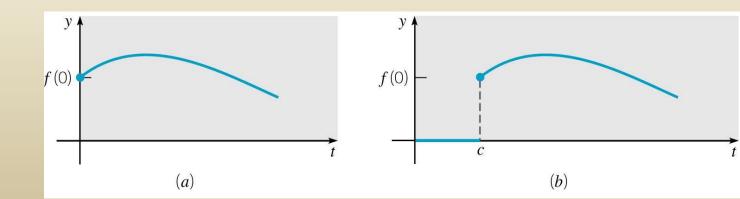
Ch 6.3: Step Functions

- Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations with discontinuous or impulsive forcing functions.
- In this section, we will assume that all functions considered are piecewise continuous and of exponential order, so that their Laplace Transforms all exist, for *s* large enough:

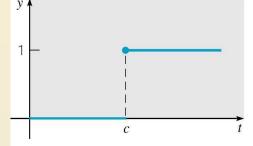
 $|f(t)| \le Ke^{at}, |f'(t)| \le Ke^{at}, \dots, |f^{(n-1)}(t)| \le Ke^{at}$ for $t \ge M$, for constants a, K, M with K, M > 0.



Step Function definition

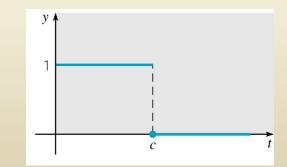
• Let $c \ge 0$. The **unit step function**, or Heaviside function, is defined by

$$u_c(t) = \begin{cases} 0, & t < c \\ 1, & t \ge c \end{cases}$$



• A negative step can be represented by

$$y(t) = 1 - u_c(t) = \begin{cases} 1, & t < c \\ 0, & t \ge c \end{cases}$$

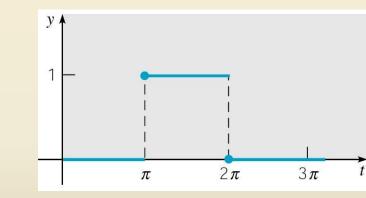


• Sketch the graph of $h(t) = u_{\pi}(t) - u_{2\pi}(t), t \ge 0$

• Sketch the graph of $h(t) = u_{\pi}(t) - u_{2\pi}(t), t \ge 0$

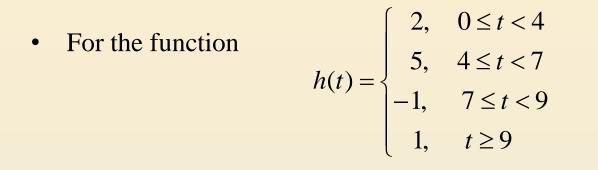
• Solution: Recall that
$$u_c(t)$$
 is defined by $u_c(t) = \begin{cases} 0, & t < c \\ 1, & t \ge c \end{cases}$

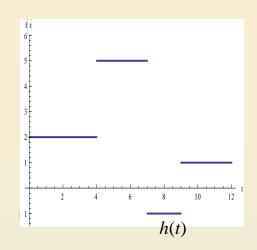
• Thus
$$h(t) = \begin{cases} 0, & 0 \le t < \pi \\ 1, & \pi \le t < 2\pi \\ 0 & 2\pi \le t < \infty \end{cases}$$



and hence the graph of h(t) is a rectangular pulse.

(Ex) Write h(t) in terms of
$$u_c(t)$$
: $h(t) = \begin{cases} 1, & 0 \le t < 1 \\ 4, & 1 \le t < 3 \\ -1, & 3 \le t < \infty \end{cases}$





whose graph is shown, write h(t) in terms of $u_c(t)$.

(Hint) we will need u₄(t), u₇(t), and u₉(t).
We begin with the 2, then add 3 to get 5, then subtract 6 to get -1, and finally add 2 to get 1 – each quantity is multiplied by the appropriate u_c(t)

$$h(t) = 2 + 3u_4(t) - 6u_7(t) + 2u_9(t), \quad t \ge 0$$

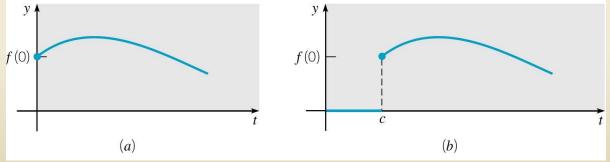
Laplace Transform of Step Function

• The Laplace Transform of $u_c(t)$ is

$$L\{u_{c}(t)\} = \int_{0}^{\infty} e^{-st} u_{c}(t) dt = \int_{c}^{\infty} e^{-st} dt$$
$$= \lim_{b \to \infty} \int_{c}^{b} e^{-st} dt = \lim_{b \to \infty} \left[-\frac{1}{s} e^{-st} \Big|_{c}^{b} \right]$$
$$= \lim_{b \to \infty} \left[-\frac{e^{-bs}}{s} + \frac{e^{-cs}}{s} \right]$$
$$= \frac{e^{-cs}}{s}$$

Translated Functions

- Given a function f(t) defined for $t \ge 0$, we will often want to consider the related function $g(t) = u_c(t) f(t c)$: $g(t) = \begin{cases} 0, & t < c \\ f(t-c), & t \ge c \end{cases}$
- Thus g represents a translation of f a distance c in the positive t direction.
- In the figure below, the graph of *f* is given on the left, and the graph of *g* on the right.



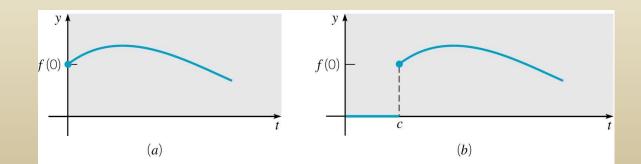
• Question: What is the Laplace transform $L\{g(t)\} = L\{u_c(t)f(t-c)\}$?

