Ch 3.1: 2nd Order Linear Homogeneous Equations-Constant Coefficients

• A second order ordinary differential equation has the general form

$$y'' = f(t, y, y')$$

where f is some given function.

- This equation is said to be **linear** if *f* is linear in *y* and *y*': y'' = g(t) - p(t)y' - q(t)yOtherwise the equation is said to be **nonlinear**.
- In general, a second order linear equation often appears as

$$P(t)y'' + Q(t)y' + R(t)y = G(t)$$

• If G(t) = 0 for all t, then the equation is called **homogeneous**. Otherwise the equation is **nonhomogeneous**.

Homogeneous Equations, Initial Values

- In Sections 3.5 and 3.6, we will see that once a solution to a homogeneous equation is found, then it is possible to solve the corresponding nonhomogeneous equation, or at least express the solution in terms of an integral.
- The focus of this chapter is thus on homogeneous equations; and in particular, those with constant coefficients: ay'' + by' + cy = 0

We will examine the variable coefficient case in Chapter 5.

- Initial conditions typically take the form: $y(t_0) = y_0, y'(t_0) = y'_0$
- Thus, solution passes through (t_0, y_0) , and slope of solution at (t_0, y_0) is equal to y_0' .

How do we find a general solution?

(Example) Find a solution of the ODE:

 $\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = 0$

• (Hint) Consider the first order DE:

$$\frac{dy}{dt} - 2y = 0$$

- Since the two ODEs have constant coefficients, the same kind of functions may be solutions of the ODEs (?)
- We will develop rules and principles to get a general solution of a given ODE in Sec 3.2.

Example 1: Infinitely Many Solutions (1 of 3)

- Consider the second order linear differential equation y'' y = 0
- Two solutions of this equation are $y_1(t) = e^t$, $y_2(t) = e^{-t}$
- Other solutions include

$$y_3(t) = 3e^t$$
, $y_4(t) = 5e^{-t}$, $y_5(t) = 3e^t + 5e^{-t}$

Example 1: Infinitely Many Solutions (1 of 3)

- Consider the second order linear differential equation y'' y = 0
- Two solutions of this equation are $y_1(t) = e^t$, $y_2(t) = e^{-t}$
- Other solutions include $y_3(t) = 3e^t$, $y_4(t) = 5e^{-t}$, $y_5(t) = 3e^t + 5e^{-t}$
- Based on these observations, we see that there are infinitely many solutions of the form $y(t) = c_1 e^t + c_2 e^{-t}$
- (Question) How do we find all the solutions of the DE?
- It will be shown in Section 3.2 that all solutions of the differential equation above can be expressed in this form (It is called super-position)

Example 1: Initial Conditions (2 of 3)

• Now consider the following initial value problem for our equation:

$$y'' - y = 0, \quad y(0) = 2, \quad y'(0) = -1$$

• We have found a general solution of the form:

$$y(t) = c_1 e^t + c_2 e^{-t}$$

• Using the initial equations, can we get the coefficients ?

Example 1: Initial Conditions (2 of 3)

• Now consider the following initial value problem for our equation:

$$y'' - y = 0, \quad y(0) = 2, \quad y'(0) = -1$$

• We have found a general solution of the form: $y(t) = c_1 e^t + c_2 e^{-t}$

• Using the initial equations, $y(0) = c_1 + c_2 = 2$ $y'(0) = c_1 - c_2 = -1$ $\Rightarrow c_1 = 1/2, c_2 = 3/2$

• Thus
$$y(t) = 1/2 e^{t} + 3/2 e^{-t}$$

Example 1: Solution Graphs (3 of 3)

• Our initial value problem and solution are

$$y'' - y = 0$$
, $y(0) = 2$, $y'(0) = -1 \implies y(t) = \frac{1}{2} e^{t} + \frac{3}{2} e^{-t}$

• Graphs of both y(t) and y'(t) are given below. Observe that both initial conditions are satisfied.

Characteristic Equation

- To solve the 2nd order equation with constant coefficients, ay'' + by' + cy = 0, we begin by assuming a solution of the form $y = e^{rt}$.
- Substituting this into the differential equation, we obtain

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$

• Simplifying, $e^{rt}(ar^2+br+c)=0$

and hence $ar^2 + br + c = 0$

- This last equation is called the **characteristic equation** of the differential equation.
- We then solve for *r* by factoring or using quadratic formula.

General Solution

• Using the quadratic formula on the characteristic equation

$$ar^2 + br + c = 0,$$

we obtain two solutions, r_1 and r_2 .

