6.2: Solution of Initial Value Problems

The Laplace transform is named for the French mathematician Laplace, who
studied this transform in 1782.

The techniques described in this chapter were developed primarily by Oliver
Heaviside (1850-1925), an English electrical engineer.

In this section we see how the Laplace transform can be used to solve initial
value problems for linear differential equations with constant coefficients.

The Laplace transform is useful in solving these differential equations because
the transform of f' is related in a simple way to the transform of f, as stated
In Theorem 6.2.1.

(Question) L{f}="7



Theorem 6.2.1

Suppose that f 1s a function for which the following hold:

(1) f iscontinuous and f ' is piecewise continuous on [0, b] for all b > 0.
(2) | f(t) | £ Kea whent> M, for constants a, K, M, with K, M > 0.

Then the Laplace Transform of f ' exists for s > a, with

L{f'@®) =sL{f®)}-f(0)

Proof (outline): For fand f' continuous on [0, b], we have

lim e £ @dt =lim | e f () = ["(=s)e f (1)
lim [/ e £ Ot =lim | &1 O - [, )10 t]

b—w

b—w

—lim | e (b)— £ (0)+s[ e (t)dt}

Similarly for f' piecewise continuous on [0, b], see text.



The Laplace Transform of f'

Thusif f and f' satisfy the hypotheses of Theorem 6.2.1, then

L{f'@®) =sL{f®)}-f(0)

Now suppose f ' and f ' satisfy the conditions specified for f and f ' of Theorem
6.2.1. We then obtain
L{ f ”(t)} = SL{ f ’(t)} — 1'(0)

=s|sL{f(t)}-f(0) |- '(0)
=s’L{f(t)} -sf(0)- f'(0)

Similarly, we can derive an expression for L{f W}, provided f and its
derivatives satisfy suitable conditions. This result is given in Corollary 6.2.2



Corollary 6.2.2

« Suppose that f is a function for which the following hold:
1) f,f'f",...,f(Dare continuous, and f (W piecewise continuous on
[0, b] for all b > 0.

(2) |[f(t)|<Kex, |[f'(t)|<Keat, ..., |fO™D()|<Kext fort>M, for
constants a, K, M, with K, M > 0.

Then the Laplace Transform of f ™ exists for s > a, with

L{fOM)} =s"L{f ()} -s""f(0)—s"?f'(0)—---—sf "2 (0) - £ "2(0)



Example 1: Chapter 3 Method (1 of 4)

Consider the initial value problem  y"—y'—2y=0, y(0)=1, y'(0)=0
Recall from Section 3.1: y(t)=e" = r’*-r-2=0 < (r-2)r+1)=0
Thus r; =-2 and r, = -3, and general solution has the form

y(t)=ce " +c,e”

Using initial conditions:
c,+¢C, =1 y(t)=2/3¢e" +1/3 e

}:>01=2/3 , C, =1/3
—C,+2¢,=0

Thus  y(t)=2/3e"' +1/3 e*

We now solve this problem using Laplace Transforms.




(Example 1) Find the solution of the I\VVP by using
Laplace transform

(1)  y"+y=0, y(0)=0, y'(0)=1

(2)  y—y-2y=0, y(0)=1 y'(0)=0



Example 1: Laplace Transform y'=y'-2y=0,
Method (2 of 4) y(0)=1, y'(0)=0

» Assume that our IVP has a solution ¢ and that ¢'(t) and ¢"(t) satisfy the

conditions of Corollary 6.2.2. Then
L{y" -y -2y}= Ly - H{y}-2{y}= {0} =0

and hence  [s2L{y}~sy(0) - y'(0) |- [sL{y}— y(0)]-2L{y} =0

Letting Y(s) = L{y}, we have (52 —S— 2)Y (s)—(s—1)y(0)-y'(0)=0

Substituting in the initial conditions, we obtain (52 —S— 2)Y (s)-(s-1)=0

s—-1
s—2)s+1)

©oThus 1 fy=Y(s) =1



Example 1: Partial Fractions (3 of 4)

« Using partial fraction decomposition, Y(S) can be rewritten:

s-1  a b
(5—2)s+) (5-2) (5+1)
s—1=a(s+1)+b(s-2)
s—1=(a+b)s+(a—2b)
a+b=1 a-2b=-1

a=13,b=2/3

» Thus  L{y}=Y(s)= (31132) ’ (s2 131)




Example 1: Solution (4 of 4)

Recall from Section 6.1;

L{eat }: F(s) = _[: e 'edt = jooo e Gt = i, s>a

1/3 2/3

« Thus  Y(s)= oL =1/3 L{e*'}+2/3 L{e'}, s>2

(s—2) (s+1)

