma 3.12 above.
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3.3. Relation to Lie superalgebras and PBW theorem.
For i, j ∈ I, define t̂(1)

ij := (−1)i t
(1)
ij . Their commutation relations

[t̂(1)
ij , t̂

(1)
kℓ ] = δkj t̂

(1)
iℓ − δℓi(−1)(i+j)(k+ℓ) t̂

(1)
kj − δki′(−1)i·j+iθiθj t̂

(1)
j′ℓ + δℓj′(−1)i·k+ℓ·kθi′θj′ t̂

(1)
ki′

follow immediately by evaluating the u−1v−1-coefficients in the defining relation (3.9). On the
other hand, comparing the (i, j) matrix coefficients of both sides of (3.16), we also obtain:

t̂
(1)
j′i′ = −(−1)i·j+iθiθj t̂

(1)
ij ∀ i ̸= j , t̂

(1)
i′i′ + t̂

(1)
ii = (−1)ic1 ,

where c1 is the coefficient of u−1 in cV (u) from (3.16). Thus, we get an algebra homomorphism

ι : U(osp(V ) ⊕ C · c) −→ Xrtt(osp(V )) given by c 7→ c1 , Fij 7→ t̂
(1)
ij − (−1)i

2 δijc1 . (3.26)

In fact, the homomorphism ι of (3.26) is a superalgebra embedding, due to the Poincaré-Birkhoff-
Witt (PBW) theorem for the RTT extended orthosymplectic Yangians that we recall next.

To this end, let us endow the RTT extended Yangian Xrtt(osp(V )) with a filtration defined via

deg t(r)
ij = r − 1 ∀ i, j ∈ I , r ≥ 1 . (3.27)

Let grXrtt(osp(V )) denote the associated graded algebra with respect to this filtration. For any
element x ∈ Xrtt(osp(V )), we use x̃ to denote its image in grXrtt(osp(V )). In particular, t̃(r)

ij and
c̃r will be the images of t(r)

ij and cr (the coefficient of u−r in cV (u) from (3.16)) in the (r − 1)-th
component of grXrtt(osp(V )). Due to (3.9), we have a superalgebra homomorphism

π : grXrtt(osp(V )) −→ U(osp(V )[z]) ⊗ C[c1, c2, . . . ]

given by t̃
(r)
ij 7→ (−1)i Fijz

r−1 + 1
2δijcr

(3.28)

with π(c̃r) = cr. The following result was stated first in [AACFR] and proved recently in [GK]:

Proposition 3.29. (a) The homomorphism π of (3.28) is actually an isomorphism, that is

grXrtt(osp(V )) ≃ U(osp(V )[z]) ⊗ C[c1, c2, . . . ] . (3.30)

(b) Endowing the subalgebra Y rtt(osp(V )) of Xrtt(osp(V )) with the induced filtration, we have

grY rtt(osp(V )) ∼−→ U(osp(V )[z]) via τ̃
(r)
ij 7→ (−1)i Fijz

r−1 . (3.31)

Remark 3.32. Considering Y rtt(osp(V )) rather as the filtered quotient Xrtt(osp(V ))/(c1, c2, . . . ),
see Remark 3.21, we can recast (3.31) in the following form (which does not involve τ -generators):

grY rtt(osp(V )) ∼−→ U(osp(V )[z]) via t̃
(r)
ij 7→ (−1)i Fijz

r−1 . (3.33)

As a direct corollary, one obtains the PBW theorem for the RTT orthosymplectic Yangians:

Corollary 3.34. The algebra Xrtt(osp(V )) (respectively Y rtt(osp(V ))) is generated by the elements
t
(r)
ij and cr (respectively elements τ (r)

ij ) with the conditions i+ j ≤ N + 2m+ |vi|, r ≥ 1. Moreover,
given any total order on the set of these generators, the ordered monomials, with the powers of odd
generators not exceeding 1, form a basis of the algebra Xrtt(osp(V )) (respectively Y rtt(osp(V ))).

3.4. Gauss decomposition and rank reduction.
To derive the Drinfeld realization of Xrtt(osp(V )) and subsequently of Y rtt(osp(V )), we consider

the Gauss decomposition of the generator matrix T (u) from (3.7):

T (u) = F (u) ·H(u) · E(u) . (3.35)
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Here, H(u), F (u), E(u) are the diagonal, lower-triangular, and upper-triangular matrices

H(u) = diag
(
h1(u), h2(u), . . . , h2′(u), h1′(u)

)
,

F (u) =



1 0 · · · 0

f21(u) 1 · · · 0
...

...
. . .

...

f1′1(u) f1′2(u) · · · 1


, E(u) =



1 e12(u) · · · e11′(u)

0 1 · · · e21′(u)
...

...
. . .

...

0 0 · · · 1


,

(3.36)

with hı(u), fji(u), eij(u) ∈ Xrtt(osp(V ))[[u−1]] for 1 ≤ ı ≤ N + 2m and 1 ≤ i < j ≤ N + 2m,
cf. Remark 3.8. Define the elements {h(r)

ı , e
(r)
ij , f

(r)
ji }r≥1

1≤ı,i,j≤N+2m,i<j of Xrtt(osp(V )) via

eij(u) =
∑
r≥1

e
(r)
ij u

−r , fji(u) =
∑
r≥1

f
(r)
ji u

−r , hı(u) = 1 +
∑
r≥1

h(r)
ı u−r .

Remark 3.37. Completely analogously to [Mo, Lemma 4.1], one proves by induction that

τ : eij(u) 7→ (−1)i·j+j fji(u) , fji(u) 7→ (−1)i·j+i eij(u) , hı(u) 7→ hı(u) (3.38)

for 1 ≤ i < j ≤ 1′, 1 ≤ ı ≤ 1′, where τ is the anti-automorphism of Xrtt(osp(V )) given by (3.11).

One of our main results is the Drinfeld realization of Xrtt(osp(V )), with the generators{
h(r)

ı , e
(r)
i , f

(r)
i

∣∣∣ 1 ≤ i ≤ ⌊N
2 ⌋ +m, 1 ≤ ı ≤ ⌊N

2 ⌋ +m+ 1, r ≥ 1
}

(3.39)

and an explicit collection of the defining relations, where:

e
(r)
i = e

(r)
i,i+1 , f

(r)
i = f

(r)
i+1,i for 1 ≤ i < ⌊N

2 ⌋ +m{
e

(r)
n+m = e

(r)
n+m−1,n+m+1 , f

(r)
n+m = f

(r)
n+m+1,n+m−1 if N = 2n , n+m = 0̄

e
(r)
n+m = e

(r)
n+m,n+m+1 , f

(r)
n+m = f

(r)
n+m+1,n+m if N = 2n+ 1 or N = 2n , n+m = 1̄

.

We shall use the corresponding generating series ei(u), fi(u) defined via

ei(u) =
∑
r≥1

e
(r)
i u−r , fi(u) =

∑
r≥1

f
(r)
i u−r ∀ 1 ≤ i ≤ ⌊N

2 ⌋ +m. (3.40)

The fact that the elements above generate Xrtt(osp(V )) is straightforward, see explicit formulas in
Subsections 4.1–4.3. The aforementioned relations will be read off from the super A-type of [P,T]
(recalled in Subsection 3.6) as well as rank ≤ 2 cases, carried out case-by-case in Subsections 5.1–5.2.
Finally, the proof that these relations are indeed defining will proceed in the standard way by
passing through the associated graded algebras, see the proof of Theorem 6.33.

Let us now introduce the key ingredient that will be used through the rest of this paper:

rank reduction embeddings ψV,s : Xrtt(osp(V [s])) ↪→ Xrtt(osp(V )) .

For 1 ≤ s ≤ ⌊N−1
2 ⌋ +m, let V [s] denote the following subspace of the superspace V :

V [s] = span
{
vi

∣∣ s < i < s′} . (3.41)

Let Xrtt(osp(V [s])) denote the corresponding RTT extended orthosymplectic Yangian, defined
via the RTT-relation using the corresponding R-matrix R[s](u), cf. (3.4). To define the latter, we
use the operators P [s], Q[s] ∈ EndV [s] ⊗ EndV [s] given by the formulas alike (3.1, 3.2) but with
the indices s < i, j < s′ in the summations, while the associated constant κ[s] is easily seen to be
related to κ of (3.3) via:

κ[s] = κ−
s∑

i=1
(−1)i . (3.42)
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We also consider the following (N + 2m− 2s) × (N + 2m− 2s) submatrices of (3.36):

H [s](u) =



hs+1(u) 0 · · · 0

0 hs+2(u) · · · 0
...

...
. . .

...

0 0 · · · h(s+1)′(u)


, (3.43)

F [s](u) =



1 0 · · · 0

fs+2,s+1(u) 1 · · · 0
...

...
. . .

...

f(s+1)′,s+1(u) f(s+1)′,s+2(u) · · · 1


, (3.44)

E[s](u) =



1 es+1,s+2(u) · · · es+1,(s+1)′(u)

0 1 · · · es+2,(s+1)′(u)
...

...
. . .

...

0 0 · · · 1


, (3.45)

and define
T [s](u) := F [s](u) ·H [s](u) · E[s](u) . (3.46)

Accordingly, the entries of the matrix T [s](u) will be denoted by t[s]
ij (u) with s < i, j < s′.

Generalizing [JLM, Theorem 3.1, Proposition 4.1] for non-super case (RTT extended orthogo-
nal/symplectic Yangians) and [Mo, Theorem 3.1, Proposition 4.2] for N ≥ 3 and the standard
parity sequence (2.19), we have the following powerful rank reduction:

Theorem 3.47. The assignment TV [s](u) 7→ T
[s]
V (u) gives rise to a superalgebra embedding

ψV,s : Xrtt(osp(V [s])) ↪→ Xrtt(osp(V )) , (3.48)

where we use indices V [s] and V solely to distinguish the corresponding generator T -matrices.

Remark 3.49. (a) First, we note that all ψV,s can be constructed as compositions of various ψV [?],1.
This is based on the following natural compatibility between the maps (3.48):

ψV,s ◦ ψV [s],t = ψV,s+t : Xrtt(osp(V [s+t])) −→ Xrtt(osp(V )) . (3.50)

(b) The proof of [Mo, Theorem 3.1] establishes Theorem 3.47 for odd v1 (we note that while the
author considers the standard parity (2.19), the proof of [Mo, Theorem 3.1] only uses |v1| = 1̄).

(c) As noted in [Mo], the proof for the RTT extended orthogonal/symplectic Yangians from [JLM]
cannot be fully extended to the present setup since the value R(1) is not always well-defined.

Proof of Theorem 3.47. As follows from Remark 3.49(a), it suffices to show that ψV,1 is a superalge-
bra embedding. The key is to show that it is a superalgebra homomorphism (to verify its injectivity,
it suffices to show that the associated graded grψV,1 : grXrtt(osp(V [1])) → grXrtt(osp(V )) is in-
jective, which follows from Proposition 3.29(a) as in [JLM, Proof of Theorem 3.1]).

To prove that TV [1](u) 7→ T
[1]
V (u) gives rise to a superalgebra homomorphism we consider two

cases depending on the first element of the parity sequence ΥV . If v1 is odd (i.e. ΥV starts with 1̄),
then the proof is already contained in [Mo], see Remark 3.49(b). The case of even v1 is treated
completely similarly, so we shall only identify the key changes in the respective formulas of [Mo]:

◦ The R(u) of [Mo] is now given by R(u) = 1 − P
u + Q

u−κ+1 , where P = P [1] and Q = Q[1].
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◦ The operators K±, Ǩ± ∈ EndV ⊗ EndV of [Mo] are now defined as follows:

K+ =
2′∑

i=2
θi ei1 ⊗ ei′1′ , Ǩ+ =

2′∑
i=2

θi e1i ⊗ e1′i′ , K− =
2′∑

i=2
θi ei1′ ⊗ ei′1 , Ǩ

− =
2′∑

i=2
θi e1′i ⊗ e1i′ .

Then, the operators K = K+ +K− and Ǩ = Ǩ+ + Ǩ− still satisfy [Mo, (3.7)–(3.8)].
◦ The formula after (3.8) in [Mo] shall now read as

KT1(u)T2(v) = − 1
u− v − κ+ 1 QT1(u)T2(v) + (u− v + 1)(u− v − κ)

(u− v)(u− v − κ+ 1) K
−T1(u)T2(v) +

u− v − κ

u− v − κ+ 1 K
+T2(v)T1(u)R(u− v) ,

while its companion will be

T2(v)T1(u)Ǩ = − 1
u− v − κ+ 1 T2(v)T1(u)Q+ (u− v + 1)(u− v − κ)

(u− v)(u− v − κ+ 1) T2(v)T1(u)Ǩ−+

u− v − κ

u− v − κ+ 1 R(u− v)T1(u)T2(v)Ǩ+ .

Plugging these formulas into [Mo, (3.8)] and rearranging terms, we get the same formula
as in the middle of p. 9 in [Mo], but with u− v − κ+ 1 used instead of u− v − κ− 1.

◦ Using the equalities I1I2K
± = K±, Ǩ±I1I2 = Ǩ±, I1I2P̃ = P = P̃ I1I2, as well as

K−T1(u)T2(v)J1J2T 2(v)−1T 1(u)−1I1I2 = 0 , I1I2T 1(u)−1T 2(v)−1J1J2T2(v)T1(u)Ǩ− = 0 ,

we see that the expression of [Mo, (3.9)] still equals that of [Mo, (3.10)], but with u−v−κ+1
in place of u− v − κ− 1.

◦ The expression of [Mo, (3.10)] can be written in the same way using [Mo, (3.12)] and its
companion. Thus, the expression from [Mo, (3.9)] equals −G1(u)G2(v)W G2(v)G1(u)

(u−v−κ)(u−v−κ+1) with W

as in [Mo], so that the only difference is in using u− v − κ+ 1 instead of u− v − κ− 1.
◦ Arguing as in [Mo], we get:

W = K+[t11(u), h1′(v)]Ǩ+ = K+[h1(u), h1′(v)]Ǩ+ = 0 .

Here, the last equality follows from the identity h1′(v) = cV (v + κ)h1(v + κ)−1 established
in (4.5) below and the commutativity [h1(u), h1(v)] = 0 which is a direct consequence of
the formula (3.9) applied to [t11(u), t11(v)] (alternatively, it can be derived from the super
A-type reduction of Subsection 3.6). Therefore, the expression of [Mo, (3.9)] vanishes.

This completes the proof for the case of even v1. □

Remark 3.51. We note that the main technical difference between the above formulas and those
of [Mo, Proof of Theorem 3.1] is that 1

u−v−κ−1 is replaced with 1
u−v−κ+1 everywhere. One can

unify these cases by using 1
u−v−κ[1] .

We shall often use the following consequence of Theorem 3.47, verified as its non-super counter-
part of [JLM, Corollary 3.10] (cf. [Mo, Corollary 3.3] for the standard parity sequence (2.19)):

Corollary 3.52. For any 1 ≤ a, b ≤ ℓ and ℓ < i, j < ℓ′, we have the following commutativity:

[tab(u), t[ℓ]
ij (v)] = 0 . (3.53)

In particular,
{
ha(u), eab(u), fba(u)

∣∣1 ≤ a, b ≤ ℓ
}

commute with
{
hı(v), eıȷ(v), fȷı(v)

∣∣ℓ < ı, ȷ < ℓ′
}
.

As the embeddings ψV,s of (3.48) commute with the automorphisms µf of (3.17), we obtain:

Corollary 3.54. The restriction of ψV,s to the subalgebra Y rtt(osp(V [s])) of Xrtt(osp(V [s])) defines
a superalgebra embedding ψV,s : Y rtt(osp(V [s])) ↪→ Y rtt(osp(V )).
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3.5. Useful lemma.
The following result generalizes [JLM, Lemma 4.3] for non-super case (cf. [Mo, Lemma 4.3],

where a different proof is provided for N ≥ 3 and the standard parity sequence (2.19)):

Lemma 3.55. For ℓ < i, j, k < ℓ′ with k ̸= j′, the following relations hold in Xrtt(osp(V )):

[eℓk(u), t[ℓ]
ij (v)] = (−1)ℓ·i+ℓ·k+i·k

u− v
t
[ℓ]
ik (v)

(
eℓj(v) − eℓj(u)

)
, (3.56)

[fkℓ(u), t[ℓ]
ji (v)] = (−1)ℓ·j+ℓ·k+j·k

u− v

(
fjℓ(u) − fjℓ(v)

)
t
[ℓ]
ki(v) . (3.57)

Warning: we use 1 to denote the parity |v1| ∈ {0̄, 1̄}, not to be confused with the generator 1̄ ∈ Z2.

Proof. It suffices to verify both relations for ℓ = 1, as the general case then follows immediately
from Theorem 3.47. Let us verify (3.56) for ℓ = 1 (the relation (3.57) follows by applying the
anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to (3.56) and using the formulas (3.38)).

First, we note that

t
[1]
ij (v) = tij(v) − fi1(v)h1(v)e1j(v) = tij(v) − ti1(v)t11(v)−1t1j(v) . (3.58)

Thus, the defining relation [t1k(u), tij(v)] = (−1)1·i+1·k+i·k

u−v

(
tik(u)t1j(v)−tik(v)t1j(u)

)
of (3.9), which

uses i ̸= 1′ and k ̸= j′, can be written in the following form:

[t1k(u), t[1]
ij (v)] + [t1k(u), fi1(v)h1(v)e1j(v)] = (−1)1·i+1·k+i·k

u− v

(
t
[1]
ik (u)t1j(v) − t

[1]
ik (v)t1j(u)

)
+

(−1)1·i+1·k+i·k

u− v

(
fi1(u)h1(u)e1k(u)t1j(v) − fi1(v)h1(v)e1k(v)t1j(u)

)
. (3.59)

Let us evaluate the second summand in the left-hand side of (3.59):

[t1k(u), fi1(v)h1(v)e1j(v)] = [t1k(u), ti1(v)]e1j(v) + (−1)(1+i)(1+k)ti1(v)[t1k(u), t11(v)−1t1j(v)] =

[t1k(u), ti1(v)]e1j(v) − (−1)(1+i)(1+k)
(
fi1(v)[t1k(u), t11(v)]e1j(v) − fi1(v)[t1k(u), t1j(v)]

)
=

(−1)1·i+1·k+i·k

u− v

(
tik(u)t11(v)e1j(v) − tik(v)t11(u)e1j(v)

)
−

(−1)1·i+1·k+i·k

u− v

(
fi1(v)t1k(u)t11(v)e1j(v) − fi1(v)t1k(v)t11(u)e1j(v)

)
+

(−1)1·i+1·k+i·k

u− v

(
fi1(v)t1k(u)t1j(v) − fi1(v)t1k(v)t1j(u)

)
= (−1)1·i+1·k+i·k

u− v
×(

tik(u)h1(v)e1j(v) − tik(v)h1(u)e1j(v) + fi1(v)h1(v)e1k(v)h1(u)
(
e1j(v) − e1j(u)

))
, (3.60)

where we used [t1k(u), t11(v)−1] = −t11(v)−1[t1k(u), t11(v)]t11(v)−1 in the second equality and
applied (3.9) three times in the third equality. Combining (3.59) and (3.60), we thus obtain:

[t1k(u), t[1]
ij (v)] = (−1)1·i+1·k+i·k

u− v

(
tik(v)h1(u)e1j(v)−fi1(v)h1(v)e1k(v)h1(u)e1j(v)−t[1]

ik (v)t1j(u)
)

= (−1)1·i+1·k+i·k

u− v
t
[1]
ik (v)h1(u)

(
e1j(v) − e1j(u)

)
. (3.61)

As t1k(u) = h1(u)e1k(u) and h1(u) commutes with both t
[1]
ij (v), t[1]

ik (v) by Corollary 3.52, we get:

[e1k(u), t[1]
ij (v)] = (−1)1·i+1·k+i·k

u− v
t
[1]
ik (v)

(
e1j(v) − e1j(u)

)
which is precisely (3.56) for ℓ = 1. □
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3.6. RTT Yangian in super A-type: revision.
Fix n,m ≥ 0 and consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vn+m such that

each vi is either even or odd and dim(V0̄) = n,dim(V1̄) = m. We define the corresponding parity
sequence ΥV := (|v1|, . . . , |vn+m|) ∈ {0̄, 1̄}n+m. Let P: V ⊗V → V ⊗V be the permutation operator
defined via P =

∑n+m
i,j=1(−1)j eij ⊗ eji, cf. (3.1). Consider the rational R-matrix:

R(u) = I − P
u

∈ End V ⊗ End V , (3.62)

which satisfies the Yang-Baxter equation with a spectral parameter, cf. (3.5):
R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) . (3.63)

The RTT Yangian of gl(V), denoted by Y rtt(gl(V)), is defined as the associative C-superalgebra
generated by {t(r)

ij }r≥1
1≤i,j≤n+m with the Z2-grading |t(r)

ij | = i+j and subject to the following defining
RTT-relation, cf. (1.1, 3.6):

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) , (3.64)
viewed as an equality in End V⊗End V⊗Y rtt(gl(V)). Here, T(u) is the series in u−1 with coefficients
in the algebra End V ⊗ Y rtt(gl(V )), defined by:

T(u) =
n+m∑
i,j=1

(−1)i·j+j eij ⊗ tij(u) with tij(u) := δij +
∑
r≥1

t(r)
ij u

−r . (3.65)

The relation (3.64) is equivalent to the following system of relations:

[tij(u), tkℓ(v)] = (−1)i·j+i·k+j·k

u− v

(
tkj(u)tiℓ(v) − tkj(v)tiℓ(u)

)
(3.66)

for all 1 ≤ i, j, k, ℓ ≤ n+m, cf. (3.9).
For any formal power series f(u) ∈ 1 + u−1C[[u−1]], the assignment

µf : T(u) 7→ f(u)T(u) (3.67)
gives rise to a superalgebra automorphism µf of Y rtt(gl(V)), cf. (3.17). The RTT Yangian of sl(V),
denoted by Y rtt(sl(V)), is defined as the following subalgebra of Y rtt(gl(V)):

Y rtt(sl(V)) :=
{
y ∈ Y rtt(gl(V))

∣∣∣µf (y) = y ∀ f(u) ∈ 1 + u−1C[[u−1]]
}
. (3.68)

Remark 3.69. In contrast to (3.19), we note that we have the tensor product decomposition
Y rtt(gl(V)) ≃ ZY rtt(gl(V)) ⊗ Y rtt(sl(V)) only for n ̸= m, while for n = m the center ZY rtt(gl(V))
of Y rtt(gl(V)) actually belongs to Y rtt(sl(V)), see [T, Theorem 2.48] (generalizing [G]).

For the parity sequence ΥV = (0̄, . . . , 0̄, 1̄, . . . , 1̄), reverse to (2.19), that is:
|v1| = . . . = |vn| = 0̄ and |vn+1| = . . . = |vn+m| = 1̄ ,

we recover the RTT Yangians Y rtt(gl(n|m)), Y rtt(sl(n|m)). By [T, Lemmas 2.24, Corollary 2.38], we
have Y rtt(gl(V)) ≃ Y rtt(gl(n|m)) and Y rtt(sl(V)) ≃ Y rtt(sl(n|m)), cf. Lemma 3.12, Corollary 3.24.

In what follows, we shall use the Drinfeld realization of Y rtt(gl(V)) established in [T] (cf. [P]),
generalizing [G]. To this end, we consider the Gauss decomposition of the matrix T(u) from (3.65):

T(u) = F(u) · H(u) · E(u) ,
where H(u),F(u),E(u) are the diagonal, lower-triangular, and upper-triangular matrices with
matrix coefficients hı(u), fji(u), eij(u), as in (3.36). The coefficients of the series ei(u) = ei,i+1(u),
fi(u) = fi+1,i(u), hı(u) with 1 ≤ i < n+m, 1 ≤ ı ≤ n+m generate Y rtt(gl(V)). Furthermore, one
can specify all the defining relations (thus recovering the Drinfeld realization of Y rtt(gl(V))):

Theorem 3.70. [T, Theorem 2.32] The algebra Y rtt(gl(V)) is isomorphic to the C-superalgebra
Y (gl(V)) generated by {e(r)

i , f(r)
i , h(r)

ı | 1 ≤ i < n + m, 1 ≤ ı ≤ n + m, r ≥ 1} with the Z2-grading
|e(r)

i | = |f(r)
i | = i+ i+ 1, |h(r)

ı | = 0̄, and subject to the following defining relations:
[hı(u), hȷ(v)] = 0 , (3.71)
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[hı(u), ej(v)] = (−1)ı(δı,j+1 − δıj)
hı(u)

(
ej(u) − ej(v)

)
u− v

, (3.72)

[hı(u), fj(v)] = (−1)ı(δıj − δı,j+1)
(
fj(u) − fj(v)

)
hı(u)

u− v
, (3.73)

[ei(u), fj(v)] = (−1)i+1δij
hi(u)−1hi+1(u) − hi(v)−1hi+1(v)

u− v
, (3.74)

{
[ei(u), ei(v)] = 0 if i ̸= i+ 1
[ei(u), ei(v)] = (−1)i (ei(u)−ei(v))2

u−v if i = i+ 1
, (3.75)

{
[fi(u), fi(v)] = 0 if i ̸= i+ 1
[fi(u), fi(v)] = −(−1)i (fi(u)−fi(v))2

u−v if i = i+ 1
, (3.76)

u[e◦
i (u), ej(v)] − v[ei(u), e◦

j (v)] = (−1)jδj,i+1ei(u)ej(v) for i < j , (3.77)

u[f◦
i (u), fj(v)] − v[fi(u), f◦

j (v)] = −(−1)jδj,i+1fj(v)fi(u) for i < j , (3.78)
degree 2 Serre relations[

ei(u), ej(v)] = 0 ,
[
fi(u), fj(v)] = 0 if i ̸= j, j ± 1 (3.79)

as well as degree 3 Serre relations{[
ei(u1), [ei(u2), ei±1(v)]

]
+
[
ei(u2), [ei(u1), ei±1(v)]

]
= 0[

fi(u1), [fi(u2), fi±1(v)]
]

+
[
fi(u2), [fi(u1), fi±1(v)]

]
= 0

if i = i+ 1 (3.80)

and degree 4 Serre relations{[
[ei−1(u), ei(v1)], [ei(v2), ei+1(w)]

]
+
[
[ei−1(u), ei(v2)], [ei(v1), ei+1(w)]

]
= 0[

[fi−1(u), fi(v1)], [fi(v2), fi+1(w)]
]

+
[
[fi−1(u), fi(v2)], [fi(v1), fi+1(w)]

]
= 0

if i ̸= i+ 1

(3.81)

where

ei(u) =
∑
r≥1

e(r)
i u−r , fi(u) =

∑
r≥1

f(r)
i u−r , hı(u) = 1 +

∑
r≥1

h(r)
ı u−r ,

e◦
i (u) =

∑
r≥2

e(r)
i u−r , f◦

i (u) =
∑
r≥2

f(r)
i u−r .

