
Ch 2.7: Numerical Approximations:  Euler’s Method

• Recall that a first order initial value problem has the form

• If f  and f /y are continuous,  then this IVP has a unique solution  y = (t)  in 

some interval about t0.  

• When the differential equation is linear, separable or exact, we can find the 

solution by symbolic manipulations.  

• However, the solutions for most differential equations of this form cannot be 

found by analytical means. 

• Therefore it is important to be able to approach the problem in other ways. 
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Direction Fields

• For the first order  initial value problem (IVP)

we can sketch a direction field and visualize the behavior of solutions.  

***     This has the advantage of being a relatively simple process, even for 

complicated equations.  

***     However, direction fields do not lend themselves to quantitative 

computations or comparisons ( with experiment data)
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Numerical Methods

• For our first order initial value problem

an alternative is to  compute approximate values of the solution y = (t)   at a 

selected set of t-values.  

• Ideally, the approximate solution values will be accompanied by error bounds 

that ensure the level of accuracy. 

• There are many numerical methods that produce numerical approximations to 

solutions of differential equations, some of which are discussed in Chapter 8.  

• In this section, we examine the tangent line method, which is also called 

Euler’s Method.  

Tangent line method:      approximate the unknown solution  y(t)  by tangent lines
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Euler’s Method:   Tangent Line Approximation

• For the initial value problem 

we begin by approximating solution  y = (t)  at initial point t0. 

• The solution passes through initial point (t0, y0) with slope 

f (t0, y0). The line tangent to the solution at this initial point is

• The tangent line is a good approximation to solution curve on an interval short 

enough.

• Thus if t1 is close enough to t0, 

we can approximate (t1) by 
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Euler’s Formula

• For a point t2 close to t1, we approximate (t2) using the line passing through 

(t1, y1) with slope f (t1, y1): 

• Thus we create a sequence  yk of  approximations to  (tk):

where fk = f (tk, yk).  

• For a uniform step size h = tk – tk-1, Euler’s formula becomes
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Euler Approximation

• To graph an Euler approximation, we plot the points 

(t0, y0), (t1, y1),…, (tn, yn), and then connect these points 

with line segments. 
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Example 1:  Euler’s Method (1 of 3)

• For the initial value problem

• We can use Euler’s method with h = 0.2 to approximate the 

solution at t = 0.2, 0.4, 0.6, 0.8, and 1.0 as shown below.
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Example 1:  Exact Solution    (2 of 3)

• We can find the exact solution to our IVP, as in Chapter 2.1:
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Matlab files

• Files:    eul.m, rk2.m, rk4.m   (http://math.rice.edu/~dfield)

-- For using these files, Read the guideline in course main webpage:  eul

http://www.math.purdue.edu/academic/courses/MA26600/

• (Example)     y’ = 2y – t + 1,    y(0) = 1    

(How to use   eul.m)

(1)  create M-file,  fcn1.m

(2)  The syntax for  “eul”:      > eul(‘fcn1’,[t0, tf],y(0),h)

-- t0 = the initial value of x        -- tf = the final value of t

-- y(0) = the initial value of y       -- h = the step size.

(3)  You can try      > eul(‘fcn1’,[0,3],1,0.1)

(4)  To plot the numerical solution  we can try

>  [t,y] = eul(‘fcn1’,[0,3],1,0.1)

>  plot(t,y)

• You can also create your own M-files
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Euler method (Tangent line method)

• (Example)    By using the  Euler method   approximate  the solution of the  

ODE with   h = 0.02:

• (Example)  Estimate                               by using  “eul”  with   h = 0.02

(Hint)    What if  we set   

• Remark:   When we use these routines, things can go wrong !!

(1)   Step size is too large  or too small.

(2)   Solution may not be defined at point in question
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Example 1:  Euler’s Method  (1 of 3)

• For the initial value problem

we can use Euler’s method  with various step sizes (h)  to 

approximate the solution at t = 1.0, 2.0, 3.0, 4.0,  and 5.0  

and  compare our results to the exact solution

at those values of t.
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Example 1:  Euler’s Method  (2 of 3)

• Comparison of exact solution with Euler’s 

Method for h = 0.1, 0.05, 0.25, 0.01 

t Exact  y h = 0.1 h = 0.05 h = 0.025 h = 0.01

0.0 1.0000 1.0000 1.0000 1.0000 1.0000

1.0 2.1151 2.2164 2.1651 2.1399 2.1250

2.0 1.2176 1.3397 1.2780 1.2476 1.2295

3.0 -0.9007 -0.7903 -0.8459 -0.8734 -0.8898

4.0 -3.7594 -3.6707 -3.7152 -3.7373 -3.7506

5.0 -7.0671 -7.0337 -7.0337 -7.0504 -7.0604



Example 1:  Error Analysis  (3 of 3)

