
4.3: Nonhomogeneous Equations:    Method of Undetermined 

Coefficients

• The method of undetermined coefficients can be used to find a particular 

solution Y of an nth order linear, constant coefficient, nonhomogeneous 

ODE

provided g is of an appropriate form.  

• As with 2nd order equations, the method of undetermined coefficients is 

typically used when g is a sum or product of polynomial, exponential, and 

sine or cosine functions. 

(Ex)    Find  a general solution of  the ODE
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Example 1

• Consider the differential equation

• For the homogeneous case,

• Thus the general solution of homogeneous equation is

• For nonhomogeneous case, keep in mind the form of homogeneous solution.  

Thus begin with 

• As in Chapter 3, it can be shown that
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Example 2

• Consider the equation

• For the homogeneous case,

• Thus the general solution of the homogeneous equation is

• For the nonhomogeneous case, because of the form of the solution for the 

homogeneous equation, we need

• As in Chapter 3, it can be shown that

• Thus, the general solution for the nonhomgeneous equation is
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Example 3

• Consider the equation

• For the homogeneous case,

• Thus the general solution of homogeneous equation is

• For nonhomogeneous case, keep in mind form of homogeneous solution.  

Thus we have two subcases: 

• As in Chapter 3, can be shown that

• The general solution is 
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