Ch 3.7: Mechanical & Electrical Vibrations

Two important areas of application for second order linear equations with
constant coefficients are in modeling mechanical and electrical oscillations.

We will study the motion of a mass on a spring in detail.

An understanding of the behavior of this simple system is the first step in
Investigation of more complex vibrating systems.
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Spring — Mass System

Suppose a mass m hangs from a vertical spring of original length . The
mass causes an elongation L of the spring.

The force Fg of gravity pulls the mass down. This force has magnitude mg,
where g is acceleration due to gravity.

The force Fq of the spring stiffness pulls the mass up. For small elongations
L, this force is proportional to L. Thatis, F,=-kL (Hooke’s Law).

When the mass is in equilibrium, w+ F =0, the forces balance each other :
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We will study the motion of a mass when it is acted on by an external force
(forcing function) and/or is initially displaced.
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Let u(t) denote the displacement of the mass from its equilibrium position at
time t, measured downward.

Let f be the net force acting on the mass. We will use Newton’s 2" Law:
mu”(t) = f (t)

In determining f, there are four separate forces to consider:

— Weight: W =mg (downward force)

— Spring force: F, = - k(L+ u) (up or down force, see next slide)
— Damping force: Fy(t) =-yu’(t) (up or down, see following slide)
— External force: F (t) (up or down force, see text)



Spring Model: L
Spring Force Details T - i)
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The spring force F, acts to restore a spring to the natural position, and is

proportional to L +u. If L+ u >0, then the spring is extended and the spring
force acts upward. In this case F =—k(L+u), L+u>0.

If L+u<0, thenspringiscompressed a distance of |L + u|, and the spring
force acts downward. Inthiscase g _ k\L+u\ _ k[—(L+u)]=—k(L+u)

In either case, F =—k(L+u)
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The damping or resistive force F, acts in the opposite direction as the motion
of the mass. This can be complicated to model. F; may be due to air resistance,
internal energy dissipation due to action of spring, friction between the mass
and guides, or a mechanical device (dashpot) imparting a resistive force to the
mass.

We simplify this and assume F is proportional to the velocity.
In particular, we find that

— If u” >0, thenu isincreasing, so the mass is moving downward. Thus F,
acts upward and hence F, =-yu’ wherey> 0.

— If u” <0, then u is decreasing, so the mass is moving upward. Thus F,
acts downward and hence F, = -yu’, y>O0.

In either case, F,(t)=—yu'(t), »>0.
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» Taking into account these forces, Newton’s Law becomes:

mu”(t) =mg + F, (t) + F, (t) + F(t) =mg —k[L+u(t) |-y u'(t) + F(t)
« Recalling that mg = kL, this equation reduces to  mu”(t) +yu’(t) + ku(t) = F(t)
where the constants m, y, and k are positive.

* We can prescribe initial conditions also: ~ u(0) =u,, u’(0) =v,

It follows from Theorem 3.2.1 that there is a unique solution to this initial value
problem. Physically, if the mass is set in motion with a given initial
displacement and velocity, then its position is uniquely determined at all future
times.

(Question) How do we compute the constants m, y, and k ?



(Example)  An object weighing 4 Ib-force stretches a spring
2". The mass Is displaced an additional 6" and then released; and
IS In @ medium that exerts a viscous resistance of 6 Ib-force when
the mass has a velocity of 3 ft/sec. Formulate the initial value
problem (I'\VP) that governs the motion of this object.

- w=mg g =32 ft/sec’
- F,=-kL Fy () =—yu'(t), »>0.

- Initial conditions ?



Example 1: %T é

Find Coefficients (1 of 2) 7 ?1

A mass weighing 4 Ib-force stretches a spring 2". The mass is displaced an
additional 6" and then released; and is in a medium that exerts a viscous
resistance of 6 Ib-force when the object has a velocity of 3 ft/sec. Formulate
the I'VP that governs the motion of this object:

mu’(t) +yu'(t) +ku(t) =F(), u(0)=u,, u'(0)=\v,

. _ W 41b 1 Ibsec?
Find m: w=mg = m=— = m= ~ = m==
g 32ft / sec 8 ft
: F 6lb Ibsec
Find y: =——12 = y= = y=2
4 4 u’ 4 3ft /sec 4 ft
Find k  ke—rs, Fz—w = k=28 _ (40 _ b

L 2in 1/6ft ft



Example 1: Find IVP (2 of 2)

Thus our differential equation becomes

%u”(t) +2u'(t) +24u(t) =0

and hence the initial value problem can be written as

u”(t) +16u'(t) +192u(t) =0
u(0) = % u'(0)=0

(unit: ft)