Let us record an important consequence of the relations (3.72, 3.73) that we shall often use:

Corollary 3.82. The following relations hold in Y rtt(gl(V)):

hi(u)ei(u) = ei
(
u− (−1)i)hi(u) , (3.83)

hi+1(u)ei(u) = ei
(
u+ (−1)i+1)hi+1(u) , (3.84)

fi(u)hi(u) = hi(u)fi
(
u− (−1)i) , (3.85)

fi(u)hi+1(u) = hi+1(u)fi
(
u+ (−1)i+1) (3.86)

for any 1 ≤ i ≤ n+m− 1.

Proof. Let us rewrite ı = j = i case of (3.72) in the following form:(
u− v − (−1)i

)
hi(u)ei(v) + (−1)i hi(u)ei(u) = (u− v)ei(v)hi(u) . (3.87)

Plugging v = u− (−1)i above, we obtain (3.83). The other three relations are proved similarly. □
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Let us finally explain the relevance of the above super A-type to the present orthosymplectic
setup. To this end, we fix V with N = 2n or N = 2n+ 1 and set V = span {vi}n+m

i=1 . In particular,
V and V have the same parity sequences: ΥV = ΥV. Then, the defining relations (3.9) for
1 ≤ i, j, k, ℓ ≤ n+m coincide with (3.66). Therefore, we have a superalgebra homomorphism

Y rtt(gl(V)) −→ Xrtt(osp(V )) given by tij(u) 7→ tij(u) ∀ 1 ≤ i, j ≤ n+m, (3.88)
which is injective due to the PBW theorems for Y rtt(gl(V)) and Xrtt(osp(V )), see Corollary 3.34.
Combining this with Theorem 3.70, we obtain:

Corollary 3.89. For N = 2n or N = 2n+1, the currents {ei(u), fi(u), hı(u)}ı≤n+m
i<n+m of (3.36, 3.40)

satisfy the relations from Theorem 3.70.

Likewise, the submatrix T ′(u) = (tij(u))i,j∈I′ of T (u) with I′ = {1, 2 . . . , n+m− 1, n+m+ 1}
also defines an embedding Y rtt(gl(V)) ↪→ Xrtt(osp(V )) via T(u) 7→ T ′(u). Moreover, if N = 2n
and |vn+m| = 0̄, then we have the following important equalities (which follow from (5.2)):

en+m,n+m+1(u) = 0 = fn+m+1,n+m(u) . (3.90)
Thus, in this case the Gauss decomposition of the submatrix T ′(u) is formed by the corresponding
submatrices of F (u), H(u), E(u) from (3.35). Combining this with Theorem 3.70, we obtain:

Corollary 3.91. The currents {ei+δi,n+m−1(u), fi+δi,n+m−1(u), hı+δı,n+m(u)}ı≤n+m
i<n+m satisfy the rela-

tions from Theorem 3.70, if N = 2n and |vn+m| = 0̄.

Due to the two corollaries above, it thus remains to determine the quadratic relations between
the currents {ei(u), fi(u), hı(u)} where at least one of the indices is i = n+m or ı = n+m+ 1, as
well as Serre relations. The latter is partially accomplished in Subsection 4.4 (the full treatment
being provided in Section 6, see Remark 6.56), while the former is essentially reduced to the rank
≤ 2 cases (due to Corollary 3.52) which are treated case-by-case in Subsections 5.1–5.2. But first of
all, we shall provide explicit formulas for all entries of E(u), F (u), H(u) and a factorized formula
for the central series cV (u) in Subsections 4.1–4.3.

4. Explicit Gauss decomposition and higher order relations

In this section, we recover explicit formulas for all entries of the matrices E(u), F (u), H(u)
in the Gauss decomposition (3.35) as well as a factorized formula for the central series cV (u)
of (3.16). We also establish the higher order relations generalizing those from Subsection 2.4.

4.1. Upper triangular matrix explicitly.
In this subsection, we derive explicit formulas for all entries of the matrix E(u) from (3.35, 3.36)

in terms of the generators e(r)
i . We consider three cases (N = 2n and |vn+m| = 0̄, N = 2n and

|vn+m| = 1̄, N = 2n+ 1), for which the formulas resemble those of [FT1] for the D-type, C-type,
and B-type, respectively.
• N = 2n and |vn+m| = 0̄.

This case generalizes (from m = 0 case) the Dn-type formulas of [FT1, Lemmas 2.79, 2.80]:

Lemma 4.1. The following relations hold in Xrtt(osp(V )):
(a) en+m,n+m+1(u) = 0.

(b) ei,j+1(u) = (−1)j [eij(u), e(1)
j,j+1] for i < j < i′ − 1 and j ̸= n+m.

(c) ei,n+m+1(u) = (−1)n+m−1 [ei,n+m−1(u), e(1)
n+m] for 1 ≤ i ≤ n+m− 2.

(d) e(i+1)′,i′(u) = −(−1)i+1+i·i+1 ei
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m− 1.

(e) e(i+1)′,j′(u) = −(−1)j·j+1 [e(i+1)′,(j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n+m− 1.

(f) eii′(u) = −(−1)i+1+i·i+1 ei(u)ei,(i+1)′(u) − (−1)i·i+1 [ei,(i+1)′(u), e(1)
i ] for 1 ≤ i ≤ n+m− 1.

(g) ei+1,i′(u) = (−1)i+1+i·i+1 ei(u)ei+1,(i+1)′(u) − (−1)i+1+i·i+1 ei,(i+1)′(u) −
(−1)i·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n+m− 2.
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(h) eij′(u) = −(−1)j·j+1 [ei,(j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i− 2 ≤ n+m− 2.

(i) en+m,n+m+2(u) = −en+m(u).

Proof. (a) follows from its validity for the n = 1,m = 0 case as established in (5.2) below and
Theorem 3.47.

(b) is similar to [FT1, Lemma 2.79(d,e)], cf. [JLM, Lemma 5.15]. Due to Theorem 3.47, it suffices
to establish it for i = 1 and 1 < j < 2′, j ̸= n+m. To this end, evaluating the v−1-coefficients in
the defining relation

[t1j(u), tj,j+1(v)] = (−1)j

u− v

(
tjj(u)t1,j+1(v) − tjj(v)t1,j+1(u)

)
, (4.2)

we obtain [t1j(u), t(1)
j,j+1] = (−1)j t1,j+1(u). As t1j(u) = h1(u)e1j(u), t1,j+1(u) = h1(u)e1,j+1(u),

h1(u) commutes with e(1)
j,j+1 by Corollary 3.52, and h1(u) is invertible, we get the desired relation:

e1,j+1(u) = (−1)j [e1j(u), e(1)
j,j+1] .

We note that e(1)
j,j+1 = e

(1)
j for j < n+m, and e

(1)
j,j+1 = −(−1)j+j·j+1 e

(1)
(j+1)′ for j > n+m by (d).

(c) is completely analogous to part (b), but we replace (4.2) rather with

[t1,n+m−1(u), tn+m−1,n+m+1(v)] =

(−1)n+m−1

u− v

(
tn+m−1,n+m−1(u)t1,n+m+1(v) − tn+m−1,n+m−1(v)t1,n+m+1(u)

)
. (4.3)

(d) is similar to [JLM, (5.18)]. Due to the equality κ[i−1] − (−1)i = κ−
∑i

k=1(−1)k, cf. (3.42),
and Theorem 3.47, it suffices to establish this relation for i = 1. To this end, we rewrite the
relation (3.16) in the form:

T t(u+ κ) = T (u)−1cV (u+ κ) . (4.4)
Here, we note that T (u)−1 = E(u)−1H(u)−1F (u)−1. In particular, comparing the (1′, 1′) matrix
coefficients of both sides of (4.4), we find:

h1(u+ κ) = h1′(u)−1cV (u+ κ) . (4.5)
Likewise, comparing the (2′, 1′) matrix coefficients of both sides of (4.4), we get:

(−1)1+1·2θ1′θ2′ t12(u+ κ) = −e2′1′(u)h1′(u)−1cV (u+ κ) . (4.6)

Evoking (4.5) and the equality (−1)1+1·2θ1′θ2′ = (−1)2+1·2, we can rewrite (4.6) as follows:

(−1)2+1·2 h1(u+ κ)e12(u+ κ) = −e2′1′(u)h1(u+ κ) . (4.7)

Applying h1(u + κ)e1(u + κ) = e1(u + κ − (−1)1)h1(u + κ), which follows from (3.83) and
Corollary 3.89, to the left-hand side of (4.7) and multiplying both sides by h1(u+ κ)−1 on the
right, we obtain the desired relation:

e2′1′(u) = −(−1)2+1·2 e1
(
u+ κ− (−1)1) .

(e) follows from yet another super A-type reduction, similar to that of [JLM, Proposition 5.6].
Namely, multiplying the bottom-right (n+m) × (n+m) submatrices of F (u), H(u), E(u) provides
an (n+m)× (n+m) matrix satisfying the RTT-relation (3.64) of A-type (with the parity sequence
(n+m,n+m− 1, . . . , 1) which is reverse to ΥV ). Therefore, part (e) now follows from part (b)
and the equality e(1)

(j+1)′,j′ = −(−1)j+1+j·j+1 e
(1)
j due to part (d).

(f) is similar to [FT1, Lemma 2.80(a)]. Due to Theorem 3.47, it suffices to establish this relation
for i = 1. Applying the reasoning of part (b) to j = 2′, we obtain [t12′(u), e(1)

2′1′ ] = (−1)2t11′(u).
According to part (d), we have e(1)

2′1′ = −(−1)1·2+2 e
(1)
12 . Thus, the above equality reads:

[h1(u)e12′(u), e(1)
1 ] = −(−1)1·2 h1(u)e11′(u) . (4.8)
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But evaluating the v−1-coefficients in the equality [h1(u), e1(v)] = −(−1)1h1(u) e1(u)−e1(v)
u−v , which

follows from (3.72) and Corollary 3.89, we obtain [h1(u), e(1)
1 ] = (−1)1h1(u)e1(u). Plugging this

into (4.8), and multiplying both sides by h1(u)−1 on the left, we get the desired relation:

e11′(u) = −(−1)2+1·2 e1(u)e12′(u) − (−1)1·2 [e12′(u), e(1)
1 ] . (4.9)

(g) is similar to [FT1, Lemma 2.80(b)]. Due to Theorem 3.47, it suffices to establish this relation
for i = 1. To this end, let us compare the v−1-coefficients in the defining relation

[t22′(u), t2′1′(v)] = (−1)2

u− v

(
t2′2′(u)t21′(v) − t2′2′(v)t21′(u)

)
−
∑N+2m

p=1 (−1)2·pθp tp2′(u)tp′1′(v)
u− v − κ

of (3.9), which together with the equality t(1)
2′1′ = e

(1)
2′1′ = −(−1)2+1·2e

(1)
12 due to part (d) implies:

[t22′(u), e(1)
12 ] = −(−1)1·2 t21′(u) − (−1)2 t12′(u) . (4.10)

Note that
t22′(u) = h2(u)e22′(u) + f21(u)h1(u)e12′(u) . (4.11)

Comparing the v−1-coefficients of both sides of the equality [h2(u), e1(v)] = (−1)2h2(u) e1(u)−e1(v)
u−v

from (3.72) and Corollary 3.89, we find [h2(u), e(1)
1 ] = −(−1)2h2(u)e1(u), so that

[h2(u)e22′(u), e(1)
1 ] = h2(u)

(
−(−1)2e1(u)e22′(u) + [e22′(u), e(1)

1 ]
)
. (4.12)

Comparing the v−1-coefficients of both sides of [t21(u), t12(v)] = (−1)1 t11(u)t22(v)−t11(v)t22(u)
u−v , we

get [f21(u)h1(u), e(1)
1 ] = −(−1)1(t11(u) − t22(u)), so that:

[f21(u)h1(u)e12′(u), e(1)
1 ] = −(−1)2

(
h1(u) − t22(u)

)
e12′(u) + t21(u)[e12′(u), e(1)

1 ] . (4.13)

Combining (4.9)–(4.13), we immediately obtain the desired equality:

e21′(u) = (−1)2+1·2e1(u)e22′(u) − (−1)2+1·2 e12′(u) − (−1)1·2 [e22′(u), e(1)
1 ] . (4.14)

(h) is similar to [FT1, Lemma 2.80(c)]. Due to Theorem 3.47, it suffices to establish it for j = 1.
We shall proceed by induction on i. Comparing the v−1-coefficients in the defining relation

[ti2′(u), t2′1′(v)] = (−1)2

u− v

(
t2′2′(u)ti1′(v) − t2′2′(v)ti1′(u)

)
(4.15)

and evoking the aforementioned equality t(1)
2′1′ = e

(1)
2′1′ = −(−1)2+1·2 e

(1)
1 , we obtain:

[ti2′(u), e(1)
1 ] = −(−1)1·2 ti1′(u) . (4.16)

Note that the series featuring in (4.16) are explicitly given by:

ti1′(u) = hi(u)ei1′(u) +
i−1∑
j=1

fij(u)hj(u)ej1′(u) ,

ti2′(u) = hi(u)ei2′(u) +
i−1∑
j=1

fij(u)hj(u)ej2′(u) .
(4.17)

Comparing the v−1-coefficients of both sides of [ti1(u), t12(v)] = (−1)1

u−v

(
t11(u)ti2(v) − t11(v)ti2(u)

)
,

we obtain [ti1(u), e(1)
1 ] = (−1)1 ti2(u) = (−1)1 fi2(u)h2(u) + (−1)1 fi1(u)h1(u)e1(u), so that:

[fi1(u)h1(u)e12′(u), e(1)
1 ] =

fi1(u)h1(u)
(
[e12′(u), e(1)

1 ] + (−1)2e1(u)e12′(u)
)

+ (−1)2 fi2(u)h2(u)e12′(u) . (4.18)

For j = 2, we have [fi2(u), e(1)
1 ] = 0 (which follows from [fi(u), e(1)

1 ] = 0 for 2 ≤ i ≤ n + m, see
Subsection 3.6) as well as [h2(u), e(1)

1 ] = −(−1)2 h2(u)e1(u) (see the proof of (4.12)), so that:

[fi2(u)h2(u)e22′(u), e(1)
1 ] = fi2(u)h2(u)

(
[e22′(u), e(1)

1 ] − (−1)2e1(u)e22′(u)
)
. (4.19)
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For 2 < j ≤ i− 1, we similarly have [fij(u), e(1)
1 ] = 0 = [hj(u), e(1)

1 ] by Corollary 3.52, so that:

[fij(u)hj(u)ej2′(u), e(1)
1 ] = fij(u)hj(u)[ej2′(u), e(1)

1 ] = −(−1)1·2 fij(u)hj(u)ej1′(u) , (4.20)
with the last equality due to the induction assumption.

Combining [hi(u)ei2′(u), e(1)
1 ] = hi(u)[ei2′(u), e(1)

1 ] with the formulas (4.9, 4.14, 4.16–4.20), we
immediately obtain the desired equality:

ei1′(u) = −(−1)1·2 [ei2′(u), e(1)
1 ] for 3 ≤ i ≤ n+m. (4.21)

(i) is similar to part (d). Due to Theorem 3.47, it suffices to establish this relation for n+m = 2.
Comparing the (3′, 1′) matrix coefficients of both sides of (4.4), we obtain:

(−1)1+1·3θ1′θ3′ t13(u+ κ) = (T (u)−1)24 · cV (u+ κ) . (4.22)
Note that (T (u)−1)24 = (E(u)−1)24h1′(u)−1 = −e24(u)h1′(u)−1, where we use e23(u) = 0 due to
part (a). Evoking (4.5), we can thus bring (4.22) to the following form:

h1(u+ κ)e13(u+ κ) = −e24(u)h1(u+ κ) . (4.23)

Multiplying both sides of the defining relation [t11(u), t13(v)] = (−1)1

u−v (t11(u)t13(v) − t11(v)t13(u))
by (u− v)h1(v)−1 on the left and plugging v = u− (−1)1, one gets (cf. (3.83)):

h1(u)e13(u) = e13(u− (−1)1)h1(u) . (4.24)

Thus, the relation (4.23) implies e13(u+ κ− (−1)1)h1(u+ κ) = −e24(u)h1(u+ κ). It remains to
note that κ− (−1)1 = 0 as 2 = 0̄. Therefore, we obtain the desired equality:

e24(u) = −e13(u) . (4.25)

This completes our proof of Lemma 4.1. □

• N = 2n and |vn+m| = 1̄.
This case generalizes (from n = 0 case) the Cm-type formulas of [FT1, Lemmas 3.11, 3.12]:

Lemma 4.26. The following relations hold in Xrtt(osp(V )):

(a) ei,j+1(u) = (−1)j [eij(u), e(1)
j,j+1] for i < j < i′ − 1 and j ̸= n+m.

(b) ei,n+m+1(u) = −1
2 [ei,n+m(u), e(1)

n+m] for 1 ≤ i ≤ n+m− 1.

(c) e(i+1)′,i′(u) = −(−1)i+1+i·i+1 ei
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m− 1.

(d) e(i+1)′,j′(u) = −(−1)j·j+1 [e(i+1)′,(j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n+m− 1.

(e) eii′(u) = −(−1)i+1+i·i+1 ei(u)ei,(i+1)′(u) − (−1)i·i+1 [ei,(i+1)′(u), e(1)
i ] for 1 ≤ i ≤ n+m− 1.

(f) ei+1,i′(u) = (−1)i+1+i·i+1 ei(u)ei+1,(i+1)′(u) − (−1)i+1+i·i+1 ei,(i+1)′(u) −
(−1)i·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n+m− 1.

(g) eij′(u) = −(−1)j·j+1 [ei,(j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i− 2 ≤ n+m− 2.

Proof. The proof is completely analogous to that of Lemma 4.1. □

• N = 2n+ 1.
This case generalizes (from m = 0 case) the Bn-type formulas of [FT1, Lemmas 4.10, 4.11]:

Lemma 4.27. The following relations hold in Xrtt(osp(V )):

(a) ei,j+1(u) = (−1)j [eij(u), e(1)
j,j+1] for i < j < i′ − 1.

(b) e(i+1)′,i′(u) = −(−1)i+1+i·i+1 ei
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m.

(c) e(i+1)′,j′(u) = −(−1)j·j+1 [e(i+1)′,(j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n+m− 1.

(d) eii′(u) = −(−1)i+1+i·i+1 ei(u)ei,(i+1)′(u) − (−1)i·i+1 [ei,(i+1)′(u), e(1)
i ] for 1 ≤ i ≤ n+m.
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(e) ei+1,i′(u) = (−1)i+1+i·i+1 ei(u)ei+1,(i+1)′(u) − (−1)i+1+i·i+1 ei,(i+1)′(u) −
(−1)i·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n+m− 1.

(f) eij′(u) = −(−1)j·j+1 [ei,(j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i− 2 ≤ n+m− 1.

Proof. The proof is completely analogous to that of Lemma 4.1. □

4.2. Lower triangular matrix explicitly.
Similarly to the subsection above, we derive explicit formulas for all entries of the matrix F (u)

in terms of the generators f (r)
i , treating three cases that resemble BCD-type formulas of [FT1].

• N = 2n and |vn+m| = 0̄.
This case generalizes (from m = 0 case) the Dn-type formulas of [FT1, Lemmas 2.96, 2.97]:

Lemma 4.28. The following relations hold in Xrtt(osp(V )):
(a) fn+m+1,n+m(u) = 0.

(b) fj+1,i(u) = (−1)j [f (1)
j+1,j , fji(u)] for i < j < i′ − 1 and j ̸= n+m.

(c) fn+m+1,i(u) = (−1)n+m−1 [f (1)
n+m, fn+m−1,i(u)] for 1 ≤ i ≤ n+m− 2.

(d) fi′,(i+1)′(u) = −(−1)i+i·i+1 fi
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m− 1.

(e) fj′,(i+1)′(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤ n+m− 1.

(f) fi′i(u) = −(−1)i+i·i+1 f(i+1)′,i(u)fi(u) − (−1)i+i+1+i·i+1 [f (1)
i , f(i+1)′,i(u)] for 1 ≤ i ≤ n+m− 1.

(g) fi′,i+1(u) = (−1)i+i·i+1 f(i+1)′,i+1(u)fi(u) − (−1)i+i·i+1 f(i+1)′,i(u) −
(−1)i+i+1+i·i+1 [f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n+m− 2.

(h) fj′i(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,i(u)] for 1 ≤ j ≤ i− 2 ≤ n+m− 2.

(i) fn+m+2,n+m(u) = −(−1)n+m−1fn+m(u).

Proof. These relations follow directly by applying the anti-automorphism τ of Xrtt(osp(V )) given
by (3.11) to the relations of Lemma 4.1 and using the formulas (3.38). □

• N = 2n and |vn+m| = 1̄.
This case generalizes (from n = 0 case) the Cm-type formulas of [FT1, Lemmas 3.11, 3.12]:

Lemma 4.29. The following relations hold in Xrtt(osp(V )):

(a) fj+1,i(u) = (−1)j [f (1)
j+1,j , fji(u)] for i < j < i′ − 1 and j ̸= n+m.

(b) fn+m+1,i(u) = −1
2 [f (1)

n+m, fn+m,i(u)] for 1 ≤ i ≤ n+m− 1.

(c) fi′,(i+1)′(u) = −(−1)i+i·i+1 fi
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m− 1.

(d) fj′,(i+1)′(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤ n+m− 1.

(e) fi′i(u) = −(−1)i+i·i+1 f(i+1)′,i(u)fi(u) − (−1)i+i+1+i·i+1 [f (1)
i , f(i+1)′,i(u)] for 1 ≤ i ≤ n+m− 1.

(f) fi′,i+1(u) = (−1)i+i·i+1 f(i+1)′,i+1(u)fi(u) − (−1)i+i·i+1 f(i+1)′,i(u) −
(−1)i+i+1+i·i+1 [f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n+m− 1.

(g) fj′i(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,i(u)] for 1 ≤ j ≤ i− 2 ≤ n+m− 2.

Proof. These relations follow directly by applying the anti-automorphism τ of Xrtt(osp(V )) given
by (3.11) to the relations of Lemma 4.26 and using the formulas (3.38). □

• N = 2n+ 1.
This case generalizes (from m = 0 case) the Bn-type formulas of [FT1, Lemmas 4.10, 4.11]:
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Lemma 4.30. The following relations hold in Xrtt(osp(V )):

(a) fj+1,i(u) = (−1)j [f (1)
j+1,j , fji(u)] for i < j < i′ − 1.

(b) fi′,(i+1)′(u) = −(−1)i+i·i+1 fi
(
u+ κ−

∑i
k=1(−1)k

)
for 1 ≤ i ≤ n+m.

(c) fj′,(i+1)′(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤ n+m− 1.

(d) fi′i(u) = −(−1)i+i·i+1 f(i+1)′,i(u)fi(u) − (−1)i+i+1+i·i+1 [f (1)
i , f(i+1)′,i(u)] for 1 ≤ i ≤ n+m.

(e) fi′,i+1(u) = (−1)i+i·i+1 f(i+1)′,i+1(u)fi(u) − (−1)i+i·i+1 f(i+1)′,i(u) −
(−1)i+i+1+i·i+1 [f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n+m− 1.

(f) fj′i(u) = −(−1)j+j+1+j·j+1 [f (1)
j , f(j+1)′,i(u)] for 1 ≤ j ≤ i− 2 ≤ n+m− 1.

Proof. These relations follow directly by applying the anti-automorphism τ of Xrtt(osp(V )) given
by (3.11) to the relations of Lemma 4.27 and using the formulas (3.38). □

4.3. Diagonal matrix and central current explicitly.
In this subsection, we derive explicit formulas for all entries of the matrix H(u) in terms of the

generators h(r)
ı and the factorized formula for the central current cV (u) of (3.16). We consider

the same three cases for which the formulas resemble the BCD-type formulas of [FT1,JLM] and
generalize [Mo, Proposition 5.1, Theorem 5.3] for N ≥ 3 and the standard parity sequence (2.19),
though our approach is different from that used in [Mo, §5].
• N = 2n and |vn+m| = 0̄.

