
7.3: Systems of Linear Equations, Linear 

Independence, Eigenvalues

• A system of n linear equations in n variables:

can be expressed as a matrix equation   Ax = b:

• If b = 0, then system is homogeneous; otherwise it is nonhomogeneous. 
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Nonsingular Case

• If the coefficient matrix A is nonsingular, then it is invertible and 

we can solve  Ax = b as follows:

• This solution is therefore unique.  Also, if  b = 0,  it follows that 

the unique solution to    Ax = 0 is  x = A-10 = 0. 

• Thus if A is nonsingular, then the only solution to  Ax = 0 is the 

trivial solution    x = 0. 
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Example 1: Nonsingular Case (1 of 3)

• From a previous example, we know that the matrix A below is nonsingular 

with inverse as given.

• Using the definition of matrix multiplication, it follows that the only solution 

of  Ax = 0 is x = 0:
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Example 1: Nonsingular Case (2 of 3)

• Now let’s solve the nonhomogeneous linear system Ax = b below using A-1:

• This system of equations can be written as Ax = b, where

• Then
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Example 1: Nonsingular Case (3 of 3)

• Alternatively, we could solve the nonhomogeneous linear system  Ax = b

below using row reduction.

• To do so, form the augmented matrix (A|b) and reduce, using elementary row 

operations. 
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Singular Case

• If the coefficient matrix A is singular, then A-1 does not exist, and either a 

solution to  Ax = b does not exist, or there is more than one solution (not 

unique). 

• Further, the homogeneous system  Ax = 0 has more than one solution. That is, 

in addition to the trivial solution  x = 0,  there are infinitely many nontrivial 

solutions.

• The nonhomogeneous case  Ax = b has no solution unless  (b, y) = 0,  for all 

vectors y satisfying  A*y = 0,  where  A* is the adjoint of  A.  

• In this case,  Ax = b has solutions (infinitely many), each of the form  x = x(0)

+ ,  where  x(0) is a particular solution of   Ax = b,  and   is any solution of 

Ax = 0. 
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Linear Dependence and Independence

• A set of vectors x(1), x(2),…, x(n) is  linearly dependent if 

there exists scalars c1, c2,…, cn, not all zero, such that

• If the only solution of

is c1= c2 = …= cn = 0, then   x(1), x(2),…, x(n)  is linearly 

independent.
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Example 3: Linear Dependence (1 of 2)

• Determine whether the following vectors are linear dependent 

or linearly independent.

• We need to solve                                               or
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Example 3: Linear Dependence (2 of 2)

• We can reduce the augmented matrix (A|b), as before.

• So, the vectors are linearly dependent:

• Alternatively, we could show that the following determinant is zero.

(Question)       The columns (or rows) of A are linearly independent 

if and only if  A  is nonsingular ?
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Linear Independence and Invertibility

• Consider the previous two examples:

– The first matrix was known to be nonsingular, and its column vectors were 

linearly independent. 

– The second matrix was known to be singular, and its column vectors were 

linearly dependent.

• This is true in general: the columns (or rows) of A are linearly independent iff 

A is nonsingular   iff   A-1 exists.

• Also,   A is nonsingular   iff   detA  0,   hence columns (or rows) of A are 

linearly independent   iff   detA  0.

• Further, if   A = BC,   then   det(C) = det(A)det(B).   Thus  if  the columns (or 

rows) of A and B are linearly independent, then the columns (or rows) of C are 

also.  



Linear Dependence & Vector Functions

• Now consider vector functions x(1)(t), x(2)(t),…, x(n)(t),  where

• As before, x(1)(t), x(2)(t),…, x(n)(t) is   linearly dependent on  I if  there exists 

scalars c1, c2,…, cn, not all zero, such that

• Otherwise x(1)(t), x(2)(t),…, x(n)(t) is  linearly independent on  I

See text for more discussion on this.  

    ,,,,2,1,

)(

)(

)(

)(

)(

)(

2

)(

1























 Itnk

tx

tx

tx

t

k

m

k

k

k 


x

Ittctctc n

n   allfor ,)()()( )()2(

2

)1(

1 0xxx 

 (1) (2) (n)

1 2( ) ( ) ( ) 0,           C=
T

nX t X t X t C c c c   



Eigenvalues and Eigenvectors

• The equation Ax = y can be viewed as a linear transformation that maps (or 

transforms)   x  into a new vector y.  

• Nonzero vectors x that transform into multiples of themselves are important in 

many applications.  

• Thus we solve   Ax = x or equivalently,   (A-I)x = 0.  

• This equation has a nonzero solution if we choose  such that det(A-I) = 0. 

• Such values of  are called eigenvalues of A, and the nonzero solutions 

x are called eigenvectors.  

(Example)    Find  eigenvalues  of   
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Example 4: Eigenvalues (1 of 3)

• Find the eigenvalues and eigenvectors of the matrix A.

