
Sec 2.3   Modeling with First Order Equations

• Mathematical models characterize physical systems, often using differential 

equations.

• Model Construction:  Translating physical situation into mathematical terms.  

Clearly state physical principles believed to govern process.  Differential 

equation is a mathematical model of process, typically an approximation.

• Analysis of Model:  Solving equations or obtaining qualitative understanding 

of solution.  May simplify model, as long as physical essentials are preserved.

• Comparison with Experiment or Observation:  Verifies solution or suggests 

refinement of model.



Example 1:  Salt Solution   (1 of 11)

(Ex 1)     At time t = 0, a tank contains 5 lb of salt dissolved in 100 gal of  (salt) 

water.  Assume that water containing ¼ lb of salt/gal is entering tank at rate of r

gal/min, and leaves at same rate. 

(a) Set up IVP that describes this salt solution flow process.

(b) Find amount of salt Q(t) in tank at any given time t.

(c) Find limiting amount QL of salt Q(t) in tank after a very long time.



Example 1:  Salt Solution   (2 of 11)

(Ex 1)     At time t = 0, a tank contains 5 lb of salt dissolved in 100 gal of  (salt) 

water.  Assume that water containing ¼ lb of salt/gal is entering tank at rate of r

gal/min, and leaves at same rate. 

Q(t)  =  the amount (lb) of the salt in the tank at time t.

dQ/dt =   the  rate of change of  Q(t)  

(a)  Set up IVP that describes this salt solution flow process.

(b)  Find amount of salt Q(t) in tank at any given time t.



Example 1:  Salt Solution   (3 of 11)

(Ex 1)      At time t = 0, a tank contains 5 lb of salt dissolved in 100 gal of  (salt) 

water.  Assume that water containing ¼ lb of salt/gal is entering tank at rate of r

gal/min, and leaves at same rate. 

(c) Find limiting amount QL of salt Q(t) in tank after a very long time.



Example 2:  Salt Solution   (4 of 11)

(Ex 2)     At time t = 0, a tank contains Q0 lb of salt dissolved in 100 gal of  (salt) 

water.  Assume that water containing ¼ lb of salt/gal is entering tank at rate of r

gal/min, and leaves at same rate. 

(a) Set up IVP that describes this salt solution flow process.

(b) Find amount of salt Q(t) in tank at any given time t.

(c) Find limiting amount QL of salt Q(t) in tank after a very long time.

(d) If r = 3 & Q0 = 2QL , find time T after which salt is 

within 2% of QL . 

(e) In (d)  find flow rate r required if T is not to exceed 

45 min. 



Example 2:  (a) Initial Value Problem  (5 of 11)

• At time t = 0, a tank contains Q0 lb of salt dissolved in 100 gal of water.  

Assume water containing ¼ lb of salt/gal enters tank at rate of r gal/min, and 

leaves at same rate.

• Assume salt is neither created or destroyed in tank, and distribution of salt in 

tank is uniform (stirred).  Then 

• Rate in: (1/4 lb salt/gal)(r gal/min) = (r/4) lb/min

• Rate out:  If there is Q(t) lbs salt in tank at time t, then concentration of salt is 

Q(t) lb/100 gal, and it flows out at rate of [Q(t)r/100] lb/min. 

• Thus our IVP is

out rate -in  rate / dtdQ
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Example 2:  (b) Find Solution Q(t)  (6 of 11)

• To find amount of salt Q(t) in tank at any given time t, we need 

to solve the initial value problem

• To solve, we use the method of integrating factors:

or
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Example 2:  Salt Solution   (7 of 11)

(Ex 2)     At time t = 0, a tank contains Q0 lb of salt dissolved in 100 gal of  (salt) 

water.  Assume that water containing ¼ lb of salt/gal is entering tank at rate of r

gal/min, and leaves at same rate. 

(a) Set up IVP that describes this salt solution flow process.

(b) Find amount of salt Q(t) in tank at any given time t.

(c) Find limiting amount QL of salt Q(t) in tank after a very long time.

(d) If r = 3 & Q0 = 2QL , find time T after which salt is 

within 2% of QL . 