The following generalizes (from m = 0 case) the Dn-type formula of [JLM, Theorem 5.8]:

Lemma 4.31. The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m−1∏

i=1

hi(u−
∑i−1

k=1(−1)k)
hi(u−

∑i
k=1(−1)k)

· hn+m(u− n+m+ 1)hn+m+1(u− n+m+ 1) . (4.32)

Proof. Comparing the (2′, 2′) matrix coefficients of both sides of (4.4), we get:

t22(u+ κ) =
(
h2′(u)−1 + e2′1′(u)h1′(u)−1f1′2′(u)

)
cV (u+ κ) . (4.33)

Evoking h1(u + κ) = h1′(u)−1cV (u + κ) of (4.5) and the fact that cV (u + κ) is central, the
relation (4.33) can be written as:

h2′(u)−1cV (u+κ) = h2(u+κ) + f21(u+κ)h1(u+κ)e12(u+κ) − e2′1′(u)h1(u+κ)f1′2′(u) . (4.34)
Applying Lemmas 4.1(d) and 4.28(d) to the last summand, we obtain:

h2′(u)−1cV (u+ κ) = h2(u+ κ) + f21(u+ κ)h1(u+ κ)e12(u+ κ) −

(−1)1+2 e12
(
u+ κ− (−1)1)h1(u+ κ)f21

(
u+ κ− (−1)1) . (4.35)

According to Corollaries 3.82, 3.89, we have h1(u+ κ)e12(u+ κ) = e12(u+ κ− (−1)1)h1(u+ κ)
and h1(u+ κ)f21(u+ κ− (−1)1) = f21(u+ κ)h1(u+ κ). Plug these formulas into (4.35) to get:

h2′(u)−1cV (u+ κ) = h2(u+ κ) + [f21(u+ κ), e12(u+ κ− (−1)1)]h1(u+ κ) . (4.36)

But [f21(v), e12(u)] = − (−1)1

u−v

(
h2(u)
h1(u) − h2(v)

h1(v)

)
, due to (3.74) and Corollary 3.89, so that:

[
f21(u+ κ), e12(u+ κ− (−1)1)

]
= h2(u+ κ− (−1)1)
h1(u+ κ− (−1)1)

− h2(u+ κ)
h1(u+ κ) . (4.37)

Plugging (4.37) into the right-hand side of (4.36), we thus get:

h2′(u)−1cV (u+ κ) = h1(u+ κ)
h1(u+ κ− (−1)1)

h2(u+ κ− (−1)1) , (4.38)
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which can be rewritten in the form

cV (u+ κ) = h1(u+ κ)
h1(u+ κ− (−1)1)

· h2′(u)h2(u+ κ− (−1)1) . (4.39)

Combining Theorem 3.47 with (4.5) and κ− (−1)1 = κ[1] of (3.42), we note that

h2′(u)h2(u+ κ− (−1)1) = ψV,1(cV [1](u+ κ[1])) .
Therefore, the equality (4.39) can be expressed as follows:

c
[0]
V (u) = h1(u)

h1(u− (−1)1)
· c[1]

V (u− (−1)1) , (4.40)

where we introduce c[k]
V (u) for 0 ≤ k < n+m via

c
[k]
V (u) := ψV,k(cV [k](u)) . (4.41)

Applying the formula (4.40) iteratively and using (3.50), we obtain:

cV (u) =
n+m−1∏

i=1

hi(u−
∑i−1

k=1(−1)k)
hi(u−

∑i
k=1(−1)k)

· c[n+m−1]
V

(
u −

n+m−1∑
k=1

(−1)k

)
. (4.42)

According to (4.5) and the equality κ[n+m−1] = 0, we have c[n+m−1]
V (u) = hn+m(u)hn+m+1(u).

Plugging this equality into (4.42) recovers precisely the desired formula (4.32). □

The following result generalizes (from m = 0 case) the Dn-type formula of [FT1, Lemma 2.77]:

Lemma 4.43. For 1 ≤ i < n+m, we have

hi′(u) = 1
hi(u+ κ−

∑i
k=1(−1)k)

n+m−1∏
j=i+1

hj(u+ κ−
∑j−1

k=1(−1)k)
hj(u+ κ−

∑j
k=1(−1)k)

· hn+m(u)hn+m+1(u) . (4.44)

Proof. For i = 1, this formula follows immediately from the equality h1′(u) = h1(u+κ)−1cV (u+κ)
of (4.5) combined with the explicit formula (4.32) for cV (u) as κ − n + m + 1 = 0. The case
1 < i < n+m follows now by applying Theorem 3.47 and evoking the formula (3.42). □

• N = 2n and |vn+m| = 1̄.
This case generalizes (from n = 0 case) the Cm-type formula of [JLM, Theorem 5.8]:

Lemma 4.45. The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m−1∏

i=1

hi(u−
∑i−1

k=1(−1)k)
hi(u−

∑i
k=1(−1)k)

· hn+m(u− n+m− 1)hn+m+1(u− n+m+ 1) . (4.46)

Proof. The proof is precisely the same as that of Lemma 4.31 except that now κ[n+m−1] = −2
and so one rather plugs c[n+m−1]

V (u) = hn+m(u)hn+m+1(u+ 2) into the formula (4.42). □

Analogously to Lemma 4.43, we also obtain the following generalization (from n = 0 case)
of [FT1, Lemma 3.11(a)]:

Lemma 4.47. For 1 ≤ i < n+m, we have

hi′(u) = 1
hi(u+ κ−

∑i
k=1(−1)k)

n+m−1∏
j=i+1

hj(u+ κ−
∑j−1

k=1(−1)k)
hj(u+ κ−

∑j
k=1(−1)k)

·hn+m(u−2)hn+m+1(u) . (4.48)

• N = 2n+ 1.
This case generalizes (from m = 0 case) the Bn-type formulas of [JLM, Theorem 5.8]:

Lemma 4.49. The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m∏
i=1

hi(u−
∑i−1

k=1(−1)k)
hi(u−

∑i
k=1(−1)k)

· hn+m+1
(
u− n+m+ 1

2

)
hn+m+1 (u− n+m) . (4.50)
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Proof. The proof is precisely the same as that of Lemma 4.31. Specifically, the formula (4.42) is
now replaced by

cV (u) =
n+m∏
i=1

hi(u−
∑i−1

k=1(−1)k)
hi(u−

∑i
k=1(−1)k)

· c[n+m]
V

(
u−

n+m∑
k=1

(−1)k

)
. (4.51)

But T [n+m]
V (u) is a 1 × 1 matrix (hn+m+1(u)), so that c[n+m]

V (u) = hn+m+1(u)hn+m+1(u + 1
2).

Plugging this equality into (4.51) recovers the desired formula (4.50). □

Analogously to Lemma 4.43, we also obtain the following generalization (from m = 0 case)
of [FT1, Lemma 4.10(a)]:

Lemma 4.52. For 1 ≤ i ≤ n+m, we have

hi′(u) = 1
hi(u+ κ−

∑i
k=1(−1)k)

n+m∏
j=i+1

hj(u+ κ−
∑j−1

k=1(−1)k)
hj(u+ κ−

∑j
k=1(−1)k)

· hn+m+1(u)hn+m+1(u− 1
2) .

(4.53)

4.4. Higher order relations for orthosymplectic super Yangians.
The aim of this subsection is to detect degree 3, 4, 6, and 7 relations in Xrtt(osp(V )) that quantize

the loop version of the corresponding Serre relations from Subsection 2.4. Due to Theorem 3.47, it
suffices to establish these relations at the smallest possible ranks 3, 3, 3, and 4, respectively. Here,
we note that sub-diagrams (2.24) always arise through a super A-type sub-diagram, and therefore
the corresponding degree 4 Serre relations follow from (3.81), due to Corollaries 3.89 and 3.91.
• dim(V ) = 6 and ΥV = (∗, 1̄, 0̄) with ∗ ∈ {0̄, 1̄}. Thus the Dynkin diagram is as in (2.29).

Lemma 4.54. Under the above assumptions, the following relations hold in Xrtt(osp(V )):[
e

(1)
3 , [e(1)

2 , e1(u)]
]

−
[
e

(1)
2 , [e(1)

3 , e1(u)]
]

= 0 ,[
f

(1)
3 , [f (1)

2 , f1(u)]
]

−
[
f

(1)
2 , [f (1)

3 , f1(u)]
]

= 0 .
(4.55)

Proof. Evaluating the v−1-coefficients in the defining relation

[t12(u), t23(v)] = (−1)2

u− v

(
t22(u)t13(v) − t22(v)t13(u)

)
,

we get:
t13(u) = −[t12(u), t(1)

23 ] . (4.56)
On the other hand, comparing the v−1-coefficients of both sides of the defining relation

[t13(u), t24(v)] = (−1)♯(t23(u)t14(v) − t23(v)t14(u))
u− v

+
∑6

p=1 t2p′(v)t1p(u)(−1)1·2+3·2+1·pθ4θp′

u− v − κ
,

where we use ♯ whenever the exact value is irrelevant, we obtain:

t15(u) = −[t13(u), t(1)
24 ] . (4.57)

Combining (4.56) and (4.57), we thus get:

t15(u) =
[
[t12(u), t(1)

23 ], t(1)
24
]

=
[
[t12(u), e(1)

23 ], e(1)
24
]
. (4.58)

Likewise, comparing the v−1-coefficients of both sides of the defining relation (3.9) applied to
the commutators [t12(u), t24(v)] and [t14(u), t23(v)], we obtain:

t14(u) = −[t12(u), t(1)
24 ] , (4.59)

t15(u) = −[t14(u), t(1)
23 ] . (4.60)

Combining (4.59) and (4.60), we thus get:

t15(u) =
[
[t12(u), t(1)

24 ], t(1)
23
]

=
[
[t12(u), e(1)

24 ], e(1)
23
]
. (4.61)

Comparing the above equalities (4.58) and (4.61), we conclude that[
[t12(u), e(1)

23 ], e(1)
24
]

=
[
[t12(u), e(1)

24 ], e(1)
23
]
. (4.62)
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As t12(u) = h1(u)e12(u) and h1(u) commutes with e
(1)
23 , e

(1)
24 by Corollary 3.52, we get:

h1(u)
[
[e12(u), e(1)

23 ], e(1)
24
]

= h1(u)
[
[e12(u), e(1)

24 ], e(1)
23
]
. (4.63)

Multiplying both sides of (4.63) by h1(u)−1 on the left, we obtain the first relation of (4.55).
Applying the anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to the first relation of (4.55)

and using the formulas (3.38) establishes the second relation of (4.55). □

Remark 4.64. (a) The relations (4.55) still hold when ΥV = (∗, 0̄, 0̄) with ∗ ∈ {0̄, 1̄}, due to the
super Jacobi identity and Serre relations [e(1)

2 , e
(1)
3 ] = 0 = [f (1)

2 , f
(1)
3 ], cf. Remark 2.36(b).

(b) Evaluating the u−1-coefficients in (4.55), we recover precisely the cubic Serre relations (2.30).

• dim(V ) = 7 and ΥV = (1, 2, 3) with 2 ̸= 3. Thus, the Dynkin diagram is as in (2.25).

Lemma 4.65. Under the above assumptions, the following relations hold in Xrtt(osp(V )):[
[e1(u), e(1)

2 ], [e(1)
2 , e

(1)
3 ]
]

= 0 ,[
[f1(u), f (1)

2 ], [f (1)
2 , f

(1)
3 ]
]

= 0 .
(4.66)

Proof. Evaluating the v−1-coefficients in the defining relation

[t12(u), t23(v)] = (−1)2

u− v

(
t22(u)t13(v) − t22(v)t13(u)

)
,

we get:
t13(u) = (−1)2[t12(u), e(1)

23 ] . (4.67)
Likewise, evaluating the v−1-coefficients in the defining relation

[t23(u), t34(v)] = (−1)3

u− v

(
t33(u)t24(v) − t33(v)t24(u)

)
,

we obtain t24(u) = (−1)3[t23(u), e(1)
34 ], so that

e
(1)
24 = (−1)3[e(1)

23 , e
(1)
34 ] . (4.68)

Finally, comparing the v−1-coefficients of both sides of the defining relation

[t13(u), t24(v)] = (−1)♯

u− v

(
t23(u)t14(v) − t23(v)t14(u)

)
,

we get
[t13(u), e(1)

24 ] = 0 . (4.69)
Combining the equalities (4.67, 4.68, 4.69), we obtain:[

[t12(u), e(1)
23 ], [e(1)

23 , e
(1)
34 ]
]

= 0 ,

which implies the first relation of (4.66) as h1(u) commutes with both e
(1)
2 = e

(1)
23 and e

(1)
3 = e

(1)
34 .

Applying the anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to the first relation of (4.66)
and using the formulas (3.38) establishes the second relation of (4.66). □

Remark 4.70. (a) The relations (4.66) still hold for an arbitrary ΥV = (∗, ∗, ∗) with ∗ ∈ {0̄, 1̄}.

(b) Evaluating the u−1-coefficients in (4.66), we recover the Serre relations (2.26).

• dim(V ) = 8 and ΥV = (∗, 0̄, 0̄, 1̄) with ∗ ∈ {0̄, 1̄}. Thus the Dynkin diagram is as in (2.33).

Lemma 4.71. Under the above assumptions, the following relations hold in Xrtt(osp(V )):[[
e1(u), [e(1)

2 , e
(1)
3 ]
]
,
[
[e(1)

2 , e
(1)
3 ], [e(1)

3 , e
(1)
4 ]
]]

= 0 ,[[
f1(u), [f (1)

2 , f
(1)
3 ]
]
,
[
[f (1)

2 , f
(1)
3 ], [f (1)

3 , f
(1)
4 ]
]]

= 0 .
(4.72)
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Proof. Evaluating the v−1-coefficients in the defining relation

[t23(u), t34(v)] = (−1)3

u− v

(
t33(u)t24(v) − t33(v)t24(u)

)
,

we obtain:
t24(u) = [t23(u), t(1)

34 ] = [t23(u), e(1)
34 ] . (4.73)

Likewise, evaluating the v−1-coefficients in the defining relation

[t12(u), t24(v)] = (−1)2

u− v

(
t22(u)t14(v) − t22(v)t14(u)

)
,

we obtain:
t14(u) = [t12(u), t(1)

24 ] = [t12(u), e(1)
24 ] . (4.74)

Combining the above formulas, we thus get:

t14(u) =
[
t12(u), [e(1)

23 , e
(1)
34 ]
]
. (4.75)

Comparing the v−1-coefficients of both sides of the defining relation

[t34(u), t45(v)] = (−1)4(t44(u)t35(v) − t44(v)t35(u))
u− v

+
∑8

p=1 t4p′(v)t3p(u)(−1)3·4+4+3·pθ5θp′

u− v − κ
,

we obtain:
−2t35(u) = [t34(u), t(1)

45 ] = [t34(u), e(1)
45 ] . (4.76)

Likewise, comparing the v−1-coefficients of both sides of the defining relation

[t24(u), t35(v)] = (−1)♯(t34(u)t25(v) − t34(v)t25(u))
u− v

+
∑8

p=1 t3p′(v)t2p(u)(−1)2·3+3·4+2·pθ5θp′

u− v − κ
,

we obtain:
t26(u) = [t24(u), t(1)

35 ] = [t24(u), e(1)
35 ] . (4.77)

Combining (4.76) and (4.77), we thus get:

t26(u) = −1
2
[
t24(u), [e(1)

34 , e
(1)
45 ]
]
. (4.78)

Finally, evaluating the v−1-coefficients in the defining relation

[t14(u), t26(v)] = (−1)♯

u− v

(
t24(u)t16(v) − t24(v)t16(u)

)
,

we obtain:
[t14(u), t(1)

26 ] = 0 . (4.79)
Combining all the formulas above, we get the following equality:[[

t12(u), [e(1)
23 , e

(1)
34 ]
]
,
[
[e(1)

23 , e
(1)
34 ], [e(1)

34 , e
(1)
45 ]
]]

= 0 . (4.80)

As t12(u) = h1(u)e12(u) and h1(u) commutes with e
(1)
23 , e

(1)
34 , e

(1)
45 by Corollary 3.52, we get:

h1(u)
[[
e12(u), [e(1)

23 , e
(1)
34 ]
]
,
[
[e(1)

23 , e
(1)
34 ], [e(1)

34 , e
(1)
45 ]
]]

= 0 . (4.81)

Multiplying both sides of (4.81) by h1(u)−1 on the left, we obtain the first relation of (4.72).
Applying the anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to the first relation of (4.72)

and using the formulas (3.38) establishes the second relation of (4.72). □

Remark 4.82. (a) The relations (4.72) hold for all parity sequences ΥV : for even v4 we actually
have

[
[e(1)

2 , e
(1)
3 ], [e(1)

3 , e
(1)
4 ]
]

= 0 =
[
[f (1)

2 , f
(1)
3 ], [f (1)

3 , f
(1)
4 ]
]
, while for odd v4 one can apply the same

argument as above, cf. Remark 2.36(a).
(b) Evaluating the u−1-coefficients in (4.72), we recover precisely the Serre relations (2.34).

• dim(V ) = 6 and ΥV = (1̄, 0̄, 1̄). Thus the Dynkin diagram is as in (2.31).
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Lemma 4.83. Under the above assumptions, the following relations hold in Xrtt(osp(V )):[
[e1(u), e(1)

2 ],
[
[e(1)

1 , e
(1)
2 ], [e(1)

2 , e
(1)
3 ]
]]

=
[
[e1(u), e(1)

2 ], [e(1)
2 , e

(1)
3 ]
]

· [e1(u), e(1)
2 ] ,[

[f1(u), f (1)
2 ],

[
[f (1)

1 , f
(1)
2 ], [f (1)

2 , f
(1)
3 ]
]]

= [f1(u), f (1)
2 ] ·

[
[f1(u), f (1)

2 ], [f (1)
2 , f

(1)
3 ]
]
.

(4.84)

Remark 4.85. Evaluating the u−1-coefficients in (4.84), we recover the Serre relations (2.32).

Proof. Evaluating the v−1-coefficients in the defining relation (3.9) for [t12(u), t23(v)] and using
[h1(u), e(1)

23 ] = 0 from Corollary 3.52, we obtain:

t13(u) = [t12(u), e(1)
23 ] , e13(u) = [e12(u), e(1)

23 ] , (4.86)
cf. (4.56). Comparing the v−1-coefficients of both sides of the defining relation (3.9) for [t23(u), t34(v)],
we get:

−2t24(u) = [t23(u), t(1)
34 ] = [t23(u), e(1)

34 ] , (4.87)
cf. (4.76). Likewise, comparing the v−1-coefficients of both sides of the defining relation (3.9) for
[t13(u), t24(v)], we also obtain:

t15(u) = [t13(u), t(1)
24 ] = [t13(u), e(1)

24 ] , (4.88)
cf. (4.57).

Let us now consider the defining relation

[t13(u), t15(v)] = (−1)1

u− v

(
t13(u)t15(v) − t13(v)t15(u)

)
. (4.89)

Evaluating the v−1-coefficients in (4.89) and using the formulas above, we obtain:[
[h1(u)e1(u), e(1)

2 ],
[
[e(1)

1 , e
(1)
2 ], [e(1)

2 , e
(1)
3 ]
]]

= 0 .

However, we can not pull h1(u) to the left of the brackets, as we did in the cases of degree 3 and
7 relations above, due to the presence of non-commuting e(1)

1 . Instead, let us rewrite (4.89) as
(u− v + 1)h1(u)e13(u)h1(v)e15(v) = h1(v)e13(v)h1(u)e15(u) + (u− v)h1(v)e15(v)h1(u)e13(u) .

(4.90)
We shall next pull all h1-currents to the left. To this end, multiplying both sides of the relation

[t11(u), t13(v)] = (−1)1

u− v

(
t11(u)t13(v) − t11(v)t13(u)

)
by h1(v)−1 on the left, we obtain:

e13(v)h1(u) = h1(u)
(
u− v + 1
u− v

e13(v) − 1
u− v

e13(u)
)
. (4.91)

Completely analogously, we also get:

e15(v)h1(u) = h1(u)
(
u− v + 1
u− v

e15(v) − 1
u− v

e15(u)
)
. (4.92)

Plugging (4.91, 4.92) into (4.90) and multiplying both sides by (u− v)h1(u)−1h1(v)−1 on the left,
we obtain:(

(u− v)2 − 1
)
e13(u)e15(v) + (u− v + 1)e13(v)e15(v) = −(u− v)e15(u)e13(u) +(

(u− v)2 + (u− v)
)
e15(v)e13(u) + (u− v + 1)e13(v)e15(u) − e13(u)e15(u) . (4.93)

Evaluating the v1-coefficients in this relation, we get:

[e13(u), e(1)
15 ] = e15(u)e13(u) . (4.94)

Here, e13(u) and e15(u) can be expressed via (4.86)–(4.88) as follows:

e13(u) = [e1(u), e(1)
2 ] , e15(u) = −1

2
[
[e1(u), e(1)

2 ], [e(1)
2 , e

(1)
3 ]
]
. (4.95)

Plugging (4.95) into the equality (4.94) recovers precisely the first degree 6 relation of (4.84).
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Applying the anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to the first relation of (4.84)
and using the formulas (3.38) establishes the second relation of (4.84). □

Remark 4.96. As follows from the above proof, the relations (4.84) admit more general versions.
To this end, we note that (4.93) can be equivalently written as:

[e13(u), e15(v)] = 1
(u− v)2 e13(u)e15(v) + 1

u− v
e15(v)e13(u) − 1

u− v
e15(u)e13(u) −( 1

(u− v)2 + 1
u− v

)
e13(v)e15(v) +

( 1
(u− v)2 + 1

u− v

)
e13(v)e15(u) − 1

(u− v)2 e13(u)e15(u) ,

with e13(u) and e15(u) expressed via (4.95). Applying the anti-automorphism τ of Xrtt(osp(V ))
given by (3.11) to the relation above and using the formulas (3.38), we also obtain:

[f31(u), f51(v)] = 1
(u− v)2 f31(u)f51(v) − 1

u− v
f51(v)f31(u) + 1

u− v
f51(v)f31(v) −( 1

(u− v)2 − 1
u− v

)
f31(u)f51(u) +

( 1
(u− v)2 − 1

u− v

)
f31(v)f51(u) − 1

(u− v)2 f31(v)f51(v) .

Remark 4.97. The analogues of degree 6 relations (4.84), with both right-hand sides been multiplied
by −(−1)1, hold for all parity sequences ΥV . Indeed, for even v3 both sides vanish as we have[

[e1(u), e(1)
2 ], [e(1)

2 , e
(1)
3 ]
]

= 0 =
[
[f1(u), f (1)

2 ], [f (1)
2 , f

(1)
3 ]
]
,

while for odd v3 one can apply the same argument as above, cf. Remark 2.36(a).

5. Rank 1 and 2 relations

In this section, we establish quadratic relations between the generating currents ei(u), fi(u), hı(u)
of Xrtt(osp(V )) in rank ≤ 2 cases (corresponding to N + 2m ≤ 5). The arguments are straightfor-
ward though a bit tedious. While our treatment is case-by-case, we try to present them in a rather
uniform way (in particular, eliminating the smaller rank reduction of [JLM] for non-super types).

5.1. Rank 1 cases.
In this subsection, we establish quadratic relations for rank 1 orthosymplectic Yangians which do

not follow from Corollary 3.89. There are four cases that we consider separately: (N = 2,m = 0),
(N = 0,m = 1), (N = 3,m = 0), and (N = 1,m = 1). The first three were treated in [JLM].

5.1.1. Relations for osp(2|0) case.
We note that Xrtt(osp(2|0)) ≃ Xrtt(so2) by Remark 3.25.

Proposition 5.1. The following relations hold in Xrtt(osp(2|0)):
e12(u) = 0 = f21(u) . (5.2)

Remark 5.3. This result follows from the relations (5.55) established in [JLM, Lemma 5.3] using the
low rank isomorphism of [AMR] by evoking the embedding Xrtt(so2) ↪→ Xrtt(so4) of Theorem 3.47
which maps e12(u) 7→ e23(u) and f21(u) 7→ f32(u). However, for the rest of this section, it is
instructive to present a direct self-contained proof of (5.2).

Proof. Consider the defining relation (3.9) for [t11(u), t12(v)] (note that κ = 0):

[t11(u), t12(v)] = 1
u− v

t11(u)t12(v) + 1
u− v

t12(v)t11(u) ,

where we readily cancelled two terms containing t11(v)t12(u) in the right-hand side. Multiplying
both sides by (u− v)h1(v)−1 on the left, we get:

(u− v − 1)h1(u)e12(v) = (u− v + 1)e12(v)h1(u) .
Plugging u = v − 1 above, we obtain h1(v − 1)e12(v) = 0. Multiplying further by h1(v − 1)−1 on
the left, we get the desired relation e12(v) = 0. Applying the anti-automorphism τ of Xrtt(so2)
given by (3.11) to e12(v) = 0, we obtain f21(v) = 0, due to Remark 3.37. □
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5.1.2. Relations for osp(0|2) case.
We note that Xrtt(osp(0|2)) ≃ Xrtt(sp2) by Remark 3.25.

Proposition 5.4. The currents h1(−2u), h2(−2u), e1(−2u), f1(−2u) satisfy the relations of
Theorem 3.70 for the parity sequence ΥV = (0̄, 0̄).

Proof. This result follows from the fact that the assignment T (u) 7→ T(−u/2) gives rise to the
superalgebra isomorphism Xrtt(osp(0|2)) ∼−→Y rtt(gl2). This map can be viewed as a composition
of the aforementioned isomorphism Xrtt(osp(0|2)) ∼−→Xrtt(sp2), given by T (u) 7→ T (−u), and
the isomorphism Xrtt(sp2) ∼−→Y rtt(gl2) of [AMR, Proposition 4.1], given by T (u) 7→ T(u/2).
The latter follows from the observation that P +Q = I for sp2-case, which allows to relate the
corresponding R-matrices of sp2 and gl2 types via R(u) = u−1

u−2R(u/2). □

5.1.3. Relations for osp(3|0) case.
We note that Xrtt(osp(3|0)) ≃ Xrtt(so3) by Remark 3.25. In this case, the only relation directly

implied by Corollary 3.89 is the obvious commutativity [h1(u), h1(v)] = 0.

