
Ch 2.4: Differences Between Linear and Nonlinear 
Equations

• Recall that a first order ODE has the form  y' = f (t, y), and is linear if  f is linear 
in y, and nonlinear if  f is nonlinear in y. 

• Examples:    y' = t y - e t,     y' = t y2.  

• In this section, we will see that first order linear and nonlinear equations differ 
in a number of ways, including:
– The theory describing existence and uniqueness of solutions, and corresponding 

domains, are different.  

– Well-posedness,  the behavior of the solution.

– Solutions to linear equations can be expressed in terms of a general solution, which 
is not usually the case for nonlinear equations:  EASY !!

– Linear equations have explicitly defined solutions while nonlinear equations 
typically do not, and nonlinear equations may or may not have implicitly defined 
solutions.

• For both types of equations, numerical and graphical construction of solutions 
are important.



(Example)   Find the solution of the Initial Value Problem  
(IVP).     How many solutions does IVP have?

(Question)  

when does IVP have the unique (only one) solution?
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Theorem 2.4.1

• Consider the linear first order initial value problem:

• If the functions p and g are continuous on an open interval (,  ) containing 

the point t = t0, then there exists a unique solution  y = (t) that satisfies the 

IVP for each t in (,  ).

• Proof outline: Use Sec 2.1 discussion and results:
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Theorem 2.4.2

• Consider the nonlinear first order initial value problem:

• Suppose   f and  f/y are continuous on some open rectangle 

(t, y)  (,  ) x (,  ) containing the point (t0, y0).  

Then in some interval (t0 - h, t0 + h)  (,  ) there exists a unique solution 

y = (t) that satisfies the IVP.

• Proof  discussion: Since there is no general formula for the solution of 
arbitrary nonlinear first order IVPs, this proof is difficult, and is beyond the 
scope of this course (:  Picard Iteration)

• It turns out that conditions stated in Theorem 2.4.2 are sufficient but not 
necessary to guarantee existence of a solution, and continuity of  f ensures 
existence but not uniqueness of .
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Example 1:  Linear IVP

• Recall the initial value problem from Chapter 2.1 slides:

• The solution to this initial value problem is defined for 

t > 0, the interval on which  p(t) = 2/t is continuous:   t > 0  or   t < 0

• If the initial condition is y(-1) = 2, then the solution is given by same 

expression as above, but is defined on t < 0.

• In either case, Theorem 2.4.1 guarantees that 

solution is unique on corresponding interval.
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Example 2:  Nonlinear IVP  (1 of 2)

• Consider nonlinear initial value problem from Ch 2.2:

• The functions f and f/y are given by

and are continuous except on line y = 1.

• Thus we can draw an open rectangle about (0, -1) on which f and  f/y are 

continuous, as long as it doesn’t cover y = 1. 

• How wide is rectangle?  Recall solution defined for t > -2, with
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Example 2:  Change Initial Condition  (2 of 2)

• Our nonlinear initial value problem is

with

which are continuous except on line y = 1.

• If we change initial condition to y(0) = 1, then Theorem 2.4.2 is not satisfied.  

Solving this new IVP, we obtain

• Thus a solution exists but is not unique.

   
,

12

243
),(,

12

243
),(

2

22















y

xx
yx

y

f

y

xx
yxf

 
1)0(,

12

243 2





 y

y

xx

dx

dy

0,221 23  xxxxy



Example 3:  Nonlinear IVP

• Consider nonlinear initial value problem

• The functions f and f/y are given by

• Thus  f continuous everywhere, but  f/y doesn’t exist at y = 0, and hence 
Theorem 2.4.2 is not satisfied. Solutions exist but are not unique. Separating 
variables and solving, we obtain

• If initial condition is not on t-axis, then Theorem 2.4.2 does guarantee existence 
and uniqueness.
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Example 4:  Nonlinear IVP

• Consider nonlinear initial value problem

• The functions f and f/y are given by

• Thus  f and  f/y  are continuous at t = 0, so Theorem 2.4.2 guarantees that 

solutions exist and are unique. 

• Separating variables and solving, we obtain

(Question)   What is the interval of definition of the solution?    

• The solution y(t) is defined on (-, 1). Note that the singularity at t = 1 is not 

obvious from original IVP statement. 
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Interval of Definition:  Linear Equations

• By Theorem 2.4.1, the solution of a linear initial value problem

exists throughout any interval about t = t0 on which p and g are continuous.  

• Vertical asymptotes or other discontinuities of solution can only occur at points 

of discontinuity of p or g.

***  From  the coefficients  we can predict the solution’s shape and behavior.

• However, solution may be differentiable at points of discontinuity of p or g.  

See Chapter 2.1: Example 3 of text.

• Compare these comments with Example 1 and with previous linear equations in 

Chapter 1 and Chapter 2. 
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Interval of Definition:  Nonlinear Equations

• In the nonlinear case, the interval (: domain of solution) on which a solution 

exists may be difficult to determine.  

• The solution y = (t) exists as long as (t,(t)) remains within rectangular region 

indicated in Theorem 2.4.2.  This is what determines the value of h in that 

theorem. Since (t) is usually not known, it may be impossible to determine this 

region.

• In any case, the interval on which a solution exists may have no simple 

relationship to the function f in the differential equation  y' = f (t, y),  in contrast 

with linear equations. 

• Furthermore, any singularities in the solution may depend on the initial condition 

as well as the equation. 

• Compare these comments to the preceding examples. 



General Solutions

• For a first order linear equation, it is possible to obtain a solution (: general 

solution) containing one arbitrary constant, from which all solutions follow by 

specifying values for this constant.      

• For nonlinear equations, such general solutions may not exist.  That is, even 

though a solution containing an arbitrary constant may be found, there may be 

other solutions that cannot be obtained by specifying values for this constant.  

• Consider Example 4: The function y = 0 is a solution of the differential 

equation, but it cannot be obtained by specifying a value for c in solution found 

using separation of variables: 
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Explicit Solutions: Linear Equations

• By Theorem 2.4.1, a solution of a linear initial value problem

exists throughout any interval about t = t0 on which p and g are 

continuous, and this solution is unique.

• The solution has an explicit representation,

and can be evaluated at any appropriate value of t, as long as the 

necessary integrals can be computed. 
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Explicit Solution Approximation

• For linear first order equations, an explicit representation 

for the solution can be found, as long as necessary 

integrals can be solved.  

• If integrals can’t be solved, then numerical methods are 

often used to approximate the integrals.  
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Implicit Solutions:  Nonlinear Equations

• For nonlinear equations, explicit representations of solutions may not exist.  

• As we have seen, it may be possible to obtain an equation which implicitly 

defines the solution.  If equation is simple enough, an explicit representation 

can sometimes be found.  

• Otherwise, numerical calculations are necessary in order to determine values of 

y for given values of t.  These values can then be plotted in a sketch of the 

integral curve. 

• Recall the examples from earlier in the

chapter and consider the following example
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Direction Fields

• In addition to using numerical methods to sketch the integral curve, the 

nonlinear equation itself can provide enough information to sketch a direction 

field.  

• The direction field can often show the qualitative form of solutions, and can 

help identify regions in the ty-plane where solutions exhibit interesting features 

that merit more detailed analytical or numerical investigations. 

• Chapter 2.7 and Chapter 8 focus on numerical methods. 


