
6.1:  Definition of Laplace Transform

• Many practical engineering problems involve mechanical or electrical systems 

acted upon by discontinuous or impulsive forcing terms.  

• For such problems the methods described in Chapter 3 are difficult to apply.  

• In this chapter we use the Laplace transform to convert a problem for an 

unknown function f into a simpler problem    for F, solve for F, and then 

recover f from its transform F.  

• Given a known function K(s,t),  an integral transform of a function   f is a 

relation of the form 

  



,)(),()( dttftsKsF



(Question)      How do we find a general solution of  the 

ODE?     How do we use  Rule 1 and 2?
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Improper Integrals

• The Laplace transform will involve an integral from zero to infinity. Such an 

integral is a type of improper integral.

• An improper integral over an unbounded interval is defined as the limit of an 

integral over a finite interval

where A is a positive real number.

• If the integral from  a to  A exists for each  A > a  and if the limit as A → ∞ 

exists, then the improper integral is said to converge to that limiting value. 

Otherwise, the integral is said to diverge or fail to exist.
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Example 1

• Consider the following improper integral.

• We can evaluate this integral as follows:

• Note that if c = 0, then  ect = 1.  Thus the following two cases hold: 
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Example 2

• Consider the following improper integral.

• We can evaluate this integral as follows:

• Therefore, the improper integral diverges.
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Example 3

• Consider the following improper integral:

• From Example 2, this integral diverges at p = 1.

• We can evaluate this integral for p ≠ 1 as follows:

• The improper integral diverges at p = 1 and
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Piecewise Continuous Functions

• A function f is piecewise continuous on an interval [a, b]  if  this interval can 

be partitioned by a finite number of points  a = t0 < t1 < … < tn = b such that 

(1)  f is continuous on each  (tk, tk+1) 

• In other words, f is piecewise continuous on 

[a, b] if it is continuous there except for a finite 

number of jump discontinuities.
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The Laplace Transform

• Let f be a function defined for t  0, and satisfies certain conditions to be named later.  

• The Laplace Transform of f is defined as an integral transform:

• The kernel function is   K(s,t) = e-st.

• Since solutions of linear differential equations with constant coefficients are based on 
the exponential function, the Laplace transform is particularly useful for such 
equations.  

• Note that the Laplace Transform is defined by an improper integral, and thus must be 
checked for convergence.  

• On the next few slides, we review examples of improper integrals and piecewise 
continuous functions. 
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Theorem 6.1.2

• Suppose that f is a function for which the following hold:

(1)    f is piecewise continuous on [0, b] for all b > 0. 

(2) A function  f is said to have exponential order   as t  if

| f(t) |  Keat when t  M, for constants a, K, M, with K, M > 0.

• Then the Laplace Transform of   f exists for  s > a.
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Example 4

• Let   

Find the Laplace transform  F(s) = L(    )  of   
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Example 4

• Let   f (t) = 1  for t  0.  Then the Laplace transform F(s) of  f

is:
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Example 5

• Let f (t) = eat for t  0. Then the Laplace transform F(s) of f is:
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Example 6

• Consider the following piecewise-defined function f :

where k is a constant. This represents a unit impulse.

• Noting that  f (t)  is piecewise continuous, we can compute its Laplace 

transform

• Observe that this result does not depend on k, the function value at the point 

of discontinuity.
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Example 7

• Let   f (t) = sin(at)  for t  0.  Using integration by parts twice, the Laplace 

transform F(s) of f is found as follows:
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Linearity of the Laplace Transform

• Suppose  f and g are functions whose Laplace transforms exist for s > a1

and s > a2, respectively.

• Then, for s greater than the maximum of a1 and a2, the Laplace transform 

of c1 f (t)  + c2g(t) exists.  That is,

with

    finite is   )()()()(
0

2121 


  dttgctfcetgctfcL st

 

   

1 2 1 2
0 0

1 2

( ) ( )   ( )    ( )  

 ( )   ( )

st stL c f t c g t c e f t dt c e g t dt

c L f t c L g t

 
   

 

 



Example 8

• Let   f (t) = 5e-2t - 3sin(4t)   for   t  0.  

• Then by linearity of the Laplace transform, and using results  of 

previous examples, the Laplace transform F(s) of f is: 

(Question)    How do we compute the inverse Laplace transform ?
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Inverse Problem

• The main difficulty in using the Laplace transform method is determining the 

function y = (t) such that L{(t)} = Y(s).  

• This is an inverse problem, in which we try to find  such that (t) = L-1{Y(s)}.

• There is a general formula for L-1, but it requires knowledge of the theory of 

functions of a complex variable, and we do not consider it here.

• It can be shown that if  f is continuous with L{f(t)} = F(s), then   f is the 

unique continuous function with   f (t) = L-1{F(s)}. 

• Table 6.2.1 in the text lists many of the functions and their transforms that are 

encountered in this chapter.



Inverse Laplace Transform

(Formula)     The formula of the inverse Laplace transform 

involves  “Contour integral”  in Complex Analysis.

(Idea)   We can use the list of  the examples.



Inverse Laplace Transform

(Example)    Find the inverse Laplace transforms of the functions
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Linearity of the Inverse Transform

• Frequently a Laplace transform F(s) can be expressed as

• Let 

• Then the function

has the Laplace transform F(s), since L is linear.   

• By the uniqueness result of the previous slide, no other continuous function f

has the same transform F(s). 

• Thus L-1 is a linear operator with
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