Proposition 5.5. The following relations hold in Xrtt(so3):
[hi(u), hj(v)] = 0 for all 1 ≤ i, j ≤ 2 , (5.6)

[h1(u), e12(v)] =
h1(u)

(
e12(v) − e12(u)

)
u− v

, [h1(u), f21(v)] =
(
f21(u) − f21(v)

)
h1(u)

u− v
, (5.7)

[h2(u), e12(v)] =
h2(u)

(
e12(u) − e12(v)

)
2(u− v) −

(
e12(u− 1) − e12(v)

)
h2(u)

2(u− v − 1) , (5.8)

[h2(u), f21(v)] =
(
f21(v) − f21(u)

)
h2(u)

2(u− v) −
h2(u)

(
f21(v) − f21(u− 1)

)
2(u− v − 1) , (5.9)

[e12(u), f21(v)] = 1
u− v

(
h1(u)−1h2(u) − h1(v)−1h2(v)

)
, (5.10)

[e12(u), e12(v)] =
(
e12(u) − e12(v)

)2
u− v

, (5.11)

[f21(u), f21(v)] = −
(
f21(u) − f21(v)

)2
u− v

. (5.12)

Remark 5.13. (a) The relation (5.9) corrects a typo in [JLM, (5.4)].
(b) We note that these relations were established in [JLM, Proposition 5.4] using the low rank
isomorphism Xrtt(so3) ≃ Y rtt(gl2) of [AMR, Proposition 4.4], see Proposition A.5(a) below.
However, for the rest of this section, it is instructive to establish all these relations directly.

Proof. In view of Remark 5.13, we shall only present a direct proof of (5.9), though it can
be also derived from (5.8) by applying the anti-automorphism τ of Xrtt(so3). The relations
(5.6–5.7, 5.10–5.12) can be proved similarly to analogous relations from Proposition 5.17 below.

Our proof of (5.9) shall closely follow that of (5.20) presented below. First, let us express
h2(u) via the h1-current and the central current zV (u) from Remark 3.21 defined through the
difference equation cV (u) = zV (u− 1/2)zV (u), see (3.22). Evoking cV (u) = h1(u)h2(u−1/2)h2(u−1)

h1(u−1) ,
due to Lemma 4.49, we get zV (u− 1/2) = h1(u−1/2)h2(u−1)

h1(u−1) , so that

h2(u) = zV (u+ 1
2)h1(u)h1(u+ 1

2)−1 . (5.14)
Combining (5.14) with the following commutation rules between h1(u) and f21(v), recovered from
the defining relation (3.9) applied to [t11(u), t21(v)]:

h1(u)f21(v) =
(
u− v − 1
u− v

f21(v) + 1
u− v

f21(u)
)
h1(u) ,

h1(u)−1f21(v) =
(

u− v

u− v − 1f21(v) − 1
u− v − 1f21(u− 1)

)
h1(u)−1 ,
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we obtain:

h2(u)f21(v) = h1(u+ 1
2)−1

(
u− v − 1
u− v

f21(v) + 1
u− v

f21(u)
)
h1(u)zV (u+ 1

2) =((u− v + 1/2)(u− v − 1)
(u− v)(u− v − 1/2) f21(v) + 1

u− v − 1/2f21(u− 1
2) − 1

u− v
f21(u)

)
h2(u) . (5.15)

In particular, plugging v = u− 1 into (5.15), we find:

f21(u− 1
2)h2(u) = h2(u)f21(u− 1) + f21(u)h2(u)

2 . (5.16)

Plugging the formula (5.16) into the equality (5.15), multiplying by 2u−2v−1
2u−2v−2 , and rearranging the

terms, we obtain the desired relation (5.9). □

5.1.4. Relations for osp(1|2) case.
Finally, let us treat the remaining rank 1 case of Xrtt(osp(V )) = Xrtt(osp(1|2)) which can not

be reduced to non-super setup unlike the previous three cases. The corresponding relations also
appeared very recently in [MR].

Proposition 5.17. The following relations hold in Xrtt(osp(1|2)):
[hi(u), hj(v)] = 0 for all 1 ≤ i, j ≤ 2 , (5.18)

[h1(u), e12(v)] =
h1(u)

(
e12(u) − e12(v)

)
u− v

, [h1(u), f21(v)] =
(
f21(v) − f21(u)

)
h1(u)

u− v
, (5.19)

[h2(u), e12(v)] = h2(u)
(
e12(u) − e12(v)

u− v
+ e12(v) − e12(u− 1/2)

u− v − 1/2

)
, (5.20)

[h2(u), f21(v)] =
(
f21(v) − f21(u)

u− v
+ f21(u− 1/2) − f21(v)

u− v − 1/2

)
h2(u) , (5.21)

[e12(u), f21(v)] = 1
u− v

(
h1(u)−1h2(u) − h1(v)−1h2(v)

)
(5.22)

as well as

[e12(u), e12(v)] = e13(u) − e13(v)
u− v

+ e12(u)2 − e12(v)2

u− v
+

e12(u)e12(v) − e12(v)e12(u)
2(u− v) −

(
e12(u) − e12(v)

)2
2(u− v)2 , (5.23)

[f21(v), f21(u)] = f31(v) − f31(u)
u− v

+ f21(u)2 − f21(v)2

u− v
+

f21(v)f21(u) − f21(u)f21(v)
2(u− v) −

(
f21(v) − f21(u)

)2
2(u− v)2 , (5.24)

(u− v − 1)(u− v + 1/2)e12(u)e13(v) + (u− v + 1/2)e12(v)e13(v) − (u− v + 1/2)e12(v)e13(u)−
(u−v)(u−v+3/2)e13(v)e12(u)+(2u−2v+1/2)e13(u)e12(u)−(u−v)e12(v)e12(u)2−e12(u)3 = 0 ,

(5.25)

(u− v − 1)(u− v + 1/2)f31(v)f21(u) + (u− v + 1/2)f31(v)f21(v) − (u− v + 1/2)f31(u)f21(v)−
(u−v)(u−v+3/2)f21(u)f31(v)+(2u−2v+1/2)f21(u)f31(u)+(u−v)f21(u)2f21(v)+f21(u)3 = 0 ,

(5.26)
where e13(u) and f31(u) can be further expressed via

e13(u) = −e12(u)2 − [e12(u), e(1)
12 ] , f31(u) = f21(u)2 + [f21(u), f (1)

21 ] . (5.27)
Furthermore, the remaining entries of the matrices E(u), F (u), H(u) are given by:
e23(u) = −e12(u− 1

2) , f32(u) = f21(u− 1
2) , h3(u) = h1(u− 1

2)−1h2(u− 1
2)h2(u) . (5.28)
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Proof. The defining relation (3.9) applied to [t11(u), t11(v)] implies (u − v + 1)h1(u)h1(v) =
(u− v + 1)h1(v)h1(u), hence, [h1(u), h1(v)] = 0. Likewise, both relations of (5.19) follow directly
by applying the defining relation (3.9) to the commutators [t11(u), t12(v)] and [t11(u), t21(v)].

We note that the relations (5.19) allow one to pull h1(u) past e12(v) and f21(v) either to the
left or to the right. To this end, let us first rewrite (5.19) as follows:

(u− v)e12(v)h1(u) = h1(u)
(
(u− v + 1)e12(v) − e12(u)

)
,

(u− v)h1(u)f21(v) =
(
(u− v + 1)f21(v) − f21(u)

)
h1(u) .

(5.29)

Plugging v = u+ 1 into these relations, we obtain, cf. (3.83, 3.85):

h1(u)e12(u) = e12(u+ 1)h1(u) , f21(u)h1(u) = h1(u)f21(u+ 1) . (5.30)

Finally, plugging (5.30) back into the equalities (5.29), we also obtain:

(u− v + 1)h1(u)e12(v) =
(
(u− v)e12(v) + e12(u+ 1)

)
h1(u) ,

(u− v + 1)f21(v)h1(u) = h1(u)
(
(u− v)f21(v) + f21(u+ 1)

)
.

(5.31)

The commutativity [h1(u), h2(v)] = 0 is a direct consequence of Corollary 3.52. For an alternative
direct proof, let us apply the defining relation (3.9) to [t11(u), t22(v)]:

(u− v)[h1(u), h2(v) + f21(v)h1(v)e12(v)] = f21(v)h1(v)h1(u)e12(u) − f21(u)h1(u)h1(v)e12(v) .

Using the equalities (5.29) to pull h1(u) and h1(v) to the middle in the left-hand side, we get:

(u− v)[h1(u), h2(v)] + (u− v + 1)f21(v)[h1(u), h1(v)]e12(v) = 0 ,

so that [h1(u), h2(v)] = 0 as claimed.
Finally, the commutativity [h2(u), h2(v)] = 0 of (5.18) follows from the formula cV (u) =

h1(u)
h1(u+1)h2(u+ 1)h2(u+ 3/2) for the central current cV (u) of (3.16), due to Lemma 4.49.

According to Lemma 4.27(b,d), we have e13(u) = −e12(u)2−[e12(u), e(1)
12 ], e23(u) = −e12(u−1/2),

thus recovering the first formulas of (5.27, 5.28). The latter implies e(1)
23 = −e(1)

12 . Likewise, due
to Lemma 4.30(b,d), we have f31(u) = f21(u)2 + [f21(u), f (1)

21 ], f32(u) = f21(u − 1/2), thus
recovering the second formulas of (5.27, 5.28). The latter implies f (1)

32 = f
(1)
21 . Finally, we have

h3(u) = h1(u− 1/2)−1h2(u− 1/2)h2(u) due to Lemma 4.52, recovering the last formula of (5.28).

Let us prove (5.22). Applying the defining relation (3.9) to [t21(u), t12(v)], we get:

(u− v)f21(u)h1(u)h1(v)e12(v) + (u− v)h1(v)e12(v)f21(u)h1(u) =
h1(v)h2(u) − h1(u)h2(v) + h1(v)f21(u)h1(u)e12(u) − h1(u)f21(v)h1(v)e12(v) . (5.32)

Using the equalities (5.29)–(5.31) we can pull both h1(u), h1(v) to the leftmost part in all summands
of (5.32), and multiplying further both sides by h1(u)−1h1(v)−1 on the left, we obtain:

(u− v + 1)[e12(v), f21(u+ 1)] − [e12(u), f21(u+ 1)] = h1(u)−1h2(u) − h1(v)−1h2(v) . (5.33)

Plugging v = u+ 1 into (5.33), we get:

−[e12(u), f21(u+ 1)] = h1(u)−1h2(u) − h1(u+ 1)−1h2(u+ 1) . (5.34)

Subtracting (5.34) from (5.33) and renaming v ⇝ u, u+ 1⇝ v, we obtain the relation (5.22).

Let us prove (5.20). One way to establish it is to consider the defining relation

[t12(u), t22(v)] = t22(u)t12(v) − t22(v)t12(u)
u− v

+ t23(v)t11(u) + t22(v)t12(u) − t21(v)t13(u)
u− v + 3/2 . (5.35)

Here, the left-hand side may be written as follows:

[t12(u), t22(v)] = h1(u)[e12(u), h2(v)] + [t12(u), t21(v)]e12(v) − t21(v)[t12(u), e12(v)] =

h1(u)[e12(u), h2(v)] + t22(u)t11(v) − t22(v)t11(u)
u− v

e12(v) − t21(v)[t12(u), e12(v)] . (5.36)
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Plugging (5.36) into the left-hand side of (5.35), rearranging the terms, and using the defining
relation (3.9) for [t12(u), t12(v)] and [t12(u), t11(v)], we eventually obtain:

h1(u)[e12(u), h2(v)] =
h1(u)h2(v)

(
e12(v) − e12(u)

)
u− v

+
h2(v)

(
e23(v)h1(u) + h1(u)e12(u)

)
u− v + 3/2 . (5.37)

Evoking the first equalities of (5.28) and (5.29), we get:

e23(v)h1(u) = −e12(v − 1
2)h1(u) = −h1(u)

(
u− v + 3/2
u− v + 1/2e12(v − 1

2) − 1
u− v + 1/2e12(u)

)
,

so that
h2(v)

(
e23(v)h1(u) + h1(u)e12(u)

)
u− v + 3/2 =

h1(u)h2(v)
(
e12(u) − e12(v − 1/2)

)
u− v + 1/2 .

Plugging this into (5.37), multiplying by h1(u)−1 on the left, and renaming u↭ v, we get (5.20).
Another proof of (5.20) is based on the expression of h2(u) via the h1-current and a central

current z̃V (u) defined via the following difference equation (cf. (3.22)):

cV (u) = z̃V (u+ 1
2 )̃zV (u) .

Evoking cV (u) = h1(u)h2(u+1)h2(u+3/2)
h1(u+1) , we get6 z̃V (u) = h1(u)h2(u+1)

h1(u+1/2) , so that

h2(u) = z̃V (u− 1)h1(u− 1
2)h1(u− 1)−1 . (5.38)

Combining (5.38) with the relation e12(v)h1(u)−1 = h1(u)−1
(

u−v
u−v+1e12(v) + 1

u−v+1e12(u+ 1)
)

which follows from (5.31), and evoking (5.29), we obtain:

e12(v)h2(u) = z̃V (u− 1)h1(u− 1
2)
(
u− v + 1/2
u− v − 1/2e12(v) − 1

u− v − 1/2e12(u− 1
2)
)
h1(u− 1)−1 =

h2(u)
((u− v + 1/2)(u− v − 1)

(u− v)(u− v − 1/2) e12(v) + 1
u− v − 1/2e12(u− 1

2) − 1
u− v

e12(u)
)
. (5.39)

Subtracting h2(u)e12(v) from both sides of (5.39), we obtain the desired relation (5.20), due to
the equality (u−v+1/2)(u−v−1)

(u−v)(u−v−1/2) − 1 = 1
u−v − 1

u−v−1/2 .
We note that (5.21) follows directly by applying the anti-automorphism τ of Xrtt(osp(1|2))

given by (3.11) to the relation (5.20) and using the formulas (3.38).

Let us prove (5.23). Applying the defining relation (3.9) to [t12(u), t12(v)], we get:

t12(u)t12(v) + t12(v)t12(u) + 1
u− v

(
t12(u)t12(v) − t12(v)t12(u)

)
−

1
u− v + 3/2

(
t11(v)t13(u) − t12(v)t12(u) − t13(v)t11(u)

)
= 0 . (5.40)

Using (5.29) let us pull both h1(u) and h1(v) to the leftmost part in all terms but t13(v)t11(u):

t12(u)t12(v) = h1(u)h1(v)
(
u− v − 1
u− v

e12(u)e12(v) + 1
u− v

e12(v)2
)
,

t12(v)t12(u) = h1(u)h1(v)
(
u− v + 1
u− v

e12(v)e12(u) − 1
u− v

e12(u)2
)
,

t11(v)t13(u) = h1(u)h1(v)e13(u) , t11(u)t13(v) = h1(u)h1(v)e13(v) .

To treat the remaining summand t13(v)t11(u) in (5.40), we recall the defining relation

[t11(u), t13(v)] = −1
u− v

(
t11(u)t13(v) − t11(v)t13(u)

)
+

1
u− v + 3/2

(
t11(v)t13(u) − t12(v)t12(u) − t13(v)t11(u)

)
. (5.41)

6In fact, the difference equation defining z̃V (u) is specifically engineered to allow for such an expression.
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Rearranging the terms in (5.41), we obtain:

1
u− v + 3/2 t13(v)t11(u) = − 2u− 2v + 3/2

(u− v)(u− v + 1/2)(u− v + 3/2) t11(v)t13(u) +

u− v + 1
(u− v)(u− v + 1/2) t11(u)t13(v) + 1

(u− v + 1/2)(u− v + 3/2) t12(v)t12(u) . (5.42)

Thus, using the equality (5.42) for the last term in the right-hand side of (5.40), then pulling
both h1(u) and h1(v) to the leftmost part as outlined above, and finally multiplying further by
h1(u)−1h1(v)−1 on the left, we get:

u− v + 1
u− v

(
u− v − 1
u− v

e12(u)e12(v) + 1
u− v

e12(v)2
)

+(
u− v + 3/2
u− v + 1/2 − 1

u− v

)(
u− v + 1
u− v

e12(v)e12(u) − 1
u− v

e12(u)2
)

+

u− v + 1
(u− v)(u− v + 1/2)e13(v) − u− v + 1

(u− v)(u− v + 1/2)e13(u) = 0 . (5.43)

Note that u−v+3/2
u−v+1/2 − 1

u−v = (u−v+1)(u−v−1/2)
(u−v)(u−v+1/2) . Therefore, multiplying (5.43) by (u−v)2(u−v+1/2)

u−v+1 , we
obtain an equivalent relation:

(u−v+1/2)(u−v−1)e12(u)e12(v)+(u−v+1/2)e12(v)2 +(u−v+1)(u−v−1/2)e12(v)e12(u)−
(u− v − 1/2)e12(u)2 + (u− v)e13(v) − (u− v)e13(u) = 0 . (5.44)

Rearranging the terms in (5.44) and multiplying by 1
(u−v)2 , we recover the desired relation (5.23).

We note that (5.24) follows directly by applying the anti-automorphism τ of Xrtt(osp(1|2))
given by (3.11) to the relation (5.23) and using the formulas (3.38).

Let us finally prove (5.25). Applying the defining relation (3.9) to [t12(u), t13(v)], we get:
(u− v + 1)h1(u)e12(u)h1(v)e13(v) − h1(v)e12(v)h1(u)e13(u) − (u− v)h1(v)e13(v)h1(u)e12(u) = 0 .

(5.45)
Using (5.29), let us pull both h1(u) and h1(v) to the leftmost part in the first two terms:

e12(u)h1(v) = h1(v)
(
u− v − 1
u− v

e12(u) + 1
u− v

e12(v)
)
,

e12(v)h1(u) = h1(u)
(
u− v + 1
u− v

e12(v) − 1
u− v

e12(u)
)
.

On the other hand, h1(v)e13(v)h1(u) = t13(v)t11(u) has been already evaluated in (5.42) above.
Thus, first using the equality (5.42) for the last term in (5.45), then pulling both h1(u), h1(v) to
the leftmost part as outlined above, and finally multiplying by h1(u)−1h1(v)−1 on the left, we get:

(u− v + 1)(u− v − 1)
u− v

e12(u)e13(v) + u− v + 1
u− v

e12(v)e13(v) − u− v + 1
u− v

e12(v)e13(u) +

1
u− v

e12(u)e13(u) − (u− v + 1)(u− v + 3/2)
u− v + 1/2 e13(v)e12(u) + 2u− 2v + 3/2

u− v + 1/2 e13(u)e12(u) −

u− v + 1
u− v + 1/2e12(v)e12(u)2 + 1

u− v + 1/2e12(u)3 = 0 . (5.46)

Plugging v = u+ 1 into (5.46), we obtain:
e12(u)e13(u) = e13(u)e12(u) − 2e12(u)3 . (5.47)

Therefore, replacing e12(u)e13(u) in (5.46) with the right-hand side of (5.47) and multiplying
further by (u−v)(u−v+1/2)

u−v+1 , we get the desired relation (5.25).
We note that (5.26) follows directly by applying the anti-automorphism τ of Xrtt(osp(1|2))

given by (3.11) to the relation (5.25) and using the formulas (3.38).
This completes our proof of Proposition 5.17. □
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Remark 5.48. Evaluating the u1-coefficients in the relations (5.25) and (5.26), we obtain:

[e13(v), e(1)
12 ] − e12(v)e13(v) = 0 , [f31(v), f (1)

21 ] + f31(v)f21(v) = 0 .
Plugging above the formulas for e13(v) and f31(v) from (5.27), we obtain the following cubic
relations for the currents e12(v) and f21(v), cf. [ACFR, (3.7, 3.8)]:

e12(v)3 = [e12(v), (e(1)
12 )2] − [e12(v), e(1)

12 ]e12(v) ,

f21(v)3 = −[f21(v), (f (1)
21 )2] − f21(v)[f21(v), f (1)

21 ] .
(5.49)

Remark 5.50. We note that the cubic relations (5.25, 5.26) differ slightly from [MR, (4.9, 4.10)],
which is not surprising as one can add linear multiples of the quadratic relations (5.23, 5.24).
However, the key feature of both choices is that at the associated graded algebra level they yield:

[ẽ(r)
12 , ẽ

(s)
13 ] = 0 , [f̃ (r)

21 , f̃
(s)
31 ] = 0 for any r, s ≥ 1 . (5.51)

Indeed, evaluating u−kv−ℓ-coefficients in (5.25) and passing to their associated graded, we get:

[ẽ(k+2)
12 , ẽ

(ℓ)
13 ] − 2[ẽ(k+1)

12 , ẽ
(ℓ+1)
13 ] + [ẽ(k)

12 , ẽ
(ℓ+2)
13 ] = 0 for any k, ℓ ∈ Z , (5.52)

with ẽ(≤0)
•• = 0. In particular, we get [ẽ(k)

12 , ẽ
(1)
13 ] = 0 (by plugging ℓ = −1 into (5.52)), [ẽ(k)

12 , ẽ
(2)
13 ] = 0

(by plugging ℓ = 0 into (5.52)), and then we get the first equality of (5.51) by induction on s.

Remark 5.53. We note that the Z2-grading of V in [ACFR] is |v1| = 0̄, |v2| = 1̄, |v3| = 0̄, which is
opposite to ours, and as a result their R-matrix of [ACFR, (2.4)] slightly differs from ours (besides
for the common prefactor). The main isomorphism ϕ : A+ ∼−→ Y(R) of [ACFR, Theorem 3.1]
between the (new) Drinfeld and RTT realizations of the super Yangian of osp(1|2) is best restated
using the opposite Gauss decomposition of the generator matrix T (u) (denoted by L(u) in loc. cit.):

ϕ : e(u) 7→ ê23(−u) , f(u) 7→ f̂32(−u) , h(u) 7→ ĥ2(−u− 1)ĥ3(−u− 1)−1 .

Here, the opposite Gauss decomposition of T (u) refers to the unique factorization

T (u) = Ê(u) · Ĥ(u) · F̂ (u) (5.54)
with

– an upper-triangular matrix Ê(u) = (êij(u)) with êii(u) = 1,
– a diagonal matrix Ĥ(u) = diag(ĥ1(u), . . . , ĥ1′(u)),
– a lower-triangular matrix F̂ (u) = (f̂ji(u)) with f̂ii(u) = 1.

One may wonder how the two Gauss decompositions are related, and if the defining relations for our
conventions (3.35) imply those for the generating series in the opposite Gauss decomposition (5.54).
In fact, the composition of the anti-automorphism τ from Remark 3.10 and the antipode anti-
automorphism S give by S(T (u)) = T (u)−1 gives rise to an algebra automorphism of Xrtt(osp(V ))
that intertwines our Gauss decomposition and the opposite one. Therefore, it is just a matter of
preference which one to use, and we follow the previous literature [BK,JLM,Mo] on the subject.

5.2. Rank 2 cases.
In this subsection, we establish quadratic relations for rank 2 orthosymplectic Yangians which do

not follow from Corollaries 3.89, 3.91 and from rank 1 cases treated in Subsection 5.1 above. There
are eight cases that we consider separately: (N = 4,m = 0), (N = 0,m = 2), (N = 2,m = 1) with
the parity sequence ΥV = (1̄, 0̄) or ΥV = (0̄, 1̄), (N = 5,m = 0), (N = 1,m = 2), (N = 3,m = 1)
with the parity sequence ΥV = (1̄, 0̄) or ΥV = (0̄, 1̄). We note that the first, second, and fifth
cases were already treated in [JLM], while the the sixth case was treated very recently in [MR].

5.2.1. Relations for osp(4|0) case.
In this case, we have Xrtt(osp(V )) ≃ Xrtt(so4) by Remark 3.25. Some of the relations among

the generating currents e12(u), e13(u), f21(u), f31(u), h1(u), h2(u), h3(u) already follow from those
for Y rtt(gl2), as specified in Corollaries 3.89 and 3.91. On the other hand, we also have

e23(u) = 0 = f32(u) , (5.55)
due to Theorem 3.47 and Proposition 5.1.
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Proposition 5.56. The following relations hold in Xrtt(osp(4|0)):

[h3(u), e12(v)] =
h3(u)

(
e12(v) − e12(u)

)
u− v

, [h3(u), f21(v)] =
(
f21(u) − f21(v)

)
h3(u)

u− v
, (5.57)

[h2(u), e13(v)] =
h2(u)

(
e13(v) − e13(u)

)
u− v

, [h2(u), f31(v)] =
(
f31(u) − f31(v)

)
h2(u)

u− v
, (5.58)

[e12(u), f31(v)] = 0 , [e13(u), f21(v)] = 0 , (5.59)
[e12(u), e13(v)] = 0 , [f21(u), f31(v)] = 0 . (5.60)

This result was established in [JLM] using the embedding Xrtt(so4) ↪→ Y rtt(gl2) ⊗ Y rtt(gl2)
of [AMR]. However, it is instructive to prove these relations directly, which can be done completely
analogously to our proof of Proposition 5.69 below (we leave details to the interested reader).

5.2.2. Relations for osp(0|4) case.
In this case, we have Xrtt(osp(V )) ≃ Xrtt(sp4) by Remark 3.25, with the isomorphism given

by T (u) 7→ T (−u). The relations on the generating currents e12(u), f21(u), h1(u), h2(u) already
follow from those for Y rtt(gl(0|2)) ≃ Y rtt(gl2) as specified in Corollary 3.89. On the other hand,
the relations on the generating currents e23(u), f32(u), h2(u), h3(u) readily follow from those for
Xrtt(osp(V [1])) ≃ Xrtt(osp(0|2)) ≃ Xrtt(sp2) as specified in Proposition 5.4.

Proposition 5.61. The following relations hold in Xrtt(osp(0|4)):
[h1(u), h3(v)] = 0 , (5.62)

[h3(u), e12(v)] = h3(u)(e12(u− 2) − e12(v))
u− v − 2 , [h3(u), f21(v)] = (f21(v) − f21(u− 2))h3(u)

u− v − 2 ,

(5.63)
[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.64)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.65)

[e12(u), e23(v)] = 2
u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
, (5.66)

[f21(u), f32(v)] = 2
u− v

(
f31(v) − f31(u) + f32(v)f21(u) − f32(v)f21(v)

)
. (5.67)

This result goes back to [JLM]. We note however that (5.67) corrects a typo in [JLM, (5.34)].

5.2.3. Relations for osp(2|2) case with the parity sequence (1̄, 0̄).
In this case, we have the generating currents e12(u), e13(u), f21(u), f31(u), h1(u), h2(u), h3(u).

