6.6: The Convolution Integral

Sometimes it is possible to write a Laplace transform H(s) as H(s) = F(s)G(s),
where F(s) and G(s) are the transforms of known functions f and g,
respectively.

In this case we might expect H(s) to be the transform of the product of f and g.
Thatis, does  H(s) = F(s)G(s) = L{f }L{g} = L{f g}?
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E H(S)=—: F(s) = =,
(Ex) HE=Z: F@ = :
On the next slide we give an example that shows that this equality does not

hold, and hence the Laplace transform cannot in general be commuted with
ordinary multiplication.

In this section we examine the convolution of f and g, which can be viewed as
a generalized product, and one for which the Laplace transform does commute.



Observation

Let f (t) =1 and g(t) = sin(t). Recall that the Laplace Transforms of f and g are

)= Lt)=, Lo }=Lsintj="

s°+1

e Thus L{f (t)g(t)}: L{Sint }: 321+l

1

and L{f(t)}L{g(t)}=m

* Therefore for these functions it follows that

L{ft)gt)} =L{ f(t)}L{g(t))



Theorem 6.6.1

Suppose F(s)=L{f ()} and G(s) = L{g(t)} bothexistfor s>a>0. Then
H(s) = F(s)G(s) = L{nh(t)} for s > a, where

h®) =] ft-0g@)dr=] fOgt-r)dr=f*g()

The function h(t) is known as the convolution of f and g and the integrals
above are known as convolution integrals.

Note that the equality of the two convolution integrals can be seen by making
the substitutionu =t- 7.

The convolution integral defines a “generalized product” and can be written as
h(t) = (f *g)(t). See text for more detalils.



Theorem 6.6.1 Proof Outline

F(s)G(s)=]

0

e f (u)du| : e g(r)dr

_ ’0“’ g()[ e f(u)du dr

0

= [ 9@)| e ft-ndtdr (t=7+u)
- '0°° | “eg(r) f(t—7)dtdr

([ et drdt
= [ [ e f(t-)g(z)dr

:"O“’est“; f(t—z)g(r)df]dt
— L{h(®)!




Example 1: Find Inverse Transform (1 of 2)

» Find the inverse Laplace Transform of H(s), given below.

a

H(s)= s?(s*+a°)

» Solution: Let F(s) = 1/s? and G(s) = a/(s? + a?), with
f(t)=L"{F(s)}=t
g(t) = L*{G(s)} =sin(at)

e Thus by Theorem 6.6.1,

LH{H(s)}=h(t) = j; (t—7)sin(az)dz



[ u@v@dr =[u@v@)], - [ v@v()de ()} =h = [ ¢-osin(ar)de

Example 1: Solution h(t) (2 of 2)

« We can integrate to simplify h(t), as follows.

h(t) = [, (t-7)sin(az)dz =t sin(ar)dz | zsin(ar)dr

t t

= —ltcos(ar)
a

0 o ar

1 1t
_{_az-cos(az') + — ; COS(aT)dZ}

:_lt[COS(at)—ﬂ{‘ét[cos(at)]+%[Sin(at)]}

d

:Et—izsin(at)
a a
_at-sin(at)

a.2




(Example 2) Find the solutions of I\VP:
(1) Y'+9y=t y(0)=1 y(0)=2

(2) y'+4y=g(t), y(0)=3 y'(0)=-1



Example 2: Initial Value Problem (1 of 4)

Find the solution to the initial value problem

y'+4y=g(t), y(0)=3 y'(0)=-1

Solution:  L{y"}+4L{y} = L{g(t)}

o [sL{y}—sy(0) - y'(0) [+ 4L{y}=G(s)

Letting Y(s) = L{y}, and substituting in initial conditions,

(32 + 4)Y (s) =3s—1+G(s)

3s-1 G(s
s Y()_s +4 s(+)4




Example 2: Solution (2 of 4)

We have  y(-3-1, (2(8)
s°+4 s +4

)l ol o
s°+4 | 2|s°+4| 2|5 °+4

Thus y(t):3c052t—%sin 2t+%j;sin 2(t—7)g(r)dr

Note that if g(t) Is given, then the convolution integral can be
evaluated.



y'+4y=9(), y(0)=3 y(0)=-1
Example 2:
Laplace Transform of Solution (3 of 4)

Recall that the Laplace Transform of the solution y is

Y(s)= 272, OO _p) 1 p(s)
s°+4 s°+4

Note @ (s) depends only on system coefficients and initial conditions, while ¥
(s) depends only on system coefficients and forcing function g(t).

Further, ¢(t) = L-Y{ @ (s)} solves the homogeneous VP
y'+4y=0, y(0)=3 y(0)=-1

while y(t) = L-Y{ ¥ (s)} solves the nonhomogeneous IVP

y'+4y=g(t), y(0)=0, y'(0)=0



Example 2: Transfer Function (4 of 4)

Examining ¥ (s) more closely,

G(s) 1
=H(s)G(s), where H(s) =
s°+4 (5)G() ) s°+4
The function H(s) is known as the transfer function, and depends only on

system coefficients.

P(s) =

The function G(s) depends only on external excitation g(t) applied to system.

If G(s) =1, then g(t) = &(t) and hence h(t) = L-1{H(s)} solves the
nonhomogeneous initial value problem

y'+4y=06(t), y(0)=0, y'(0)=0

Thus h(t) is response of system to unit impulse applied at t = 0, and hence h(t)
is called the impulse response of system.



Input-Output Problem (1 of 3)

Consider the general initial value problem
ay”+by’+cy =g(t), y(0)=Y, ¥'(0) =y,

This IVP is often called an input-output problem. The coefficients a, b, c
describe properties of physical system, and g(t) is the input to system. The
values y, and y,' describe initial state, and solution y is the output at time t.

Using the Laplace transform, we obtain

als?Y (s) - sy(0) - y'(0) |+ blsY () - y(0) ]+ ¥ (s) = G(s)

or

Y(S)= (aS+2b)y0+ay0 + ZG(S)
as“ +bs+c as“ +bs+c

=d(s)+¥(s)



ay”+by +cy =g(t), y(0)=y, Y'(0) =y

Laplace Transform of Solution (2 of 3)

© Wehave v gy _ (@s+b)y, +ay, ,  G(s) _ D(S) + ¥ (s)

as’+bs+c as’+bs+c

» As before, @ (s) depends only on system coefficients and initial conditions,

while ¥ (s) depends only on system coefficients and forcing function g(t).

Further, (t) = L"*{ @ (s)} solves the homogeneous I\VP
ay"+by'+cy =0, y(0)=Y,, y'(0)=Yo

while y(t) = L-{ ¥ (s)} solves the nonhomogeneous IVP

ay"+by'+cy =9(t), y(0)=0, y'(0)=0



Transfer Function (3of 3)

Examining ¥ (s) more closely,

G(s) 1

¥(s)=— =H(s)G(s), where H(s) =—;
as“+bs+c as“+bs+c

As before, H(s) is the transfer function, and depends only on system coefficients, while
G(s) depends only on external excitation g(t) applied to system.

Thus if G(s) =1, then g(t) = &t) and hence h(t) = L{H(s)} solves the
nonhomogeneous IVP

ay"+by'+cy =0o(t), y(0)=0, y'(0)=0

Thus h(t) is response of system to unit impulse applied at t = 0, and hence h(t) is called
the impulse response of system, with

w (1) =L {H($)G(s)} = [ h(t-7)g(r)d