Recalling Y(s) = L{y}, we have L{y}: |_{2/3 et 4+1/3 GZt}

and hence  y(t)=2/3e™ +1/3 e



General Laplace Transform Method

Consider the constant coefficient equation  ay” +by’+cy = f (t)

Assume that this equation has a solution y = ¢(t), and that #'(t) and ¢'"(t)
satisfy the conditions of Corollary 6.2.2. Then

L{ay” +by"+cy}=al{y"}+blL{y}+cl{y}=L{f (1)}

If we let Y(s) = L{y} and F(s) = L{ f }, then

als?L{y} - sy(0) - y'(©) ]+ blsLEY} - y(0)]+ cLfy} = F (5)
(as? +bs+c)Y (s)—(as+b)y(0)—ay'(0) = F(s)

(as+b)y(Q) +ay'(0)  _ F(s)
as’+bs+c as’+bs+c

Y(s)=



Algebraic Problem

« Thus the differential equation has been transformed into the
algebraic equation :
J d (as+b)y(@)+ay'0)  F(s)
Y(s) = > P
as“+bs+c as“+bs+c

for which we seek y = ¢(t) such that L{a(t)} = Y(9).

* Note that we do not need to solve the homogeneous and
non-homogeneous equations separately, nor do we have a

separate step for using the initial conditions to determine the
values of the coefficients in the general solution.



Characteristic Polynomial

Using the Laplace transform, our initial value problem

ay"+by’ +cy = (1), y(0)=y, y(0)=y;

becomes (as +b)y(0) +ay'(0) F(s)
Y(s) = > +—
as”+bs+c as” +bs+c

The polynomial in the denominator is the characteristic polynomial associated
with the differential equation.

The partial fraction expansion of Y(s) used to determine ¢ requires us to find
the roots of the characteristic equation.

For higher order equations, this may be difficult, especially if the roots are
Irrational or complex.



Example 2: Non-homogeneous Problem (1 of 2)

Consider the initial value problem y"+y=sin2t, y(0)=2, y'(0)=

Taking the Laplace transform of the differential equation, and assuming the
conditions of Corollary 6.2.2 are met, we have

[SZL{Y}— sy(0) - y’(O)]+ L{y}=2/(s%+4)
Letting Y(s) = L{y}, we have  (s? +1)y (s) — sy(0) — y'(0) = 2/(s> +4)

Substituting in the initial conditions, we obtain
(s?+1)Y (s)—25—1=2/(5? +4)

Thus
25 +5°+85+6

Y(8)= (s +1)(s? +4)

1



Example 2: Solution (2 of 2)

~ 25°+5°+8s+6 As+B Cs+D

Using partial fractions, Y (s)= _ n
(s°+1)(s°+4) s°+1 s°+4

Then  2s% 4% +8s+6=(As+ B)(s2 +4)+ (Cs+ D)(s2 +1)
=(A+C)s’+(B+D)s’ +(4A+C)s+(4B+D)

Solving, we obtain A=2,B=5/3,C=0, and D =-2/3. Thus

25 5/3 2/3
_|_

Y(S)= —
(5) s°+1 s°+1 s°+4

Hence 5 1
y(t) = 2cost +§sint—§sin 2t



Example 3: Solving a 4" Order IVP (1 of 2)

Consider the initial value problem
y®-y=0,  y(0)=0, y'(0)=1 y"(0)=0, y"'(0)=0

Taking the Laplace transform of the differential equation, and assuming the
conditions of Corollary 6.2.2 are met, we have

| s*L{y}-s°y(0)—s?y'(0) —sy"(0) - y"(0) |- L{y}=0
Letting Y(s) = L{y} and substituting the initial values, we have

Y (S)

52 s°

T (' =1 (sE=1)(s%+1)

5 as+b cs+d

Using partial fractions Y(s)= (52 —1)(s* +1) - (s? —1) " (s* +1)

ThUS a4+ b)(s? +1) + (cs +d)(s? —1) = 52



Example 3: Solving y@—y=0, y(0)=0,y'(0)=1
a 4™ Order IVP (2 of 2) y"(0)=0, y"(0)=0

In the expression:  (as+b)(s® +1)+ (cs+d)(s* —1) =s°

Setting s = 1 and s = -1 enables us to solve for a and b:
2(@+b)=1 and 2(-a+b)=1 = a=0,b=1/2

Setting s=0,b-d=0, so d=1/2

Equating the coefficients of 5% in the first expression gives

a+C:0’ SOC:0 y(t):Sinht-l-Sint
2

1/2 1/2
2 + 2
(s°=1) (s°+1

Thus  Y(s)=

sinht +sint
2

Using Table 6.2.1, the solution is  y(t) =