Some of the relations among them already follow from those for Y rtt(gl(1|1)) with the parity
sequence ΥV = ΥV = (1̄, 0̄), as specified in Corollaries 3.89, 3.91. On the other hand, we also have

e23(u) = 0 = f32(u) , (5.68)
due to Theorem 3.47 and Proposition 5.1.

Proposition 5.69. The following relations hold in the corresponding Xrtt(osp(V )):

[h3(u), e12(v)] = h3(u)(e12(v) − e12(u))
u− v

, [h3(u), f21(v)] = (f21(u) − f21(v))h3(u)
u− v

, (5.70)

[h2(u), e13(v)] = h2(u)(e13(v) − e13(u))
u− v

, [h2(u), f31(v)] = (f31(u) − f31(v))h2(u)
u− v

, (5.71)

[e12(u), f31(v)] = 0 , [e13(u), f21(v)] = 0 (5.72)
as well as

[e12(u), e13(v)] = 1
u− v

(
e12(u)e13(v) − e13(v)e12(u)

)
+

1
u− v

(
− e12(u)e13(u) + e13(u)e12(u) + [e13(v), e(1)

12 ] − [e13(u), e(1)
12 ]
)
, (5.73)



40 ROUVEN FRASSEK AND ALEXANDER TSYMBALIUK

[f21(u), f31(v)] = 1
u− v

(
f31(v)f21(u) − f21(u)f31(v)

)
+

1
u− v

(
− f31(u)f21(u) + f21(u)f31(u) + [f (1)

21 , f31(v)] − [f (1)
21 , f31(u)]

)
. (5.74)

Remark 5.75. As a direct consequence of the relations (5.73, 5.74), we obtain more familiar
relations, cf. (3.77, 3.78):

u[e◦
12(u), e13(v)] − v[e12(u), e◦

13(v)] = e12(u)e13(v) − e13(v)e12(u) , (5.76)
u[f◦

21(u), f31(v)] − v[f21(u), f◦
31(v)] = f31(v)f21(u) − f21(u)f31(v) , (5.77)

with the currents e◦
1k(u) =

∑
r≥2 e

(r)
1k u

−r and f◦
k1(u) =

∑
r≥2 f

(r)
k1 u

−r.

Proof. First, as follows from (3.72) and Corollaries 3.82, 3.89, we have the following relations:

e12(v)h1(u) = h1(u)
(
u− v + 1
u− v

e12(v) − 1
u− v

e12(u)
)
,

e12(v)h2(u) = h2(u)
(
u− v + 1
u− v

e12(v) − 1
u− v

e12(u)
)
,

h1(u)e12(v) =
(

u− v

u− v + 1e12(v) + 1
u− v + 1e12(u+ 1)

)
h1(u) ,

h2(u)e12(v) =
(

u− v

u− v + 1e12(v) + 1
u− v + 1e12(u+ 1)

)
h2(u) ,

(5.78)

which allow one to pull h1(u)±1 and h2(u)±1 past e12(v) either to the left or to the right. According
to Corollary 3.91, we get analogous relations with h1(u)⇝ h1(u), h2(u)⇝ h3(u), e12(v)⇝ e13(v).

Let us prove the first relations of (5.70, 5.71). As h3(u) = cV (u− 1)h1(u)h2(u)−1h1(u− 1)−1

by Lemma 4.31, we have:

e12(v)h3(u) = cV (u− 1)h1(u)
(
u− v + 1
u− v

e12(v) − 1
u− v

e12(u)
)
h2(u)−1h1(u− 1)−1 =

cV (u− 1)h1(u)h2(u)−1e12(v)h1(u− 1)−1 = h3(u)
(
u− v − 1
u− v

e12(v) + 1
u− v

e12(u)
)
, (5.79)

where we pull all the h•-currents to the left of e12(v) using (5.78). Subtracting h3(u)e12(v) from
both sides, we get the first relation of (5.70). The proof of the first relation of (5.71) is analogous
with the indices 2 ↔ 3 swapped, in particular, we use h2(u) = cV (u− 1)h1(u)h3(u)−1h1(u− 1)−1.

We note that the second relations of (5.70) and (5.71) follow directly by applying the anti-
automorphism τ given by (3.11) to the corresponding first relations and using the formulas (3.38).

Let us prove (5.72). Applying the defining relation (3.9) to [t13(u), t21(v)], we get:

[t13(u), t21(v)] = 1
u− v

(
t23(u)t11(v) − t23(v)t11(u)

)
. (5.80)

As e23(u) = 0 by (5.68) and h1(u)e13(u) = e13(u + 1)h1(u) by (3.83) and Corollary 3.91, we
actually have t23(u) = f21(u)e13(u+ 1)h1(u). Hence, the relation (5.80) can be written as:

e13(u+ 1)h1(u)f21(v)h1(v) + f21(v)h1(v)e13(u+ 1)h1(u) =
1

u− v
f21(u)e13(u+ 1)h1(u)h1(v) − 1

u− v
f21(v)e13(v + 1)h1(u)h1(v) . (5.81)

Pulling both h1(u) and h1(v) to the right in the left-hand side of (5.81) by using

h1(u)f21(v) =
(
u− v + 1
u− v

f21(v) − 1
u− v

f21(u)
)
h1(u) ,

h1(v)e13(u+ 1) =
(
u− v + 1
u− v

e13(u+ 1) − 1
u− v

e13(v + 1)
)
h1(v) ,

and multiplying further by (u− v)h1(u)−1h1(v)−1 on the right, we obtain

e13(u+ 1)
(
(u− v + 1)f21(v) − f21(u)

)
+ f21(v)

(
(u− v + 1)e13(u+ 1) − e13(v + 1)

)
=

f21(u)e13(u+ 1) − f21(v)e13(v + 1) ,
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which can be further simplified to:
(u− v + 1)[e13(u+ 1), f21(v)] = [e13(u+ 1), f21(u)] . (5.82)

Plugging v = u+1 into (5.82), we get [e13(u+1), f21(u)] = 0 and so (u−v+1)[e13(u+1), f21(v)] = 0.
This implies the second relation of (5.72). Meanwhile, the first relation of (5.72) follows directly
by applying the anti-automorphism τ given by (3.11) to the second relation and using (3.38).

Let us prove (5.73). Applying the defining relation (3.9) to [t12(u), t13(v)], we get:

[t12(u), t13(v)] = −1
u− v

(
t12(u)t13(v) − t12(v)t13(u)

)
+

1
u− v + 1

(
t11(v)t14(u) − t12(v)t13(u) − t13(v)t12(u) − t14(v)t11(u)

)
.

The relation above can be rearranged as:
u− v + 1
u− v

h1(u)e12(u)h1(v)e13(v) − 1
(u− v)(u− v + 1)h1(v)e12(v)h1(u)e13(u) +

u− v + 2
u− v + 1h1(v)e13(v)h1(u)e12(u)− 1

u− v + 1h1(v)h1(u)e14(u)+ 1
u− v + 1h1(v)e14(v)h1(u) = 0 .

Let us first evaluate the last summand above. To this end, evoking the defining relation (3.9)
applied to [t11(u), t14(v)], we obtain:

1
u− v + 1e14(v)h1(u) = u− v + 1

(u− v)2 h1(u)e14(v) − 1
u− v

( 1
u− v

+ 1
u− v + 1

)
h1(u)e14(u) +

1
(u− v)(u− v + 1)e13(v)h1(u)e12(u) + 1

(u− v)(u− v + 1)e12(v)h1(u)e13(u) . (5.83)

Plugging (5.83) into the formula above, let us now pull both h1(u) and h1(v) to the leftmost part
using the following equalities, cf. (5.78):

e13(v)h1(u) = h1(u)(u− v + 1)e13(v) − e13(u)
u− v

, e12(v)h1(u) = h1(u)(u− v + 1)e12(v) − e12(u)
u− v

.

Multiplying further by h1(u)−1h1(v)−1 on the left and rearranging terms, we obtain:

(u− v)2 − 1
(u− v)2 e12(u)e13(v) + (u− v + 1)2

(u− v)2 e13(v)e12(u) + u− v + 1
(u− v)2 e12(v)e13(v) −

u− v + 1
(u− v)2 e13(u)e12(u) + u− v + 1

(u− v)2 e14(v) − u− v + 1
(u− v)2 e14(u) = 0 . (5.84)

Plugging the formula e14(u) = −e12(u)e13(u) − [e13(u), e(1)
12 ] from Lemma 4.1(f) into the last two

summands of (5.84), and multiplying both sides by (u−v)2

u−v+1 , we obtain precisely the relation (5.73).
We note that the relation (5.74) follows directly by applying the anti-automorphism τ given

by (3.11) to the relation (5.73) and using the formulas (3.38).
This completes our proof of Proposition 5.69. □

5.2.4. Relations for osp(2|2) case with the parity sequence (0̄, 1̄).
The relations on the generating currents e12(u), f21(u), h1(u), h2(u) already follow from those of

Theorem 3.70 for Y rtt(gl(1|1)) with the parity sequence ΥV = ΥV = (0̄, 1̄), due to Corollary 3.89.
On the other hand, the relations on the generating currents e23(u), f32(u), h2(u), h3(u) readily
follow from those for Xrtt(osp(V [1])) ≃ Xrtt(osp(0|2)) ≃ Xrtt(sp2) as specified in Proposition 5.4.

Proposition 5.85. The following relations hold in the corresponding Xrtt(osp(V )):
[h1(u), h3(v)] = 0 , (5.86)

[h3(u), e12(v)] = h3(u)(e12(u− 2) − e12(v))
u− v − 2 , [h3(u), f21(v)] = (f21(v) − f21(u− 2))h3(u)

u− v − 2 ,

(5.87)
[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.88)
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[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.89)

[e12(u), e23(v)] = 2
u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
, (5.90)

[f21(u), f32(v)] = 2
u− v

(
f31(v) − f31(u) + f32(v)f21(u) − f32(v)f21(v)

)
. (5.91)

Proof. The relation (5.86) follows directly from Corollary 3.52. Alternatively, it follows from the
commutativity [h1(u), h1(v)] = [h1(u), h2(v)] = [h2(u), h2(v)] = 0 and the equality of Lemma 4.45:

h3(u) = cV (u− 1)h1(u− 2)h2(u− 2)−1h1(u− 1)−1 . (5.92)
According to (3.72) and Corollaries 3.82, 3.89, we have the following relations:

e12(v)h1(u) = h1(u)
(
u− v − 1
u− v

e12(v) + 1
u− v

e12(u)
)
,

e12(v)h2(u) = h2(u)
(
u− v − 1
u− v

e12(v) + 1
u− v

e12(u)
)
,

h1(u)e12(v) =
(

u− v

u− v − 1e12(v) − 1
u− v − 1e12(u− 1)

)
h1(u) ,

h2(u)e12(v) =
(

u− v

u− v − 1e12(v) − 1
u− v − 1e12(u− 1)

)
h2(u) ,

(5.93)

which allow one to pull currents h1(u)±1 and h2(u)±1 past e12(v) either to the left or to the right.
In particular, evoking (5.92), we obtain:

e12(v)h3(u) = cV (u− 1)e12(v)h1(u− 2)h2(u− 2)−1h1(u− 1)−1 =

cV (u− 1)h1(u− 2)
(
u− v − 3
u− v − 2e12(v) + 1

u− v − 2e12(u− 2)
)
h2(u− 2)−1h1(u− 1)−1 =

cV (u−1)h1(u−2)h2(u−2)−1e12(v)h1(u−1)−1 = h3(u)
(
u− v − 1
u− v − 2e12(v) − 1

u− v − 2e12(u− 2)
)
,

where we pull all the h•-currents to the left of e12(v) using (5.93). Subtracting h3(u)e12(v) from
both sides of the equality above, we get the first relation of (5.87).

We note that the second relation of (5.87) follows directly by applying the anti-automorphism
τ of Xrtt(osp(V )) given by (3.11) to the first relation of (5.87) and using the formulas (3.38).

The relations (5.88) follow immediately from Corollary 3.52. Alternatively, to prove the first
relation of (5.88), one can rewrite the defining relation (3.9) for [t11(u), t23(v)] in the form

h2(v)[h1(u), e23(v)] = f21(v)h1(v)e13(v)h1(u) − h1(u)f21(v)h1(v)e13(v) +
1

u− v

(
f21(u)h1(u)h1(v)e13(v) − f21(v)h1(v)h1(u)e13(u)

)
,

and then pull all the h•-currents in the right-hand side to the right to deduce [h1(u), e23(v)] = 0.
The shortest proof of (5.89) is based on Lemma 3.55. To this end, let us consider the corre-

sponding relation (3.56) for ℓ = 1 and k = 2, i = 3, j = 2:

[e12(u), t[1]
32(v)] = −1

u− v
t
[1]
32(v)

(
e12(v) − e12(u)

)
. (5.94)

As t[1]
32(v) = f32(v)h2(v), we have [e12(u), t[1]

32(v)] = [e12(u), f32(v)]h2(v)+f32(v)[e12(u), h2(v)]. Com-
bining this with [e12(u), h2(v)] = 1

u−vh2(v)(e12(u) − e12(v)), due to (3.72) and Corollary 3.89, we
immediately obtain the commutativity [e12(u), f32(v)] = 0. Applying further the anti-automorphism
τ of Xrtt(osp(V )) given by (3.11), we also obtain [e23(v), f21(u)] = 0, due to the formulas (3.38).

Let us finally prove (5.90). Applying the defining relation (3.9) to [t12(u), t23(v)], we get:

[t12(u), t23(v)] = −1
u− v

(
t22(u)t13(v) − t22(v)t13(u)

)
+

1
u− v + 1

(
t24(v)t11(u) − t23(v)t12(u) + t22(v)t13(u) + t21(v)t14(u)

)
. (5.95)
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As [h1(u), h2(v)] = 0 = [h1(u), e23(v)], the left-hand side of (5.95) can be expressed as follows:

[t12(u), t23(v)] = h1(u)[e12(u), h2(v)e23(v)] +
[h1(u)e12(u), f21(v)h1(v)]e13(v) − f21(v)h1(v)[h1(u)e12(u), e13(v)] . (5.96)

The second summand in the right-hand side of (5.96) can be simplified using (3.9):

[h1(u)e12(u), f21(v)h1(v)] = [t12(u), t21(v)] = −1
u− v

(
t22(u)t11(v) − t22(v)t11(u)

)
=

− h2(u)h1(v) + f21(u)h1(u)e12(u)h1(v) − h2(v)h1(u) − f21(v)h1(v)e12(v)h1(u)
u− v

. (5.97)

Likewise, the third summand in the right-hand side of (5.96) can also be simplified using (3.9):

[h1(u)e12(u), e13(v)] = [t12(u), t11(v)−1t13(v)] =
− t11(v)−1[t12(u), t11(v)]t11(v)−1t13(v) + t11(v)−1[t12(u), t13(v)] =

− 1
u− v

h1(v)−1
(
t12(u)t11(v) − t12(v)t11(u)

)
e13(v) + 1

u− v
h1(v)−1

(
t12(u)t13(v) − t12(v)t13(u)

)
−

1
u− v + 1h1(v)−1

(
t14(v)t11(u) − t13(v)t12(u) + t12(v)t13(u) + t11(v)t14(u)

)
. (5.98)

Expressing all the t••-currents in terms of the Gauss coordinates in the right-hand side of (5.98)
and plugging the resulting formula together with (5.97) into (5.96), we obtain:

[t12(u), t23(v)] = h1(u)h2(v)[e12(u), e23(v)] + 1
u− v

h1(u)h2(v)
(
e12(u)e23(v) − e12(v)e23(v)

)
+(

h2(v)h1(u) − h2(u)h1(v) − f21(u)h1(u)e12(u)h1(v)
)
e13(v) + f21(v)h1(v)e12(v)h1(u)e13(u)

u− v
+

f21(v)h1(v)
(
e14(v)h1(u) − e13(v)h1(u)e12(u) + e12(v)h1(u)e13(u) + h1(u)e14(u)

)
u− v + 1 . (5.99)

Next, expressing all the t••-currents in the right-hand side of (5.95) via the Gauss coordinates,
and canceling common terms with those that appear in (5.99), we obtain:

h1(u)h2(v)[e12(u), e23(v)] = 1
u− v

h1(u)h2(v)
(
e13(u) − e13(v) + e12(v)e23(v) − e12(u)e23(v)

)
+

1
u− v + 1h2(v)

(
e24(v)h1(u) − e23(v)h1(u)e12(u) + h1(u)e13(u)

)
. (5.100)

Multiplying (5.100) by h1(u)−1h2(v)−1 on the left and evoking [h1(u), e23(v)] = 0, we get:

[e12(u), e23(v)] = 1
u− v

(
e13(u) − e13(v) + e12(v)e23(v) − e12(u)e23(v)

)
+

1
u− v + 1

(
h1(u)−1e24(v)h1(u) − e23(v)e12(u) + e13(u)

)
. (5.101)

It thus remains to evaluate the summand h1(u)−1e24(v)h1(u) from the right-hand side of (5.101).
To this end, let us consider the defining relation (3.9) for [t11(u), t24(v)]:

[t11(u), t24(v)] = 1
u− v

(
t21(u)t14(v) − t21(v)t14(u)

)
+

1
u− v + 1

(
t24(v)t11(u) − t23(v)t12(u) + t22(v)t13(u) + t21(v)t14(u)

)
. (5.102)

The left-hand side of (5.102) can be expanded as follows:

[t11(u), t24(v)] = h2(v)[h1(u), e24(v)] + [h1(u), f21(v)]h1(v)e14(v) + f21(v)[h1(u), h1(v)e14(v)] .
(5.103)
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Evoking the equality [h1(u), f21(v)] = 1
u−v

(
f21(u) − f21(v)

)
h1(u), due to (3.73) and Corollary 3.89,

applying further the defining relation (3.9) to

[h1(u), h1(v)e14(v)] = [t11(u), t14(v)] = 1
u− v

(
t11(u)t14(v) − t11(v)t14(u)

)
+

1
u− v + 1

(
t14(v)t11(u) − t13(v)t12(u) + t12(v)t13(u) + t11(v)t14(u)

)
,

and rearranging the terms, we obtain:

[t11(u), t24(v)] = h2(v)[h1(u), e24(v)] + f21(u)h1(u)h1(v)e14(v) − f21(v)h1(v)h1(u)e14(u)
u− v

+

f21(v)h1(v)
(
e14(v)h1(u) − e13(v)h1(u)e12(u) + e12(v)h1(u)e13(u) + h1(u)e14(u)

)
u− v + 1 .

Comparing this with the right-hand side of (5.102), where all the t••-currents are expanded via
the Gauss coordinates, and canceling common terms, we get:

[h1(u), e24(v)] = 1
u− v + 1

(
e24(v)h1(u) − e23(v)h1(u)e12(u) + h1(u)e13(u)

)
. (5.104)

The equality (5.104) is equivalent to:

h1(u)−1e24(v)h1(u) = u− v + 1
u− v + 2e24(v) + 1

u− v + 2e23(v)e12(u) − 1
u− v + 2e13(u) . (5.105)

Plugging this formula back into (5.101), we obtain:

[e12(u), e23(v)] = 1
u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
+

1
u− v + 2

(
e24(v) − e23(v)e12(u) + e13(u)

)
. (5.106)

Multiplying both sides of (5.106) by u−v+2
u−v+1 and rearranging terms, we get:

[e12(u), e23(v)] = 2
u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
+

1
u− v + 1

(
e13(v) − e12(v)e23(v) + e24(v)

)
. (5.107)

Multiplying both sides of (5.107) by u− v + 1 and setting u = v − 1 afterwards, we find
e13(v) − e12(v)e23(v) + e24(v) = 0 . (5.108)

Thus, plugging (5.108) into the equality (5.107), we obtain precisely the desired relation (5.90).
We note that the relation (5.91) follows directly by applying the anti-automorphism τ of

Xrtt(osp(V )) given by (3.11) to (5.90) and using the formulas (3.38).
This completes our proof of Proposition 5.85. □

5.2.5. Relations for osp(5|0) case.
In this case, we have Xrtt(osp(V )) ≃ Xrtt(so5) by Remark 3.25. The relations on the generating

currents e12(u), f21(u), h1(u), h2(u) already follow from those for Y rtt(gl2) from Theorem 3.70,
due to Corollary 3.89. On the other hand, the relations on the currents e23(u), f32(u), h2(u), h3(u)
follow from those for Xrtt(osp(V [1])) ≃ Xrtt(osp(3|0)) ≃ Xrtt(so3) as specified in Proposition 5.5.

Proposition 5.109. The following relations hold in Xrtt(osp(5|0)):
[h1(u), h3(v)] = 0 , (5.110)

[h3(u), e12(v)] = 0 , [h3(u), f21(v)] = 0 , (5.111)
[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.112)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.113)

[e12(u), e23(v)] = 1
u− v

(
e13(v) − e13(u) + e12(u)e23(v) − e12(v)e23(v)

)
, (5.114)
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[f21(u), f32(v)] = 1
u− v

(
f31(u) − f31(v) − f32(v)f21(u) + f32(v)f21(v)

)
. (5.115)

This result goes back to [JLM]. We note however that (5.115) corrects a typo in [JLM, (5.29)].

5.2.6. Relations for osp(3|2) case with the parity sequence (1̄, 0̄).
In this case, the relations on the generating currents e12(u), f21(u), h1(u), h2(u) already follow

from those of Theorem 3.70 for Y rtt(gl(1|1)) with the parity sequence ΥV = ΥV = (1̄, 0̄), due to
Corollary 3.89. On the other hand, the relations on the currents e23(u), f32(u), h2(u), h3(u) readily
follow from those for Xrtt(osp(V [1])) ≃ Xrtt(osp(3|0)) ≃ Xrtt(so3) as specified in Proposition 5.5.

Proposition 5.116. The relations (5.110)–(5.115) hold in Xrtt(osp(V )).

Proof. The relations (5.110)–(5.112) follow directly from Corollary 3.52. The relations (5.113) can
be proved alike (5.89) by using Lemma 3.55. To do so, we consider the corresponding relation

[e12(u), t[1]
32(v)] = 1

u− v
t
[1]
32(v)

(
e12(v) − e12(u)

)
. (5.117)

As t[1]
32(v) = f32(v)h2(v), we have [e12(u), t[1]

32(v)] = [e12(u), f32(v)]h2(v)+f32(v)[e12(u), h2(v)]. Com-
bining this with [e12(u), h2(v)] = 1

u−vh2(v)(e12(v) − e12(u)), due to (3.72) and Corollary 3.89, we
immediately obtain the commutativity [e12(u), f32(v)] = 0. Applying further the anti-automorphism
τ of Xrtt(osp(V )) given by (3.11), we also obtain [e23(v), f21(u)] = 0, due to the formulas (3.38).

The relations (5.114, 5.115) can be established similarly to (5.113). To this end, let us consider
the corresponding relation (3.56) for ℓ = 1 and k = 2, i = 2, j = 3:

[e12(u), t[1]
23(v)] = 1

u− v
t
[1]
22(v)

(
e13(v) − e13(u)

)
. (5.118)

As t[1]
23(v) = h2(v)e23(v), we have [e12(u), t[1]

23(v)] = [e12(u), h2(v)]e23(v) + h2(v)[e12(u), e23(v)].
Combining this with t

[1]
22(v) = h2(v) and [e12(u), h2(v)] = 1

u−vh2(v)(e12(v) − e12(u)) from above,
we obtain the desired relation (5.114). Applying the anti-automorphism τ of Xrtt(osp(V )) given
by (3.11) to (5.114), we also obtain (5.115), due to the formulas (3.38).

This completes our proof of Proposition 5.116. □

5.2.7. Relations for osp(1|4) and for osp(3|2) with the parity sequence (0̄, 1̄).
In these cases, the relations on the generating currents e12(u), f21(u), h1(u), h2(u) already follow

from those of Theorem 3.70 for Y rtt(gl(V)) with the parity sequence ΥV = ΥV being (0̄, 1̄) or (1̄, 1̄),
due to Corollary 3.89. On the other hand, the relations on the currents e23(u), f32(u), h2(u), h3(u)
readily follow from those for Xrtt(osp(V [1])) ≃ Xrtt(osp(1|2)) as specified in Proposition 5.17.

Proposition 5.119. The following relations hold in Xrtt(osp(V )):

[h1(u), h3(v)] = 0 , (5.120)

[h3(u), e12(v)] = 0 , [h3(u), f21(v)] = 0 , (5.121)

[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.122)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.123)

[e12(u), e23(v)] = 1
u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
, (5.124)

[f21(u), f32(v)] = 1
u− v

(
f31(v) − f31(u) + f32(v)f21(u) − f32(v)f21(v)

)
. (5.125)

Additionally, we also have the following relations:

[e(1)
12 , e24(v)] = −e14(v)−e14(v− 3

2)+e12(v)e24(v)+e24(v)e12(v− 3
2)−(−1)1e23(v)e13(v− 3

2) , (5.126)

[f (1)
21 , f42(v)] = f41(v) + f41(v − 3

2) − f42(v)f21(v) − f21(v − 3
2)f42(v) − f31(v − 3

2)f32(v) . (5.127)
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Proof. The proof of (5.120)–(5.125) is completely analogous to that of Proposition 5.116; we leave
details to the interested reader.

Let us now prove (5.126, 5.127). To this end, we start with the equality from Lemma 4.27(e):

e25(v) = (−1)1
(
e14(v) − e12(v)e24(v) − [e24(v), e(1)

12 ]
)
.

We can rewrite it in the form:

[e(1)
12 , e24(v)] = −e14(v) + e12(v)e24(v) + (−1)1e25(v) . (5.128)

Thus, it remains to re-express e25(v). To do so, we recall the equality T t(v+κ) = T (v)−1cV (v+κ)
of (4.4). In particular, comparing the (4, 5) matrix coefficients, we obtained Lemma 4.27(b):

e12(v − 3
2) = (−1)1e45(v) ,

cf. our proof of Lemma 4.1(d). Here, we used the equality h1(v + κ) = h5(v)−1cV (v + κ) of (4.5),
the equality (3.83), and finally the identity

κ− (−1)1 = −3
2 .

