
Ch 2.6 Exact Equations and Integrating 

Factors

• Need  Bivariate Calculus



EXAMPLE 1

(1) Find the first order partial derivatives                             of 

(2) (Chain rule)      If                                 then   it may be possible to  compute 

(3) What can we say about an implicit function                                     and   the   
ODE:    

(Question)       For given ODE how do we find  the  implicit  solution  
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Example 2:  Exact Equation

• Consider the equation:

• It is neither linear nor separable, and not homogeneous.   

Can you find a function ϕ such that 
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Example 2:  Exact Equation

• Consider the equation:

• It is neither linear nor separable, and not homogeneous.    Can we find a function 

ϕ such that 

(Question)       

• Thinking of  y  as a function of x   (:                 )  and calling upon the chain rule, 

the differential equation and its solution become 
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Ch 2.6 Exact Equations and Integrating Factors

• Consider a first order ODE of the form

• Suppose there is a function  such that

and such that (x,y) = c defines   y = (x)   implicitly.  Then

and hence the original ODE becomes 

• Thus (x,y) = c defines a solution implicitly.  

• In this case, the ODE is said to be exact. 

(Question)     For any given ODE,  how do we determine whether or not the DE is 

exact?
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Theorem 2.6.1

• Suppose an ODE can be written in the form

where the functions M, N, My and Nx are all continuous in the rectangular 

region R: (x, y)  (,  ) x (,  ). 

Then Eq. (1) is an exact differential equation iff 

• That is, there exists a function  satisfying the conditions

if M and N satisfy Equation (2).  
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(Example 3)     Solve  the  ODE.     

(1)    Is it  exact?

(2)     If it is exact   solve the ODE
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(Example 3)      Consider  a general solution of the ODE 

(1)   Is this ODE  exact ?

(2)   If  it is exact, then   find  its  an implicit solution by using  

the fact  of  Theorem (2.6.1).
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Example 3: Exact Equation   (1 of 3)
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• Consider the following differential equation: 

• Then   

and hence

• From Theorem 2.6.1, 

• Thus
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Example 3: Solution   (2 of 3)
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and 

***    x and y  are  two independent variables

• It follows that

• Thus 

• By Theorem 2.6.1, the solution is given implicitly by 
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Example 3: 

Direction Field and Solution Curves (3 of 3)

• Our differential equation and solutions are given by

• A graph of the direction field for this differential equation, along with several

solution curves, is given below. 
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(Example 4)     Solve  the  ODE.      Is it  exact?
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Example 4: Non-Exact Equation   (1 of 2)

• Consider the following differential equation. 

• Then 

and hence

• To show that our differential equation cannot be solved by this method, let us 

seek a function  such that

• Thus
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Example 4: Non-Exact Equation   (2 of 2)

• We seek  such that 

and 

• Then

• Because C’(y) depends on x as well as y, there is no such function (x, y) such 

that
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Integrating Factors

• It is sometimes possible to convert a differential equation that is not exact 
into an exact equation by multiplying the equation by a suitable integrating 
factor (x, y):

• For this equation to be exact, we need

• This partial differential equation may be difficult to solve.  If  is a function 
of x alone, then y = 0 and hence we solve

provided right side is a function of x only.  Similarly if  is a function of y
alone.  See text for more details.
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Example 4: Non-Exact Equation

• Consider the following non-exact differential equation. 

• Seeking an integrating factor, we solve the linear equation

• Multiplying our differential equation by , we obtain the exact equation

which has its solutions given implicitly by
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