
Ch 6.3:  Step Functions

• Some of the most interesting elementary applications of the Laplace Transform 

method occur in the solution of  linear equations with discontinuous or impulsive 

forcing functions. 

• In this section, we will assume that all functions considered are piecewise 

continuous and of exponential order, so that their Laplace Transforms all exist, 

for s large enough:

| f(t) |  Keat,  | f '(t) |  Keat ,  …,  | f (n-1)(t) |  Keat for t  M,  for constants a, K,  

M with K, M > 0.



Step Function definition

• Let c  0.  The unit step function, or Heaviside function, is 

defined by

• A negative step can be represented by

• Sketch  the graph of   
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Example 1

• Sketch the graph of 

• Solution:  Recall that uc(t) is defined by 

• Thus

and hence the graph of h(t) is a rectangular 

pulse.

(Ex)    Write h(t) in terms of uc(t): 
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Example 2

• For the function

whose graph is shown,

write  h(t)  in terms of uc(t).

• (Hint)   we will need  u4(t), u7(t), and u9(t). 

We begin with the  2,  then  add 3 to get 5, then subtract 6 to get -1, 

and finally add 2 to get 1 – each quantity is multiplied by the appropriate uc(t)























9,1

97,1

74,5

40,2

)(

t

t

t

t

th

2 4 6 8 10 12
t

1

1

2

3

4

5

6

f t

h(t)

0),(2)(6)(32)( 974  ttutututh



Laplace Transform of Step Function

• The Laplace Transform of uc(t) is 
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Translated Functions

• Given a function f (t) defined for t  0, we will often want to consider the 

related function  g(t) = uc(t) f (t - c): 

• Thus g represents a  translation of f a distance c in the positive t direction.

• In the figure below, the graph of f is given on the left, and the graph of g on 

the right.

• Question:   What is the Laplace transform   L{g(t)} = L{uc(t) f (t - c)} ?  
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Theorem 6.3.1

• If F(s) = L{f (t)} exists for s > a  0, and if c > 0, then

• Conversely, if f (t) = L-1{F(s)}, then

• Thus the translation of f (t) a distance c in the positive t direction corresponds 

to a multiplication of F(s) by e-cs.
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Theorem 6.3.1:  Proof Outline

• We need to show

• Using the definition of the Laplace Transform, we have
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Example 3

• Find  L{ g (t)},  where  g is defined by

• Note that  g (t) = sin(t) + u/4(t) cos(t - /4)

• Find  the Laplace transform  L{g}

sin , 0 / 4
g( )

sin cos( / 4), / 4

t t
t

t t t



 

 
 

  

   ( ) ( ) ( ) ( )cs cs

cL u t f t c e L f t e F s   



Example 3

• Find  L{ f (t)},  where  f is defined by

• Note that  f (t) = sin(t) + u/4(t) cos(t - /4), and
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Example 4

• Find   L-1{F(s)},    where

• Solution:
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Example 4

• Find   L-1{F(s)},    where

• Solution:

• The function may also be written as

• Question:     If   F(s) = L{f (t)}   exists  for   s > a  0,  and  if  c is  a 

constant,   then   
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Theorem 6.3.2

• If   F(s) = L{f (t)} exists  for   s > a  0, and  if  c is  a constant, then

• Conversely, if f (t) = L-1{F(s)}, then

***      Translation      Multiplying  

• Thus,  multiplication f (t) by  ect results in translating F(s) a distance c in the 

positive t direction, and conversely.

• Proof Outline:

(Example)    Find the inverse transform of    
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Example 5

• To find the inverse transform of 

• We first complete the square:

• Since 

it follows that 

(Ex 6)   
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Example 7

• Find the inverse Laplace transform of
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