Likewise, comparing the (3, 5) matrix coefficients, we obtain:

e13(v − 3
2) = (E(v)−1)35 = e34(v)e45(v) − e35(v) ,

cf. our proof of Lemma 4.1(i). Finally, comparing the (2, 5) matrix coefficients, we obtain:

(−1)1e14(v − 3
2) = (E(v)−1)25 = −

(
e25(v) − e24(v)e45(v) − e23(v)e35(v) + e23(v)e34(v)e45(v)

)
.

Combining the above formulas for e14(v − 3
2), e13(v − 3

2), and e12(v − 3
2), we obtain:

(−1)1e25(v) = −e14(v − 3
2) + e24(v)e12(v − 3

2) − (−1)1e23(v)e13(v − 3
2) . (5.129)

Plugging the right-hand side of (5.129) instead of (−1)1e25(v) in (5.128), we obtain precisely (5.126).
Applying the anti-automorphism τ of Xrtt(osp(V )) given by (3.11) to (5.126), we also ob-

tain (5.127), due to the formulas (3.38). □

6. Drinfeld orthosymplectic Yangians

In this section, we introduce the Drinfeld (extended) orthosymplectic Yangians of osp(V ) and
identify them with their RTT counterparts from Section 3.

6.1. Drinfeld extended orthosymplectic super Yangian.
We fix N,m, and V as in Subsection 2.1. Let n = ⌊N/2⌋, so that N = 2n or N = 2n+ 1, and

recall the notation i of (2.3). We define the Drinfeld extended Yangian of osp(V ), denoted by
X(osp(V )), to be the associative C-superalgebra generated by {ei,r, fi,r}r≥1

1≤i≤n+m∪{hı,r}r≥1
1≤ı≤n+m+1

with the Z2-grading given by
|ei,r| = |fi,r| = i+ i+ 1 , |hı,r| = 0̄ ∀ i < n+m, ı ≤ n+m+ 1 , r ≥ 1 ,

|en+m,r| = |fn+m,r| =
{
n+m− 1 + n+m if N = 2n , n+m = 0̄
n+m+ n+m+ 1 otherwise

,

and subject to the defining relations (6.1)–(6.32). To state the relations, form the generating series:

ei(u) =
∑
r≥1

ei,ru
−r , fi(u) =

∑
r≥1

fi,ru
−r , hı(u) = 1 +

∑
r≥1

hı,ru
−r

for all 1 ≤ i ≤ n+m and 1 ≤ ı ≤ n+m+ 1, as well as

e◦
i (u) =

∑
r≥2

ei,ru
−r , f◦

i (u) =
∑
r≥2

fi,ru
−r ,

ki(u) =
{
hn+m−1(u)−1hn+m+1(u) if N = 2n, n+m = 0̄, i = n+m

hi(u)−1hi+1(u) otherwise, with 1 ≤ i ≤ n+m
.
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Recall the basis e∗
i of h∗ (dual to the basis {Fii}n+m

i=1 of the Cartan subalgebra h of osp(V ))
from Subsection 2.2, the bilinear form (·, ·) on h∗ determined by (2.11), the specific simple roots
{α1, . . . , αn+m} as specified in Subsection 2.3, and the resulting Cartan matrix A = (aij) of (2.16).
Commutator of hi(u) and hj(v)

[hi(u), hj(v)] = 0 ∀ 1 ≤ i, j ≤ n+m+ 1 . (6.1)

Commutator of ei(u) and fj(v)

[ei(u), fj(v)] = δij(−1)i+12ϱ ki(u) − ki(v)
u− v

∀ 1 ≤ i, j ≤ n+m, (6.2)

where ϱ =
{

1 if N = 2n , n+m = 1̄ , i = n+m

0 otherwise
.

Commutator of hi(u) and ej(v)

[hi(u), ej(v)] = −(e∗
i , αj)hi(u) ej(u) − ej(v)

u− v
∀ 1 ≤ i, j ≤ n+m, (6.3)

[hn+m+1(u), ej(v)] = 0 ∀ 1 ≤ j < n+m− 1 , (6.4)

[hn+m+1(u), en+m−1(v)] =


−hn+m+1(u) en+m−1(u)−en+m−1(v)

u−v if N = 2n , n+m = 0̄
hn+m+1(u) en+m−1(u−2)−en+m−1(v)

u−v−2 if N = 2n , n+m = 1̄
0 if N = 2n+ 1

, (6.5)

[hn+m+1(u), en+m(v)] =



hn+m+1(u) en+m(u)−en+m(v)
u−v if N = 2n , n+m = 0̄

−2hn+m+1(u) en+m(u)−en+m(v)
u−v if N = 2n , n+m = 1̄

hn+m+1(u) en+m(u)−en+m(v)
2(u−v) − en+m(u−1)−en+m(v)

2(u−v−1) hn+m+1(u)
if N = 2n+ 1 , n+m = 0̄

hn+m+1(u)
(

en+m(u)−en+m(v)
u−v − en+m(u−1/2)−en+m(v)

u−v−1/2

)
if N = 2n+ 1 , n+m = 1̄

.

(6.6)
Commutator of hi(u) and fj(v)

[hi(u), fj(v)] = (e∗
i , αj)fj(u) − fj(v)

u− v
hi(u) ∀ 1 ≤ i, j ≤ n+m, (6.7)

[hn+m+1(u), fj(v)] = 0 ∀ 1 ≤ j < n+m− 1 , (6.8)

[hn+m+1(u), fn+m−1(v)] =


fn+m−1(u)−fn+m−1(v)

u−v hn+m+1(u) if N = 2n , n+m = 0̄
−fn+m−1(u−2)−fn+m−1(v)

u−v−2 hn+m+1(u) if N = 2n , n+m = 1̄
0 if N = 2n+ 1

,

(6.9)

[hn+m+1(u), fn+m(v)] =



−fn+m(u)−fn+m(v)
u−v hn+m+1(u) if N = 2n , n+m = 0̄

2 fn+m(u)−fn+m(v)
u−v hn+m+1(u) if N = 2n , n+m = 1̄

−fn+m(u)−fn+m(v)
2(u−v) hn+m+1(u) + hn+m+1(u) fn+m(u−1)−fn+m(v)

2(u−v−1)
if N = 2n+ 1 , n+m = 0̄(

−fn+m(u)−fn+m(v)
u−v + fn+m(u−1/2)−fn+m(v)

u−v−1/2

)
hn+m+1(u)

if N = 2n+ 1 , n+m = 1̄

.

(6.10)
Commutator of ei(u) and ei(v)
Unless N = 2n+ 1, n+m = 1̄, and i = n+m, we impose:

[ei(u), ei(v)] = (αi, αi)
2

(ei(u) − ei(v))2

u− v
. (6.11)
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For the remaining case N = 2n+ 1, n+m = 1̄, and i = n+m, following (5.23, 5.27), we impose:

[en+m(u), en+m(v)] =
e′

n+m(u) − e′
n+m(v)

u− v
+ en+m(u)2 − en+m(v)2

u− v
+

en+m(u)en+m(v) − en+m(v)en+m(u)
2(u− v) − (en+m(u) − en+m(v))2

2(u− v)2 , (6.12)

where we define e′
n+m(u) = −en+m(u)2 − [en+m(u), en+m,1].

Commutator of fi(u) and fi(v)
Unless N = 2n+ 1, n+m = 1̄, and i = n+m, we impose:

[fi(u), fi(v)] = −(αi, αi)
2

(fi(u) − fi(v))2

u− v
. (6.13)

For the remaining case N = 2n+ 1, n+m = 1̄, and i = n+m, following (5.24, 5.27), we impose:

[fn+m(u), fn+m(v)] =
f ′

n+m(v) − f ′
n+m(u)

u− v
+ fn+m(u)2 − fn+m(v)2

u− v
+

fn+m(v)fn+m(u) − fn+m(u)fn+m(v)
2(u− v) − (fn+m(v) − fn+m(u))2

2(u− v)2 , (6.14)

where we define f ′
n+m(u) = fn+m(u)2 + [fn+m(u), fn+m,1].

Commutator of ei(u) and ej(v) for i < j

Unless N = 2n, n+m = 0̄, n+m− 1 = 1̄, and j = i+ 1 = n+m, we impose:
u[e◦

i (u), ej(v)] − v[ei(u), e◦
j (v)] = −(αi, αj)ei(u)ej(v) . (6.15)

For N = 2n, n+m = 0̄, n+m− 1 = 1̄, and j = i+ 1 = n+m, following (5.76) we impose:
u[e◦

n+m−1(u), en+m(v)] − v[en+m−1(u), e◦
n+m(v)] = en+m−1(u)en+m(v) − en+m(v)en+m−1(u) .

(6.16)
Commutator of fi(u) and fj(v) for i < j

Unless N = 2n, n+m = 0̄, n+m− 1 = 1̄, and j = i+ 1 = n+m, we impose:
u[f◦

i (u), fj(v)] − v[fi(u), f◦
j (v)] = (αi, αj)fj(v)fi(u) . (6.17)

For N = 2n, n+m = 0̄, n+m− 1 = 1̄, and j = i+ 1 = n+m, following (5.77) we impose:
u[f◦

n+m−1(u), fn+m(v)] − v[fn+m−1(u), f◦
n+m(v)] = −fn+m−1(u)fn+m(v) + fn+m(v)fn+m−1(u) .

(6.18)
“Additional” relations for N = 2n+ 1 and n+m = 1̄

For N = 2n+ 1 and n+m = 1̄, following (5.126, 5.127), we impose:

[en+m−1,1, e
′
n+m(v)] = −e′′′

n+m(v) − e′′′
n+m(v − 3

2) +

en+m−1(v)e′
n+m(v) + e′

n+m(v)en+m−1(v − 3
2) − (−1)n+m−1en+m(v)e′′

n+m(v − 3
2) , (6.19)

[fn+m−1,1, f
′
n+m(v)] = f ′′′

n+m(v) + f ′′′
n+m(v − 3

2) −
f ′

n+m(v)fn+m−1(v) − fn+m−1(v − 3
2)f ′

n+m(v) − f ′′
n+m(v − 3

2)fn+m(v) , (6.20)
where e′

n+m(u), f ′
n+m(u) are as above, and following Lemmas 4.27(a,b), 4.30(a,b) we also define:

e′′
n+m(v) = −[en+m−1(v), en+m,1] , e′′′

n+m(v) =
[
[en+m−1(v), en+m,1], en+m,1

]
,

f ′′
n+m(v) = −[fn+m,1, fn+m−1(v)] , f ′′′

n+m(v) = −
[
fn+m,1, [fn+m,1, fn+m−1(v)]

]
.

Standard Serre relations
For 1 ≤ i ̸= j ≤ n+m such that aii ̸= 0 or aij = 0, we impose:

(adei,1)1−aij (ej,1) = 0 , (6.21)

(adfi,1)1−aij (fj,1) = 0 . (6.22)
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For 1 ≤ i ≤ n+m such that aii = 0, we impose:
[ei,1, ei,1] = 0 , (6.23)
[fi,1, fi,1] = 0 . (6.24)

Higher order Serre relations of degree 4
For any of the sub-diagrams (2.24)–(2.25), we impose:[

[ej,1, et,1], [et,1, ek,1]
]

= 0 , (6.25)[
[fj,1, ft,1], [ft,1, fk,1]

]
= 0 , (6.26)

cf. (2.26).
Higher order Serre relations of degree 3
For the sub-diagram (2.29) (corresponding to N = 2n, n+m ≥ 3, and ΥV ending 1̄0̄), we impose:[

et,1, [es,1, ei,1]
]

−
[
es,1, [et,1, ei,1]

]
= 0 , (6.27)[

ft,1, [fs,1, fi,1]
]

−
[
fs,1, [ft,1, fi,1]

]
= 0 , (6.28)

cf. (2.30).
Higher order Serre relations of degree 6
For the sub-diagram (2.31) (corresponding to N = 2n, n+m ≥ 3, and ΥV ending 1̄0̄1̄), we impose:[

[ej,1, et,1],
[
[ej,1, et,1], [et,1, ek,1]

]]
= 0 , (6.29)[

[fj,1, ft,1],
[
[fj,1, ft,1], [ft,1, fk,1]

]]
= 0 , (6.30)

cf. (2.32).
Higher order Serre relations of degree 7
For the sub-diagram (2.33) (corresponding to N = 2n, n+m ≥ 4, and ΥV ending 0̄0̄1̄), we impose:[[

ei,1, [ej,1, et,1]
]
,
[
[ej,1, et,1], [et,1, ek,1]

]]
= 0 , (6.31)[[

fi,1, [fj,1, ft,1]
]
,
[
[fj,1, ft,1], [ft,1, fk,1]

]]
= 0 , (6.32)

cf. (2.34).

Recall the generators {e(r)
i , f

(r)
i }r≥1

1≤i≤n+m ∪ {h(r)
ı }r≥1

1≤ı≤n+m+1 of Xrtt(osp(V )), see (3.39). The
following relation between X(osp(V )) and Xrtt(osp(V )) is the main result of the present subsection.

Theorem 6.33. The assignment

ei,r 7→ e
(r)
i , fi,r 7→ f

(r)
i , hı,r 7→ h(r)

ı ∀ i , ı , r (6.34)
gives rise to a superalgebra isomorphism

Υ: X(osp(V )) ∼−→Xrtt(osp(V )) .

Proof. First, we verify that the series ei(u), fi(u), hı(u) satisfy the defining relations (6.1)–(6.32),
so that the assignment (6.34) gives rise to a superalgebra homomorphism

Υ: X(osp(V )) −→ Xrtt(osp(V )) . (6.35)
For 1 ≤ i, j < n+m and 1 ≤ ı ≤ n+m, all these relations follow from Corollary 3.89 combined with
the corresponding super A-type relations of Theorem 3.70. In the remaining cases, the relations
follow from the commutativity of Corollary 3.52 and the rank ≤ 2 relations of Section 5. The
surjectivity of the homomorphism Υ from (6.35) follows from the results of Subsections 4.1–4.3.

To prove the injectivity of (6.35), we follow the classical argument of [BK]. First, we note that
Corollary 3.34 implies in the standard way (see e.g. [Mo, §6]) that the set of ordered monomials in{

h(r)
ı , e

(r)
ij , f

(r)
ji

∣∣ 1 ≤ ı ≤ n+m+ 1 , i < j ≤ i′ − δi,0̄ , r ≥ 1
}
, (6.36)

with the powers of odd generators not exceeding 1, form a basis of Xrtt(osp(V )). We define
the elements {e(r)

ij , f
(r)
ji } with i < j ≤ i′ − δi,0̄ and r ≥ 1 in the algebra X(osp(V )), so that the
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series eij(u) =
∑

r≥1 e
(r)
ij u

−r and fji(u) =
∑

r≥1 f
(r)
ji u

−r are expressed through ei(u), fi(u) as in
Subsections 4.1–4.2. These notations are compatible with those in Xrtt(osp(V )) as we clearly have
Υ(eij(u)) = eij(u) and Υ(fji(u)) = fji(u). Thus, to prove the injectivity of (6.35) it suffices to
show that X(osp(V )) is spanned by the ordered monomials in (6.36), with the powers of odd
generators not exceeding 1.

Let X>(osp(V )) denote the positive subalgebra of X(osp(V )) generated by all {ei,r}. We consider
a filtration on X>(osp(V )) defined via deg ei,r = r−1, cf. (3.27). Likewise, let X≥(osp(V )) denote
the non-negative subalgebra of X(osp(V )) generated by all {ei,r, hı,r}, and consider a filtration on
X≥(osp(V )) defined via deg ei,r = deg hı,r = r− 1. Let grX>(osp(V )), grX≥(osp(V )) denote the
corresponding associated graded algebras. Similarly to Subsection 3.3, let ê(r)

ij := (−1)i e
(r)
ij . We

shall denote the images of ê(r)
ij in grr−1X

>(osp(V )) or grr−1X
≥(osp(V )) simply by ē(r)

ij
7. Let also

h̄
(r)
ı denote the image of hı,r in grr−1X

≥(osp(V )). Finally, we extend ē(r)
ij to all 1 ≤ i < j ≤ 1′ via

ē
(r)
ij = −(−1)i·j+iθiθj ē

(r)
j′i′ , (6.37)

similarly to the relation satisfied by Fij ∈ osp(V ). To establish the aforementioned spanning
property of X>(osp(V )), it suffices to show that ē(r)

ij satisfy the commutation relations alike (2.9):

[ē(r)
ij , ē

(s)
kℓ ] = δkj ē

(r+s−1)
iℓ − δℓi(−1)(i+j)(k+ℓ) ē

(r+s−1)
kj −

δki′(−1)i·j+iθiθj ē
(r+s−1)
j′ℓ + δℓj′(−1)i·k+ℓ·kθi′θj′ ē

(r+s−1)
ki′ . (6.38)

We prove (6.38) by induction on r + s. The base of induction r = s = 1 is trivial as our
relations (6.1)–(6.32) are compatible with the defining relations of osp(V ) ⊕C · c, cf. Theorem 2.20.
The proof of the induction step relies on Lemmas 6.41 and 6.47. First, we define {αij}1≤i<j≤1′ ⊂ h∗:

αij = αj′i′ = e∗
i − e∗

j , αij′ = αji′ = e∗
i + e∗

j ∀ 1 ≤ i < j ≤ n+m,

αi,n+m+1 = αn+m+1,i′ = e∗
i ∀ 1 ≤ i ≤ n+m if N = 2n+ 1 ,

αii′ =
{

2e∗
i if i = 1̄

0 otherwise
.

(6.39)

According to (6.3), we have [hı,2, ej,r] = (e∗
ı , αj) (ej,r+1 + hı,1ej,r), so that

[h̄(2)
ı , ē

(r)
j ] = (e∗

ı , αj)ē(r+1)
j ∀ 1 ≤ ı, j ≤ n+m. (6.40)

This result can be generalized as follows:

Lemma 6.41. For any 1 ≤ i < j ≤ 1′, 1 ≤ ı ≤ n+m, and r ≥ 1, we have

[h̄(2)
ı , ē

(r)
ij ] = (e∗

ı , αij)ē(r+1)
ij . (6.42)

Applying ad
h̄

(2)
ı

to (6.38), we thus obtain:

(e∗
ı , αij)[ē(r+1)

ij , ē
(s)
kℓ ] + (e∗

ı , αkℓ)[ē
(r)
ij , ē

(s+1)
kℓ ] =

δkj(e∗
ı , αij + αkℓ)ē

(r+s)
iℓ − δℓi(e∗

ı , αij + αkℓ)(−1)(i+j)(k+ℓ) ē
(r+s)
kj −

δki′(e∗
ı , αij + αkℓ)(−1)i·j+iθiθj ē

(r+s)
j′ℓ + δℓj′(e∗

ı , αij + αkℓ)(−1)i·k+ℓ·kθi′θj′ ē
(r+s)
ki′ ,

(6.43)

where we used the equalities
δkj(e∗

ı , αiℓ) = δkj(e∗
ı , αij + αkℓ) , δℓi(e∗

ı , αkj) = δℓi(e∗
ı , αij + αkℓ) ,

δki′(e∗
ı , αj′ℓ) = δki′(e∗

ı , αij + αkℓ) , δℓj′(e∗
ı , αki′) = δℓj′(e∗

ı , αij + αkℓ) ,

which follow by comparing h-eigenvalues of all summands in (2.9). Note that if αij ̸= αkℓ, then
we can find 1 ≤ ı ̸= ȷ ≤ n + m such that the matrix

( (e∗
ı ,αij) (e∗

ı ,αkℓ)
(e∗

ȷ ,αij) (e∗
ȷ ,αkℓ)

)
is non-degenerate. Then,

7Instead of a more confusing notation ˜̂e(r)
ij as if using notations from Subsection 3.3.
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combining (6.43) for ı, ȷ, we obtain the desired formulas (6.38) for both commutators [ē(r+1)
ij , ē

(s)
kℓ ]

and [ē(r)
ij , ē

(s+1)
kℓ ], completing the induction step. It thus remains to prove (6.38) for (i, j) = (k, ℓ).

The proof of the latter result as well as the proof of Lemma 6.41 rely on Lemma 6.47. To state
this result, let us first summarize the inductive definition of ē(r)

ij :

ē
(r)
i,j+1 = [ē(r)

ij , ē
(1)
j,j+1] (6.44)

for 1 ≤ i < j ≤ n+m if N = 2n+ 1 or 1 ≤ i < j < n+m if N = 2n,

ē
(r)
i,n+m+1 =

{
[ē(r)

i,n+m−1, ē
(1)
n+m−1,n+m+1] if N = 2n and n+m = 0̄

1
2 [ē(r)

i,n+m, ē
(1)
n+m,n+m+1] if N = 2n and n+m = 1̄

, (6.45)

as well as
ē

(r)
ij′ = (−1)1+j+j·j+1 [ē(r)

i(j+1)′ , ē
(1)
j,j+1] (6.46)

for 1 ≤ i < j ≤ n+m if N = 2n+ 1 or 1 ≤ i < j < n+m if N = 2n, as well as i = j if i = 1̄.

Lemma 6.47. (a) For 1 ≤ i < j ≤ ⌊N−1
2 ⌋ +m and r, s ≥ 1, we have:

ē
(r+s−1)
i,j+1 = [ē(r)

ij , ē
(s)
j,j+1] . (6.48)

(b) For N = 2n and r, s ≥ 1, we have:

ē
(r+s−1)
i,n+m+1 =

{
[ē(r)

i,n+m−1, ē
(s)
n+m−1,n+m+1] if N = 2n and n+m = 0̄

1
2 [ē(r)

i,n+m, ē
(s)
n+m,n+m+1] if N = 2n and n+m = 1̄

. (6.49)

(c) For 1 ≤ i < j ≤ ⌊N−1
2 ⌋ +m as well as i = j if i = 1̄, and r, s ≥ 1, we have:

ē
(r+s−1)
ij′ = (−1)1+j+j·j+1 [ē(r)

i(j+1)′ , ē
(s)
j,j+1] . (6.50)

Proofs of Lemma 6.41 and Lemma 6.47.
We shall prove Lemma 6.47 by induction on i, j, while at the same time also proving Lemma 6.41.

(a) We prove (6.48) by induction on j − i. According to the defining relations (6.15, 6.16), we
have [ē(r+1)

j−1,j , ē
(s)
j,j+1] = [ē(r)

j−1,j , ē
(s+1)
j,j+1 ], establishing the base of induction. As for the induction step:

[ē(r)
ij , ē

(s)
j,j+1] =

[
[ē(r)

i,j−1, ē
(1)
j−1,j ], ē(s)

j,j+1
]

=
[
ē

(r)
i,j−1, [ē

(1)
j−1,j , ē

(s)
j,j+1]

]
=[

ē
(r)
i,j−1, [ē

(s)
j−1,j , ē

(1)
j,j+1]

]
=
[
[ē(r)

i,j−1, ē
(s)
j−1,j ], ē(1)

j,j+1
]

= [ē(r+s−1)
ij , ē

(1)
j,j+1] (6.44)= ē

(r+s−1)
i,j+1 . (6.51)

Here, we used the induction hypothesis in the first, third, and fifth equalities, while the second
and fourth equalities relied on the commutativity [ē(♯)

i,j−1, ē
(♯′)
j,j+1] = 0, which follows from (6.21).

We can now also prove (6.42) for 1 ≤ i < j ≤ ⌊N−1
2 ⌋ +m arguing by induction on j − i:

[h̄(2)
ı , ē

(r)
ij ] (6.44)=

[
h̄(2)

ı , [ē(r)
i,j−1, ē

(1)
j−1,j ]

]
=
[
[h̄(2)

ı , ē
(r)
i,j−1], ē(1)

j−1,j ]
]

+
[
ē

(r)
i,j−1, [h̄

(2)
ı , ē

(1)
j−1,j ]

]
=

(e∗
ı , αi,j−1)[ē(r+1)

i,j−1 , ē
(1)
j−1,j ] + (e∗

ı , αj−1,j)[ē(r)
j−1,j , ē

(2)
j−1,j ] (6.48)= (e∗

ı , αij)ē(r+1)
ij . (6.52)

(b) The proofs of part (b) and of Lemma 6.41 in that case are completely analogous to part (a).

(c) We prove (6.50) by a decreasing induction on j (with an inner decreasing induction on i).
Let us note that once (6.50) is established for specific i, j and any r, s, the validity of (6.42) for
the same i, j and arbitrary r, ı is derived exactly as explained in the proof of (a) above. For the
base of induction, we shall consider the cases N = 2n and N = 2n+ 1 separately.

Case 1: N = 2n and j = n+m− 1.
First, we treat the case i = n+m− 1 with n+m− 1 = 1̄. In this case, (6.50) is equivalent to:

[ē(r)
n+m−1,n+m+1, ē

(s)
n+m−1,n+m] = [ē(r+s−1)

n+m−1,n+m+1, ē
(1)
n+m−1,n+m] . (6.53)
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If n+m = 0̄, then (6.53) follows from (6.16). On the other hand, for n+m = 1̄, we have
ē

(r)
n+m−1,n+m+1 = 1

2 [ē(r)
n+m−1,n+m, ē

(1)
n+m,n+m+1] by (6.45), [ē(♯)

n+m−1,n+m, ē
(♯′)
n+m−1,n+m] = 0 by (6.11).

Therefore, we get:

[ē(r)
n+m−1,n+m+1, ē

(s)
n+m−1,n+m] = 1

2
[
[ē(r)

n+m−1,n+m, ē
(1)
n+m,n+m+1], ē(s)

n+m−1,n+m

]
=

1
2
[
ē

(r)
n+m−1,n+m, [ē

(1)
n+m,n+m+1, ē

(s)
n+m−1,n+m]

] (b)= 1
2
[
ē

(r)
n+m−1,n+m, [ē

(s)
n+m,n+m+1, ē

(1)
n+m−1,n+m]

]
=

1
2
[
[ē(r)

n+m−1,n+m, ē
(s)
n+m,n+m+1], ē(1)

n+m−1,n+m

] (b)= [ē(r+s−1)
n+m−1,n+m+1, ē

(1)
n+m−1,n+m] .