(e) In (d)   find flow rate r required if T is not to exceed 

45 min



Example 2: 

(c) Find Limiting Amount QL (8 of 11)

• Next, we find the limiting amount QL of salt Q(t) in tank after a very long 

time:

• This result makes sense, since over time the incoming salt solution will 

replace original salt solution in tank.  Since incoming solution contains 0.25 lb 

salt / gal, and tank is 100 gal, eventually tank will contain 25 lb salt.

• The graph shows integral curves

for r = 3 and different values of Q0. 
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Example 2:  (d)  Find Time T (9 of 11)

• Suppose r = 3  and  Q0 = 2QL .  To find time T after which Q(t)  is within  2 % 

of QL , first note Q0 = 2QL = 50 lb, hence

• Next,  2 %  of  25 lb is 0.5 lb, and thus we solve
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Example 2:  (e)  Find Flow Rate   (10 of 11)

• To find flow rate r required if T is not to exceed 45 minutes, recall from part 

(d) that Q0 = 2QL = 50 lb, with

and solution curves decrease from 50 to 25.5.  

• Thus we solve
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Example 2:  Discussion   (11 of 11)

• As long as flow rates are accurate, and concentration of salt in 

tank is uniform, then differential equation is accurate description 

of flow process.

• Models of this kind are often used for pollution in lake, drug 

concentration in organ, etc.  Flow rates may be harder to 

determine, or may be variable, and concentration may not be 

uniform.  Also, rates of inflow and outflow may not be same, so 

variation in amount of liquid must be taken into account.

• Since situation is hypothetical, the model is valid. 



Example 2: Compound Interest

• In general, if interest in an account is to be compounded m times a year, rather 

than continuously, the equation describing the amount in the account for any 

time t, measured in years, becomes:

• The relationship between these two results is clarified if we recall from calculus 

that
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Growth of Capital at a Return Rate of r = 8% 

For Several Modes of Compounding: S(t)/S(0) A comparison of the 

accumulation of funds 

for quarterly, daily, and 

continuous compounding 

is shown for short-term 

and long-term periods.

t m = 4 m = 365 exp(rt)

Years Compound
ed 
Quarterly

Compound
ed
Daily

Compound
ed
Continuous
ly

1 1.082432 1.083278 1.083287

2 1.171659 1.17349 1.173511

5 1.485947 1.491759 1.491825

10 2.20804 2.225346 2.225541

20 4.875439 4.952164 4.953032

30 10.76516 11.02028 11.02318

40 23.76991 24.52393 24.53253



• (Ex 2) If a sum of money is deposited in a bank that pays interest 

at an annual rate, r, compounded continuously, 

(1)   Find  the ODE that the amount of money S = S(t) at any 

time in the fund will satisfy:

(2)   Solve the ODE with the initial amount S(0) = 
0S



Example 2: Compound Interest (2 of 3)

• If a sum of money is deposited in a bank that pays interest at an annual 
rate, r, compounded continuously, the amount of money S = S(t) at 
any time in the fund will satisfy the differential equation:

• The solution to this differential equation, found by separating the 
variables and solving for S, becomes:

• Thus, with continuous compounding, the amount in the account grows 
exponentially over time.
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Example 2: Deposits and Withdrawals (3 of 3)

• Returning now to the case of continuous compounding, let us suppose that there 
may be deposits or withdrawals in addition to the accrual of interest, dividends, or 
capital gains. If we assume that the deposits or withdrawals take place at a 
constant rate k, this is described by the differential equation:

where k is positive for deposits and negative for withdrawals.

• We can solve this as a general linear equation to arrive at the solution:

• To apply this equation, suppose that one opens an IRA at age 25 and makes annual 
investments of  $2000  thereafter  with  r = 8 %.

• At age 65, 
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Example 3: Pond Pollution   (1 of 7)

• Consider a pond that initially contains 10 million gallons of 

fresh water.  Water containing toxic waste flows into the pond at 

the rate of 5 million gal/year, and exits at same rate.  The 

concentration c(t) of toxic waste in the incoming water varies 

periodically with time:          c(t) = 2 + sin 2t (g/gal)

(a) Construct a mathematical model of this flow process and 

determine the amount Q(t) of toxic waste in pond at time t.

