
Ch 3.7: Mechanical & Electrical Vibrations

• Two important areas of application for second order linear equations with 

constant coefficients are in modeling mechanical and electrical oscillations.

• We will study the motion of a mass on a spring in detail.

• An understanding of the behavior of this simple system is the first step in 

investigation of more complex vibrating systems.



Spring – Mass System

• Suppose a mass m hangs from a vertical spring of original length l.  The 

mass causes an elongation L of the spring. 

• The force FG  of gravity pulls the mass down. This force has magnitude mg, 

where g is acceleration due to gravity. 

• The force FS of the spring stiffness pulls the mass up. For small elongations 

L, this force is proportional to L.  That is,    Fs  = - kL (Hooke’s Law). 

• When the mass is in equilibrium,                      the forces balance each other : 0,Sw F 



Spring Model

• We will study the motion of a mass when it is acted on by an external force 

(forcing function) and/or is initially displaced.

• Let u(t) denote the displacement of the mass from its equilibrium position at 

time t, measured downward. 

• Let  f be the net force acting on the mass. We will use Newton’s 2nd Law:

• In determining f, there are four separate forces to consider:

– Weight:            w = mg (downward force)

– Spring force:    Fs  = - k(L+ u)   (up or down force, see next slide)

– Damping force: Fd(t) = -  u (t) (up or down, see following slide)

– External force: F (t) (up or down force, see text)
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Spring Model:  

Spring Force Details

• The spring force Fs acts to restore a spring to the natural position, and is 

proportional to  L + u.   If  L + u > 0,  then the spring is extended and the spring 

force acts upward.    In this case

• If   L + u < 0,   then spring is compressed a distance of  |L + u|, and the spring 

force acts downward.  In this case

• In either case,
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Spring Model:  

Damping Force Details

• The damping or resistive force   Fd acts in the opposite direction as the motion 

of the mass. This can be complicated to model.  Fd  may be due to air resistance, 

internal energy dissipation due to action of spring, friction between the mass 

and guides, or a mechanical device (dashpot) imparting a resistive force to the 

mass. 

• We simplify this and assume Fd is proportional to the velocity. 

• In particular, we find that

– If  u > 0,  then u is increasing,  so the mass is moving downward. Thus Fd 

acts upward and hence  Fd  = -  u, where  > 0.

– If  u < 0,  then u is decreasing, so the mass is moving upward. Thus Fd 

acts downward and hence  Fd  = -  u ,  > 0.

• In either case, ( ) ( ), 0.dF t u t   



Spring Model:  

Differential Equation

• Taking into account these forces, Newton’s Law becomes:

• Recalling that mg = kL, this equation reduces to

where the constants m, , and k are positive.  

• We can prescribe initial conditions also:

• It follows from Theorem 3.2.1 that there is a unique solution to this initial value 

problem.  Physically, if the mass is set in motion with a given initial 

displacement and velocity, then its position is uniquely determined at all future 

times.

(Question)    How do we compute  the constants m, , and k ?
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(Example)     An object weighing 4 lb-force stretches a spring 

2".  The mass is displaced an additional  6"  and  then released; and 

is in a medium that exerts a viscous resistance of  6 lb-force  when 

the mass has a velocity of  3 ft/sec.   Formulate the  initial value 

problem (IVP) that governs the motion of this object.

- w = mg

-

- Initial conditions ?

232  ft/secg 
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Example 1: 

Find Coefficients (1 of 2)

• A mass weighing 4 lb-force stretches a spring 2".     The mass is displaced an 

additional 6" and then released; and is in a medium that exerts a viscous 

resistance of 6 lb-force when the object has a velocity of 3 ft/sec. Formulate 

the IVP that governs the motion of this object:

• Find   m:

• Find    :

• Find   k: 
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Example 1: Find IVP  (2 of 2)

• Thus our differential equation becomes

and hence the initial value problem can be written as   (unit: ft)
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Example 1: Find IVP  (2 of 2)

• Thus our differential equation becomes

and hence the initial value problem can be written as

• This problem can be solved using the methods of 

Chapter 3.3 and yields the solution:
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(Example 2)    A mass weighing 10 lb-force stretches 

a spring 2".  The mass is displaced an additional 2" and 

then set in motion with an initial upward velocity of 1 

ft/sec.  Determine the position of the mass at any later 

time, and find the period, amplitude, and phase of the 

motion.



Example 2:  Find IVP  (1 of 2)

• A mass weighing 10 lb-force stretches a spring 2".  The mass is displaced an 

additional 2" and then set in motion with an initial upward velocity of 1 ft/sec.  

Determine the position of the mass at any later time, and find the period, 

amplitude, and phase of the motion:     = 0

• Find m:

• Find k: 

• Thus our IVP is
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Example 2: Find Solution  (2 of 2)

• Simplifying, we obtain

• To solve, use methods of Ch 3.3 to obtain

or
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Spring Model: 

Undamped Free Vibrations   (1 of 4)

• Recall our differential equation for spring motion:

• Suppose there is no external driving force and no damping. Then   F(t) = 0 

and    = 0, and our equation becomes

• The general solution to this equation is
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Spring Model: 

Undamped Free Vibrations   (2 of 4)

• Using trigonometric identities, the solution

can be rewritten as follows:

where

• Note that in finding , we must be careful to choose the correct quadrant.