This completes our proof of (6.53).
Next, we treat the case i = n+m−2. There are two cases to consider: n+m = 1̄ and n+m = 0̄.

If n+m = 1̄, then ē
(r)
n+m−2,n+m+1 = 1

2 [ē(r)
n+m−2,n+m, ē

(1)
n+m,n+m+1] and so we have:

[ē(r)
n+m−2,n+m+1, ē

(s)
n+m−1,n+m] = 1

2
[
[ē(r)

n+m−2,n+m, ē
(1)
n+m,n+m+1], ē(s)

n+m−1,n+m

]
=

1
2
[
ē

(r)
n+m−2,n+m, [ē

(1)
n+m,n+m+1, ē

(s)
n+m−1,n+m]

] (b)= 1
2
[
ē

(r)
n+m−2,n+m, [ē

(s)
n+m,n+m+1, ē

(1)
n+m−1,n+m]

]
=

1
2
[
[ē(r)

n+m−2,n+m, ē
(s)
n+m,n+m+1], ē(1)

n+m−1,n+m

] (b)= [ē(r+s−1)
n+m−2,n+m+1, ē

(1)
n+m−1,n+m] (6.46)=

(−1)1+n+m−1+n+m−1·n+m ē
(r+s−1)
n+m−2,n+m+2 ,

where we used an already established [ē(♯)
n+m−2,n+m, ē

(♯′)
n+m−1,n+m] = 0 in the second and fourth

equalities. If n+m = 0̄, then instead we have ē(r)
n+m−2,n+m+1 = [ē(r)

n+m−2,n+m−1, ē
(1)
n+m−1,n+m+1] as

well as [ē(♯)
n+m−1,n+m+1, ē

(♯′)
n+m−1,n+m] = 0, due to (6.21), cf. (6.57). Therefore, we obtain:

[ē(r)
n+m−2,n+m+1, ē

(s)
n+m−1,n+m] =

[
[ē(r)

n+m−2,n+m−1, ē
(1)
n+m−1,n+m+1], ē(s)

n+m−1,n+m

]
=

− (−1)n+m−1(1+n+m−2) [ē(1)
n+m−1,n+m+1, [ē

(r)
n+m−2,n+m−1, ē

(s)
n+m−1,n+m]

] (a)=

− (−1)n+m−1(1+n+m−2) [ē(1)
n+m−1,n+m+1, [ē

(r+s−1)
n+m−2,n+m−1, ē

(1)
n+m−1,n+m]

]
=[

[ē(r+s−1)
n+m−2,n+m−1, ē

(1)
n+m−1,n+m+1], ē(1)

n+m−1,n+m

] (6.46)= (−1)1+n+m−1 ē
(r+s−1)
n+m−2,n+m+2 .

The rest proceeds by a decreasing induction on i (with the base i = n + m − 2 established
above). To this end, we note:

[ē(r)
i,n+m+1, ē

(s)
n+m−1,n+m] =

[
[ē(r)

i,i+1, ē
(1)
i+1,n+m+1], ē(s)

n+m−1,n+m

]
=[

ē
(r)
i,i+1, [ē

(1)
i+1,n+m+1, ē

(s)
n+m−1,n+m]

]
=
[
ē

(r)
i,i+1, [ē

(s)
i+1,n+m+1, ē

(1)
n+m−1,n+m]

]
=[

[ē(r)
i,i+1, ē

(s)
i+1,n+m+1], ē(1)

n+m−1,n+m

]
= [ē(r+s−1)

i,n+m+1, ē
(1)
n+m−1,n+m] (6.46)= (−1)1+n+m−1(1+n+m)ē

(r+s−1)
i,n+m+2 ,

where in the first and fifth equalities we used already established cases of (6.38), while the second
and fourth equalities relied on the commutativity [ē(♯)

i,i+1, ē
(♯′)
n+m−1,n+m] = 0, due to (6.21).

Case 2: N = 2n+ 1 and j = n+m.
The proof is by a decreasing induction on i. We shall only give details for the base of induction

(i = n+m or i = n+m− 1), as the step of induction is identical to the above one for even N .
If i = n+m with n+m = 1̄, then according to (6.12) we get:

[ē(r)
n+m,n+m+1, ē

(s)
n+m,n+m+1] = [ē(r+s−1)

n+m,n+m+1, ē
(1)
n+m,n+m+1] = ē

(r+s−1)
n+m,n+m+2 .

If i = n+m with n+m = 0̄, then [ē(r)
n+m,n+m+1, ē

(s)
n+m,n+m+1] = 0 according to (6.11).
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Let us now treat the case i = n+m− 1. If n+m = 0̄, then [ē(♯)
n+m,n+m+1, ē

(♯′)
n+m,n+m+1] = 0 as

just shown. Therefore:

[ē(r)
n+m−1,n+m+1, ē

(s)
n+m,n+m+1] =

[
[ē(r)

n+m−1,n+m, ē
(1)
n+m,n+m+1], ē(s)

n+m,n+m+1
]

=

−
[
ē

(1)
n+m,n+m+1, [ē

(r)
n+m−1,n+m, ē

(s)
n+m,n+m+1]

] (a)= −[ē(1)
n+m,n+m+1, ē

(r+s−1)
n+m−1,n+m+1] =

[ē(r+s−1)
n+m−1,n+m+1, ē

(1)
n+m,n+m+1] (6.46)= −ē(r+s−1)

n+m−1,n+m+2 .

If n+m = 1̄, then according to (6.46) it suffices to verify:

[e(r)
n+m−1,n+m, e

(s)
n+m,n+m+2] = [e(r+s−1)

n+m−1,n+m, e
(1)
n+m,n+m+2] . (6.54)

To prove the latter, we recall (6.19) which implies [ē(1)
n+m−1,n+m, ē

(s)
n+m,n+m+2] = 2ē(s)

n+m−1,n+m+2
for any s ≥ 1. We also recall that

en+m−1,n+m+2(v) = e′′′
n+m(v) =

[
[en+m−1(v), e(1)

n+m,n+m+1], e(1)
n+m,n+m+1

]
.

Applying the super Jacobi identity to the latter, we find

en+m−1,n+m+2(v) = 1
2
[
en+m−1,n+m(v), [e(1)

n+m,n+m+1, e
(1)
n+m,n+m+1]

]
,

so that ē(s)
n+m−1,n+m+2 = 1

2 [ē(s)
n+m−1,n+m, ē

(1)
n+m,n+m+2]. This establishes (6.54) for r = 1, s ≥ 1.

Commuting this further with h̄(2)
n+m−1 several times, we derive the equality (6.54) for any r, s ≥ 1.

The above completes the base of induction on j. For the step of induction, we argue as follows:

[ē(r)
i(j+1)′ , ē

(s)
j,j+1] = (−1)1+j+1+j+1·j+2 [[ē(r)

i(j+2)′ , ē
(1)
j+1,j+2], ē(s)

j,j+1
]

=

(−1)1+j+1+j+1·j+2 [ē(r)
i(j+2)′ , [ē(1)

j+1,j+2, ē
(s)
j,j+1]

] (a)= (−1)1+j+1+j+1·j+2 [ē(r)
i(j+2)′ , [ē(s)

j+1,j+2, ē
(1)
j,j+1]

]
=

(−1)1+j+1+j+1·j+2 [[ē(r)
i(j+2)′ , ē

(s)
j+1,j+2], ē(1)

j,j+1]
]

= [ē(r+s−1)
i(j+1)′ , ē

(1)
j,j+1] (6.46)= (−1)1+j+j·j+1 ē

(r+s−1)
ij′ .

Here, we used the induction hypothesis in the first and fifth equalities, while the second and fourth
equalities used the commutativity [ē(♯)

i(j+2)′ , ē
(♯′)
j,j+1] = 0, due to already established cases of (6.38).

This completes our proof of part (c). □

It remains to treat the cases (i, j) = (k, ℓ). The case j = n+m+1 for N = 2n+1 has been already
treated in the proof of Lemma 6.47(c) above. Otherwise, we need to show that [ē(r)

ij , ē
(s)
ij ] = 0,

assuming 1 ≤ i < j ≤ i′ − δi,0̄. For j = i+ 1 (as well as for j = i+ 2 = n+m+ 1 when N = 2n
and n+m = 0̄), this commutativity follows from (6.11). Otherwise, let us use already established
cases of (6.38) to write ē(s)

ij = [ē(s)
ik , ē

(1)
kj ] for any i < k < j with k ̸= j′. Then, [ē(r)

ij , ē
(s)
ij ] = 0 follows

from already established equalities [ē(r)
ij , ē

(s)
ik ] = 0, [ē(r)

ij , ē
(1)
kj ] = 0. The only case when such k may

not exist is for N = 2n with i = n+m− 1, j = n+m+ 1, and n+m = 1̄ (as the case n+m = 0̄
has been already treated above). However, ē(s)

n+m−1,n+m+1 = 1
2 [ē(s)

n+m−1,n+m, ē
(1)
n+m,n+m+1] in this

case, and thus the desired commutativity [ē(r)
n+m−1,n+m+1, ē

(s)
n+m−1,n+m+1] = 0 follows from already

established equalities [ē(r)
n+m−1,n+m+1, ē

(1)
n+m,n+m+1] = 0, [ē(r+s−1)

n+m−1,n+m+2, ē
(1)
n+m,n+m+1] = 0.

This completes our proof of the equality (6.38), hence also of Theorem 6.33. □

Remark 6.55. We note that the “additional” relations (6.19, 6.20) were used in the proof of (6.54).

Remark 6.56. While the Serre relations (6.21)–(6.32) are literally the same as those for osp(V ) in
Theorem 2.20, the classical argument allows to deduce more general Serre relations by commuting
the above further with the Cartan series hi(u), cf. [T, Remark 2.61(b)]. Explicitly, we have:
(a) Generalizing (6.21, 6.22), the following relations hold:

Sym
[
ei(u1),

[
ei(u2), · · · , [ei(u1−aij ), ej(v)] · · ·

]]
= 0 , (6.57)
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Sym
[
fi(u1),

[
fi(u2), · · · , [fi(u1−aij ), fj(v)] · · ·

]]
= 0 , (6.58)

where Sym denotes the symmetrization with respect to all permutations of {u1, . . . , u1−aij }.

(b) Generalizing (6.25, 6.26), the following relations hold (cf. (3.81)):[
[ej(u), et(v1)], [et(v2), ek(w)]

]
+
[
[ej(u), et(v2)], [et(v1), ek(w)]

]
= 0 , (6.59)[

[fj(u), ft(v1)], [ft(v2), fk(w)]
]

+
[
[fj(u), ft(v2)], [ft(v1), fk(w)]

]
= 0 . (6.60)

(c) Generalizing (6.27, 6.28), the following relations hold:[
et(u), [es(v), ei(w)]

]
−
[
es(v), [et(u), ei(w)]

]
= 0 , (6.61)[

ft(u), [fs(v), fi(w)]
]

−
[
fs(v), [ft(u), fi(w)]

]
= 0 . (6.62)

(d) Generalizing (6.29, 6.30), the following relations hold:

Sym
[
[ej(u1), et(v1)],

[
[ej(u2), et(v2)], [et(v3), ek(w)]

]]
= 0 , (6.63)

Sym
[
[fj(u1), ft(v1)],

[
[fj(u2), ft(v2)], [ft(v3), fk(w)]

]]
= 0 , (6.64)

where Sym denotes the symmetrization with respect to all permutations of {u1, u2}, {v1, v2, v3}.
(e) Generalizing (6.31, 6.32), the following relations hold:

Sym
[[
ei(z), [ej(u1), et(v1)]

]
,
[
[ej(u2), et(v2)], [et(v3), ek(w)]

]]
= 0 , (6.65)

Sym
[[
fi(z), [fj(u1), ft(v1)]

]
,
[
[fj(u2), ft(v2)], [ft(v3), fk(w)]

]]
= 0 , (6.66)

where Sym denotes the symmetrization with respect to all permutations of {u1, u2}, {v1, v2, v3}.

Remark 6.67. We note that we presently derived (6.59, 6.60) from their simplest cases (6.25, 6.26),
unlike the super A-type of [T] where we rather derived the former from the more general relations[

[ej,r+1, et,1], [et,1, ek,s+1]
]

= 0 =
[
[fj,r+1, ft,1], [ft,1, fk,s+1]

]
∀ r, s ≥ 0 . (6.68)

In fact, the only reason we used this more general form (6.68) in [T] instead of just (6.25, 6.26) is
to treat the special case of gl(2|2) with the parity sequence (0̄, 0̄, 1̄, 1̄) or (1̄, 1̄, 0̄, 0̄).

6.2. Drinfeld orthosymplectic super Yangian.
Following the above notations, we define the Drinfeld Yangian of osp(V ), denoted by Y (osp(V )),

to be the associative C-superalgebra generated by {x±
i,r, ki,r}r≥0

1≤i≤n+m with the Z2-grading given by

|x±
i,r| = i+ i+ 1 , |kı,r| = 0̄ ∀ i < n+m, ı ≤ n+m, r ≥ 0 ,

|x±
n+m,r| =

{
n+m− 1 + n+m if N = 2n , n+m = 0̄
n+m+ n+m+ 1 otherwise

,

and subject to the defining relations (6.70)–(6.85). To state the relations, form the generating series:

x±
i (u) =

∑
r≥0

x±
i,ru

−r−1 , ki(u) = 1 +
∑
r≥0

ki,ru
−r−1 . (6.69)

We also recall the symmetrized Cartan matrix B = (bij) of (2.14) with bij = (αi, αj) and the
Cartan matrix A = (aij) of (2.16). The defining relations of Y (osp(V )) are as follows:

[ki,r, kj,s] = 0 ∀ 1 ≤ i, j ≤ n+m, r, s ≥ 0 , (6.70)

[x+
i,r, x

−
j,s] = δijki,r+s ∀ 1 ≤ i, j ≤ n+m, r, s ≥ 0 , (6.71)

[ki,0, x±
j,s] = ±bij x±

j,s ∀ 1 ≤ i, j ≤ n+m, s ≥ 0 , (6.72)

[ki,r+1, x±
j,s] − [ki,r, x±

j,s+1] = ±bij

2 {ki,r, x±
j,s} unless i = j and |αi| = 1̄ , (6.73)

[ki,r, x±
i,s] = 0 for |αi| = 1̄ unless N = 2n+ 1, n+m = 1̄, i = n+m, (6.74)
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and in the latter case of N = 2n+ 1, n+m = 1̄, i = n+m, we rather impose:

[kn+m(u), x−
n+m(v)] = −kn+m(u)

(
1
3

x−
n+m(u− 1/2) − x−

n+m(v)
u− v − 1/2 + 2

3
x−

n+m(u+ 1) − x−
n+m(v)

u− v + 1

)
,

[kn+m(u), x+
n+m(v)] =

(
1
3

x+
n+m(u− 1/2) − x+

n+m(v)
u− v − 1/2 + 2

3
x+

n+m(u+ 1) − x+
n+m(v)

u− v + 1

)
kn+m(u) ,

(6.75)

[x±
i,r+1, x

±
j,s] − [x±

i,r, x
±
j,s+1] = ±bij

2 {x±
i,r, x

±
j,s} unless N = 2n+ 1, n+m = 1̄, i = j = n+m,

(6.76)
and in the latter case of N = 2n+ 1, n+m = 1̄, i = j = n+m, we rather impose:

[x+
n+m(u), x+

n+m(v)] =
x′+

n+m(v) − x′+
n+m(u)

u− v
+

x+
n+m(u)2 − x+

n+m(v)2

u− v
+

x+
n+m(v)x+

n+m(u) − x+
n+m(u)x+

n+m(v)
2(u− v) −

(x+
n+m(v) − x+

n+m(u))2

2(u− v)2 ,

[x−
n+m(u), x−

n+m(v)] =
x′−

n+m(u) − x′−
n+m(v)

u− v
+

x−
n+m(u)2 − x−

n+m(v)2

u− v
+

x−
n+m(u)x−

n+m(v) − x−
n+m(v)x−

n+m(u)
2(u− v) −

(x−
n+m(u) − x−

n+m(v))2

2(u− v)2 ,

(6.77)

where we set

x′+
n+m(u) = x+

n+m(u)2 + [x+
n+m(u), x+

n+m,0] , x′−
n+m(u) = −x−

n+m(u)2 − [x−
n+m(u), x−

n+m,0] ,

for N = 2n+ 1 and n+m = 1̄, we also impose:

[x−
n+m−1,0, x

′−
n+m(v)] = −x′′′−

n+m(v + 1
2) − x′′′−

n+m(v − 1) +

x−
n+m−1(v + 1

2)x′−
n+m(v) + x′−

n+m(v)x−
n+m−1(v − 1) − (−1)n+m−1x−

n+m(v)x′′−
n+m(v − 1) , (6.78)

[x+
n+m−1,0, x

′+
n+m(v)] = x′′′+

n+m(v + 1
2) + x′′′+

n+m(v − 1) −

x′+
n+m(v)x+

n+m−1(v + 1
2) − x+

n+m−1(v − 1)x′+
n+m(v) − x′′+

n+m(v − 1)x+
n+m(v) , (6.79)

with

x′′−
n+m(v) = −[x−

n+m−1(v), x−
n+m,0] , x′′′−

n+m(v) =
[
[x−

n+m−1(v), x−
n+m,0], x−

n+m,0
]
,

x′′+
n+m(v) = −[x+

n+m,0, x+
n+m−1(v)] , x′′′+

n+m(v) = −
[
x+

n+m,0, [x+
n+m,0, x+

n+m−1(v)]
]
,

as well as the standard Serre relations

(adx±
i,0

)1−aij (x±
j,0) = 0 for i ̸= j , with aii ̸= 0 or aij = 0 , (6.80)

[x±
i,0, x

±
i,0] = 0 if aii = 0 , (6.81)

and the following higher order Serre relations:[
[x±

j,0, x
±
t,0], [x±

t,0, x±
k,0]
]

= 0 for subdiagrams (2.24) − (2.25) , (6.82)[
x±

t,0, [x±
s,0, x±

i,0]
]

−
[
x±

s,0, [x±
t,0, x±

i,0]
]

= 0 for subdiagram (2.29) , (6.83)[
[x±

j,0, x
±
t,0],

[
[x±

j,0, x
±
t,0], [x±

t,0, x±
k,0]
]]

= 0 for subdiagram (2.31) , (6.84)[[
x±

i,0, [x
±
j,0, x

±
t,0]
]
,
[
[x±

j,0, x
±
t,0], [x±

t,0, x±
k,0]
]]

= 0 for subdiagram (2.33) . (6.85)
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Remark 6.86. (a) The relation (6.70) can be equivalently written via the generating series as:
[ki(u), kj(v)] = 0 ∀ 1 ≤ i, j ≤ n+m. (6.87)

(b) The relation (6.71) can be equivalently written via the generating series as:

[x+
i (u), x−

j (v)] = −δij
ki(u) − ki(v)

u− v
∀ 1 ≤ i, j ≤ n+m. (6.88)

(c) The relations (6.72)–(6.74) can be equivalently and uniformly written via the generating series:

[ki(u), x±
j (v)] = ∓bij

2
{ki(u), x±

j (u) − x±
j (v)}

u− v
∀ 1 ≤ i, j ≤ n+m. (6.89)

(d) The relations (6.76) imply the following equality on the generating series:

[x±
i (u), x±

j (v)] − [x±
i (v), x±

j (u)] = ∓bij

2
{x±

i (u) − x±
i (v), x±

j (u) − x±
j (v)}

u− v
. (6.90)

The left-hand side above is usually written as [x±
i (u), x±

j (v)] + [x±
j (u), x±

i (v)] in non-super case,
but it rather becomes [x±

i (u), x±
j (v)] − [x±

j (u), x±
i (v)] if both simple roots αi, αj are odd.

(e) It is not clear to us if (6.90) alone imply (6.76) unless i = j or bij = 0. In non-super case,
one can first derive the r = s = 0 case of (6.76) from (6.90), and then establish the general case
of (6.76) by utilizing (6.89), see e.g. [T, Remark 2.61(b)]. In the present setup, since (6.89) holds
always except for N = 2n, n+m = 1̄, i = j = n + m, one can thus derive (6.76) from (6.90)
combined with (6.89) for all cases but N + 2m = 5, |v2| = 1̄, i ̸= j.

Remark 6.91. We note that (6.75) can be equivalently written as follows (see (6.106) below):

[kn+m(u), x−
n+m(v)] = −

(
1
3

x−
n+m(u+ 1/2) − x−

n+m(v)
u− v + 1/2 + 2

3
x−

n+m(u− 1) − x−
n+m(v)

u− v − 1

)
kn+m(u) ,

[kn+m(u), x+
n+m(v)] = kn+m(u)

(
1
3

x+
n+m(u+ 1/2) − x+

n+m(v)
u− v + 1/2 + 2

3
x+

n+m(u− 1) − x+
n+m(v)

u− v − 1

)
.

(6.92)

Let us now relate the above algebra Y (osp(V )) to Y rtt(osp(V )) of Subsection 3.2. To do so, we
follow the same strategy as in A-type, see [T, §2.5]. First, we define a sequence u1, . . . , un+m via

u1 := u and ui+1 = ui + bi,i+1
2 for 1 ≤ i < n+m. (6.93)

Thus, ui = ui−1 − (−1)i

2 for 1 ≤ i < n+m, while un+m satisfies

un+m − un+m−1 =


0 if N = 2n , n+m = 0̄
1 if N = 2n , n+m = 1̄
−1

2 if N = 2n+ 1 , n+m = 0̄
1
2 if N = 2n+ 1 , n+m = 1̄

. (6.94)

We also consider the following generating series with coefficients in Xrtt(osp(V )):

X+
i (u) = fi+1,i(ui) , X−

i (u) = (−1)iei,i+1(ui) , Ki(u) = hi(ui)−1hi+1(ui) ∀ 1 ≤ i < n+m,
(6.95)

while X±
n+m(u),Kn+m(u) are defined by (6.95) for odd N , and otherwise are given by:

X+
n+m(u) =

{
fn+m+1,n+m−1(un+m−1) if N = 2n , n+m = 0̄
fn+m+1,n+m(un+m) if N = 2n , n+m = 1̄

, (6.96)

X−
n+m(u) =

{
(−1)n+m en+m−1,n+m+1(un+m−1) if N = 2n , n+m = 0̄
1
2(−1)n+m en+m,n+m+1(un+m) if N = 2n , n+m = 1̄

, (6.97)

Kn+m(u) =
{
hn+m−1(un+m−1)−1hn+m+1(un+m−1) if N = 2n , n+m = 0̄
hn+m(un+m)−1hn+m+1(un+m) if N = 2n , n+m = 1̄

. (6.98)
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We shall denote their coefficients by {X+
i,r, X

−
i,r,Ki,r}r≥0

1≤i≤n+m, respectively, so that

X±
i (u) =

∑
r≥0

X±
i,ru

−r−1 , Ki(u) = 1 +
∑
r≥0

Ki,ru
−r−1 . (6.99)

We note right away that all these elements actually belong to Y rtt(osp(V )) of (3.18).

The following is the main result of this subsection:

Theorem 6.100. The assignment

x±
i,r 7→ X±

i,r , ki,r 7→ Ki,r ∀ 1 ≤ i ≤ n+m, r ≥ 0 (6.101)

gives rise to a superalgebra isomorphism

Υ: Y (osp(V )) ∼−→Y rtt(osp(V )) .

Proof. First, we verify that the currents X±
i (u),Ki(u) satisfy the defining relations (6.70)–(6.85),

so that the assignment (6.101) gives rise to a superalgebra homomorphism

Υ: Y (osp(V )) → Y rtt(osp(V )) .

For 1 ≤ i, j < n+m (respectively, i, j ∈ {1, . . . , n+m−2, n+m} for N = 2n, n+m = 0̄), all these
relations follow from Corollary 3.89 (respectively, Corollary 3.91) combined with the corresponding
super A-type relations of [T, Theorem 2.67]. In the remaining cases with max{i, j} = n+m and
|i − j| ≥ 2, all the above relations follow from the commutativity statement of Corollary 3.52.
It thus remains to treat the cases i = j = n + m or {i, j} = {n + m − 1, n + m}. Evoking
Theorem 3.47, these actually reduce to the corresponding relations in rank 1 (four cases treated in
Subsection 5.1) and rank 2 (eight cases treated in Subsection 5.2), which are verified case-by-case.

A uniform way to check the commutation formulas between Ki(u) and X±
j (v) with i, j ∈

{n+m,n+m− 1} is to pull hi(u)−1 and hi+1(u) to the leftmost and rightmost sides (in fact, only
one of the two options works, as the other produces poles) in both the left-hand and right-hand
sides of (6.89). The only exception from this rule are the cases i = j = n+m for odd N = 2n+ 1.
The latter essentially reduces to the rank 1 cases of osp(3|0) and osp(1|2), which we treat next:

• Verification of (6.89) for osp(3|0) (see also [JLM]).
According to (5.7, 5.8), we have [h2(u), e12(v)] = h2(u)(e12(u)−e12(v))

2(u−v) − (e12(u−1)−e12(v))h2(u)
2(u−v−1) and

[h1(u), e12(v)] = −h1(u)(e12(u)−e12(v))
u−v . The latter equality implies:

h1(u)−1e12(v) =
(
u− v − 1
u− v

e12(v) + 1
u− v

e12(u)
)
h1(u)−1 . (6.102)

Therefore, we obtain:

[h1(u)−1h2(u), e12(v)] = h1(u)−1[h2(u), e12(v)] − h1(u)−1[h1(u), e12(v)]h1(u)−1h2(u) =
1

2(u− v)h1(u)−1h2(u)
(
e12(u) − e12(v)

)
− 1

2(u− v − 1)h1(u)−1(e12(u− 1) − e12(v)
)
h2(u) +

1
u− v

(
e12(u) − e12(v)

)
h1(u)−1h2(u) . (6.103)

Using (6.102), we see that the second summand above simplifies to:

− 1
2(u− v − 1)h1(u)−1(e12(u− 1) − e12(v)

)
h2(u) = − 1

2(u− v)
(
e12(u) − e12(v)

)
h1(u)−1h2(u) .