%
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Example 1:  Find IVP (20f2) ‘—I

: : : 1
Thus our differential equation becomes - u”(t) +2u’(t) + 24u(t) =0

and hence the initial value problem can be written as

u”(t)+16u’(t) +192u(t) =0
u(0) = % u'(0)=0

This problem can be solved using the methods of
Chapter 3.3 and yields the solution:

u(t) = % e~ cos(8+/21t) + L g sin(8v/21)

242




(Example 2) A mass weighing 10 Ib-force stretches
a spring 2". The mass is displaced an additional 2" and
then set in motion with an initial upward velocity of 1
ft/sec. Determine the position of the mass at any later
time, and find the period, amplitude, and phase of the

motion.




Example 2: Find IVP (1 0f 2)

A mass weighing 10 Ib-force stretches a spring 2". The mass is displaced an
additional 2" and then set in motion with an initial upward velocity of 1 ft/sec.
Determine the position of the mass at any later time, and find the period,
amplitude, and phase of the motion: y =0

mu”(t) +ku(t) =0, u(0)=u,, u’(0) =V,

. _ w 101b 5 Ibsec?
Find m: W=mg = mM=—=m= ~=> m=
g 32ft/sec 16 ft
Find k: F:—kL::>k:gﬂg k——lﬂ&—::>k:60”3

S

— = k= —
2in 1/6ft ft

Thus our IVP is

5/16u"(t)+60u(t) =0, u(0)=1/6, u'(t)=-1



Simplifying, we obtain

Example 2: Find Solution (2 of 2)

To solve, use methods of Ch 3.3 to obtain

u(t) = %cos\/192 t— L sin+/192 t

or

u(t) :%0038\@ t—

v/192

1 .
—~ _sin8/3t
8./3

0.24

y 0.1

u"(t)+192u(t) =0, u(0)=1/6, u'(0)=-1

U + 1920 = 0, u{lj=1/8, uili= -1

0.1

0.2-




Spring Model:
Undamped Free Vibrations (1 of 4)

Recall our differential equation for spring motion:
mu”(t) +yu'(t) + ku(t) = F(t)

Suppose there is no external driving force and no damping. Then F(t)=0
and vy =0, and our equation becomes mu”(t) +ku(t) =0

The general solution to this equation is

+1920 = 0, u(d)=1/2, u(0)= 0

u(t) = Acoso,t + Bsin ayt, o]
where -
a)g = k / m i \—/ \/




Spring Model:
Undamped Free Vibrations (2 of 4)

Using trigonometric identities, the solution
u(t) = Acosamyt + Bsinagt, o =k/m

can be rewritten as follows:
u(t) = Acosa,t + Bsinoit < u(t) = Rcos(a,t —5)
< U(t) = Rcoso cosm,t + Rsin o sin ayt,

where A=Rcoss, B=Rsind = R=+vA?>+B?, tan5:%

Note that in finding 6, we must be careful to choose the correct quadrant.
This is done using the signs of cos 6 and sin ¢.

cos(ax — ) =cosa cos B +sSinasin S



Spring Model:
Undamped Free Vibrations (3 of 4)

Thus our solutionis  u(t) = Acosat + Bsinamt =Rcos(agt — o)
where @, =~vK/m

The solution is a shifted cosine (or sine) curve, that describes simple harmonic

motion, with period
T = or = 27r\/E
@, K

The circular frequency o, (radians/time) is the natural frequency of the
vibration, R is the amplitude of the maximum displacement of mass from
equilibrium, and o Is the phase or phase angle (dimensionless).



Spring Model:
Undamped Free Vibrations (4 of 4)

Note that our solution u(t) = Acosmyt + Bsinagt = Rcos(at—5), @, =vk/m
Is a shifted cosine (or sine) curve with period T = 2;;\/%
Initial conditions determine A & B, hence also the amplitude R.

The system always vibrates with the same frequency «, , regardless of the initial
conditions.

The period T increases as m increases, so larger masses vibrate more slowly.
However, T decreases as k increases, so stiffer springs cause a system to vibrate
more rapidly.