- There are three possible results:
 - The roots r_1 , r_2 are real and $r_1 \neq r_2$.
 - The roots r_1 , r_2 are real and $r_1 = r_2$.
 - The roots r_1 , r_2 are complex.
- In this section, we will assume r_1 , r_2 are real and $r_1 \neq r_2$.

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

• In this case, the general solution has the form

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Examples

Find solutions of the ODEs

(1)
$$\frac{d^2y}{dt^2} - 4y = 0$$

(2)
$$y'' - y' = 0$$

(3)
$$y'' + 5y' + 6y = 0$$

Example 2 (case 1: $r_1 \neq r_2$)

- Consider the linear differential equation y'' + 5y' + 6y = 0
- Assuming an exponential solution leads to the characteristic equation:
- Factoring the characteristic equation yields two solutions: $r_1 = -2$ and $r_2 = -3$
- Therefore, the general solution to this differential equation has the form

$$y(t) = e^{rt} \implies r^2 + 5r + 6 = 0 \iff (r+2)(r+3) = 0$$

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Initial Conditions

• For the initial value problem

$$ay'' + by' + cy = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y'_0,$$

we use the general solution $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

together with the initial conditions to find c_1 and c_2 . That is,

$$c_{1}e^{r_{1}t_{0}} + c_{2}e^{r_{2}t_{0}} = y_{0} \\ c_{1}r_{1}e^{r_{1}t_{0}} + c_{2}r_{2}e^{r_{2}t_{0}} = y_{0}' \\ \Rightarrow c_{1} = \frac{y_{0}' - y_{0}r_{2}}{r_{1} - r_{2}}e^{-r_{1}t_{0}}, c_{2} = \frac{y_{0}r_{1} - y_{0}'}{r_{1} - r_{2}}e^{-r_{2}t_{0}}$$

• Since we are assuming $r_1 \neq r_2$, it follows that a solution of the form $y = e^{rt}$ to the above initial value problem will always exist, for any set of initial conditions.

Example 3 (IVP)

• Consider the initial value problem

$$y'' + 5y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = 3$

- From the preceding example, we know the general solution has the form:
- With derivative: $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$
- Using the initial conditions:

$$y'(t) = -2c_1e^{-2t} - 3c_2e^{-3t}$$

$$y(t) = 9e^{-2t} - 7e^{-3t}$$

• Thus

$$\begin{vmatrix} c_1 + c_2 = 1 \\ -2c_1 - 3c_2 = 3 \end{vmatrix} \Rightarrow c_1 = 9, \ c_2 = -7$$

$$y(t) = 9e^{-2t} - 7e^{-3t}$$

•)

(Ex) Find the solution of the initial value problem

$$4y'' - 8y' + 3y = 0$$
, $y(0) = 2$, $y'(0) = 1/2$

Example 4: Initial Value Problem

• Consider the initial value problem 4y'' - 8y' + 3y = 0, y(0) = 2, y'(0) = 1/2

• Then
$$y(t) = e^{rt} \implies 4r^2 - 8r + 3 = 0 \iff (2r - 3)(2r - 1) = 0$$

- Factoring yields two solutions, $r_1 = 3/2$ and $r_2 = \frac{1}{2}$
- The general solution has the form $y(t) = c_1 e^{3t/2} + c_2 e^{t/2}$
- Using initial conditions:

$$\left. \begin{array}{c} c_1 + c_2 = 2 \\ 3/2 \, c_1 + 1/2 \, c_2 = 1/2 \end{array} \right\} \Longrightarrow c_1 = -1/2 \ , \ c_2 = 5/2$$

• Thus

 $y(t) = -1/2 e^{3t/2} + 5/2 e^{t/2}$

 $y(t) = -1/2 e^{3t/2} + 5/2 e^{t/2}$

Example 5: Find Maximum Value

• For the initial value problem in Example 3,

$$y'' + 5y' + 6y = 0,$$
 $y(0) = 2, y'(0) = 3,$

to find the maximum value attained by the solution, we set y'(t) = 0 and solve for *t*:

$$y(t) = 9e^{-2t} - 7e^{-3t}$$

$$y'(t) = -18e^{-2t} + 21e^{-3t} \stackrel{set}{=} 0$$

$$6e^{-2t} = 7e^{-3t}$$

$$e^{t} = 7/6$$

$$t = \ln(7/6)$$

$$t \approx 0.1542$$

$$y \approx 2.204$$

$$y(t) = 9e^{-2t} - 7e^{-3t}$$