(b)  Plot solution and describe in words the effect of the 

variation in the incoming concentration. 



Example 3:  (a) Initial Value Problem  (2 of 7)

• Pond initially contains 10 million gallons of fresh water.  

Water containing toxic waste flows into pond at rate of 5 

million gal/year, and exits pond at same rate. Concentration 

is c(t) = 2 + sin 2t g/gal of toxic waste in incoming water.

• Assume toxic waste is neither created or destroyed in pond, 

and distribution of toxic waste in pond is uniform (stirred).

• Then 

• Rate in:  (2 + sin 2t g/gal)(5 x 106 gal/year)

• Rate out:  If there is Q(t) g of toxic waste in pond at time t, 

then concentration of salt is Q(t) lb/107 gal, and it flows out 

at rate of [Q(t) g/107 gal][5 x 106 gal/year]

out rate -in  rate / dtdQ



Example 3:  

(a) Initial Value Problem, Scaling  (3 of 7)

• Recall from previous slide that

– Rate in:   (2 + sin 2t g/gal)(5 x 106 gal/year)

– Rate out:  [Q(t) g/107 gal][5 x 106 gal/year] = Q(t)/2 g/yr.

• Then initial value problem is

• Change of variable (scaling):  Let q(t) = Q(t)/106.  Then
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Example 3:  

(a) Solve Initial Value Problem  (4 of 7)

• To solve the initial value problem

we use the method of integrating factors:

• Using integration by parts (see next slide for details) and the 

initial condition, we obtain after simplifying,
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Example 3: (a) Integration by Parts  (5 of 7)
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Example 3: (b) Analysis of solution    (6 of 7)

• Thus our initial value problem and solution is

• A graph of solution along with direction field for differential equation is 

given below.  

• Note that exponential term is important for 

small t, but decays away for large t.  

Also, y = 20 would be equilibrium solution 

if not for sin(2t) term. 
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Example 3: 
(b) Analysis of Assumptions    (7 of 7)

• Amount of water in pond controlled entirely by rates of flow, 

and none is lost by evaporation or seepage into ground, or 

gained by rainfall, etc.

• Amount of pollution in pond controlled entirely by rates of flow, 

and none is lost by evaporation, seepage into ground, diluted by 

rainfall, absorbed by fish, plants or other organisms, etc.

• Distribution of pollution throughout pond is uniform.



• (Ex 4)     A body of mass m is projected away from the earth in a direction 

perpendicular to the earth’s surface with initial velocity and no air 

resistance. Taking into account the variation of the earth’s gravitational 

field with distance, the gravitational force acting on the mass is

• :     a  function of  x

where  x  is the distance above the earth’s surface.

R is the radius of the earth and g is the acceleration due to gravity at the 

earth’s surface. 

(1)  Set up an ODE for the velocity, and solve it.

(2)  Find the maximum height (h)  of the body.

(3)  Find the limit of  the initial velocity  as  
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Example 4:  Escape Velocity (1 of 2)

• A body of mass m is projected away from the earth in a direction 

perpendicular to the earth’s surface with initial velocity v0 and no air 

resistance. Taking into account the variation of the earth’s gravitational field 

with distance, the gravitational force acting on the mass is

R is the radius of the earth and g is the acceleration due to gravity at the 

earth’s surface. Using Newton’s law F = ma,

• Since and cancelling the m’s, the differential equation 

becomes
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Example 4:  Escape Velocity (2 of 2)

• We can solver the differential equation by separating the variables and 

integrating to arrive at:

• The maximum height (altitude) will be reached when the velocity is zero. 

Calling that maximum height ξ, we have

• We can now find the initial velocity required to lift a body to a height ξ :

and, taking the limit as ξ→∞, we get

the escape velocity, representing the initial velocity required to escape 

earth’s gravitational force:

• Notice that this does not depend on the mass of the body.
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