Example 2: Find IVP (1 of 3)

A mass weighing 10 Ib-force stretches a spring 2". The mass is displaced an
additional 2" and then set in motion with an initial upward velocity of 1 ft/sec.
Determine the position of the mass at any later time, and find the period,
amplitude, and phase of the motion: y =0

mu”(t) +ku(t) =0, u(0)=u,, u’(0) =V,

. _ w 101b 5 Ibsec?
Find m: W=mg = mM=—=m= ~=> m=
g 32ft/sec 16 ft
Find k: F:—kL::>k:gﬂg k——lﬂ&—::>k:60”3

S

— = k= —
2in 1/6ft ft

Thus our IVP is

5/16u"(t)+60u(t) =0, u(0)=1/6, u'(t)=-1



Simplifying, we obtain

Example 2: Find Solution (2 of 3)

To solve, use methods of Ch 3.3 to obtain

u(t) = %cos\/192 t— L sin+/192 t

or

u(t) :%0038\@ t—

v/192

1 .
—~ _sin8/3t
8./3

0.24

y 0.1

u"(t)+192u(t) =0, u(0)=1/6, u'(0)=-1

U + 1920 = 0, u{lj=1/8, uili= -1

0.1

0.2-




u(t) :%cossﬁt—isinsﬁt

Example 2: 83

Find Period, Amplitude, Phase (3 of 3)

The natural frequency is @y, =vk/m=+/192 =8/3 =13.856 rad/sec

The periodis T =27/, =0.45345sec

R=0.182 =0.182 cos(8+3 t + 0.409)

The amplitude is R =+/A% + B? = 0.18162ft \ /\W /\ /\ /\

Next, determine the phase o

—0.2_

A=Rcoso, B=Rsind, tano=B/A

tan & —% — tan o ——I — 5 =tan" {_\@j ~ _0.40864rad

Thus  u(t) =0.182 cos(8\/§t + 0.409)



Spring Model: Damped Free Vibrations (1 of 8)

Suppose there is damping but no external driving force F(t):
mu”(t) +yu’(t) +ku(t) =0

What is effect of the damping coefficient ¥ on system?

The characteristic equation is B 2 _
Fr y £y —4mk _ V| qa 1_4mk
e 2m 2m 7

Three cases for the solution:
y*—4mk >0: u(t) = Ae"™ +Be"™', where r, <0, r, <O0;
y>—4mk =0: u(t) = (A+Bt)e”"*", where y/2m > 0;

a2
\Amk — .0
2m
Note: In all three cases, lim u(t) = 0, as expected from the damping term.

t—oo

y?—4mk <0: u(t)=e7"?"(Acosut+Bsinut), u=




Damped Free Vibrations: Small Damping (2 of 8)

Of the cases for solution form, the last is most important, which occurs when

the damping Is small: y*—4mk >0: u(t) = Ae" +Be?', r,<0,1,<0
y*—4mk =0: u(t)=(A+Bt)e”"*", »/2m>0
y*—4mk <0: u(t)=e7""*"(Acos ut+Bsinut), x>0

We examine this last case. Recall A=Rcoso, B=Rsind
Then  u(t)=Re”"*"cos(ut—o)
and hence  |u(t) <Re™”"*"

(damped oscillation) R
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Damped Free Vibrations: Quasi Frequency (3 of 8)

Thus we have damped oscillations:
U(t) — Re—Vt/Zm COS(,Ut —5) — ‘u(t)‘ < Re—yt/Zm

The amplitude R depends on the initial conditions, since

u(t) =e7"?"(Acosut + Bsin ut), A=RcosS, B=Rsing

Although the motion is not periodic, the parameter x determines the mass
oscillation frequency.

Thus  i1s called the quasi frequency.

2 L Ref}’r/Zm
Reca” /’l = \/4mk _ 7/ i \\\\\‘{\‘\N“‘ S
2m R\ L N
B w 5+ 2n +31r
,”’/”i_;e;j}’t/Zm




Damped Free Vibrations: Quasi Period (4 of 8)

« Compare ¢ with ay,, the frequency of undamped motion:

uo AJAkm—y® o \J4km—y° \/4km i
@, 2mJyk/im J4m?k/m v A4km 4km

For small 2 . 2
7\‘;\/1—7 =L _ -7 Y
4km 64k°m 8km 8km

« Thus, small damping reduces oscillation frequency slightly.

« Similarly, the quasi period is defined as T, = 2n/x. Then

T 2 / 2 -1/2 2 -1 2
d_ SALE oy K ~(1-7 ~1+ 7
T 272/(00 U 4km 8km 8km

» Thus, small damping increases quasi period.



Damped Free Vibrations:
Neglecting Damping for Small y%/4km (5 of 8)

Consider again the comparisons between damped and undamped frequency
and period: "
N
Ta _[1_7
T [ 4km]

Thus it turns out that a small y is not as telling as a small ratio y2/4km.
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For small y?/4km, we can neglect the effect of damping when calculating the
quasi frequency and quasi period of motion. But if we want a detailed
description of the motion of the mass, then we cannot neglect the damping
force, no matter how small it is.