• Solution:  Choose  such that det(A-I) = 0, as follows.
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Example 4: First Eigenvector (2 of 3)

• To find the eigenvectors of the matrix A,   we need to solve (A-I)x = 0 for   

 = 2 and  = -1. 

• Eigenvector for  = 2:  Solve

and this implies that               .    So
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Example 4: Second Eigenvector (3 of 3)

• Eigenvector for  = -1: Solve

and this implies that                .    So
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Normalized Eigenvectors

• From the previous example, we see that eigenvectors are 

determined up to a nonzero multiplicative constant.   

• If this constant is specified in some particular way, then the 

eigenvector is said to be  normalized. 

• For example, eigenvectors are sometimes normalized by 

choosing the constant so that   ||x|| = (x, x)½ = 1.  



Algebraic and Geometric Multiplicity

• In finding the eigenvalues  of an n x n matrix A, we solve det(A-I) = 0.  

• Since this involves finding the determinant of an n x n matrix, the problem 

reduces to finding roots of an nth degree polynomial.  

• Denote these roots, or  eigenvalues, by  1, 2, …, n.  

• If an eigenvalue is repeated m times, then its algebraic multiplicity is m. 

• Each eigenvalue has at least one eigenvector, and an eigenvalue of algebraic 

multiplicity m may have q linearly independent eigenvectors, 1  q  m, 

and q is called the geometric multiplicity of the eigenvalue. 



Eigenvectors and Linear Independence

• If an eigenvalue  has algebraic multiplicity 1, then it is said to be simple, 

and the geometric multiplicity is 1 also. 

• If each eigenvalue of an n x n matrix A is simple, then A has n distinct 

eigenvalues. It can be shown that the n eigenvectors corresponding to these 

eigenvalues are linearly independent. 

• If an eigenvalue has one or more repeated eigenvalues, then there may be 

fewer than n linearly independent eigenvectors since for each repeated 

eigenvalue, we may have q < m.  This may lead to complications in solving 

systems of differential equations. 



Example 5:   Eigenvalues (1 of 5)

• Find the eigenvalues and eigenvectors of the matrix A.

• Solution:  Choose    such that   det(A-I) = 0,   as follows.
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Example 5: First Eigenvector (2 of 5)

• Eigenvector for   = 2:   Solve  (A-I)x = 0,  as follows.
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Example 5: 2nd and 3rd Eigenvectors (3 of 5)

• Eigenvector for  = -1:    Solve (A-I)x = 0, as follows.
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Example 5: Eigenvectors of A (4 of 5)

• Thus three eigenvectors of A are

where x(2), x(3) correspond to the double eigenvalue  = - 1.

• It can be shown that x(1), x(2), x(3) are linearly independent.  

• Hence A  is a 3 x 3 symmetric matrix (A = AT ) with 3 real eigenvalues 

and 3 linearly independent eigenvectors.
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Example 5: Eigenvectors of A (5 of 5)

• Note that we could have we had chosen

• Then the eigenvectors are orthogonal, since

• Thus A is a 3 x 3 symmetric matrix with 3 real eigenvalues and 3 linearly 

independent orthogonal eigenvectors. 
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Hermitian Matrices

• A  self-adjoint, or Hermitian matrix, satisfies A = A*,  where we recall that 

A* = AT .  

• Thus for a Hermitian matrix,  aij = aji. 

• Note that if A has real entries and is symmetric (see last example), then A is 

Hermitian.  

• An n x n Hermitian matrix A has the following properties:

– All eigenvalues of A are real.

– There exists a full set of n linearly independent eigenvectors of A.

– If x(1) and x(2) are eigenvectors that correspond to different eigenvalues of A, then 

x(1) and x(2) are orthogonal. 

– Corresponding to an eigenvalue of algebraic multiplicity m, it is possible to 

choose m mutually orthogonal eigenvectors, and hence A has a full set of n

linearly independent orthogonal eigenvectors.





Example 2: Singular Case (1 of 2)

• Solve the nonhomogeneous linear system Ax = b below using row reduction. 

Observe that the coefficients are nearly the same as in the previous example

• We will form the augmented matrix (A|b) and use some of the steps in 

Example 1 to transform the matrix more quickly

 

03

30

32

3000

110

321

312

211

321

321

321

2132

1321

321

21

1

3

2

1


























































bbb

bbb

bbxx

bxxx

bbb

bb

b

b

b

b

bA

3321

2321

1321

32

2

32

bxxx

bxxx

bxxx









Example 2: Singular Case (2 of 2)

• From the previous slide, if ,   there is no solution to the system 

of equations

• Requiring that ,     assume,  for example,  that

• Then the reduced augmented matrix (A|b) becomes: 

• It can be shown that the second term in x is a solution of the nonhomogeneous 

equation and that the first term is the most general solution of the homogeneous 

equation, letting  ,  where α is arbitrary
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