
6.2:  Solution of Initial Value Problems

• The Laplace transform is named for the French mathematician Laplace, who 

studied this transform in 1782.

• The techniques described in this chapter were developed primarily by Oliver

Heaviside (1850-1925), an English electrical engineer.

• In this section we see how the Laplace transform can be used to solve initial 

value problems for linear differential equations with constant coefficients. 

• The Laplace transform is useful in solving these differential equations because 

the transform of  f ' is related in a simple way to the transform of  f, as stated 

in Theorem 6.2.1.  
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Theorem 6.2.1

• Suppose that f is a function for which the following hold:

(1) f is continuous and f ' is piecewise continuous on [0, b] for all b > 0. 

(2) | f(t) |  K eat when t  M, for constants a, K, M, with K, M > 0.

• Then the Laplace Transform of f ' exists for s > a, with 

• Proof (outline):  For f and f ' continuous on [0, b], we have

• Similarly for f ' piecewise continuous on [0, b], see text. 
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The Laplace Transform of f '

• Thus if  f  and  f ' satisfy the hypotheses of Theorem 6.2.1, then 

• Now suppose f ' and f '' satisfy the conditions specified for f and f ' of Theorem 

6.2.1.  We then obtain

• Similarly, we can derive an expression for L{f (n)}, provided  f and its 

derivatives satisfy suitable conditions. This result is given in Corollary 6.2.2
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Corollary 6.2.2

• Suppose that f is a function for which the following hold:

(1)     f , f ', f '' ,…, f (n-1) are continuous, and f (n) piecewise continuous on 

[0, b] for all b > 0.  

(2)     | f(t) |  Keat,  | f '(t) |  Keat ,  …,  | f (n-1)(t) |  Keat for t  M,  for

constants a, K, M, with K, M > 0.

Then the Laplace Transform of   f (n) exists for s > a, with
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Example 1: Chapter 3 Method  (1 of 4)

• Consider the initial value problem

• Recall from Section 3.1:

• Thus r1 = -2 and r2 = -3, and general solution has the form

• Using initial conditions:

• Thus

• We now solve this problem using Laplace Transforms.
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(Example 1)     Find the solution of the IVP by using 

Laplace transform 

(1)      

(2)     2 0, 0 1, 0 0y y y y y      

0,     (0) 0,   (0) 1y y y y    



Example 1: Laplace Transform 

Method   (2 of 4)

• Assume that our IVP has a solution  and that '(t) and ''(t) satisfy the 

conditions of Corollary 6.2.2.  Then

and hence

• Letting  Y(s) = L{y}, we have

• Substituting in the initial conditions, we obtain

• Thus
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Example 1: Partial Fractions    (3 of 4)

• Using partial fraction decomposition, Y(s) can be rewritten:

• Thus 
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Example 1: Solution    (4 of 4)

• Recall from Section 6.1:

• Thus

• Recalling  Y(s) = L{y},  we have

and hence 
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General Laplace Transform Method

• Consider the constant coefficient equation

• Assume that this equation has a solution y = (t), and that '(t) and  ''(t) 

satisfy the conditions of Corollary 6.2.2.  Then

• If we let Y(s) = L{y} and F(s) = L{ f }, then
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Algebraic Problem

• Thus the differential equation has been transformed into the 

algebraic equation

for which we seek y = (t) such that L{(t)} = Y(s).

• Note that we do not need to solve the homogeneous and 

non-homogeneous equations separately, nor do we have a 

separate step for using the initial conditions to determine the 

values of the coefficients in the general solution.
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Characteristic Polynomial

• Using the Laplace transform, our initial value problem 

becomes

• The polynomial in the denominator is the characteristic polynomial associated 

with the differential equation.  

• The partial fraction expansion of  Y(s) used to determine  requires us to find 

the roots of the characteristic equation.  

• For higher order equations, this may be difficult, especially if the roots are 

irrational or complex. 

 
cbsas

sF

cbsas

yaybas
sY









22

)()0()0(
)(

    00 0,0),( yyyytfcyybya 



Example 2: Non-homogeneous Problem  (1 of 2)

• Consider the initial value problem

• Taking the Laplace transform of the differential equation, and assuming the 

conditions of Corollary 6.2.2 are met, we have

• Letting Y(s) = L{y}, we have

• Substituting in the initial conditions, we obtain

• Thus

   sin 2 , 0 2, 0 1y y t y y    
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• Using partial fractions, 

• Then

• Solving, we obtain A = 2, B = 5/3, C = 0, and D = -2/3.  Thus

• Hence 

Example 2: Solution    (2 of 2)
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Example 3:  Solving a 4th Order IVP (1 of 2)

• Consider the initial value problem

• Taking the Laplace transform of the differential equation, and assuming the 

conditions of Corollary 6.2.2 are met, we have

• Letting Y(s) = L{y} and substituting the initial values, we have

• Using partial fractions 

• Thus
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Example 3:  Solving 

a 4th Order IVP (2 of 2)

• In the expression:

• Setting s = 1 and s = -1 enables us to solve for a and b:

• Setting  s = 0, b – d = 0,  so   d = 1/2 

• Equating the coefficients of       in the first expression gives 

a + c = 0, so c = 0

• Thus

• Using Table 6.2.1, the solution is
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