This is done using the signs of cos  and sin .
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Spring Model: 

Undamped Free Vibrations   (3 of 4)

• Thus our solution is

where 

• The solution is a shifted cosine (or sine) curve, that describes simple harmonic 

motion, with period

• The circular frequency 0  (radians/time) is the natural frequency of the 

vibration, R is the amplitude of the maximum displacement of mass from 

equilibrium, and  is the phase or phase angle (dimensionless). 
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Spring Model: 

Undamped Free Vibrations   (4 of 4)

• Note that our solution

is a shifted cosine (or sine) curve with period

• Initial conditions determine A & B, hence also the amplitude R.  

• The system always vibrates with the same frequency 0 , regardless of the initial 

conditions.  

• The period T increases as m increases, so larger masses vibrate more slowly.  

However, T decreases as k increases, so stiffer springs cause a system to vibrate 

more rapidly.
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Example 2:  Find IVP  (1 of 3)

• A mass weighing 10 lb-force stretches a spring 2".  The mass is displaced an 

additional 2" and then set in motion with an initial upward velocity of 1 ft/sec.  

Determine the position of the mass at any later time, and find the period, 

amplitude, and phase of the motion:     = 0

• Find m:

• Find k: 

• Thus our IVP is
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Example 2: Find Solution  (2 of 3)

• Simplifying, we obtain

• To solve, use methods of Ch 3.3 to obtain

or
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Example 2: 

Find Period, Amplitude, Phase  (3 of 3)

• The natural frequency is

• The period is

• The amplitude is

• Next, determine the phase  :
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Spring Model: Damped Free Vibrations  (1 of 8)

• Suppose there is damping but no external driving force F(t):

• What is effect of the damping coefficient  on system? 

• The characteristic equation is

• Three cases for the solution:
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Damped Free Vibrations: Small Damping (2 of 8)

• Of the cases for solution form, the last is most important, which occurs when 

the damping is small:

• We examine this last case.    Recall

• Then

and hence

(damped oscillation)

 

 

1 22

1 2

2 2

2

/

/2

4 0 : ( ) , 0, 0

( ) cos sin

4 0 : ( ) , / 2 0 

4 0 : , 0t m

r t r t

t m

mk u t Ae Be r r

mk u t A Bt e

u t e A t

m

k tm B



 



 

 



     

  









  

 sin,cos RBRA 

    teRtu mt cos)( 2/

mteRtu 2/)( 



Damped Free Vibrations: Quasi Frequency (3 of 8)

• Thus we have damped oscillations:

• The amplitude R depends on the initial conditions, since

• Although the motion is not periodic, the parameter  determines the mass 

oscillation frequency.

• Thus  is called the quasi frequency.

• Recall
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Damped Free Vibrations: Quasi Period  (4 of 8)

• Compare  with 0 , the frequency of undamped motion:

• Thus, small damping reduces oscillation frequency slightly. 

• Similarly, the quasi period is defined as Td = 2/.  Then

• Thus, small damping increases quasi period.
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Damped Free Vibrations: 

Neglecting Damping for Small  2/4km (5 of 8)

• Consider again the comparisons between damped and undamped frequency 

and period:

• Thus it turns out that a small  is not as telling as a small ratio  2/4km. 

• For small  2/4km, we can neglect the effect of damping when calculating the 

quasi frequency and quasi period of motion.  But if we want a detailed 

description of the motion of the mass, then we cannot neglect the damping 

force, no matter how small it is. 
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Damped Free Vibrations: 

Frequency, Period (6 of 8)

• Ratios of damped and undamped frequency, period:

• Thus

• The importance of the relationship between 2 and 4km is supported by our 

previous equations: 
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Damped Free Vibrations: 

Critical Damping Value  (7 of 8)

• Thus the nature of the solution changes as  passes through the value 

• This value of  is known as the critical damping value, and for larger values 

of  the motion is said to be overdamped. 

• Thus for the solutions given by these cases, 

we see that the mass creeps back to its equilibrium position for solutions (1) 

and (2), but does not oscillate about it, as it does for small  in solution (3). 

• Soln (1) is overdamped and soln (2) is critically damped.
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Damped Free Vibrations: 

Characterization of Vibration  (8 of 8)

• The mass creeps back to the equilibrium position for solutions (1) & (2), but 

does not oscillate about it, as it does for small  in solution (3).

• Solution (1) is overdamped and 

• Solution (2) is critically damped.

• Solution (3) is underdamped
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Example 3:  Initial Value Problem     (1 of 4)

• Suppose that the motion of a spring-mass system is governed by the initial 
value problem  

• Find the following:

(a) quasi frequency and quasi period;

(b) time at which mass passes through equilibrium position;

(c) time  such that |u(t)| < 0.1 for all t > .

• For Part (a), using methods of this chapter we obtain:

where
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Example 3: Quasi Frequency & Period   (2 of 4)

• The solution to the initial value problem is:

• The graph of this solution, along with solution to the corresponding undamped 

problem, is given below. 

• The quasi frequency is

and quasi period is

• For the undamped case:
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Example 3: Quasi Frequency & Period   (3 of 4)

• The damping coefficient is    = 0.125 = 1/8, and  this is 1/16  of the critical 

value

• Thus damping is small relative to mass and spring stiffness.  Nevertheless the 

oscillation amplitude diminishes quickly. 

• Using a solver, we find that |u(t)| < 0.1 

for   t >   47.515 sec
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Example 3: Quasi Frequency & Period   (4 of 4)

• To find the time at which the mass first passes through the equilibrium 

position, we must solve

• Or more simply, solve
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Electric Circuits

• The flow of current in certain basic electrical circuits is modeled by second 

order linear ODEs with constant coefficients: 

• It is interesting that the flow of current in this circuit is mathematically 

equivalent to motion of spring-mass system.

• For more details, see text.
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