Damped Free Vibrations:
Frequency, Period (6 of8)

Ratios of damped and undamped frequency, period:
1/2 -1/2
“_ () Ta_[ X
w, 4km) T 4km

Thus lim #=0and lim T, =00

y—2+km y—2-/km

The importance of the relationship between y? and 4km is supported by our
previous equations:

y°—4mk >0: u(t)= Ae" +Be"', r,<0,r1,<0
y>—4mk =0: u(t)=(A+Bte 7™, y/2m>0
y?—4mk <0: u(t)=e”"*"(Acosut+Bsinut), x>0



Damped Free Vibrations:
Critical Damping Value (7 of 8)

Thus the nature of the solution changes as y passes through the value 2+ km.

This value of y iIs known as the critical damping value, and for larger values
of ¥ the motion is said to be overdamped.

Thus for the solutions given by these cases,
y*—4mk >0: u(t)= Ae" +Be?', r,<0,1,<0 §)
y*—4mk =0: u(t)=(A+Bt)e7"*", »/2m>0 (2)
7 —4mk <0: u(t)=e7"*"(Acosut+Bsinut), x>0  (3)

we see that the mass creeps back to its equilibrium position for solutions (1)
and (2), but does not oscillate about it, as it does for small ¥ in solution (3).

Soln (1) is overdamped and soln (2) is critically damped.



Damped Free Vibrations:
Characterization of Vibration (8of8)

The mass creeps back to the equilibrium position for solutions (1) & (2), but
does not oscillate about it, as it does for small y in solution (3).

7 —4mk >0: u(t)=Ae™ +Be™, [ <0,r,<0 (Green) ()
y?—4mk =0: u(t)=(A+Btje”"*", y/2m>0 (Red,Black) (2)
y?—4mk <0: u(t)=e7"*"(Acosut+Bsinut) (Blue) (3)

Solution (1) is overdamped and

1.5

Solution (2) is critically damped.

0.57

Solution (3) is underdamped

-0.51




Example 3: Initial Value Problem (1 of 4)

Suppose that the motion of a spring-mass system is governed by the initial
value problem 74 0.125u'+u=0, u(0)=2, u'(0)=0

Find the following:
(a) quasi frequency and quasi period;
(b) time at which mass passes through equilibrium position;
(c) time zsuch that |u(t)] < 0.1 forallt> 7.

For Part (a), using methods of this chapter we obtain:

J255. 2 ststj__ 32 s, {?J255 j

u(t) =e**| 2cos t+ sin 08 ——t—§
Y [ 16 /255 16 255 16

where

tan5:i:> 0 =0.06254 (recallA=Rcoso, B=Rsino)

V255



Example 3: Quasi Frequency & Period (2 of 4)

The solution to the initial value problem is:

u(t)=e‘“16£2cos“255 2 i “Zsstj

{+

SIn
16 V255 16

v 255

32

g /18 cos[—“lzéSSt — 5}

The graph of this solution, along with solution to the corresponding undamped

problem, is given below.
The quasi frequency is #=+/255/16=0.998
and quasi period is Ty =27/ 1=6.295

For the undamped case:

u'+u=0

L
I\ 4 n A

u' +0.125u'+ u = O}“(O) =2,u4(0)-0

w, =1 T =27 =6.283




Example 3: Quasi Frequency & Period (3 of 4)

The damping coefficientis » =0.125=1/8, and thisis 1/16 of the critical
value 2 /km —2

Thus damping is small relative to mass and spring stiffness. Nevertheless the
oscillation amplitude diminishes quickly.

Using a solver, we find that |u(t)| < 0.1

for t> r~47.515 sec | Solution ut]
01] N\

FAwiwy
STRVAY

0.1 o

0.157



Example 3: Quasi Frequency & Period (4 of 4)

To find the time at which the mass first passes through the equilibrium
position, we must solve

3

ut)=—

v 255

2
o-t/16

Or more simply, solve

255t—5=£

16 2
16 (72

== =
255\ 2

cos[—“12655t — 5} =0

+ 5) ~1.637secC

24

1.5

0.5

[}

-0.57

-1.57

1.5

0.5

-0.57

-1.57




Electric Circuits

The flow of current in certain basic electrical circuits is modeled by second
order linear ODEs with constant coefficients:

LI"(t)+R1'(t) +% 1(t) = E'(t)

1(0)=1,, 1'(0)=1!

It is interesting that the flow of current in this circuit is mathematically
equivalent to motion of spring-mass system.

For more details, see text. Resistance R Capacitance C
Wy (
(1 Inductance L
%
Y yd

Impressed voltage E (1)