Combining the above two equalities, we obtain the desired relation (cf. (6.89)):

[h1(u)−1h2(u), e12(v)] = 1
2

{
h1(u)−1h2(u), e12(u) − e12(v)

}
u− v

.

• Verification of (6.75) for osp(1|2).



58 ROUVEN FRASSEK AND ALEXANDER TSYMBALIUK

According to (5.19, 5.20), we have [h2(u), e12(v)] = h2(u)
(

e12(u)−e12(v)
u−v + e12(v)−e12(u−1/2)

u−v−1/2

)
and

[h1(u), e12(v)] = h1(u)(e12(u)−e12(v))
u−v . The latter equality also implies:

e12(v)h1(u)−1 = h1(u)−1
(

u− v

u− v + 1e12(v) + 1
u− v + 1e12(u+ 1)

)
. (6.104)

Therefore, we obtain:

[h2(u)h1(u)−1, e12(v)] = h2(u)[h1(u)−1, e12(v)] + [h2(u), e12(v)]h1(u)−1 =

h2(u)h1(u)−1 e12(v) − e12(u+ 1)
u− v + 1 + h2(u)

(
e12(u) − e12(v)

u− v
− e12(u− 1/2) − e12(v)

u− v − 1/2

)
h1(u)−1 .

(6.105)

Using (6.104) to move h1(u)−1 to the leftmost part, we obtain the desired relation (cf. (6.75)):

[h2(u)h1(u)−1, e12(v)] = h2(u)h1(u)−1
(

−1
3
e12(u− 1/2) − e12(v)

u− v − 1/2 − 2
3
e12(u+ 1) − e12(v)

u− v + 1

)
.

One could alternatively move both h1(u)−1, h2(u) to the rightmost part, thus deriving (cf. (6.92)):

[h1(u)−1h2(u), e12(v)] =
(

−1
3
e12(u+ 1/2) − e12(v)

u− v + 1/2 − 2
3
e12(u− 1) − e12(v)

u− v − 1

)
h1(u)−1h2(u) .

(6.106)
Let us also comment on the commutation formulas (6.76, 6.77) between X±

i (u) and X±
j (v) for

i, j ∈ {n+m,n+m− 1}. For i = j = n+m with N = 2n, the result follows from the commutator
formulas (3.75, 3.76) through Corollaries 3.89, 3.91, see also Remark 6.86(e). For i = j = n+m,
N = 2n+ 1, n+m = 0̄, the relations follow from the similar relations (5.11, 5.12) in the rank 1
case of osp(3|0). Likewise, for i = j = n+m, N = 2n+ 1, n+m = 1̄, the relation (6.77) follows
from the similar relations (5.23, 5.24) in the rank 1 case of osp(1|2). Finally, verification of (6.76)
for {i, j} = {n+m− 1, n+m} reduces to the rank 2 cases. Unless N = 2n and n+m = 0̄, the
corresponding relations always had the form:

[e12(u), e23(v)] = ♯

u− v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
,

[f21(u), f32(v)] = ♯

u− v

(
f31(v) − f31(u) + f32(v)f21(u) − f32(v)f21(v)

)
,

with ♯ ∈ {−1, 1, 2}. These relations imply (6.76): this is explained in [BK, End of §5] for ♯ = −1.
If N = 2n, n+m = 0̄, n+m− 1 = 0̄, then (6.76) follows from (5.60). In the remaining case
N = 2n, n+m = 0̄, n+m− 1 = 1̄, the relation (6.76) follows in turn from (5.76, 5.77).

Combining the fact that the coefficients of {ei(u), fi(u), hı(u)}1≤ı≤n+m+1
1≤i≤n+m generate Xrtt(osp(V ))

with the tensor product decomposition (3.19), description of the center ZXrtt(osp(V )), and the
factorization of the central generating series cV (u) from Lemmas 4.31, 4.45, 4.49, we conclude
that the homomorphism Υ is surjective. The injectivity of Υ follows from the injectivity of (6.35).

Alternatively, one can use (3.19) and identify Y (osp(V )) with the preimage of Y rtt(osp(V ))
under (6.35). This amounts to checking that the subalgebra of X(osp(V )) generated by the same-
named currents (6.95)–(6.98) is isomorphic to Y (osp(V )) defined via generators and relations. □

Remark 6.107. The Serre relations (6.80)–(6.85) can be generalized exactly as in Remark 6.56.



ORTHOSYMPLECTIC YANGIANS 59

Appendix A. Low rank identification through 6-fold fusion

For m = 0 (respectively, N = 0), our straightforward treatment of the corresponding RTT
orthogonal (respectively, symplectic) Yangians is slightly different from the one in [JLM]. More
specifically, the arguments of [JLM] crucially utilized (see the proof of [JLM, Proposition 5.4]) the
low level isomorphisms established in [AMR, Section 4]. The aim of this appendix is thus twofold.
Starting from the 6-fold R-matrix fusion argument of [AMR], used to explicitly construct iso-
morphisms Xrtt(so3) ≃ Y rtt(gl2) and Y rtt(so3) ≃ Y rtt(sl2), we construct analogous isomorphisms8

Xrtt(so6) ≃ Y rtt(gl4) and Y rtt(so6) ≃ Y rtt(sl4). Finally, we explain why applying this approach
to Y rtt(gl(1|2)) recovers an algebra that looks surprisingly different9 from Xrtt(osp(2|2)).
• so3 vs gl2.

Consider the Yangian Y rtt(gl2) = Y rtt(gl(C2)) associated with the R-matrix R(u) = I − P
u ,

where P ∈ End (C2 ⊗ C2) is the permutation operator. Here, we choose a basis {v1, v2} of C2 and
use T(u) to denote the corresponding 2 × 2 generator matrix of Y rtt(gl2), see Subsection 3.6.

The symmetric square V = S2(C2) = R(−1)(C2 ⊗ C2) has a basis
v1 = v1 ⊗ v1 , v2 = 1√

2(v1 ⊗ v2 + v2 ⊗ v1) , v3 = −v2 ⊗ v2 .

Let Xrtt(so3) be the corresponding RTT extended orthogonal Yangian of Subsection 3.1. Here,
N = 3,m = 0, κ = 1/2, θ1 = θ2 = θ3 = 1, P,Q are as in (3.1, 3.2), and R(u) is defined in (3.4).
Remark A.1. The above choice of V , its basis {v1, v2, v3}, and the key RTT-type construction of
Proposition A.5 are all crucially based on the following two simple observations:

(a) the assignment e 7→
√

2F12, f 7→
√

2F21, h 7→ 2F11, where {h, e, f} denotes the standard
basis of sl2 and Fij are as in (2.7), gives rise to a Lie algebra isomorphism ρ : sl2 ∼−→ so3;

(b) the vector space isomorphism ρ : S2(C2) ∼−→C3 mapping v1, v2, v3 to the standard basis of
C3 is compatible with the above Lie algebra isomorphism, that is: ρ(x(v)) = ρ(x)(ρ(v)).

Consider the tensor product space (C2)⊗4, and we shall view V ⊗ V as a natural subspace of
(C2)⊗2 ⊗ (C2)⊗2 = (C2)⊗4. Moreover, the operator 1+P12

2 · 1+P34
2 = 1

4R12(−1)R34(−1) defines a
projection of (C2)⊗2 ⊗ (C2)⊗2 onto this subspace V ⊗ V . Let us consider the following

6-fold fusion RV (u) := 1 + P12
2 · 1 + P34

2 · R14(2u− 1)R13(2u)R24(2u)R23(2u+ 1) , (A.2)

which can be equivalently written as

RV (u) = R23(2u+ 1)R13(2u)R24(2u)R14(2u− 1) · 1 + P12
2 · 1 + P34

2 ,

since the R-matrix R(u) satisfies the Yang–Baxter equation (3.63). The subspace V ⊗ V is clearly
stable under the operator RV (u). The following observation first appeared in [AMR, Lemma 4.5]:
Lemma A.3. We have the equality of operators in V ⊗ V :

RV (u) = 2u− 1
2u+ 1 ·

(
I − P

u
+ Q

u− 1/2

)
= 2u− 1

2u+ 1 ·R(u) . (A.4)

Thus, RV (u) ∈ EndV ⊗EndV coincides with the R-matrix R(u) for so3 = so(V ), up to a scalar
factor. Combining this result with the repeated application of the defining RTT-relation (3.64)
and the PBW theorem for Xrtt(so3), one easily obtains [AMR, Proposition 4.4, Corollary 4.6]:
Proposition A.5. (a) The assignment

T (u) 7→ 1 + P
2 · T1(2u)T2(2u+ 1) = T2(2u+ 1)T1(2u) · 1 + P

2
gives rise to an algebra isomorphism ϕ : Xrtt(so3) ∼−→Y rtt(gl2).
(b) The restriction of the isomorphism from (a) to the subalgebra Y rtt(so3) of Xrtt(so3) gives rise
to an algebra isomorphism ϕ : Y rtt(so3) ∼−→Y rtt(sl2).

8These isomorphisms are known to experts, but we did not find explicit RTT-type realizations in the literature.
9We thank A. Molev who noted that there is actually an algebra isomorphism X(osp(2|2)) ≃ Y (gl(1|2)) between

the Drinfeld realizations of these Yangians, which however does not admit any nice RTT-type interpretation.
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We refer the interested reader to [AMR] for more details and the explicit formulas for ϕ(tij(u)).
• so6 vs gl4.

Consider the Yangian Y rtt(gl4) = Y rtt(gl(C4)) associated with the R-matrix R(u) = I − P
u

of (3.62). Here, we apply the construction of Subsection 3.6 to V = C4, and fix its specific basis
{v1, v2, v3, v4}. We shall use T(u) to denote the corresponding 4 × 4 generator matrix of Y rtt(gl4).

The second exterior power V = Λ2(C4) = R(1)(C4 ⊗ C4) has a basis
v1 = v1 ∧ v2 , v2 = v1 ∧ v3 , v3 = v2 ∧ v3 , v4 = v1 ∧ v4 , v5 = v4 ∧ v2 , v6 = v3 ∧ v4 . (A.6)

Let Xrtt(so6) be the corresponding RTT extended orthogonal Yangian of Subsection 3.1. Here,
N = 6,m = 0, κ = 2, θ1 = · · · = θ6 = 1, P,Q are as in (3.1, 3.2), and R(u) is defined in (3.4).
Remark A.7. The above choice of V , its basis {vk}6

k=1, and the key RTT-type construction of
Proposition A.11 are all crucially based on the following two simple observations:

(a) the assignment E12 7→ F23, E23 7→ F12, E34 7→ F24, E21 7→ F32, E32 7→ F21, E43 7→ F42,
with Fij ∈ gl(V ) from (2.7), gives rise to a Lie algebra isomorphism ρ : sl4 ∼−→ so6;

(b) the vector space isomorphism ρ : Λ2(C4) ∼−→C6 mapping v1, . . . , v6 to the standard basis
of C6 is compatible with the above Lie algebra isomorphism, that is: ρ(x(v)) = ρ(x)(ρ(v)).

Consider the tensor product space (C4)⊗4, and we shall view V ⊗ V as a natural subspace
of (C4)⊗2 ⊗ (C4)⊗2 = (C4)⊗4. Moreover, the operator 1−P12

2 · 1−P34
2 = 1

4R12(1)R34(1) defines a
projection of (C4)⊗2 ⊗ (C4)⊗2 onto this subspace V ⊗ V . Let us consider the following

6-fold fusion RV (u) := 1 − P12
2 · 1 − P34

2 · R14(u+ 1)R13(u)R24(u)R23(u− 1) , (A.8)

which can be equivalently written as

RV (u) = R23(u− 1)R13(u)R24(u)R14(u+ 1) · 1 − P12
2 · 1 − P34

2 ,

since the R-matrix R(u) satisfies the Yang–Baxter equation (3.63). The subspace V ⊗ V is clearly
stable under the operator RV (u). The following result is analogous to Lemma A.3:
Lemma A.9. We have the equality of operators in V ⊗ V :

RV (u) = u− 2
u− 1 ·

(
I − P

u
+ Q

u− 2

)
= u− 2
u− 1 ·R(u) . (A.10)

Proof. Straightforward computation. □

Thus, RV (u) ∈ EndV ⊗EndV coincides with the R-matrix R(u) for so6 = so(V ), up to a scalar
factor. Combining this observation with the repeated application of the defining RTT-relation (3.64)
and the PBW theorem for Xrtt(so6), one obtains the following analogue of Proposition A.5:
Proposition A.11. (a) The assignment

T (u) 7→ 1 − P
2 · T1(u+ 1)T2(u) = T2(u)T1(u+ 1) · 1 − P

2
gives rise to an algebra isomorphism ϕ : Xrtt(so6) ∼−→Y rtt(gl4).
(b) The restriction of the isomorphism from (a) to the subalgebra Y rtt(so6) of Xrtt(so6) gives rise
to an algebra isomorphism ϕ : Y rtt(so6) ∼−→Y rtt(sl4).
Remark A.12. (a) As for any f(u) ∈ 1 + u−1C[[u−1]] there exists g(u) ∈ 1 + u−1C[[u−1]] satisfying
f(u) = g(u)g(u+ 1), we have µg ◦ ϕ = ϕ ◦ µf , so that part (b) follows immediately from part (a).
(b) Combining ϕ of Proposition A.11(b) with the evaluation homomorphism Y rtt(sl4)↠ U(sl4)
(given by tij(u) 7→ δij + (Eij − δij

E11+E22+E33+E44
4 )u−1) and the isomorphism U(sl4) ≃ U(so6) of

Remark A.7(a), we obtain an algebra epimorphism Y rtt(so6)↠ U(so6), cf. [AMR, Corollary 4.7].
(c) The images ϕ(tkℓ(u)) can be explicitly described as follows:

ϕ(tkℓ(u)) = 1
2
(
tap(u+ 1)tbq(u) − taq(u+ 1)tbp(u) − tbp(u+ 1)taq(u) + tbq(u+ 1)tap(u)

)
,

for unique indices 1 ≤ a, b, p, q ≤ 4 satisfying vk = va ∧ vb and vℓ = vp ∧ vq, see (A.6).
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• osp(2|2) vs gl(1|2).
Consider a superspace V = C1|2 with a basis {v1, v2, v3} whose parity is |v1| = 1̄, |v2| = 0̄, |v3| = 1̄.

Let Y rtt(gl(C1|2)) be the corresponding RTT Yangian associated with the R-matrix R(u) = I − P
u

and let T(u) denote the corresponding 3 × 3 generator matrix of Y rtt(gl(V)), see Subsection 3.6.
We note that the gl(C1|2)-module10 C1|2 ⊗C1|2 decomposes into the direct sum of 4-dimensional

S2(C1|2) = R(−1)(C1|2 ⊗ C1|2) and 5-dimensional Λ2(C1|2) = R(1)(C1|2 ⊗ C1|2) submodules. The
symmetric square V = S2(V) = S2(C1|2) has a basis

v1 = v1 ⊗ v2 + v1 ⊗ v2 , v2 = v2 ⊗ v2 , v3 = v1 ⊗ v3 − v3 ⊗ v1 , v4 = v2 ⊗ v3 + v3 ⊗ v2 ,

with a parity |v1| = |v4| = 1̄, |v2| = |v3| = 0̄. Let Xrtt(osp(V )) be the corresponding RTT extended
orthosymplectic Yangian of Subsection 3.1. Here, N = 2,m = 1, κ = −1 according to (3.3),
θ1 = θ2 = θ3 = 1, θ4 = −1 according to (2.4), P,Q are as in (3.1, 3.2), and R(u) is as in (3.4).

Remark A.13. (a) The Dynkin diagram of sl(C1|2) = A(C1|2) is which coincides
with the Dynkin diagram of osp(V ) for the parity sequence ΥV = (1̄, 0̄), see Subsection 2.3.
Therefore, one has an abstract isomorphism of Lie superalgebras sl(V) ≃ osp(V ).
(b) The assignment

E12 7→ 1√
2F12 , E23 7→ 1√

2F13 , E13 7→ 1
2F14 ,

E21 7→ 1√
2F21 , E32 7→ − 1√

2F31 , E31 7→ 1
2F41 ,

E11 + E22 7→ 1
2(F11 + F22) , E22 + E33 7→ −1

2(F11 − F22) ,

with Fij ∈ gl(V ) of (2.7), gives rise to a Lie superalgebra isomorphism ρ : sl(V) ∼−→ osp(V ), cf. (a).
(c) However, in contrast to Remarks A.1(b), A.7(b), there is no isomorphism between sl(V)-module
S2(V) and the natural osp(V )-module V , intertwined by the isomorphism ρ from part (b).
(d) According to [Ma], the Lie superalgebra sl(C1|2) admits a 1-parameter family of non-isomorphic
4-dimensional modules, denoted by [b, 1/2]. The generators S±, V±, V ± of [Ma, §2.1] may be
related to ours via:
V+ ↔ 1√

2E12 , V + ↔ 1√
2E23 , V− ↔ 1√

2E32 , V − ↔ − 1√
2E21 , S+ ↔ E13 , S− ↔ E31 . (A.14)

The explicit action of sl(C1|2) on [b, 1/2] is provided in [Ma, §4.1]. In particular, combining [Ma,
(21, 22)] with (A.14), the lower-triangular generators can be represented by the following matrices:

E21 7→



0 0 0 0
√

2β 0 0 0

0 0 0 0

0 0 −
√

2γ 0


, E32 7→



0 0 0 0

0 0 0 0

−
√

2α 0 0 0

0
√

2ϵ 0 0


, E31 7→



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


,

with the constants α, β, γ, ϵ satisfying 4αγ = 1 + 2b, 4βϵ = 1 − 2b. It is now straightforward to
check that the 4-dimensional sl(V)-module S2(V) corresponds to b = −3/2, while the pull-back of
the 4-dimensional osp(V )-module V under the isomorphism ρ of part (b) corresponds to b = 0.

Consider the tensor product space (C1|2)⊗4. We shall view V ⊗ V as a natural subspace of
(C1|2)⊗2 ⊗ (C1|2)⊗2 = (C1|2)⊗4, while the operator 1+P12

2 · 1+P34
2 = 1

4R12(−1)R34(−1) defines a
projection of (C1|2)⊗2 ⊗ (C1|2)⊗2 onto this subspace V ⊗ V . Similarly to (A.2), we consider

6-fold fusion RV (u) := 1 + P12
2 · 1 + P34

2 · R14(u− 1)R13(u)R24(u)R23(u+ 1) =

R23(u+ 1)R13(u)R24(u)R14(u− 1) · 1 + P12
2 · 1 + P34

2 . (A.15)

The subspace V ⊗V is clearly stable under RV (u). Moreover, this operator satisfies the Yang-Baxter
equation according to our next result:

10Recall that in the super-case the action on the tensor product is given by x(v⊗w) = x(v)⊗w+(−1)|x|·|v|v⊗x(w).
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Lemma A.16. The operator RV (u) ∈ EndV ⊗ EndV satisfies the Yang-Baxter equation (1.2).

Proof. First, let us note the following equalities of operators in (EndC1|2)⊗4:
1 + P12

2 · 1 + P34
2 · P14P13 = 1 + P12

2 · 1 + P34
2 · P14 ,

1 + P12
2 · 1 + P34

2 · P14P24 = 1 + P12
2 · 1 + P34

2 · P14 ,

1 + P12
2 · 1 + P34

2 · P14P23 = 1 + P12
2 · 1 + P34

2 · P13P24 ,

1 + P12
2 · 1 + P34

2 · P13P23 = 1 + P12
2 · 1 + P34

2 · P13 ,

1 + P12
2 · 1 + P34

2 · P24P23 = 1 + P12
2 · 1 + P34

2 · P24 .

(A.17)

Using (A.17), we obtain the following simplified formula for RV (u) of (A.15):

RV (u) = 1 + P12
2 · 1 + P34

2 ·
(

1 − P14 + P24 + P13 + P23
u+ 1 + 2P13P24

u(u+ 1)

)
. (A.18)

Therefore, the restriction of RV (u) to V ⊗ V is simply given by:

RV (u) = 1 − P14 + P24 + P13 + P23
u+ 1 + 2P13P24

u(u+ 1) , (A.19)

cf. [AMR, (4.21)].
Using the formula (A.19), it is easy now to compute the corresponding 16 × 16 matrix for the

action of RV (u) in the ordered basis {v1 ⊗ v1, v1 ⊗ v2, . . . , v4 ⊗ v3, v4 ⊗ v4} of V ⊗ V :

RV (u) =



a(u) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b(u) 0 0 c(u) 0 0 0 0 0 0 0 0 0 0 0
0 0 d(u) 0 0 0 0 0 e(u) 0 0 0 0 0 0 0
0 0 0 f(u) 0 0 −k(u) 0 0 −k(u) 0 0 g(u) 0 0 0
0 c(u) 0 0 b(u) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 i(u) 0 0 0 0 0 0 0 0 0 0
0 0 0 h(u) 0 0 1 0 0 j(u) 0 0 −h(u) 0 0 0
0 0 0 0 0 0 0 b(u) 0 0 0 0 0 c(u) 0 0
0 0 e(u) 0 0 0 0 0 d(u) 0 0 0 0 0 0 0
0 0 0 h(u) 0 0 j(u) 0 0 1 0 0 −h(u) 0 0 0
0 0 0 0 0 0 0 0 0 0 l(u) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d(u) 0 0 e(u) 0
0 0 0 g(u) 0 0 k(u) 0 0 k(u) 0 0 f(u) 0 0 0
0 0 0 0 0 0 0 c(u) 0 0 0 0 0 b(u) 0 0
0 0 0 0 0 0 0 0 0 0 0 e(u) 0 0 d(u) 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(u)



(A.20)

where

a(u) = (u− 1)(u+ 2)
u(u+ 1) , c(u) = −2(u− 1)

u(u+ 1) , e(u) = u+ 2
u(u+ 1) ,

g(u) = u− 2
u(u+ 1) , i(u) = (u− 1)(u− 2)

u(u+ 1) , j(u) = 2
u(u+ 1) ,

b(u) = u− 1
u+ 1 , d(u) = u+ 2

u+ 1 , f(u) = u

u+ 1 ,

h(u) = −2
u+ 1 , k(u) = 1

u+ 1 , l(u) = u+ 2
u

.

(A.21)

Finally, we have verified on the computer that the above matrix (A.20, A.21) indeed satisfies
the Yang-Baxter equation (1.2). □

However, in view of Remark A.13(c,d), it is not surprising that RV (u) is not a scalar multiple of
the orthosymplectic R-matrix R(au) of osp(2|2) = osp(V ) for any a ∈ C, in contrast to Lemma A.3.

Remark A.22. Let us match both the 6-fold fusion RV (u) and the orthosymplectic R-matrix R(u)
with the special cases of the R-matrix from [RM]. We use ŘRM (u, b) to denote the 16 × 16 matrix
of [RM, (2)], which at u = 0 reduces to the identity and not to the permutation operator.
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(a) We have
u(u+ 1)

(u− 1)(u+ 2) RV (u) = S ŘRM (u,−3
2)PS−1 (A.23)

with

P =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(A.24)

and

S =



0 1
2 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 − 1

2
1
3 0 0 i

3
√

2
0 − 1

2 − i

3
√

2
0 0 1

3 0 0 0
0 0 1

2 0 0 0 0 0 − 1
2 0 1 1

2 0 0 − 1
2 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 − 1

2 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 − 1

2 0 − 1
2 − 1

2 0 −1 0 0 1 0
0 0 0 2

3 0 0 − i

3
√

2
0 0 i

3
√

2
0 0 − 1

3 0 0 0
0 0 1

2
1
3 0 0 i

3
√

2
0 1

2 − i

3
√

2
0 0 1

3 0 0 0
0 0 1

2 0 0 0 1
2 0 − 1

2
1
2 0 −1 0 0 1 0

0 0 0 0 0 0 0 − 1
2 0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 − 1

2 0 0 0 0 0 − 1
2 0 1

0 0 − 1
2 0 0 0 0 0 1

2 0 1 − 1
2 0 0 1

2 0
0 0 0 − 1

3 0 0 − i

3
√

2
0 0 i

3
√

2
0 0 2

3 0 0 0
0 0 0 0 0 0 0 1

2 0 0 0 0 0 1
2 0 1

0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 1

2 0



. (A.25)

We note that it is ŘRM (u, b)P and not ŘRM (u, b) that satisfy the Yang-Baxter equation (1.2).

(b) Likewise, the orthosymplectic R-matrix R(u) of (3.4) for N = 2,m = 1 (so that κ = −1) with
the parity sequence ΥV = (1̄, 0̄) is explicitly given by the following matrix:

R(u) =



u+1
u

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 − 1

u
0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 − 1
u

0 0 0 0 0 0 0
0 0 0 u−2

u−1 0 0 − 1
u−1 0 0 1

u−1 0 0 − 1
(u−1)u

0 0 0
0 − 1

u
0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 u−1
u

0 0 0 0 0 0 0 0 0 0
0 0 0 1

u−1 0 0 u
u−1 0 0 − 2u−1

(u−1)u
0 0 1

u−1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 − 1

u
0 0

0 0 − 1
u

0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 − 1

u−1 0 0 − 2u−1
(u−1)u

0 0 u
u−1 0 0 − 1

u−1 0 0 0
0 0 0 0 0 0 0 0 0 0 u−1

u
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 − 1
u

0
0 0 0 − 1

(u−1)u
0 0 − 1

u−1 0 0 1
u−1 0 0 u−2

u−1 0 0 0
0 0 0 0 0 0 0 − 1

u
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
u

0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u+1

u



. (A.26)

It is related to that of [RM, (2)] via the following equality:
u

u− 1 R(u) = ŘRM (−u
2 , 0)P , (A.27)

with P as in (A.24).
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