Theorem 6.3.1

- If $F(s) = L\{f(t)\}$ exists for $s > a \ge 0$, and if c > 0, then $L\{u_c(t)f(t-c)\} = e^{-cs}L\{f(t)\} = e^{-cs}F(s)$
- Conversely, if $f(t) = L^{-1}{F(s)}$, then

$$u_{c}(t)f(t-c) = L^{-1}\left\{e^{-cs}F(s)\right\}$$

• Thus the translation of f(t) a distance c in the positive t direction corresponds to a multiplication of F(s) by e^{-cs} .



Theorem 6.3.1: Proof Outline

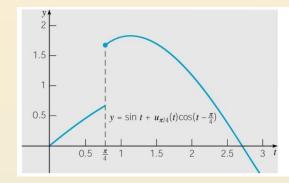
• We need to show $L\{u_c(t)f(t-c)\}=e^{-cs}F(s)$

• Using the definition of the Laplace Transform, we have

$$L\{u_{c}(t)f(t-c)\} = \int_{0}^{\infty} e^{-st}u_{c}(t)f(t-c)dt$$
$$= \int_{c}^{\infty} e^{-st}f(t-c)dt$$
$$\stackrel{u=t-c}{=} \int_{0}^{\infty} e^{-s(u+c)}f(u)du$$
$$= e^{-cs}\int_{0}^{\infty} e^{-su}f(u)du$$
$$= e^{-cs}F(s)$$

• Find $L\{g(t)\}$, where g is defined by

$$g(t) = \begin{cases} \sin t, & 0 \le t < \pi / 4 \\ \sin t + \cos(t - \pi / 4), & t \ge \pi / 4 \end{cases}$$

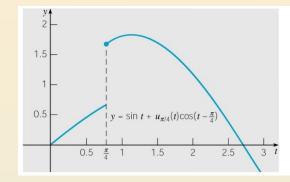


- Note that $g(t) = \sin(t) + u_{\pi/4}(t) \cos(t \pi/4)$
- Find the Laplace transform L{g}

$$L\{u_{c}(t)f(t-c)\} = e^{-cs}L\{f(t)\} = e^{-cs}F(s)$$

• Find $L{f(t)}$, where f is defined by

$$f(t) = \begin{cases} \sin t, & 0 \le t < \pi/4 \\ \sin t + \cos(t - \pi/4), & t \ge \pi/4 \end{cases}$$



• Note that $f(t) = \sin(t) + u_{\pi/4}(t) \cos(t - \pi/4)$, and

$$L\{f(t)\} = L\{\sin t\} + L\{u_{\pi/4}(t)\cos(t - \pi/4)\}$$
$$= L\{\sin t\} + e^{-\pi s/4}L\{\cos t\}$$
$$= \frac{1}{s^2 + 1} + e^{-\pi s/4}\frac{s}{s^2 + 1}$$
$$= \frac{1 + se^{-\pi s/4}}{s^2 + 1}$$

• Find
$$L^{-1}{F(s)}$$
, where $F(s) = \frac{1 - e^{-2s}}{s^2}$

• Solution:
$$f(t) = L^{-1}\left\{\frac{1}{s^2}\right\} - L^{-1}\left\{\frac{e^{-2s}}{s^2}\right\}$$

• Find $L^{-1}{F(s)}$, where $F(s) = \frac{1 - e^{-2s}}{s^2}$

• Solution:
$$f(t) = L^{-1} \left\{ \frac{1}{s^2} \right\} - L^{-1} \left\{ \frac{e^{-2s}}{s^2} \right\}$$
$$= t - (t - 2)u_2(t)$$

• The function may also be written as

$$f(t) = \begin{cases} t, & 0 \le t < 2\\ 2, & t \ge 2 \end{cases}$$

• Question: If $F(s) = L\{f(t)\}$ exists for $s > a \ge 0$, and if c is a constant, then $L\{e^{ct}f(t)\} = ?$

Theorem 6.3.2

- If $F(s) = L\{f(t)\}$ exists for $s > a \ge 0$, and if c is a constant, then $L\{e^{ct}f(t)\} = F(s-c), \quad s > a+c$
- Conversely, if $f(t) = L^{-1}\{F(s)\}$, then $e^{ct} f(t) = L^{-1}\{F(s-c)\}$
 - *** Translation \leftarrow Multiplying e^{ct} or e^{-cs}
- Thus, multiplication f(t) by e^{ct} results in translating F(s) a distance c in the positive t direction, and conversely.
- Proof Outline: $L\left\{e^{ct}f(t)\right\} = \int_0^\infty e^{-st}e^{ct}f(t)dt = \int_0^\infty e^{-(s-c)t}f(t)dt = F(s-c)$

(Example) Find the inverse transform of

$$G(s) = \frac{1}{s^2 - 4s + 5}$$

• To find the inverse transform of G(s)

$$G(s) = \frac{1}{s^2 - 4s + 5}$$

• We first complete the square:

$$G(s) = \frac{1}{s^2 - 4s + 5} = \frac{1}{(s^2 - 4s + 4) + 1} = \frac{1}{(s - 2)^2 + 1} = F(s - 2)$$

• Since
$$L^{-1}\left\{F(s)\right\} = L^{-1}\left\{\frac{1}{s^2+1}\right\} = \sin t \text{ and } L^{-1}\left\{F(s-2)\right\} = e^{2t}f(t)$$

it follows that $g(t) = L^{-1} \{G(s)\} = e^{2t} \sin t$

(Ex 6)
$$G(s) = \frac{s}{s^2 - 4s + 5}$$
: $L\{G\} = ?$

• Find the inverse Laplace transform of

$$G(s) = \frac{s+1}{s^2 - 4s + 5}$$