• From table below, we see that the errors start small, but 

get larger.  This is most likely due to the fact that the exact 

solution is not linear on [0, 1].  Note: 

t Exact y Approx y Error % Rel Error

0 1 1 0 0

0.2 1.43711 1.5 -0.06 -4.38

0.4 1.7565 1.87 -0.11 -6.46

0..6 1.96936 2.123 -0.15 -7.8

0.8 2.08584 2.2707 -0.18 -8.86

1 2.1151 2.32363 -0.2085 -9.8591083
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Example 2:  Euler’s Method (1 of 3)

• For the initial value problem

we can use Euler’s method with h = 0.1 to approximate the 
solution at t = 1, 2, 3, and 4, as shown below.

• Exact solution (see Chapter 2.1):
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Example 2:  Error Analysis  (2 of 3)

• The first ten Euler approxs are given in table below on left.  

A table of approximations for t = 0, 1, 2, 3 is given on right.  

See text for numerical results with h = 0.05, 0.025, 0.01.

• The errors are small initially, but quickly reach an 

unacceptable level.  This suggests a nonlinear solution. 

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

0.10 1.66 1.60 0.06 3.55

0.20 2.45 2.31 0.14 5.81

0.30 3.41 3.15 0.26 7.59

0.40 4.57 4.15 0.42 9.14

0.50 5.98 5.34 0.63 10.58

0.60 7.68 6.76 0.92 11.96

0.70 9.75 8.45 1.30 13.31

0.80 12.27 10.47 1.80 14.64

0.90 15.34 12.89 2.45 15.96

1.00 19.07 15.78 3.29 17.27

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

1.00 19.07 15.78 3.29 17.27

2.00 149.39 104.68 44.72 29.93

3.00 1109.18 652.53 456.64 41.17

4.00 8197.88 4042.12 4155.76 50.69
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Example 2:  Error Analysis & Graphs  (3 of 3)

• Given below are graphs showing the exact solution (red) 

plotted together with the Euler approximation (blue).   

t Exact y Approx y Error % Rel Error

0.00 1.00 1.00 0.00 0.00

1.00 19.07 15.78 3.29 17.27

2.00 149.39 104.68 44.72 29.93

3.00 1109.18 652.53 456.64 41.17

4.00 8197.88 4042.12 4155.76 50.69
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General Error Analysis Discussion   (1 of 4)

• Recall that if f  and f /y are continuous, then our first order initial 

value problem

has a solution y = (t) in some interval about t0.  

• In fact, the equation has infinitely many solutions, each one indexed by 

a constant c determined by the initial condition. 

• Thus  is the member of an infinite family of 

solutions that satisfies (t0) = y0. 
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General Error Analysis Discussion   (2 of 4)

• The first step of Euler’s method uses the tangent line to  at the point (t0, 

y0) in order to estimate (t1) with y1.

• The point (t1, y1) is typically not on the graph of , because y1 is an 

approximation of (t1).

• Thus the next iteration of Euler’s method does not use a tangent line 

approximation to , but rather to a nearby solution 1 that passes through the 

point (t1, y1).   

• Thus Euler’s method uses a 

succession of tangent lines 

to a sequence of different

solutions , 1, 2,… of the

differential equation.



Error Analysis Example:  

Converging Family of Solutions   (3 of 4)

• Since Euler’s method uses tangent lines to a sequence of different solutions, the 

accuracy after many steps depends on behavior of solutions passing through (tn, 

yn), n = 1, 2, 3, … 

• For example, consider the following initial value problem:

• The direction field and graphs of a few solution curves are given below.  Note 

that it doesn’t matter which solutions we are approximating with tangent lines, 

as all solutions get closer to each other as t increases. 

• Results of using Euler’s method

for this equation are given in text. 
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Error Analysis Example:  

Divergent Family of Solutions      (4 of 4)

• Now consider the initial value problem for Example 2:

• The direction field and graphs of solution curves are given below.  Since 

the family of solutions is divergent, at each step of Euler’s method we are 

following a different solution than the previous step, with each solution 

separating from the desired one more and more as t increases. 
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Error Bounds and Numerical Methods

• In using a numerical procedure, keep in mind the question of whether the results 
are accurate enough to be useful.  

• In our examples, we compared approximations with exact solutions.  However, 
numerical procedures are usually used when an exact solution is not available.  
What is needed are bounds for (or estimates of) errors, which do not require 
knowledge of exact solution. More discussion on these issues and other 
numerical methods is given in Chapter 8.

• Since numerical approximations ideally reflect behavior of solution, a member 
of a diverging family of solutions is harder to approximate than a member of a 
converging family.  

• Also, direction fields are often a relatively easy first step in understanding 
behavior of solutions. 


