7.4: Basic Theory of Systems of First Order Linear
Equations

Xl, — pll(t)xl + plZ(t)XZ ...+ Py, (t)xn + gl(t)
X; — p21(t)xl + pzz(t)xz ...+ Py, (t)Xn + gz(t)

X:] — pnl(t)xl+ pn2(t)X2 +...F pnn(t)xn + gn(t)

parallels that of a single nth order linear equation.
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, g(t) =

g,(t)
g,(t)

g,(t)

 PO=

This system can be written as x' = P(t)x + g(t), where

pll(t) p12(t)
p21(t) p22 (t)

P (t) Pn2 (t) Tt

The general theory of a system of n first order linear equations
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Pon (D)




Vector Solutions of an ODE System

Avector x = ¢(t) isa solution of x' = P(t)x + g(t) If the components of X,
X, =¢ (1), X, =¢,(1),..., X, =, (1),

satisfy the system of equationson |: a<t<pg.

For comparison, recall that x' = P(t)x + g(t) represents our system of
equations

Xlr — pll(t)xl + plZ(t)XZ +...+ Py (t)xn + gl(t)
Xo = Py (D)X + P ()X, +... 4 Pan ()X, + 95 (1)

X; — pnl(t)xl + an(t)XZ T...F pnn(t)xn + gn(t)

Assuming P and g continuous on I, such a solution exists by Theorem 7.1.2.



Homogeneous Case; Vector Function Notation

* As In Chapters 3 and 4, we first examine the general
homogeneous equation X' = P(t)x.

 Also, the following notation for the vector functions
xW x@ o x® . will be used:

X,(t) X12(t) X (1)

Xy (1) Xp(t) Xon (1)

xP(t) = X () =

an.(t) Xao (1) Xon ()



Theorem 7.4.1

« |If the vector functions x(*) and x®@ are solutions of the system
X' = P(t)x, then the linear combination c,x +¢,x@ isalso
a solution for any constants c, and ¢, (: superposition)

* Note: By repeatedly applying the result of this theorem, it can
be seen that every finite linear combination

X =c X" (1) +c,x? () +...+c. x¥(t)

of solutions x™M, x@ . x® is itself a solution to X' = P(t)x.



Theorem 7.4.2

o If xB, x@, . .. xM are linearly independent solutions of the
system X' = P(t)x for each pointin I: o <t < f, then each
solution x = ¢(t) can be expressed uniquely in the form

X =Cc XV (t)+c,xD(t)+...+¢c x(t)

 |fsolutions x®,..., x™ are linearly independent for each point
In . ¢ <t < g, then they are fundamental solutions on I, and

the general solution is given by

X =c XY () +c,x? () +...+c x"M(t)



The Wronskian and Linear Independence

The proof of Thm 7.4.2 uses the fact that if x®, x@ ..., x™ are linearly
Independent on I, then detX(t) =0 on I, where

X (€)oo Xg,(t) ))zli
X(t):(X(l) X @ .. x(”)): : : | X (0 — 2.
X (1) o X, (D) "

The Wronskian of x@,..., x™ jsdefinedas W[x®,..., x™](t) = det[X(1)].

It follows that W[x®,... xM](t)=0 onl iff x® .. . x™ are linearly
Independent for each point in I.



Theorem 7.4.3

o If xM, x@ . xM aresolutions of the system x'=P(t)x on I a<t<
B, then the Wronskian W[xW, ..., x™M](t) is either identically zero on | or
else is never zero on I.

* This result relies on Abel’s formula for the Wronskian

dd_v':/ = (P + P+ + Pyy) > W(T) :cef [ Pr1 () Paa (1) + Py ()]t

where c is an arbitrary constant (Refer to Section 3.2)

« This result enables us to determine whether a given set of solutions x(b, x,
..., X are fundamental solutions by evaluating W[xW, ..., xM](t) at any
point t ina<t<pg



Theorem 7.4.4

Let 1 0
1 0

e®=10| e?=(0}...,e"M=]|:

0 0 1

Let xM, x@, ..., x( be solutions of the system x' = P(t)x, a <t < S, that satisfy
the initial conditions
xW(t,)=e”, ..., x"(t,) =e",

respectively, where t, is any pointin ¢ <t < g.

Then xW, x@, .. xM form afundamental set of solutions of X' = P(t)x.



Theorem 7.4.5

» Consider the system X =P(t)X where each element of
P is a real-valued continuous function.

If x=u(t) +1v(t) iIsacomplex-valued solution of Eqg. (3),
then its real part u(t) and its imaginary part v(t) are also
solutions of this equation.



Quiz

Find the solution of the IVVP by using Laplace
transform:

V' +2y'+2y =3
y(0)=0, y'(0)=1



