3.3 Case 2: Complex Roots of Characteristic equation

Recall our discussion of the equation ~ ay”+by'+cy =0
where a, b and ¢ are constants.

Assuming an exponential soln leads to characteristic equation:
y(t)=e" = ar’+br+c=0

» Quadratic formula (or factoring) yields two solutions, r; & r:
. —b++/b*—4ac
2a

« Ifb?—4ac<0,thencomplexroots: r,=A+iy, r,=A-iu

. Thus yl (t) _ e(/1+i,u)t’ yz (t) _ e(ﬂ,—i,u)t f)



(Example 1) Find general (real-valued) solutions of the
ODEs

1 y+y=0

2) y-+4y+5y=0



Euler’s Formula; Complex Valued Solutions

Substituting it into Taylor series for e, we obtain Euler’s formula:

1 —1 2n-1

Z('t) Z( 1) tzn Z( 2n-1) —cost+isint

—o n! n=0 n—1

Generalizing Euler’s formula, we obtain " = cos(ut) +isin(ut)

Then ™) =e™e =e™[cos ut +isin ut] = e™ cos(ut) +ie™ sin(ut)

Therefore y, (t) =e!*™)" =™ cos(ut) +ie™ sin(ut)
y, (t) =e* )" = e cos(ut) —ie™ sin(ut)



Real VValued Solutions

Our two solutions thus far are complex-valued functions:
y, (t) =e*" cos st +ie*" sin ut
Y, (t) = e** cos ut —ie*" sin pt

We would prefer to have real-valued solutions, since our differential equation
has real coefficients.

To achieve this, recall that linear combinations of solutions are themselves
SOMIONS: 1)+ y,(0) = 2¢™ cos(ut)
Y1(t) —-Y, (t) = 2ie™ Sin(ﬂt)

Ignoring constants, we obtain the two solutions

y,(t) =e*" cos(ut), y,(t) =e" sin(ut)



Real Valued Solutions: The Wronskian

Thus we have the following real-valued functions:
Y5(t) = cos s, y,(t) =e* sin s
Checking the Wronskian, we obtain

e cos ut e sin

W =
e™(Acos pt — psin gt) e™(Asin ut + pcos pit)
= e’ 20

Thus y, and y, form a fundamental solution set for our ODE,
and (Case 2:) the general solution can be expressed as

y(t) =c.e* cos ut +c,e* sin st



(Example 2) Find a general solution of the
ODE:

y +y +9.25y =0



Example 2 (1 of 2)

 Consider the differential equation

V'+y' +9.25y =0
 For an exponential solution, the characteristic equation is
~1441-4%925 -1+6i 1

=——13I
2 2 2

« Therefore, separating the real and imaginary components,
A=-1/2, u=3

and thus the general solution is
y(t) =ce? cos(3t)+c,e *sin(3t) = e ?(c, cos(3t)+c, sin(3t))

y(t)=e" = r’+r+9.25=0 < r=



Example 2 (2 of 2)

Using the general solution just determined  y(t) =e (¢, cos(3t)+c, sin(3t))

We can determine the particular solution that satisfies the initial conditions
y(0)=2 and y'(0) =8

SO 0)=c, =2
y,() ' —¢,=2,C,=3
y'(0) =-1/2c,+3c, =8

Thus the solution of this IVVP is =P Y

yt

y(t) =e2(2cos(3t)+3sin(3t))

N\ A~

The solution is a decaying oscillation \/ VAR




(Example 3) Find the solution of the IVP

161" -8y +145y =0, p(0)==-2, '(0)=1



Example 3

Consider the initial value problem
16y" -8y’ +145y =0, y(0)=-2, y'(0)=1

Then y(t) =e" =16r°—-8r+145=0 < r:%iBi

Thus the general solutionis  y(t) =c,e"’* cos(3t)+c,e"* sin(3t)

0)=c, =-2
And y(0)=c, =, =-2,C,=1/2
y'(0)=-1/4c, +3c, =1
y(t) =e"*(—2cos(3t)+12 sin(3t))

vt
The solution of the IVP is *

—e'* (-2 +1/2 sin )
y(t) =e"*(—2cos(3t)+1/2 sin(3t)) N /'\ /\

a

/ 2 4 :
The solution is displays a growing oscillation. o \/ \/ v \



Example 4

Consider the equation y'+9y =0
Then y(t)=e" = r*+9=0 < r==3i
Therefore A=0, u=3

and thus the general solutionis  y(t) =c, cos(3t)+c, sin(3t)

solid : y = 2cos(3t)+ 2sin(3t)
dashed : y =cos(3t)+ 1/2 sin(3t)

Because A =0, there is no exponential factor
in the solution, so the amplitude of each oscillation
remains constant.

The figure shows the graph of two typical solutions.




